1
|
Hanin A, Comi M, Sumida TS, Hafler DA. Cholesterol promotes IFNG mRNA expression in CD4 + effector/memory cells by SGK1 activation. Life Sci Alliance 2024; 7:e202402890. [PMID: 39366761 PMCID: PMC11452476 DOI: 10.26508/lsa.202402890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
IFNγ-secreting T cells are central for the maintenance of immune surveillance within the central nervous system (CNS). It was previously reported in healthy donors that the T-cell environment in the CNS induces distinct signatures related to cytotoxic capacity, CNS trafficking, tissue adaptation, and lipid homeostasis. These findings suggested that the CNS milieu consisting predominantly of lipids mediated the metabolic conditions leading to IFNγ-secreting brain CD4 T cells. Here, we demonstrate that the supplementation of CD4+CD45RO+CXCR3+ cells with cholesterol modulates their function and increases IFNG expression. The heightened IFNG expression was mediated by the activation of the serum/glucocorticoid-regulated kinase (SGK1). Inhibition of SGK1 by a specific enzymatic inhibitor significantly reduces the expression of IFNG Our results confirm the crucial role of lipids in maintaining T-cell homeostasis and demonstrate a putative role of environmental factors to induce effector responses in CD4+ effector/memory cells. These findings offer potential avenues for further research targeting lipid pathways to modulate inflammatory conditions.
Collapse
Affiliation(s)
- Aurélie Hanin
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
- AP-HP, Epilepsy Unit and Clinical Neurophysiology Department, DMU Neurosciences, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Michela Comi
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Tomokazu S Sumida
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - David A Hafler
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
2
|
Ahmad F, Ahmad S, Husain A, Pandey N, Khubaib M, Sharma R. Role of inflammatory cytokine burst in neuro-invasion of Japanese Encephalitis virus infection: an immunotherapeutic approaches. J Neurovirol 2024; 30:251-265. [PMID: 38842651 DOI: 10.1007/s13365-024-01212-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
Japanese Encephalitis remains a significant global health concern, contributing to millions of deaths annually worldwide. Microglial cells, as key innate immune cells within the central nervous system (CNS), exhibit intricate cellular structures and possess molecular phenotypic plasticity, playing pivotal roles in immune responses during CNS viral infections. Particularly under viral inflammatory conditions, microglial cells orchestrate innate and adaptive immune responses to mitigate viral invasion and dampen inflammatory reactions. This review article comprehensively summarizes the pathophysiology of viral invasion into the CNS and the cellular interactions involved, elucidating the roles of various immune mediators, including pro-inflammatory cytokines, in neuroinflammation. Leveraging this knowledge, strategies for modulating inflammatory responses and attenuating hyperactivation of glial cells to mitigate viral replication within the brain are discussed. Furthermore, current chemotherapeutic and antiviral drugs are examined, elucidating their mechanisms of action against viral replication. This review aims to provide insights into therapeutic interventions for Japanese Encephalitis and related viral infections, ultimately contributing to improved outcomes for affected individuals.
Collapse
Affiliation(s)
- Firoz Ahmad
- IIRC-3 Immunobiochemistry Lab, Department of Biosciences, Integral University, Lucknow, 226026, Uttar Pradesh, India
- Department of Clinical Immunology & Rheumatology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, Uttar Pradesh, India
| | - Shad Ahmad
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Faizabad, 224001 Uttar Pradesh, India., 224001, Faizabad, Uttar Pradesh, India
| | - Adil Husain
- Department of Pathology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, 226016, Uttar Pradesh, India
| | - Niharika Pandey
- IIRC-3 Immunobiochemistry Lab, Department of Biosciences, Integral University, Lucknow, 226026, Uttar Pradesh, India
| | - Mohd Khubaib
- IIRC-3 Immunobiochemistry Lab, Department of Biosciences, Integral University, Lucknow, 226026, Uttar Pradesh, India
| | - Rolee Sharma
- IIRC-3 Immunobiochemistry Lab, Department of Biosciences, Integral University, Lucknow, 226026, Uttar Pradesh, India.
- Department of Life Sciences & Biotechnology, CSJM University, Kanpur, 228024, Uttar Pradesh, India.
| |
Collapse
|
3
|
Chan TYH, Wong JSY, Kiang KMY, Sun CWY, Leung GKK. The duality of CXCR3 in glioblastoma: unveiling autocrine and paracrine mechanisms for novel therapeutic approaches. Cell Death Dis 2023; 14:835. [PMID: 38104126 PMCID: PMC10725418 DOI: 10.1038/s41419-023-06354-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/19/2023]
Abstract
Glioblastoma (GBM) is a highly aggressive brain tumor associated with limited therapeutic options and a poor prognosis. CXCR3, a chemokine receptor, serves dual autocrine-paracrine functions in cancer. Despite gaps in our understanding of the functional role of the CXCR3 receptor in GBM, it has been shown to hold promise as a therapeutic target for the treatment of GBM. Existing clinical therapeutics and vaccines targeting CXCR3 ligand expression associated with the CXCR3 axes have also shown anti-tumorigenic effects in GBM. This review summarizes existing evidence on the oncogenic function of CXCR3 and its ligands CXCL9, CXCL10, and CXCL11, in GBM, and examines the controversies concerning the immunomodulatory functions of the CXCR3 receptor, including immune T cell recruitment, polarization, and positioning. The mechanisms underlying monotherpies and combination therapies targeting the CXCR3 pathways are discussed. A better understanding of the CXCR3 axes may lead to the development of strategies for overcoming the limitations of existing immunotherapies for GBM.
Collapse
Affiliation(s)
- Travis Yui Hei Chan
- Division of Neurosurgery, Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jenny Sum Yee Wong
- Division of Vascular Surgery, Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Karrie Mei-Yee Kiang
- Division of Neurosurgery, Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Cherry Won Yuet Sun
- Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Republic of Ireland
| | - Gilberto Ka-Kit Leung
- Division of Neurosurgery, Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
4
|
Paskeviciute E, Chen M, Xu H, Honoré B, Vorum H, Sørensen TL, Christensen JP, Thomsen AR, Nissen MH, Steffensen MA. Systemic virus infection results in CD8 T cell recruitment to the retina in the absence of local virus infection. Front Immunol 2023; 14:1221511. [PMID: 37662932 PMCID: PMC10471971 DOI: 10.3389/fimmu.2023.1221511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
During recent years, evidence has emerged that immune privileged sites such as the CNS and the retina may be more integrated in the systemic response to infection than was previously believed. In line with this, it was recently shown that a systemic acute virus infection leads to infiltration of CD8 T cells in the brains of immunocompetent mice. In this study, we extend these findings to the neurological tissue of the eye, namely the retina. We show that an acute systemic virus infection in mice leads to a transient CD8 T cell infiltration in the retina that is not directed by virus infection inside the retina. CD8 T cells were found throughout the retinal tissue, and had a high expression of CXCR6 and CXCR3, as also reported for tissue residing CD8 T cells in the lung and liver. We also show that the pigment epithelium lining the retina expresses CXCL16 (the ligand for CXCR6) similar to epithelial cells of the lung. Thus, our results suggest that the retina undergoes immune surveillance during a systemic infection, and that this surveillance appears to be directed by mechanisms similar to those described for non-privileged tissues.
Collapse
Affiliation(s)
- Egle Paskeviciute
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Mei Chen
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University of Belfast, Belfast, Ireland
| | - Heping Xu
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University of Belfast, Belfast, Ireland
| | - Bent Honoré
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Henrik Vorum
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark
| | - Torben Lykke Sørensen
- Department of Ophthalmology, Zealand University Hospital, Roskilde, Denmark
- Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Allan Randrup Thomsen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Mogens Holst Nissen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
5
|
Cognitive impairments correlate with increased central nervous system immune activation after allogeneic haematopoietic stem cell transplantation. Leukemia 2023; 37:888-900. [PMID: 36792657 PMCID: PMC10079537 DOI: 10.1038/s41375-023-01840-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023]
Abstract
Murine studies indicate that, after allogeneic haematopoietic stem cell transplantation (aHSCT), donor-derived macrophages replace damaged microglia and alloreactive T-cells invade the central nervous system (CNS). The clinical relevance of this is unknown. We assessed CNS immune surveillance and metabolic activity involved in neuronal survival, in relation to fatigue and cognitive dysfunction in 25 long-term survivors after aHSCT. Patients with cognitive dysfunction exhibited increased proportions of activated T-cells and CD16 + NK-cells in the cerebrospinal fluid (CSF). Immune cell activation was paralleled with reduced levels of anti-inflammatory factors involved in T-cell suppression (transforming growth factor-β, programmed death ligand-1), NK-cell regulation (poliovirus receptor, nectin-2), and macrophage and microglia activation (CD200, chemokine [C-X3-C motif] ligand-1). Additionally, the CSF mRNA expression pattern was associated with neuroinflammation and oxidative stress. Furthermore, proteomic, and transcriptomic studies demonstrated decreased levels of neuroprotective factors, and an upregulation of apoptosis pathway genes. The kynurenine pathway of tryptophan metabolism was activated in the CNS of all aHSCT patients, resulting in accumulation of neurotoxic and pro-inflammatory metabolites. Cognitive decline and fatigue are overlooked but frequent complications of aHSCT. This study links post-transplant CNS inflammation and neurotoxicity to our previously reported hypoactivation in the prefrontal cortex during cognitive testing, suggesting novel treatment targets.
Collapse
|
6
|
Abdelbaky HH, Mitsuhashi S, Watanabe K, Ushio N, Miyakawa M, Furuoka H, Nishikawa Y. Involvement of chemokine receptor CXCR3 in the defense mechanism against Neospora caninum infection in C57BL/6 mice. Front Microbiol 2023; 13:1045106. [PMID: 36704563 PMCID: PMC9873264 DOI: 10.3389/fmicb.2022.1045106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023] Open
Abstract
C-X-C motif chemokine receptor 3 (CXCR3) is an important receptor controlling the migration of leukocytes, although there is no report regarding its role in Neospora caninum infection. Herein, we investigated the relevance of CXCR3 in the resistance mechanism to N. caninum infection in mice. Wild-type (WT) C57BL/6 mice and CXCR3-knockout (CXCR3KO) mice were used in all experiments. WT mice displayed a high survival rate (100%), while 80% of CXCR3KO mice succumbed to N. caninum infection within 50 days. Compared with WT mice, CXCR3KO mice exhibited significantly lower body weights and higher clinical scores at the subacute stage of infection. Flow cytometric analysis revealed CXCR3KO mice as having significantly increased proportions and numbers of CD11c-positive cells compared with WT mice at 5 days post infection (dpi). However, levels of interleukin-6 and interferon-γ in serum and ascites were similar in all groups at 5 dpi. Furthermore, no differences in parasite load were detected in brain, spleen, lungs or liver tissue of CXCR3KO and WT mice at 5 and 21 dpi. mRNA analysis of brain tissue collected from infected mice at 30 dpi revealed no changes in expression levels of inflammatory response genes. Nevertheless, the brain tissue of infected CXCR3KO mice displayed significant necrosis and microglial activation compared with that of WT mice at 21 dpi. Interestingly, the brain tissue of CXCR3KO mice displayed significantly lower numbers of FoxP3+ cells compared with the brain tissue of WT mice at 30 dpi. Accordingly, our study suggests that the lack of active regulatory T cells in brain tissue of infected CXCR3KO mice is the main cause of these mice having severe necrosis and lower survival compared with WT mice. Thus, CXCR3+ regulatory T cells may play a crucial role in control of neosporosis.
Collapse
Affiliation(s)
- Hanan H. Abdelbaky
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Shuichiro Mitsuhashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Kenichi Watanabe
- Division of Pathobiological Science, Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Nanako Ushio
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Miku Miyakawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Hidefumi Furuoka
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan,*Correspondence: Yoshifumi Nishikawa, ✉
| |
Collapse
|
7
|
Arbelaez CA, Palle P, Charaix J, Bettelli E. STAT1 signaling protects self-reactive T cells from control by innate cells during neuroinflammation. JCI Insight 2022; 7:148222. [PMID: 35587373 PMCID: PMC9309063 DOI: 10.1172/jci.insight.148222] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
The transcription factor STAT1 plays a critical role in modulating the differentiation of CD4+ T cells producing IL-17 and GM-CSF, which promote the development of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). The protective role of STAT1 in MS and EAE has been largely attributed to its ability to limit pathogenic Th cells and promote Tregs. Using mice with selective deletion of STAT1 in T cells (STAT1CD4-Cre), we identified a potentially novel mechanism by which STAT1 regulates neuroinflammation independently of Foxp3+ Tregs. STAT1-deficient effector T cells became the target of NK cell–mediated killing, limiting their capacity to induce EAE. STAT1-deficient T cells promoted their own killing by producing more IL-2 that, in return, activated NK cells. Elimination of NK cells restored EAE susceptibility in STAT1CD4-Cre mice. Therefore, our study suggests that the STAT1 pathway can be manipulated to limit autoreactive T cells during autoimmunity directed against the CNS.
Collapse
Affiliation(s)
- Carlos A Arbelaez
- Center for Fundamental Immunology, Benaroya Research Institute at Virginia Mason, Seattle, United States of America
| | - Pushpalatha Palle
- Center for Fundamental Immunology, Benaroya Research Institute at Virginia Mason, Seattle, United States of America
| | - Jonathan Charaix
- Center for Fundamental Immunology, Benaroya Research Institute at Virginia Mason, Seattle, United States of America
| | - Estelle Bettelli
- Center for Fundamental Immunology, Benaroya Research Institute at Virginia Mason, Seattle, United States of America
| |
Collapse
|
8
|
Kollis PM, Ebert LM, Toubia J, Bastow CR, Ormsby RJ, Poonnoose SI, Lenin S, Tea MN, Pitson SM, Gomez GA, Brown MP, Gargett T. Characterising Distinct Migratory Profiles of Infiltrating T-Cell Subsets in Human Glioblastoma. Front Immunol 2022; 13:850226. [PMID: 35464424 PMCID: PMC9019231 DOI: 10.3389/fimmu.2022.850226] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma is the most common and aggressive form of primary brain cancer, with no improvements in the 5-year survival rate of 4.6% over the past three decades. T-cell-based immunotherapies such as immune-checkpoint inhibitors and chimeric antigen receptor T-cell therapy have prolonged the survival of patients with other cancers and have undergone early-phase clinical evaluation in glioblastoma patients. However, a major challenge for T-cell-based immunotherapy of glioblastoma and other solid cancers is T-cell infiltration into tumours. This process is mediated by chemokine-chemokine receptor and integrin-adhesion molecule interactions, yet the specific nature of the molecules that may facilitate T-cell homing into glioblastoma are unknown. Here, we have characterised chemokine receptor and integrin expression profiles of endogenous glioblastoma-infiltrating T cells, and the chemokine expression profile of glioblastoma-associated cells, by single-cell RNA-sequencing. Subsequently, chemokine receptors and integrins were validated at the protein level to reveal enrichment of receptors CCR2, CCR5, CXCR3, CXCR4, CXCR6, CD49a, and CD49d in glioblastoma-infiltrating T-cell populations relative to T cells in matched patient peripheral blood. Complementary chemokine ligand expression was then validated in glioblastoma biopsies and glioblastoma-derived primary cell cultures. Together, enriched expression of homing receptor-ligand pairs identified in this study implicate a potential role in mediating T-cell infiltration into glioblastoma. Importantly, our data characterising the migratory receptors on endogenous tumour-infiltrating T cells could be exploited to enhance the tumour-homing properties of future T-cell immunotherapies for glioblastoma.
Collapse
Affiliation(s)
- Paris M Kollis
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia.,Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Lisa M Ebert
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia.,Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia.,Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - John Toubia
- Australian Cancer Research Foundation (ACRF) Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Cameron R Bastow
- Chemokine Biology Laboratory, Molecular Life Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Rebecca J Ormsby
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Santosh I Poonnoose
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.,Department of Neurosurgery, Flinders Medical Centre, Adelaide, SA, Australia
| | - Sakthi Lenin
- Molecular Therapeutics Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Melinda N Tea
- Molecular Therapeutics Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Stuart M Pitson
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia.,Molecular Therapeutics Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Guillermo A Gomez
- Tissue Architecture and Organ Function Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Michael P Brown
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia.,Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia.,Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Tessa Gargett
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia.,Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia.,Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| |
Collapse
|
9
|
Brate AA, Boyden AW, Jensen IJ, Badovinac VP, Karandikar NJ. A Functionally Distinct CXCR3 +/IFN-γ +/IL-10 + Subset Defines Disease-Suppressive Myelin-Specific CD8 T Cells. THE JOURNAL OF IMMUNOLOGY 2021; 206:1151-1160. [PMID: 33558376 DOI: 10.4049/jimmunol.2001143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022]
Abstract
Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the CNS. We have previously demonstrated that CNS-specific CD8 T cells possess a disease-suppressive function in MS and variations of its animal model, experimental autoimmune encephalomyelitis (EAE), including the highly clinically relevant relapsing-remitting EAE disease course. Regulatory CD8 T cell subsets have been identified in EAE and other autoimmune diseases, but studies vary in defining phenotypic properties of these cells. In relapsing-remitting EAE, PLP178-191 CD8 T cells suppress disease, whereas PLP139-151 CD8 T cells lack this function. In this study, we used this model to delineate the unique phenotypic properties of CNS-specific regulatory PLP178-191 CD8 T cells versus nonregulatory PLP139-151 or OVA323-339 CD8 T cells. Using multiparametric flow cytometric analyses of phenotypic marker expression, we identified a CXCR3+ subpopulation among activated regulatory CD8 T cells, relative to nonregulatory counterparts. This subset exhibited increased degranulation and IFN-γ and IL-10 coproduction. A similar subset was also identified in C57BL/6 mice within autoregulatory PLP178-191 CD8 T cells but not within nonregulatory OVA323-339 CD8 T cells. This disease-suppressing CD8 T cell subpopulation provides better insights into functional regulatory mechanisms, and targeted enhancement of this subset could represent a novel immunotherapeutic approach for MS.
Collapse
Affiliation(s)
- Ashley A Brate
- Department of Pathology, University of Iowa Health Care, Iowa City, IA 52241.,Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52241.,Iowa City Veterans Affairs Medical Center, Iowa City, IA 52241; and
| | - Alexander W Boyden
- Department of Pathology, University of Iowa Health Care, Iowa City, IA 52241.,Iowa City Veterans Affairs Medical Center, Iowa City, IA 52241; and
| | - Isaac J Jensen
- Department of Pathology, University of Iowa Health Care, Iowa City, IA 52241.,Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52241
| | - Vladimir P Badovinac
- Department of Pathology, University of Iowa Health Care, Iowa City, IA 52241.,Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52241.,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52241
| | - Nitin J Karandikar
- Department of Pathology, University of Iowa Health Care, Iowa City, IA 52241; .,Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52241.,Iowa City Veterans Affairs Medical Center, Iowa City, IA 52241; and
| |
Collapse
|
10
|
Pappalardo JL, Zhang L, Pecsok MK, Perlman K, Zografou C, Raddassi K, Abulaban A, Krishnaswamy S, Antel J, van Dijk D, Hafler DA. Transcriptomic and clonal characterization of T cells in the human central nervous system. Sci Immunol 2020; 5:eabb8786. [PMID: 32948672 PMCID: PMC8567322 DOI: 10.1126/sciimmunol.abb8786] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/26/2020] [Indexed: 08/04/2023]
Abstract
T cells provide critical immune surveillance to the central nervous system (CNS), and the cerebrospinal fluid (CSF) is thought to be a main route for their entry. Further characterization of the state of T cells in the CSF in healthy individuals is important for understanding how T cells provide protective immune surveillance without damaging the delicate environment of the CNS and providing tissue-specific context for understanding immune dysfunction in neuroinflammatory disease. Here, we have profiled T cells in the CSF of healthy human donors and have identified signatures related to cytotoxic capacity and tissue adaptation that are further exemplified in clonally expanded CSF T cells. By comparing profiles of clonally expanded T cells obtained from the CSF of patients with multiple sclerosis (MS) and healthy donors, we report that clonally expanded T cells from the CSF of patients with MS have heightened expression of genes related to T cell activation and cytotoxicity.
Collapse
Affiliation(s)
- Jenna L Pappalardo
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06511, USA
| | - Le Zhang
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06511, USA
| | - Maggie K Pecsok
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06511, USA
| | - Kelly Perlman
- Montreal Neurologic Institute, Montreal, Quebec, Canada
| | - Chrysoula Zografou
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06511, USA
| | - Khadir Raddassi
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06511, USA
| | - Ahmad Abulaban
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06511, USA
| | - Smita Krishnaswamy
- Departments of Genetics and Computer Science, Yale School of Medicine, New Haven, CT 06511, USA
| | - Jack Antel
- Montreal Neurologic Institute, Montreal, Quebec, Canada
| | - David van Dijk
- Departments of Internal Medicine (Cardiology), Cardiovascular Research Center, and Computer Science, New Haven, CT 06511, USA.
| | - David A Hafler
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06511, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
11
|
Nazerai L, Schøller AS, Bassi MR, Buus S, Stryhn A, Christensen JP, Thomsen AR. Effector CD8 T Cell-Dependent Zika Virus Control in the CNS: A Matter of Time and Numbers. Front Immunol 2020; 11:1977. [PMID: 32973802 PMCID: PMC7461798 DOI: 10.3389/fimmu.2020.01977] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/21/2020] [Indexed: 12/29/2022] Open
Abstract
Zika virus (ZIKV), a mosquito-borne flavivirus, came into the spotlight in 2016 when it was found to be associated with an increased rate of microcephalic newborns in Brazil. The virus has further been recognized to cause neurologic complications in children and adults in the form of myelitis, encephalitis, acute disseminated encephalomyelitis (ADEM) and Guillain Barre Syndrome in a fraction of infected individuals. With the ultimate goal of identifying correlates of protection to guide the design of an effective vaccine, the study of the immune response to ZIKV infection has become the focus of research worldwide. Both innate and adaptive immune responses seem to be essential for controlling the infection. Induction of sufficient levels of neutralizing antibodies has been strongly correlated with protection against reinfection in various models, while the role of CD8 T cells as antiviral effectors in the CNS has been controversial. In an attempt to improve our understanding regarding the role of ZIKV-induced CD8 T cells in protective immunity inside the CNS, we have expanded on previous studies in intracranially infected mice. In a recent study, we have demonstrated that, peripheral ZIKV infection in adult C57BL/6 mice induces a robust CD8 T cell response that peaks within a week. In the present study, we used B cell deficient as well as wild-type mice to show that there is a race between CXCR3-dependent recruitment of the effector CD8 T cells and local ZIKV replication, and that CD8 T cells are capable of local viral control if they arrive in the brain early after viral invasion, in appropriate numbers and differentiation state. Our data highlight the benefits of considering this subset when designing vaccines against Zika virus.
Collapse
Affiliation(s)
- Loulieta Nazerai
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Amalie Skak Schøller
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Maria Rosaria Bassi
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Søren Buus
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anette Stryhn
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | - Allan Randrup Thomsen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Boyden AW, Brate AA, Stephens LM, Karandikar NJ. Immune Autoregulatory CD8 T Cells Require IFN-γ Responsiveness to Optimally Suppress Central Nervous System Autoimmunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:359-368. [PMID: 32532836 PMCID: PMC7343581 DOI: 10.4049/jimmunol.2000211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/15/2020] [Indexed: 12/16/2022]
Abstract
Investigating the complex cellular interplay controlling immunopathogenic and immunoregulatory responses is critical for understanding multiple sclerosis (MS) and for developing successful immunotherapies. Our group has demonstrated that CNS myelin-specific CD8 T cells unexpectedly harbor immune regulatory capacity in both mouse and human. In particular, PLP178-191-specific CD8 T cells (PLP-CD8) robustly suppress the MS mouse model experimental autoimmune encephalomyelitis. We have recently shown that this depends on PLP-CD8 elaborating IFN-γ and perforin in a coordinated suppression program over time. However, the cellular target and downstream effects of CD8 T cell-derived IFN-γ remains poorly understood. In this study, we show that although wild-type (WT) PLP-CD8 were robustly suppressive in IFN-γR-deficient mice, IFN-γR-deficient PLP-CD8 exhibited suboptimal suppression in WT mice. Compared with WT counterparts, IFN-γR-deficient PLP-CD8 were defective in suppressing disease in IFN-γ-deficient recipients, a scenario in which the only IFN-γ available to WT PLP-CD8 is that which they produce themselves. Further, we found that IFN-γR-deficient PLP-CD8 exhibited altered granzyme/IFN-γ profiles, altered migration in recipients, and deficits in killing capacity in vivo. Collectively, this work suggests that IFN-γ responsiveness allows myelin-specific CD8 T cells to optimally perform autoregulatory function in vivo. These insights may help elucidate future adoptive immunotherapeutic approaches for MS patients.
Collapse
Affiliation(s)
- Alexander W Boyden
- Department of Pathology, University of Iowa Health Care, Iowa City, IA 52242
- Iowa City Veterans Affairs Medical Center, Iowa City, IA 52246; and
| | - Ashley A Brate
- Department of Pathology, University of Iowa Health Care, Iowa City, IA 52242
- Iowa City Veterans Affairs Medical Center, Iowa City, IA 52246; and
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242
| | - Laura M Stephens
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242
| | - Nitin J Karandikar
- Department of Pathology, University of Iowa Health Care, Iowa City, IA 52242;
- Iowa City Veterans Affairs Medical Center, Iowa City, IA 52246; and
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
13
|
Bentivoglio M, Kristensson K, Rottenberg ME. Circumventricular Organs and Parasite Neurotropism: Neglected Gates to the Brain? Front Immunol 2018; 9:2877. [PMID: 30619260 PMCID: PMC6302769 DOI: 10.3389/fimmu.2018.02877] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 11/22/2018] [Indexed: 12/20/2022] Open
Abstract
Circumventricular organs (CVOs), neural structures located around the third and fourth ventricles, harbor, similarly to the choroid plexus, vessels devoid of a blood-brain barrier (BBB). This enables them to sense immune-stimulatory molecules in the blood circulation, but may also increase chances of exposure to microbes. In spite of this, attacks to CVOs by microbes are rarely described. It is here highlighted that CVOs and choroid plexus can be infected by pathogens circulating in the bloodstream, providing a route for brain penetration, as shown by infections with the parasites Trypanosoma brucei. Immune responses elicited by pathogens or systemic infections in the choroid plexus and CVOs are briefly outlined. From the choroid plexus trypanosomes can seed into the ventricles and initiate accelerated infiltration of T cells and parasites in periventricular areas. The highly motile trypanosomes may also enter the brain parenchyma from the median eminence, a CVO located at the base of the third ventricle, by crossing the border into the BBB-protected hypothalamic arcuate nuclei. A gate may, thus, be provided for trypanosomes to move into brain areas connected to networks of regulation of circadian rhythms and sleep-wakefulness, to which other CVOs are also connected. Functional imbalances in these networks characterize human African trypanosomiasis, also called sleeping sickness. They are distinct from the sickness response to bacterial infections, but can occur in common neuropsychiatric diseases. Altogether the findings lead to the question: does the neglect in reporting microbe attacks to CVOs reflect lack of awareness in investigations or of gate-opening capability by microbes?
Collapse
Affiliation(s)
- Marina Bentivoglio
- Department of Neuroscience Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Martin E. Rottenberg
- Department Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Maymon E, Romero R, Bhatti G, Chaemsaithong P, Gomez-Lopez N, Panaitescu B, Chaiyasit N, Pacora P, Dong Z, Hassan SS, Erez O. Chronic inflammatory lesions of the placenta are associated with an up-regulation of amniotic fluid CXCR3: A marker of allograft rejection. J Perinat Med 2018; 46:123-137. [PMID: 28829757 PMCID: PMC5797487 DOI: 10.1515/jpm-2017-0042] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/19/2017] [Indexed: 01/05/2023]
Abstract
OBJECTIVE The objective of this study is to determine whether the amniotic fluid (AF) concentration of soluble CXCR3 and its ligands CXCL9 and CXCL10 changes in patients whose placentas show evidence of chronic chorioamnionitis or other placental lesions consistent with maternal anti-fetal rejection. METHODS This retrospective case-control study included 425 women with (1) preterm delivery (n=92); (2) term in labor (n=68); and (3) term not in labor (n=265). Amniotic fluid CXCR3, CXCL9 and CXCL10 concentrations were determined by ELISA. RESULTS (1) Amniotic fluid concentrations of CXCR3 and its ligands CXCL9 and CXCL10 are higher in patients with preterm labor and maternal anti-fetal rejection lesions than in those without these lesions [CXCR3: preterm labor and delivery with maternal anti-fetal rejection placental lesions (median, 17.24 ng/mL; IQR, 6.79-26.68) vs. preterm labor and delivery without these placental lesions (median 8.79 ng/mL; IQR, 4.98-14.7; P=0.028)]; (2) patients with preterm labor and chronic chorioamnionitis had higher AF concentrations of CXCL9 and CXCL10, but not CXCR3, than those without this lesion [CXCR3: preterm labor with chronic chorioamnionitis (median, 17.02 ng/mL; IQR, 5.57-26.68) vs. preterm labor without chronic chorioamnionitis (median, 10.37 ng/mL; IQR 5.01-17.81; P=0.283)]; (3) patients with preterm labor had a significantly higher AF concentration of CXCR3 than those in labor at term regardless of the presence or absence of placental lesions. CONCLUSION Our findings support a role for maternal anti-fetal rejection in a subset of patients with preterm labor.
Collapse
Affiliation(s)
- Eli Maymon
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Gaurav Bhatti
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
| | - Piya Chaemsaithong
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Block E East Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin New Territories, Hong Kong
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bogdan Panaitescu
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Noppadol Chaiyasit
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Percy Pacora
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zhong Dong
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sonia S. Hassan
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Offer Erez
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
15
|
CD4 and CD8 T cells mediate distinct lethal meningoencephalitis in mice challenged with Tacaribe arenavirus. Cell Mol Immunol 2016; 14:90-107. [PMID: 27569560 PMCID: PMC5214944 DOI: 10.1038/cmi.2016.41] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 01/25/2023] Open
Abstract
Neonates are at increased risk of viral encephalopathies that can result in neurological dysfunction, seizures, permanent disability and even death. The neurological damage results from the combined effect of the virus and the immune response it elicits, thus finding tools to facilitate viral clearance from central nervous system (CNS) while minimizing neuron damage remains a critical challenge. Neonatal mice inoculated intraperitoneally with Tacaribe virus (TCRV) develop seizures, hindlimb paralysis and death within 15 days of inoculation. TCRV localizes to the CNS within days of challenge, primarily infecting astrocytes in the cerebellum and brain stem. We show that infection leads to inflammation, T cell and monocyte infiltration into the cerebellar parenchyma, apoptosis of astrocytes, neuronal degeneration and loss of Purkinje cells. Infiltrating antigen-specific T cells fail to clear the virus but drive the disease, as T-cell-deficient CD3ɛ KO mice survive TCRV infection with minimal inflammation or clinical manifestations despite no difference in CNS viral loads in comparison with T-cell sufficient mice. CD8+ T cells drive the pathology, which even in the absence of CD4+ T-cell help, infiltrate the parenchyma and mediate the apoptotic loss of cerebellar astrocytes, neurodegeneration and loss of Purkinje cells resulting in loss of balance, paralysis and death. CD4+ T cells are also pathogenic inducing gliosis and inflammation in the cerebellum and cerebrum that are associated with wasting and death several weeks after CD4+ T-cell transfer. These data demonstrate distinct pathogenic effects of CD4+ and CD8+ T cells and identify them as possible therapeutic targets.
Collapse
|
16
|
Levin D, Forrest S, Banerjee S, Clay C, Cannon J, Moses M, Koster F. A spatial model of the efficiency of T cell search in the influenza-infected lung. J Theor Biol 2016; 398:52-63. [PMID: 26920246 DOI: 10.1016/j.jtbi.2016.02.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 02/08/2016] [Accepted: 02/12/2016] [Indexed: 11/16/2022]
Abstract
Emerging strains of influenza, such as avian H5N1 and 2009 pandemic H1N1, are more virulent than seasonal H1N1 influenza, yet the underlying mechanisms for these differences are not well understood. Subtle differences in how a given strain interacts with the immune system are likely a key factor in determining virulence. One aspect of the interaction is the ability of T cells to locate the foci of the infection in time to prevent uncontrolled expansion. Here, we develop an agent based spatial model to focus on T cell migration from lymph nodes through the vascular system to sites of infection. We use our model to investigate whether different strains of influenza modulate this process. We calibrate the model using viral and chemokine secretion rates we measure in vitro together with values taken from literature. The spatial nature of the model reveals unique challenges for T cell recruitment that are not apparent in standard differential equation models. In this model comparing three influenza viruses, plaque expansion is governed primarily by the replication rate of the virus strain, and the efficiency of the T cell search-and-kill is limited by the density of infected epithelial cells in each plaque. Thus for each virus there is a different threshold of T cell search time above which recruited T cells are unable to control further expansion. Future models could use this relationship to more accurately predict control of the infection.
Collapse
Affiliation(s)
- Drew Levin
- Department of Computer Science, University of New Mexico, Albuquerque, NM, USA.
| | - Stephanie Forrest
- Department of Computer Science, University of New Mexico, Albuquerque, NM, USA
| | - Soumya Banerjee
- Department of Computer Science, University of New Mexico, Albuquerque, NM, USA
| | - Candice Clay
- Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Judy Cannon
- Department of Molecular Genetics & Microbiology, Department of Pathology, University of New Mexico, Health Sciences Center, Albuquerque, NM, USA
| | - Melanie Moses
- Department of Computer Science, University of New Mexico, Albuquerque, NM, USA
| | - Frederick Koster
- Department of Computer Science, University of New Mexico, Albuquerque, NM, USA; Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| |
Collapse
|
17
|
Landrith TA, Harris TH, Wilson EH. Characteristics and critical function of CD8+ T cells in the Toxoplasma-infected brain. Semin Immunopathol 2015; 37:261-70. [PMID: 25898888 DOI: 10.1007/s00281-015-0487-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 03/23/2015] [Indexed: 12/13/2022]
Abstract
The rise of the AIDS epidemic made the requirement for T cells in our continuous protection from pathogens critically apparent. The striking frequency with which AIDS patients exhibited profound neurological pathologies brought attention to many chronic infections that are latent within the immune-privileged CNS. One of the most common lethal opportunistic infections of these patients was with the protozoan parasite, Toxoplasma gondii. Reactivation of Toxoplasma cysts within the brain causes massive tissue destruction evidenced as multiple ring-enhancing lesions on MRI and is called toxoplasmic encephalitis (TE). TE is not limited to AIDS patients, but rather is a risk for all severely immunocompromised patients, including recipients of chemotherapy or transplant recipients. The lessons learned from these patient populations are supported by T cell depletion studies in mice. Such experiments have demonstrated that CD4+ and CD8+ T cells are required for protection against TE. Although it is clear that these T cell subsets work synergistically to fight infection, much evidence has been generated that suggests CD8+ T cells play a dominant role in protection during chronic toxoplasmosis. In other models of CNS inflammation, such as intracerebral infection with LCMV and experimental autoimmune encephalomyelitis (EAE), infiltration of T cells into the brain is harmful and even fatal. In the brain of the immunocompetent host, the well-regulated T cell response to T. gondii is therefore an ideal model to understand a controlled inflammatory response to CNS infection. This review will examine our current understanding of CD8+ T cells in the CNS during T. gondii infection in regards to the (1) mechanisms governing entry into the brain, (2) cues that dictate behavior within the brain, and (3) the functional and phenotypic properties exhibited by these cells.
Collapse
Affiliation(s)
- Tyler A Landrith
- Division of Biomedical Sciences, University of California, Riverside, CA, 92521, USA
| | | | | |
Collapse
|
18
|
Krauthausen M, Kummer MP, Zimmermann J, Reyes-Irisarri E, Terwel D, Bulic B, Heneka MT, Müller M. CXCR3 promotes plaque formation and behavioral deficits in an Alzheimer's disease model. J Clin Invest 2014; 125:365-78. [PMID: 25500888 DOI: 10.1172/jci66771] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/10/2014] [Indexed: 01/28/2023] Open
Abstract
Chemokines are important modulators of neuroinflammation and neurodegeneration. In the brains of Alzheimer's disease (AD) patients and in AD animal models, the chemokine CXCL10 is found in high concentrations, suggesting a pathogenic role for this chemokine and its receptor, CXCR3. Recent studies aimed at addressing the role of CXCR3 in neurological diseases indicate potent, but diverse, functions for CXCR3. Here, we examined the impact of CXCR3 in the amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic mouse model of AD. We found that, compared with control APP/PSI animals, plaque burden and Aβ levels were strongly reduced in CXCR3-deficient APP/PS1 mice. Analysis of microglial phagocytosis in vitro and in vivo demonstrated that CXCR3 deficiency increased the microglial uptake of Aβ. Application of a CXCR3 antagonist increased microglial Aβ phagocytosis, which was associated with reduced TNF-α secretion. Moreover, in CXCR3-deficient APP/PS1 mice, microglia exhibited morphological activation and reduced plaque association, and brain tissue from APP/PS1 animals lacking CXCR3 had reduced concentrations of proinflammatory cytokines compared with controls. Further, loss of CXCR3 attenuated the behavioral deficits observed in APP/PS1 mice. Together, our data indicate that CXCR3 signaling mediates development of AD-like pathology in APP/PS1 mice and suggest that CXCR3 has potential as a therapeutic target for AD.
Collapse
|
19
|
Talme T, Bergdahl E, Sundqvist KG. Regulation of T-lymphocyte motility, adhesion and de-adhesion by a cell surface mechanism directed by low density lipoprotein receptor-related protein 1 and endogenous thrombospondin-1. Immunology 2014; 142:176-92. [PMID: 24877199 DOI: 10.1111/imm.12229] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
T lymphocytes are highly motile and constantly reposition themselves between a free-floating vascular state, transient adhesion and migration in tissues. The regulation behind this unique dynamic behaviour remains unclear. Here we show that T cells have a cell surface mechanism for integrated regulation of motility and adhesion and that integrin ligands and CXCL12/SDF-1 influence motility and adhesion through this mechanism. Targeting cell surface-expressed low-density lipoprotein receptor-related protein 1 (LRP1) with an antibody, or blocking transport of LRP1 to the cell surface, perturbed the cell surface distribution of endogenous thrombospondin-1 (TSP-1) while inhibiting motility and potentiating cytoplasmic spreading on intercellular adhesion molecule 1 (ICAM-1) and fibronectin. Integrin ligands and CXCL12 stimulated motility and enhanced cell surface expression of LRP1, intact TSP-1 and a 130,000 MW TSP-1 fragment while preventing formation of a de-adhesion-coupled 110 000 MW TSP-1 fragment. The appearance of the 130 000 MW TSP-1 fragment was inhibited by the antibody that targeted LRP1 expression, inhibited motility and enhanced spreading. The TSP-1 binding site in the LRP1-associated protein, calreticulin, stimulated adhesion to ICAM-1 through intact TSP-1 and CD47. Shear flow enhanced cell surface expression of intact TSP-1. Hence, chemokines and integrin ligands up-regulate a dominant motogenic pathway through LRP1 and TSP-1 cleavage and activate an associated adhesion pathway through the LRP1-calreticulin complex, intact TSP-1 and CD47. This regulation of T-cell motility and adhesion makes pro-adhesive stimuli favour motile responses, which may explain why T cells prioritize movement before permanent adhesion.
Collapse
|
20
|
Rothhammer V, Muschaweckh A, Gasteiger G, Petermann F, Heink S, Busch DH, Heikenwälder M, Hemmer B, Drexler I, Korn T. α4-integrins control viral meningoencephalitis through differential recruitment of T helper cell subsets. Acta Neuropathol Commun 2014; 2:27. [PMID: 24606807 PMCID: PMC4029267 DOI: 10.1186/2051-5960-2-27] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 12/14/2022] Open
Abstract
Introduction Natalizumab blocks α4-integrins and is a prototypic agent for a series of anti-inflammatory drugs that impair trafficking of immune cells into the CNS. However, modulation of the access of immune cells to the CNS is associated with impaired immune surveillance and detrimental viral infections of the CNS. Here, we explored the potency of cellular immune responses within the CNS to protect against viral encephalitis in mice with T cell conditional disruption of VLA-4 integrin (α4β1) expression. Results While VLA-4 expression in virus specific Th1 cells is non-redundant for their ability to access the CNS, α4-integrin deficient Th17 cells enter the CNS compartment and generate an inflammatory milieu upon intrathecal vaccinia virus (VV) infection. However, in contrast to Th1 cells that can adopt direct cytotoxic properties, Th17 cells fail to clear the virus due to insufficient Eomes induced perforin-1 expression. Conclusion The quality of the intrathecal cellular antiviral response under conditions of impaired VLA-4 function jeopardizes host protection. Our functional in vivo data extend our mechanistic understanding of anti-viral immunity in the CNS and help to estimate the risk potential of upcoming therapeutic agents that target the trafficking of immune cells into distinct anatomical compartments.
Collapse
|
21
|
A role for the CXCR3/CXCL10 axis in Rasmussen encephalitis. Pediatr Neurol 2013; 49:451-457.e1. [PMID: 24080276 DOI: 10.1016/j.pediatrneurol.2013.07.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 07/22/2013] [Accepted: 07/30/2013] [Indexed: 01/30/2023]
Abstract
BACKGROUND Rasmussen encephalitis is a devastating pediatric syndrome of unknown etiology that is characterized by progressive loss of neurological function and intractable focal epilepsy. Cytotoxic T lymphocytes have an active role in the pathogenic process of Rasmussen encephalitis. We studied the implication of CXCL10-CXCR3, a chemotactic axis involved in the pathogenesis of several cases of immune encephalitis. METHODS We analyzed surgical specimens of children with Rasmussen encephalitis, and performed functional in vitro assays to test the implications of the pathological findings. RESULTS We found that cytotoxic T lymphocytes infiltrating the damaged areas of primary biopsies expressed CXCR3, whereas neurons and astrocytes in the same areas expressed CXCL10. The in vitro assays demonstrated we found that astrocytes upregulated the expression of CXCL10 messenger RNA and the release of CXCL10 to the supernatants on stimulation with polyinosinic-polycyticylic acid, a synthetic double-stranded RNA that mimics infections with either RNA or DNA viruses. Activated T lymphocytes responded to the production of CXCL10 by astrocytes by increasing their migration in a transwell assay. Finally, the chemotaxis induced by the stimulated astrocytes was completely abrogated in the presence of a small molecule antagonist of CXCR3. CONCLUSIONS Our results suggest that the CXCR3-CXCL10 axis has a role in recruiting pathogenic T lymphocytes into the brains of patients with Rasmussen encephalitis. This chemotactic mechanism may be targeted pharmacologically.
Collapse
|
22
|
Zhao P, Yang Y, Feng H, Zhao L, Qin J, Zhang T, Wang H, Yang S, Xia X. Global gene expression changes in BV2 microglial cell line during rabies virus infection. INFECTION GENETICS AND EVOLUTION 2013; 20:257-69. [DOI: 10.1016/j.meegid.2013.09.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/02/2013] [Accepted: 09/12/2013] [Indexed: 12/25/2022]
|
23
|
Smolders J, Remmerswaal EBM, Schuurman KG, Melief J, van Eden CG, van Lier RAW, Huitinga I, Hamann J. Characteristics of differentiated CD8(+) and CD4 (+) T cells present in the human brain. Acta Neuropathol 2013; 126:525-35. [PMID: 23880787 DOI: 10.1007/s00401-013-1155-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 06/23/2013] [Accepted: 07/09/2013] [Indexed: 11/24/2022]
Abstract
Immune surveillance of the central nervous system (CNS) by T cells is important to keep CNS-trophic viruses in a latent state, yet our knowledge of the characteristics of CNS-populating T cells is incomplete. We performed a comprehensive, multi-color flow-cytometric analysis of isolated T cells from paired corpus callosum (CC) and peripheral blood (PB) samples of 20 brain donors. Compared to PB, CC T cells, which were mostly located in the perivascular space and sporadically in the parenchyma, were enriched for cells expressing CD8. Both CD4(+) and CD8(+) T cells in the CC had a late-differentiated phenotype, as indicated by lack of expression of CD27 and CD28. The CC contained high numbers of T cells expressing chemokine receptor CX3CR1 and CXCR3 that allow for homing to inflamed endothelium and tissue, but hardly cells expressing the lymph node-homing receptor CCR7. Despite the late-differentiated phenotype, CC T cells had high expression of the IL-7 receptor α-chain CD127 and did not contain the neurotoxic cytolytic enzymes perforin, granzyme A, and granzyme B. We postulate that CNS T cells make up a population of tissue-adapted differentiated cells, which use CX3CR1 and CXCR3 to home into the perivascular space, use IL-7 for maintenance, and lack immediate cytolytic activity, thereby preventing immunopathology in response to low or non-specific stimuli. The presence of these cells in this tightly regulated environment likely enables a fast response to local threats. Our results will enable future detailed exploration of T-cell subsets in the brain involved in neurological diseases.
Collapse
Affiliation(s)
- Joost Smolders
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Schmitz K, Pickert G, Wijnvoord N, Häussler A, Tegeder I. Dichotomy of CCL21 and CXCR3 in nerve injury-evoked and autoimmunity-evoked hyperalgesia. Brain Behav Immun 2013; 32:186-200. [PMID: 23643685 DOI: 10.1016/j.bbi.2013.04.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 04/20/2013] [Accepted: 04/22/2013] [Indexed: 02/07/2023] Open
Abstract
The chemokine CCL21 is released from injured neurons and acts as a ligand of the chemokine receptor, CXCR3, which likely contributes to pro-inflammatory adaptations and secondary neuronal damage. CCL21-CXCR3 signalling may therefore impact on the development of neuropathic pain. By using the respective knockout mice we show that deficiency of CCL19/21 in plt/plt mice attenuates nerve injury evoked pain but not the hyperalgesia evoked by autoimmune encephalomyelitis (EAE). Oppositely, CXCR3-deficiency had no protective effect after traumatic nerve injury but reduced EAE-evoked hyperalgesia and was associated with reduced clinical EAE scores, a reduction of the pro-inflammatory cell infiltration and reduced upregulation of interferon gamma and interleukin-17 in the spinal cord. In contrast, microglia activation in the spinal cord after traumatic sciatic nerve injury was neither attenuated in CXCR3(-/-) nor plt/plt mice, nor in double knockouts. However, the severity of EAE, but not the hyperalgesia, was also reduced in plt/plt mice, which was associated with reduced infiltration of the spinal cord with CCR7+ T-cells, an increase of CD25+ T-cells and reduced upregulation of CXCL9 and 10, CCL11 and 12. The data show that CCL21 and CXCR3 have dichotomous functions in traumatic and EAE-evoked neuropathic pain suggesting diverse mechanisms likely requiring diverse treatments although both types of neuropathic pain are mediated in part through the immune activation.
Collapse
Affiliation(s)
- Katja Schmitz
- Pharmazentrum Frankfurt, Institute of Clinical Pharmacology, Goethe-University Hospital, Frankfurt, Germany
| | | | | | | | | |
Collapse
|
25
|
Chang CC, Omarjee S, Lim A, Spelman T, Gosnell BI, Carr WH, Elliott JH, Moosa MYS, Ndung'u T, French MA, Lewin SR. Chemokine levels and chemokine receptor expression in the blood and the cerebrospinal fluid of HIV-infected patients with cryptococcal meningitis and cryptococcosis-associated immune reconstitution inflammatory syndrome. J Infect Dis 2013; 208:1604-12. [PMID: 23908492 DOI: 10.1093/infdis/jit388] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Human immunodeficiency virus-infected patients with treated cryptococcal meningitis who start combination antiretroviral therapy (cART) are at risk of further neurological deterioration, in part caused by paradoxical cryptococcosis-associated immune reconstitution inflammatory syndrome (C-IRIS). We hypothesized that C-IRIS is associated with alterations of chemokine receptor expression on T cells and chemokine concentrations in cerebrospinal fluid (CSF) that enhance recruitment of T-helper 1 cells and/or myeloid cells to the central nervous system. METHODS In a prospective study of 128 human immunodeficiency virus-infected patients with cryptococcal meningitis who received antifungal therapy followed by cART, we examined the proportions of CD4(+) and CD8(+) T cells expressing CCR5 and/or CXCR3, in CSF and whole blood and the concentrations of CXCL10, CCL2, and CCL3 in stored CSF and plasma. RESULTS The proportion of CD4(+) and CD8(+) T cells expressing CXCR3(+)CCR5(+) and the concentrations of CXCL10, CCL2 and CCL3 were increased in CSF compared with blood at cART initiation (P < .0001). Patients with C-IRIS (n = 26), compared with those with no neurological deterioration (n = 63), had higher CSF ratios of CCL2/CXCL10 and CCL3/CXCL10 and higher proportions of CXCR3(+)CCR5(+)CD8(+)T cells in CSF compared with blood at cART initiation (P = .03, .0053, and .02, respectively). CONCLUSION CD8(+) T-cell and myeloid cell trafficking to the central nervous system may predispose patients to C-IRIS.
Collapse
|
26
|
Ellrichmann G, Reick C, Saft C, Linker RA. The role of the immune system in Huntington's disease. Clin Dev Immunol 2013; 2013:541259. [PMID: 23956761 PMCID: PMC3727178 DOI: 10.1155/2013/541259] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/19/2013] [Indexed: 01/19/2023]
Abstract
Huntington's disease (HD) is characterized by a progressive course of disease until death 15-20 years after the first symptoms occur and is caused by a mutation with expanded CAG repeats in the huntingtin (htt) protein. Mutant htt (mhtt) in the striatum is assumed to be the main reason for neurodegeneration. Knowledge about pathophysiology has rapidly improved discussing influences of excitotoxicity, mitochondrial damage, free radicals, and inflammatory mechanisms. Both innate and adaptive immune systems may play an important role in HD. Activation of microglia with expression of proinflammatory cytokines, impaired migration of macrophages, and deposition of complement factors in the striatum indicate an activation of the innate immune system. As part of the adaptive immune system, dendritic cells (DCs) prime T-cell responses secreting inflammatory mediators. In HD, DCs may contain mhtt which brings the adaptive immune system into the focus of interest. These data underline an increasing interest in the peripheral immune system for pathomechanisms of HD. It is still unclear if neuroinflammation is a reactive process or if there is an active influence on disease progression. Further understanding the influence of inflammation in HD using mouse models may open various avenues for promising therapeutic approaches aiming at slowing disease progression or forestalling onset of disease.
Collapse
Affiliation(s)
- Gisa Ellrichmann
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany.
| | | | | | | |
Collapse
|
27
|
Ahmadi Z, Arababadi MK, Hassanshahi G. CXCL10 Activities, Biological Structure, and Source Along with Its Significant Role Played in Pathophysiology of Type I Diabetes Mellitus. Inflammation 2012; 36:364-71. [DOI: 10.1007/s10753-012-9555-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Differential impact of interferon regulatory factor 7 in initiation of the type I interferon response in the lymphocytic choriomeningitis virus-infected central nervous system versus the periphery. J Virol 2012; 86:7384-92. [PMID: 22514347 DOI: 10.1128/jvi.07090-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Interferon (IFN) regulatory factors (IRFs) are a family of transcription factors involved in regulating type I IFN genes and other genes participating in the early antiviral host response. To better understand the mechanisms involved in virus-induced central nervous system (CNS) inflammation, we studied the influence of IRF1, -3, -7, and -9 on the transcriptional activity of key genes encoding antiviral host factors in the CNS of mice infected with lymphocytic choriomeningitis virus (LCMV). A key finding is that neither IRF3 nor IRF7 is absolutely required for induction of a type I IFN response in the LCMV-infected CNS, whereas concurrent elimination of both factors markedly reduces the virus-induced host response. This is unlike the situation in the periphery, where deficiency of IRF7 almost eliminates the LCMV-induced production of the type I IFNs. This difference is seemingly related to the local environment, as peripheral production of type I IFNs is severely reduced in intracerebrally (i.c.) infected IRF7-deficient mice, which undergo a combined infection of the CNS and peripheral organs, such as spleen and lymph nodes. Interestingly, despite the redundancy of IRF7 in initiating the type I IFN response in the CNS, the response is not abolished in IFN-β-deficient mice, as might have been expected. Collectively, these data demonstrate that the early type I IFN response to LCMV infection in the CNS is controlled by a concerted action of IRF3 and -7. Consequently this work provides strong evidence for differential regulation of the type I IFN response in the CNS versus the periphery during viral infection.
Collapse
|
29
|
Matullo CM, O'Regan KJ, Curtis M, Rall GF. CNS recruitment of CD8+ T lymphocytes specific for a peripheral virus infection triggers neuropathogenesis during polymicrobial challenge. PLoS Pathog 2011; 7:e1002462. [PMID: 22216008 PMCID: PMC3245314 DOI: 10.1371/journal.ppat.1002462] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 11/14/2011] [Indexed: 12/13/2022] Open
Abstract
Although viruses have been implicated in central nervous system (CNS) diseases of unknown etiology, including multiple sclerosis and amyotrophic lateral sclerosis, the reproducible identification of viral triggers in such diseases has been largely unsuccessful. Here, we explore the hypothesis that viruses need not replicate in the tissue in which they cause disease; specifically, that a peripheral infection might trigger CNS pathology. To test this idea, we utilized a transgenic mouse model in which we found that immune cells responding to a peripheral infection are recruited to the CNS, where they trigger neurological damage. In this model, mice are infected with both CNS-restricted measles virus (MV) and peripherally restricted lymphocytic choriomeningitis virus (LCMV). While infection with either virus alone resulted in no illness, infection with both viruses caused disease in all mice, with ∼50% dying following seizures. Co-infection resulted in a 12-fold increase in the number of CD8+ T cells in the brain as compared to MV infection alone. Tetramer analysis revealed that a substantial proportion (>35%) of these infiltrating CD8+ lymphocytes were LCMV-specific, despite no detectable LCMV in CNS tissues. Mechanistically, CNS disease was due to edema, induced in a CD8-dependent but perforin-independent manner, and brain herniation, similar to that observed in mice challenged intracerebrally with LCMV. These results indicate that T cell trafficking can be influenced by other ongoing immune challenges, and that CD8+ T cell recruitment to the brain can trigger CNS disease in the apparent absence of cognate antigen. By extrapolation, human CNS diseases of unknown etiology need not be associated with infection with any particular agent; rather, a condition that compromises and activates the blood-brain barrier and adjacent brain parenchyma can render the CNS susceptible to pathogen-independent immune attack. There are many CNS diseases, including multiple sclerosis and amyotrophic lateral sclerosis, which have an inflammatory component, though no direct link has been established between incidence and a CNS-resident infectious agent. We reasoned that peripheral immunogens could play a role in CNS disease by inducing an immune response that is “mis-targeted” to the brain. This hypothesis was based on the immunological principle that, while education and activation of naïve cells is an antigen-driven process, recruitment is primarily antigen-independent. We developed a viral co-infection model using measles virus (MV) as a CNS activator and recruiting signal and lymphocytic choriomeningitis (LCMV) as a peripheral immune response initiator. Co-infection with both viruses resulted in significant morbidity and mortality, coincident with LCMV-specific CD8+ T cell trafficking to the brain. Death occurred due to edema, despite an apparent absence of LCMV antigens within the brain, and pathogenesis was CD8+ T cell-dependent, but perforin-independent. Thus, recruitment of peripherally activated CD8+ T cells to the CNS can potentiate neuroinflammation. This work raises the possibility that concomitant immune challenges may be an important cause of the neuroinflammation of some human CNS diseases, perhaps accounting for the inability to identify a discrete pathogenic trigger within affected brain tissues.
Collapse
Affiliation(s)
- Christine M Matullo
- Fox Chase Cancer Center, Division of Basic Science, Program in Immune Cell Development and Host Defense, Philadelphia, Pennsylvania, United States of America
| | | | | | | |
Collapse
|
30
|
Krauthausen M, Ellis SL, Zimmermann J, Sarris M, Wakefield D, Heneka MT, Campbell IL, Müller M. Opposing roles for CXCR3 signaling in central nervous system versus ocular inflammation mediated by the astrocyte-targeted production of IL-12. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2346-59. [PMID: 21925471 DOI: 10.1016/j.ajpath.2011.07.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 06/17/2011] [Accepted: 07/18/2011] [Indexed: 12/26/2022]
Abstract
CXCR3 and its ligands are important for the trafficking of activated CD4(+) T(H)1 T cells, CD8(+) T cells, and natural killer cells during inflammation. Recent functional studies demonstrate a more diverse role of CXCR3 in inflammatory diseases of the central nervous system (CNS). We examined the impact of CXCR3 on a less complex interferon-γ-dependent, type 1 cell-mediated immune response in the CNS, induced in mice by the transgenic production of glial fibrillary acidic protein IL-12 (GF-IL12) by astrocytes and retinal Müller cells. GF-IL12 mice develop ataxia because of severe cerebellar inflammation but have little overt ocular disease. Surprisingly, CXCR3-deficient GF-IL12 mice (GF-IL12/CXCR3KO) have drastically reduced ataxia but developed cataracts, severe ocular inflammation, and eye atrophy. Most GF-IL12/CXCR3KO mice had minimal cerebellar inflammation but severe retinal disorganization, loss of photoreceptors, and lens destruction in the eye. The number of CD3(+), CD11b(+), and natural killer 1.1(+) cells were reduced in the CNS but highly increased in the eyes of GF-IL12/CXCR3KO compared with GF-IL12 mice. High levels of interferon-γ, IL-1, tumor necrosis factor α, CXCL9, CXCL10, and CCL5 were found in GF-IL12 cerebelli and GF-IL12/CXCR3KO eyes. Our findings demonstrate key but paradoxical functions for CXCR3 in IL-12-induced immune disease in the CNS, promoting inflammation in the brain yet restricting it in the eye. We conclude that the function of CXCR3 in cellular immune disease is driven by a common trigger and is controlled by tissue-specific factors.
Collapse
|
31
|
Wijtmans M, de Esch IJP, Leurs R. Therapeutic Targeting of the CXCR3 Receptor. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2011. [DOI: 10.1002/9783527631995.ch13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
32
|
|
33
|
Müller M, Carter S, Hofer MJ, Campbell IL. Review: The chemokine receptor CXCR3 and its ligands CXCL9, CXCL10 and CXCL11 in neuroimmunity - a tale of conflict and conundrum. Neuropathol Appl Neurobiol 2010; 36:368-87. [DOI: 10.1111/j.1365-2990.2010.01089.x] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Wilson EH, Weninger W, Hunter CA. Trafficking of immune cells in the central nervous system. J Clin Invest 2010; 120:1368-79. [PMID: 20440079 DOI: 10.1172/jci41911] [Citation(s) in RCA: 374] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The CNS is an immune-privileged environment, yet the local control of multiple pathogens is dependent on the ability of immune cells to access and operate within this site. However, inflammation of the distinct anatomical sites (i.e., meninges, cerebrospinal fluid, and parenchyma) associated with the CNS can also be deleterious. Therefore, control of lymphocyte entry and migration within the brain is vital to regulate protective and pathological responses. In this review, several recent advances are highlighted that provide new insights into the processes that regulate leukocyte access to, and movement within, the brain.
Collapse
Affiliation(s)
- Emma H Wilson
- Division of Biomedical Sciences, University of California, Riverside, California 92521, USA.
| | | | | |
Collapse
|
35
|
Pinschewer DD, Schedensack M, Bergthaler A, Horvath E, Brück W, Löhning M, Merkler D. T cells can mediate viral clearance from ependyma but not from brain parenchyma in a major histocompatibility class I- and perforin-independent manner. ACTA ACUST UNITED AC 2010; 133:1054-66. [PMID: 20354003 PMCID: PMC7110187 DOI: 10.1093/brain/awq028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Viral infection of the central nervous system can lead to disability and death. Yet the majority of viral infections with central nervous system involvement resolve with only mild clinical manifestations, if any. This is generally attributed to efficient elimination of the infection from the brain coverings, i.e. the meninges, ependyma and chorioplexus, which are the primary targets of haematogeneous viral spread. How the immune system is able to purge these structures from viral infection with only minimal detrimental effects is still poorly understood. In the present work we studied how an attenuated lymphocytic choriomeningitis virus can be cleared from the central nervous system in the absence of overt disease. We show that elimination of the virus from brain ependyma, but not from brain parenchyma, could be achieved by a T cell-dependent mechanism operating independently of major histocompatibility class I antigens and perforin. Considering that cytotoxic T lymphocyte-mediated cytotoxicity is a leading cause of viral immunopathology and tissue damage, our findings may explain why the most common viral intruders of the central nervous system rarely represent a serious threat to our health.
Collapse
Affiliation(s)
- Daniel D Pinschewer
- Department of Pathology and Immunology, W.H.O. Collaborating Centre for Neonatal Vaccinology, University of Geneva, Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
36
|
Shi Z, Okuno Y, Rifa'i M, Endharti AT, Akane K, Isobe KI, Suzuki H. Human CD8+CXCR3+ T cells have the same function as murine CD8+CD122+ Treg. Eur J Immunol 2009; 39:2106-19. [PMID: 19609979 DOI: 10.1002/eji.200939314] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The importance of CD8(+)CD122(+) Treg in the maintenance of immune homeostasis has been previously demonstrated in mice. Because the expression pattern of CD8 and CD122 in humans is different from that in mice, human CD8(+) Treg that correspond to the murine CD8(+)CD122(+) Treg have not been identified. In this study, we performed DNA microarray analyses to compare the gene expression profiles of CD8(+)CD122(+) cells and CD8(+)CD122(-) cells in mice and found that CXCR3 was preferentially expressed in CD8(+)CD122(+) cells. When we analyzed the expression of CD122 and CXCR3 in murine CD8(+) cells, we observed a definite population of CD122(+)CXCR3(+) cells. CD8(+)CXCR3(+) cells in mice showed similar regulatory activities to CD8(+)CD122(+) cells by in vivo and in vitro assays. While CD8(+)CD122(+)CXCR3(+) cells are present in mice, CD8(+)CXCR3(+) cells, but not CD8(+)CD122(+) cells, are present in humans. In the in vitro assay, human CD8(+)CXCR3(+) cells showed the regulatory activity of producing IL-10 and suppressing IFN-gamma production from CD8(+)CXCR3(-) cells. These results suggest that human CD8(+)CXCR3(+) T cells are the counterparts of murine CD8(+)CD122(+) Treg.
Collapse
Affiliation(s)
- Zhe Shi
- Department of Immunology, Nagoya University Graduate School of Medicine, Tsurumai-cho, Showa-ku, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Derfuss T, Arbusow V, Strupp M, Brandt T, Theil D. The presence of lytic HSV-1 transcripts and clonally expanded T cells with a memory effector phenotype in human sensory ganglia. Ann N Y Acad Sci 2009; 1164:300-4. [PMID: 19645915 DOI: 10.1111/j.1749-6632.2009.03871.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) latent persistence in human trigeminal ganglia (TG) is accompanied by a chronic CD8 T-cell infiltration. Thus far, during HSV-1 latency only a single transcript, namely the latency-associated transcript (LAT), has been identified to be synthesized but not translated into a protein. In contrast, the chronic CD8 T-cell infiltration suggests that an antigen trigger must be present. The focus of the current work was to look for HSV-1 transcription activity as a potential trigger of the immune response and to demonstrate whether the immune cells are clonally expanded and have a phenotype that suggests that they have been triggered by viral antigen. By combining in situ hybridization, laser cutting microscopy, and single-cell real time RT-PCR, we demonstrated expression of the HSV-1 immediate early (IE) genes ICP0 and ICP4 in human trigeminal neurons. Using CDR3 spectratyping, we showed that the infiltrating T cells are clonally expanded, indicating an antigen-driven immune response. Moreover, the persisting CD8(+) T cells had prominent features of the memory effector phenotype. Chemokines CCL5 and CXCL10 were expressed by a subpopulation of infiltrating cells and the corresponding chemokine receptors CCR5 and CXCR3 were co-expressed on virtually all T cells bearing the CD8 phenotype. Thus, HSV-1 IE genes are expressed in human TG, and the infiltrating T cells bear several characteristics that suggest viral antigenic stimulation.
Collapse
Affiliation(s)
- Tobias Derfuss
- Department of Neurology, Klinikum Grosshadern, Ludwig-Maximilians University, Munich, Germany
| | | | | | | | | |
Collapse
|
38
|
Christensen JE, Thomsen AR. Co-ordinating innate and adaptive immunity to viral infection: mobility is the key. APMIS 2009; 117:338-55. [PMID: 19400861 DOI: 10.1111/j.1600-0463.2009.02451.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The host counters a viral infection through a complex response made up of components belonging to both the innate and the adaptive immune system. In this report, we review the mechanisms underlying this response, how it is induced and how it is co-ordinated. As cell-cell communication represents the very essence of immune system physiology, a key to a rapid, efficient and optimally regulated immune response is the ability of the involved cells to rapidly shift between a stationary and a mobile state, combined with stringent regulation of cell migration during the mobile state. Through the co-ordinated recruitment of different cell types intended to work in concert, cellular co-operation is optimized particularly under conditions that may involve rare cells. Consequently, a major focus is placed on presenting an overview of the co-operative events and the associated cell migration, which is essential in mounting an efficient host response and co-ordinating innate and adaptive immunity during a primary viral infection.
Collapse
Affiliation(s)
- Jeanette Erbo Christensen
- Institute of International Health, Immunology and Microbiology, University of Copenhagen, The Panum Institute, Copenhagen, Denmark.
| | | |
Collapse
|
39
|
Christensen JE, Simonsen S, Fenger C, Sørensen MR, Moos T, Christensen JP, Finsen B, Thomsen AR. Fulminant lymphocytic choriomeningitis virus-induced inflammation of the CNS involves a cytokine-chemokine-cytokine-chemokine cascade. THE JOURNAL OF IMMUNOLOGY 2009; 182:1079-87. [PMID: 19124751 DOI: 10.4049/jimmunol.182.2.1079] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Intracerebral inoculation of immunocompetent mice with lymphocytic choriomeningitis virus (LCMV) normally results in fatal CD8+ T cell mediated meningoencephalitis. However, in CXCL10-deficient mice, the virus-induced CD8+ T cell accumulation in the neural parenchyma is impaired, and only 30-50% of the mice succumb to the infection. Similar results are obtained in mice deficient in the matching chemokine receptor, CXCR3. Together, these findings point to a key role for CXCL10 in regulating the severity of the LCMV-induced inflammatory process. For this reason, we now address the mechanisms regulating the expression of CXCL10 in the CNS of LCMV-infected mice. Using mice deficient in type I IFN receptor, type II IFN receptor, or type II IFN, as well as bone marrow chimeras expressing CXCL10 only in resident cells or only in bone marrow-derived cells, we analyzed the up-stream regulation as well as the cellular source of CXCL10. We found that expression of CXCL10 initially depends on signaling through the type I IFN receptor, while late expression and up-regulation requires type II IFN produced by the recruited CD8+ T cells. Throughout the infection, the producers of CXCL10 are exclusively resident cells of the CNS, and astrocytes are the dominant expressors in the neural parenchyma, not microglial cells or recruited bone marrow-derived cell types. These results are consistent with a model suggesting a bidirectional interplay between resident cells of the CNS and the recruited virus-specific T cells with astrocytes as active participants in the local antiviral host response.
Collapse
Affiliation(s)
- Jeanette E Christensen
- University of Copenhagen, Department of International Health, Immunology and Microbiology, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Hofer MJ, Carter SL, Müller M, Campbell IL. Unaltered neurological disease and mortality in CXCR3-deficient mice infected intracranially with lymphocytic choriomeningitis virus-Armstrong. Viral Immunol 2009; 21:425-33. [PMID: 19115931 DOI: 10.1089/vim.2008.0057] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Intracranial infection of mice with lymphocytic choriomeningitis virus (LCMV) results in a lethal neurological disease termed lymphocytic choriomeningitis (LCM) that is mediated by antiviral CD8(+) T cells. Previous studies have implicated the chemokine receptor CXCR3 and its ligand CXCL10 in CD8(+) T cell trafficking in the brain and in the lethal disease following intracranial infection of mice with the LCMV-Traub strain. Here we investigated the role of CXCR3 in LCM following intracranial infection of mice with the LCMV-Armstrong strain. Significant induction of both CXCL9 and CXCL10 RNA and protein was seen in the central nervous system (CNS) in LCM. Cellular localization of the CXCL9 and CXCL10 RNA transcripts was identified predominantly in infiltrating mononuclear cells, as well as in subpial and paraventricular microglia (CXCL9) and astrocytes (CXCL10). Despite a primary role of interferon (IFN)-gamma in inducing the expression of the CXCL9 gene, and to a lesser extent the CXCL10 gene in LCM, the absence of the IFN-gamma receptor did not influence the disease outcome. This finding suggested that these chemokines may not play a major role in the pathogenesis of LCM. To evaluate this possibility further the development of LCM was examined in mice that were deficient for CXCR3. Surprisingly, in the absence of CXCR3 there was no alteration in mortality, cytokine expression, or T cell infiltration in the CNS, demonstrating that in contrast to LCMV-Traub, CXCR3 is not involved in the pathogenesis of LCMV-Armstrong-induced neurological disease in mice. Our findings indicate that despite similar immunopathogenetic mechanisms involving antiviral CD8(+) T cells, whether or not CXCR3 signaling has a role in LCM is dependent upon the infecting strain of LCMV.
Collapse
Affiliation(s)
- Markus J Hofer
- School of Molecular and Microbial Biosciences and the Bosch Institute, The University of Sydney, New South Wales, Australia
| | | | | | | |
Collapse
|
41
|
Dejnirattisai W, Duangchinda T, Lin CLS, Vasanawathana S, Jones M, Jacobs M, Malasit P, Xu XN, Screaton G, Mongkolsapaya J. A complex interplay among virus, dendritic cells, T cells, and cytokines in dengue virus infections. THE JOURNAL OF IMMUNOLOGY 2009; 181:5865-74. [PMID: 18941175 DOI: 10.4049/jimmunol.181.9.5865] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Severe dengue virus (DV) infections can cause the life-threatening condition dengue hemorrhagic fever, which is characterized by a severe plasma leak, thrombocytopenia, hemorrhage, and, in severe cases, circulatory collapse and death. There is now much evidence that pre-existing immunity to DV can enhance disease when an individual becomes infected on a second or sequential occasion. It has been shown that in contrast to infected dendritic cells (DC), noninfected bystander DC underwent maturation in dengue infection. In this study, we show that TNF-alpha and type I IFN contribute to the maturation of bystander DC, whereas the inhibition of DV-infected DC maturation can be overcome by activated T cells. Furthermore, IFN-gamma-inducible chemokines, CXCL9, 10, and 11 produced by infected DC are greatly amplified in the presence of DV-specific T cells. The chemokine secretion is also enhanced in coculture of HUVEC with either DV-infected DC or activated T cells. Finally, we found a close correlation between the serum level of these three chemokines and disease severity.
Collapse
Affiliation(s)
- Wanwisa Dejnirattisai
- Department of Immunology, Division of Medicine, Hammersmith Hospital, Imperial College, London, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lymphocytic choriomeningitis virus-induced central nervous system disease: a model for studying the role of chemokines in regulating the acute antiviral CD8+ T-cell response in an immune-privileged organ. J Virol 2008; 83:20-8. [PMID: 18787010 DOI: 10.1128/jvi.00682-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
43
|
Wijtmans M, Verzijl D, Leurs R, de Esch IJ, Smit M. Towards Small-Molecule CXCR3 Ligands with Clinical Potential. ChemMedChem 2008; 3:861-72. [DOI: 10.1002/cmdc.200700365] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
44
|
Thapa M, Carr DJJ. Chemokines and Chemokine Receptors Critical to Host Resistance following Genital Herpes Simplex Virus Type 2 (HSV-2) Infection. ACTA ACUST UNITED AC 2008; 1:33-41. [PMID: 19043604 DOI: 10.2174/1874226200801010033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
HSV-2 is a highly successful human pathogen with a remarkable ability to elude immune detection or counter the innate and adaptive immune response through the production of viral-encoded proteins. In response to infection, resident cells secrete soluble factors including chemokines that mobilize and guide leukocytes including T and NK cells, neutrophils, and monocytes to sites of infection. While there is built-in redundancy within the system, chemokines signal through specific membrane-bound receptors that act as antennae detailing a chemical pathway that will provide a means to locate and eliminate the viral insult. Within the central nervous system (CNS), the temporal and spatial expression of chemokines relative to leukocyte mobilization in response to HSV-2 infection has not been elucidated. This paper will review some of the chemokine/chemokine receptor candidates that appear critical to the host in viral resistance and clearance from the CNS and peripheral tissue using murine models of genital HSV-2 infection.
Collapse
Affiliation(s)
- M Thapa
- Department of Microbiology, Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma-73104, USA
| | | |
Collapse
|
45
|
Kang SS, McGavern DB. Lymphocytic choriomeningitis infection of the central nervous system. FRONTIERS IN BIOSCIENCE : A JOURNAL AND VIRTUAL LIBRARY 2008; 13:4529-43. [PMID: 18508527 PMCID: PMC5279998 DOI: 10.2741/3021] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Viral infection of the central nervous system (CNS) can result in a multitude of responses including pathology, persistence or immune clearance. Lymphocytic choriomeningitis virus (LCMV) is a powerful model system to explore these potential outcomes of CNS infection due to the diversity of responses that can be achieved after viral inoculation. Several factors including tropism, timing, dose and variant of LCMV in combination with the development or suppression of the corresponding immune response dictates whether lethal meningitis, chronic infection or clearance of LCMV in the CNS will occur. Importantly, the functionality and positioning of the LCMV-specific CD8+ T cell response are critical in directing the subsequent outcome of CNS LCMV infection. Although a basic understanding of LCMV and immune interactions in the brain exists, the molecular machinery that shapes the balance between pathogenesis and clearance in the LCMV-infected CNS remains to be elucidated. This review covers the various outcomes of LCMV infection in the CNS and what is currently known about the impact of the virus itself versus the immune response in the development of disease or clearance.
Collapse
Affiliation(s)
- Silvia S. Kang
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, CA 92037
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037
| | - Dorian B. McGavern
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, CA 92037
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037
- Harold L. Dorris Neurological Research Institute, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
46
|
Schaumburg CS, Held KS, Lane TE. Mouse hepatitis virus infection of the CNS: a model for defense, disease, and repair. FRONT BIOSCI-LANDMRK 2008; 13:4393-406. [PMID: 18508518 DOI: 10.2741/3012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Viral infection of the central nervous system (CNS) results in varied outcomes ranging from encephalitis, paralytic poliomyelitis or other serious consequences. One of the principal factors that directs the outcome of infection is the localized innate immune response, which is proceeded by the adaptive immune response against the invading viral pathogen. The role of the immune system is to contain and control the spread of virus within the CNS, and paradoxically, this response may also be pathological. Studies with a neurotropic murine coronavirus, mouse hepatitis virus (MHV) have provided important insights into how the immune system combats neuroinvasive viruses, and have identified molecular and cellular mechanisms contributing to chronic disease in persistently infected mice.
Collapse
Affiliation(s)
- Chris S Schaumburg
- Department of Molecular Biology and Biochemistry, University of California, Irvine 92697-3900, USA
| | | | | |
Collapse
|
47
|
Zhang B, Chan YK, Lu B, Diamond MS, Klein RS. CXCR3 mediates region-specific antiviral T cell trafficking within the central nervous system during West Nile virus encephalitis. THE JOURNAL OF IMMUNOLOGY 2008; 180:2641-9. [PMID: 18250476 DOI: 10.4049/jimmunol.180.4.2641] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Regional differences in inflammation during viral infections of the CNS suggest viruses differentially induce patterns of chemoattractant expression, depending on their cellular targets. Previous studies have shown that expression of the chemokine CXCL10 by West Nile virus (WNV)-infected neurons is essential for the recruitment of CD8 T cells for the purpose of viral clearance within the CNS. In the current study we used mice deficient for the CXCL10 receptor, CXCR3, to evaluate its role in leukocyte-mediated viral clearance of WNV infection within various CNS compartments. WNV-infected CXCR3-deficient mice exhibited significantly enhanced mortality compared with wild-type controls. Immunologic and virologic analyses revealed that CXCR3 was dispensable for control of viral infection in the periphery and in most CNS compartments but, surprisingly, was required for CD8 T cell-mediated antiviral responses specifically within the cerebellum. WNV-specific, CXCR3-expressing T cells preferentially migrated into the cerebellum, and WNV-infected cerebellar granule cell neurons expressed higher levels of CXCL10 compared with similarly infected cortical neurons. These results indicate that WNV differentially induces CXCL10 within neuronal populations and suggest a novel model for nonredundancy in chemokine-mediated inflammation among CNS compartments.
Collapse
Affiliation(s)
- Bo Zhang
- Division of Infectious Diseases, Children's Hospital of Boston, Boston, MA, USA
| | | | | | | | | |
Collapse
|
48
|
Miu J, Mitchell AJ, Müller M, Carter SL, Manders PM, McQuillan JA, Saunders BM, Ball HJ, Lu B, Campbell IL, Hunt NH. Chemokine gene expression during fatal murine cerebral malaria and protection due to CXCR3 deficiency. THE JOURNAL OF IMMUNOLOGY 2008; 180:1217-30. [PMID: 18178862 DOI: 10.4049/jimmunol.180.2.1217] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cerebral malaria (CM) can be a fatal manifestation of Plasmodium falciparum infection. Using murine models of malaria, we found much greater up-regulation of a number of chemokine mRNAs, including those for CXCR3 and its ligands, in the brain during fatal murine CM (FMCM) than in a model of non-CM. Expression of CXCL9 and CXCL10 RNA was localized predominantly to the cerebral microvessels and in adjacent glial cells, while expression of CCL5 was restricted mainly to infiltrating lymphocytes. The majority of mice deficient in CXCR3 were found to be protected from FMCM, and this protection was associated with a reduction in the number of CD8+ T cells in brain vessels as well as reduced expression of perforin and FasL mRNA. Adoptive transfer of CD8+ cells from C57BL/6 mice with FMCM abrogated this protection in CXCR3-/- mice. Moreover, there were decreased mRNA levels for the proinflammatory cytokines IFN-gamma and lymphotoxin-alpha in the brains of mice protected from FMCM. These data suggest a role for CXCR3 in the pathogenesis of FMCM through the recruitment and activation of pathogenic CD8+ T cells.
Collapse
Affiliation(s)
- Jenny Miu
- Molecular Immunopathology Unit, Bosch Institute, School of Medical Sciences, University of Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Gotsch F, Romero R, Friel L, Kusanovic JP, Espinoza J, Erez O, Than NG, Mittal P, Edwin S, Yoon BH, Kim CJ, Mazaki-Tovi S, Chaiworapongsa T, Hassan SS. CXCL10/IP-10: a missing link between inflammation and anti-angiogenesis in preeclampsia? J Matern Fetal Neonatal Med 2008; 20:777-92. [PMID: 17943641 DOI: 10.1080/14767050701483298] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Interferon (IFN)-gamma inducible protein, CXCL10/IP-10, is a member of the CXC chemokine family with pro-inflammatory and anti-angiogenic properties. This chemokine has been proposed to be a key link between inflammation and angiogenesis. The aim of this study was to determine whether preeclampsia and delivery of a small for gestational age (SGA) neonate are associated with changes in maternal serum concentration of CXCL10/IP-10. STUDY DESIGN This cross-sectional study included patients in the following groups: (1) non-pregnant women (N = 49); (2) women with normal pregnancies (N = 89); (3) patients with preeclampsia (N = 100); and (4) patients who delivered an SGA neonate (N = 78). SGA was defined as birth weight below the 10th percentile. Maternal serum concentrations of CXCL10/IP-10 were measured by sensitive immunoassay. Non-parametric statistics were used for analysis. RESULTS (1) Patients with normal pregnancies had a significantly higher median serum concentration of CXCL10/IP-10 than non-pregnant women (median 116.1 pg/mL, range 40.7-1314.3 vs. median 90.3 pg/mL, range 49.2-214.7, respectively; p = 0.002); (2) no significant correlation was found between maternal serum concentration of CXCL10/IP-10 and gestational age (between 19 and 38 weeks); (3) there were no differences in median serum CXCL10/IP-10 concentrations between patients who delivered an SGA neonate and those with normal pregnancies (median 122.4 pg/mL, range 37.3-693.5 vs. median 116.1 pg/mL, range 40.7-1314.3, respectively; p > 0.05); (4) patients with preeclampsia had a higher median serum concentration of CXCL10/IP-10 than normal pregnant women (median 156.4 pg/mL, range 47.4-645.9 vs. median 116.1 pg/mL, range 40.7-1314.3, respectively; p < 0.05); (5) patients with preeclampsia had a higher median concentration of CXCL10/IP-10 than those who delivered an SGA neonate (median 156.4 pg/mL, range 47.4-645.9 vs. median 122.4 pg/mL, range 37.3-693.5, respectively; p < 0.05). CONCLUSIONS Patients with preeclampsia have significantly higher serum concentrations of CXCL10/IP-10 than both normal pregnant women and mothers who have SGA neonates. These results are likely to reflect an anti-angiogenic state as well as an enhanced systemic inflammatory response in patients with preeclampsia. Alternatively, since preeclampsia and SGA share several mechanisms of disease, it is possible that a higher concentration of this chemokine may contribute to the clinical presentation of preeclampsia in patients with a similar intrauterine insult.
Collapse
Affiliation(s)
- Francesca Gotsch
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Guo X, Nakamura K, Kohyama K, Harada C, Behanna HA, Watterson DM, Matsumoto Y, Harada T. Inhibition of glial cell activation ameliorates the severity of experimental autoimmune encephalomyelitis. Neurosci Res 2007; 59:457-66. [DOI: 10.1016/j.neures.2007.08.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 08/21/2007] [Accepted: 08/23/2007] [Indexed: 12/16/2022]
|