1
|
Womersley JS, Obellianne C, Padula AE, Lopez MF, Griffin WC, Ball LE, Berto S, Grant KA, Townsend DM, Uys JD, Mulholland PJ. Adaptations in glutathione-based redox protein signaling pathways and alcohol drinking across species. Biomed Pharmacother 2024; 180:117514. [PMID: 39362067 DOI: 10.1016/j.biopha.2024.117514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024] Open
Abstract
Alcohol use disorder (AUD) is the most prevalent substance use disorder but there is incomplete knowledge of the underlying molecular etiology. Here, we examined the cytosolic proteome from the nucleus accumbens core (NAcC) of ethanol drinking rhesus macaques to identify ethanol-sensitive signaling proteins. The targets were subsequently investigated using bioinformatics, genetic, and pharmacological manipulations in mouse models of ethanol drinking. Of the 1000+ cytosolic proteins identified in our screen, 50 proteins differed significantly between control and ethanol drinking macaques. Gene Ontology analysis of the differentially expressed proteins identified enrichment in pathways regulating metabolic processes and proteasome activity. Because the family of Glutathione S-transferases (GSTs) was enriched in these pathways, validation studies targeted GSTs using bioinformatics and genetically diverse mouse models. Gstp1 and Gstm2 were identified in Quantitative Trait Loci and published gene sets for ethanol-related phenotypes (e.g., ethanol preference, conditioned taste aversion, differential expression), and recombinant inbred strains that inherited the C57BL/6J allele at the Gstp2 interval consumed higher amounts of ethanol than those that inherited the DBA/2J allele. Genetic deletion of Gstp1/2 led to increased ethanol consumption without altering ethanol metabolism or sucrose preference. Administration of the pharmacologic activator of Gstp1/2, carnosic acid, decreased voluntary ethanol drinking. Proteomic analysis of the NAcC cytosolic of heavy drinking macaques that were validated in mouse models indicate a role for glutathione-mediated redox regulation in ethanol-related neurobiology and the potential of pharmacological interventions targeting this system to modify excessive ethanol drinking.
Collapse
Affiliation(s)
- Jacqueline S Womersley
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Psychiatry, Stellenbosch University, Cape Town, South Africa; South African Medical Research Council / Stellenbosch University Genomics of Brain Disorders Research Unit, Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
| | - Clémence Obellianne
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Audrey E Padula
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Marcelo F Lopez
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - William C Griffin
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Lauren E Ball
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Stefano Berto
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kathleen A Grant
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Danyelle M Townsend
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Joachim D Uys
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Patrick J Mulholland
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
2
|
Mulholland PJ, Padula AE, Wilhelm LJ, Park B, Grant KA, Ferguson BM, Cervera-Juanes R. Cross-species epigenetic regulation of nucleus accumbens KCNN3 transcripts by excessive ethanol drinking. Transl Psychiatry 2023; 13:364. [PMID: 38012158 PMCID: PMC10682415 DOI: 10.1038/s41398-023-02676-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023] Open
Abstract
The underlying genetic and epigenetic mechanisms driving functional adaptations in neuronal excitability and excessive alcohol intake are poorly understood. Small-conductance Ca2+-activated K+ (KCa2 or SK) channels encoded by the KCNN family of genes have emerged from preclinical studies as a key contributor to alcohol-induced functional neuroadaptations in alcohol-drinking monkeys and alcohol-dependent mice. Here, this cross-species analysis focused on KCNN3 DNA methylation, gene expression, and single nucleotide polymorphisms, including alternative promoters in KCNN3, that could influence surface trafficking and function of KCa2 channels. Bisulfite sequencing analysis of the nucleus accumbens tissue from alcohol-drinking monkeys and alcohol-dependent mice revealed a differentially methylated region in exon 1A of KCNN3 that overlaps with a predicted promoter sequence. The hypermethylation of KCNN3 in the accumbens paralleled an increase in the expression of alternative transcripts that encode apamin-insensitive and dominant-negative KCa2 channel isoforms. A polymorphic repeat in macaque KCNN3 encoded by exon 1 did not correlate with alcohol drinking. At the protein level, KCa2.3 channel expression in the accumbens was significantly reduced in very heavy-drinking monkeys. Together, our cross-species findings on epigenetic dysregulation of KCNN3 represent a complex mechanism that utilizes alternative promoters to potentially impact the firing of accumbens neurons. Thus, these results provide support for hypermethylation of KCNN3 as a possible key molecular mechanism underlying harmful alcohol intake and alcohol use disorder.
Collapse
Affiliation(s)
- Patrick J Mulholland
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Audrey E Padula
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Larry J Wilhelm
- Department of Translational Neuroscience, Atrium Health Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Byung Park
- Department of Public Health and Preventive Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Kathleen A Grant
- Department of Neurosciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Betsy M Ferguson
- Department of Neurosciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Rita Cervera-Juanes
- Department of Translational Neuroscience, Atrium Health Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
- Center for Precision Medicine, Atrium Health Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
3
|
Mulholland PJ, Berto S, Wilmarth PA, McMahan C, Ball LE, Woodward JJ. Adaptor protein complex 2 in the orbitofrontal cortex predicts alcohol use disorder. Mol Psychiatry 2023; 28:4766-4776. [PMID: 37679472 PMCID: PMC10918038 DOI: 10.1038/s41380-023-02236-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023]
Abstract
Alcohol use disorder (AUD) is a life-threatening disease characterized by compulsive drinking, cognitive deficits, and social impairment that continue despite negative consequences. The inability of individuals with AUD to regulate drinking may involve functional deficits in cortical areas that normally balance actions that have aspects of both reward and risk. Among these, the orbitofrontal cortex (OFC) is critically involved in goal-directed behavior and is thought to maintain a representation of reward value that guides decision making. In the present study, we analyzed post-mortem OFC brain samples collected from age- and sex-matched control subjects and those with AUD using proteomics, bioinformatics, machine learning, and reverse genetics approaches. Of the 4,500+ total unique proteins identified in the proteomics screen, there were 47 proteins that differed significantly by sex that were enriched in processes regulating extracellular matrix and axonal structure. Gene ontology enrichment analysis revealed that proteins differentially expressed in AUD cases were involved in synaptic and mitochondrial function, as well as transmembrane transporter activity. Alcohol-sensitive OFC proteins also mapped to abnormal social behaviors and social interactions. Machine learning analysis of the post-mortem OFC proteome revealed dysregulation of presynaptic (e.g., AP2A1) and mitochondrial proteins that predicted the occurrence and severity of AUD. Using a reverse genetics approach to validate a target protein, we found that prefrontal Ap2a1 expression significantly correlated with voluntary alcohol drinking in male and female genetically diverse mouse strains. Moreover, recombinant inbred strains that inherited the C57BL/6J allele at the Ap2a1 interval consumed higher amounts of alcohol than those that inherited the DBA/2J allele. Together, these findings highlight the impact of excessive alcohol consumption on the human OFC proteome and identify important cross-species cortical mechanisms and proteins that control drinking in individuals with AUD.
Collapse
Affiliation(s)
- Patrick J Mulholland
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA.
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Stefano Berto
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Phillip A Wilmarth
- Proteomics Shared Resource, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Christopher McMahan
- School of Mathematical and Statistical Sciences, Clemson-MUSC Artificial Intelligence Hub, Clemson University, Clemson, SC, 29634-0975, USA
| | - Lauren E Ball
- Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - John J Woodward
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
4
|
Juanes RC, Mulholland P, Padula A, Wilhelm L, Park B, Grant K, Ferguson B. Cross-species epigenetic regulation of nucleus accumbens KCNN3 transcripts by excessive ethanol drinking. RESEARCH SQUARE 2023:rs.3.rs-3315122. [PMID: 37790552 PMCID: PMC10543433 DOI: 10.21203/rs.3.rs-3315122/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The underlying genetic and epigenetic mechanisms driving functional adaptations in neuronal excitability and excessive alcohol intake are poorly understood. Small-conductance Ca2+-activated K+ (KCa2 or SK) channels encoded by the KCNN family of genes have emerged from preclinical studies as a key contributor to alcohol-induced functional neuroadaptations in alcohol-drinking monkeys and alcohol dependent mice. Here, this cross-species analysis focused on KCNN3 DNA methylation, gene expression, and single nucleotide polymorphisms including alternative promoters in KCNN3 that could influence surface trafficking and function of KCa2 channels. Bisulfite sequencing analysis of the nucleus accumbens tissue from alcohol-drinking monkeys and alcohol dependent mice revealed a differentially methylated region in exon 1A of KCNN3 that overlaps with a predicted promoter sequence. The hypermethylation of KCNN3 in the accumbens paralleled an increase in expression of alternative transcripts that encode apamin-insensitive and dominant-negative KCa2 channel isoforms. A polymorphic repeat in macaque KCNN3 encoded by exon 1 did not correlate with alcohol drinking. At the protein level, KCa2.3 channel expression in the accumbens was significantly reduced in very heavy drinking monkeys. Together, our cross-species findings on epigenetic dysregulation of KCNN3 represent a complex mechanism that utilizes alternative promoters to impact firing of accumbens neurons. Thus, these results provide support for hypermethylation of KCNN3 as a possible key molecular mechanism underlying harmful alcohol intake and alcohol use disorder.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Betsy Ferguson
- Oregon Health & Sciences University/Oregon National Primate Research Center
| |
Collapse
|
5
|
Mulholland PJ, Berto S, Wilmarth PA, McMahan C, Ball LE, Woodward JJ. Adaptor protein complex 2 in the orbitofrontal cortex predicts alcohol use disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.28.542637. [PMID: 37398482 PMCID: PMC10312445 DOI: 10.1101/2023.05.28.542637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Alcohol use disorder (AUD) is a life-threatening disease characterized by compulsive drinking, cognitive deficits, and social impairment that continue despite negative consequences. The inability of individuals with AUD to regulate drinking may involve functional deficits in cortical areas that normally balance actions that have aspects of both reward and risk. Among these, the orbitofrontal cortex (OFC) is critically involved in goal-directed behavior and is thought to maintain a representation of reward value that guides decision making. In the present study, we analyzed post-mortem OFC brain samples collected from age- and sex-matched control subjects and those with AUD using proteomics, bioinformatics, machine learning, and reverse genetics approaches. Of the 4,500+ total unique proteins identified in the proteomics screen, there were 47 proteins that differed significantly by sex that were enriched in processes regulating extracellular matrix and axonal structure. Gene ontology enrichment analysis revealed that proteins differentially expressed in AUD cases were involved in synaptic and mitochondrial function, as well as transmembrane transporter activity. Alcohol-sensitive OFC proteins also mapped to abnormal social behaviors and social interactions. Machine learning analysis of the post-mortem OFC proteome revealed dysregulation of presynaptic (e.g., AP2A1) and mitochondrial proteins that predicted the occurrence and severity of AUD. Using a reverse genetics approach to validate a target protein, we found that prefrontal Ap2a1 expression significantly correlated with voluntary alcohol drinking in male and female genetically diverse mouse strains. Moreover, recombinant inbred strains that inherited the C57BL/6J allele at the Ap2a1 interval consumed higher amounts of alcohol than those that inherited the DBA/2J allele. Together, these findings highlight the impact of excessive alcohol consumption on the human OFC proteome and identify important cross-species cortical mechanisms and proteins that control drinking in individuals with AUD.
Collapse
|
6
|
Schreiner DC, Wright A, Baltz ET, Wang T, Cazares C, Gremel CM. Chronic alcohol exposure alters action control via hyperactive premotor corticostriatal activity. Cell Rep 2023; 42:112675. [PMID: 37342908 PMCID: PMC10468874 DOI: 10.1016/j.celrep.2023.112675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/02/2023] [Accepted: 06/06/2023] [Indexed: 06/23/2023] Open
Abstract
Alcohol use disorder (AUD) alters decision-making control over actions, but disruptions to the responsible neural circuit mechanisms are unclear. Premotor corticostriatal circuits are implicated in balancing goal-directed and habitual control over actions and show disruption in disorders with compulsive, inflexible behaviors, including AUD. However, whether there is a causal link between disrupted premotor activity and altered action control is unknown. Here, we find that mice chronically exposed to alcohol (chronic intermittent ethanol [CIE]) showed impaired ability to use recent action information to guide subsequent actions. Prior CIE exposure resulted in aberrant increases in the calcium activity of premotor cortex (M2) neurons that project to the dorsal medial striatum (M2-DMS) during action control. Chemogenetic reduction of this CIE-induced hyperactivity in M2-DMS neurons rescued goal-directed action control. This suggests a direct, causal relationship between chronic alcohol disruption to premotor circuits and decision-making strategy and provides mechanistic support for targeting activity of human premotor regions as a potential treatment in AUD.
Collapse
Affiliation(s)
- Drew C Schreiner
- Department of Psychology, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrew Wright
- Department of Psychology, University of California San Diego, La Jolla, CA 92093, USA
| | - Emily T Baltz
- The Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Tianyu Wang
- Department of Psychology, University of California San Diego, La Jolla, CA 92093, USA
| | - Christian Cazares
- The Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Christina M Gremel
- Department of Psychology, University of California San Diego, La Jolla, CA 92093, USA; The Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
7
|
Nimitvilai-Roberts S, Gioia D, Lopez MF, Glaser CM, Woodward JJ. Chronic intermittent ethanol exposure differentially alters the excitability of neurons in the orbitofrontal cortex and basolateral amygdala that project to the dorsal striatum. Neuropharmacology 2023; 228:109463. [PMID: 36792030 PMCID: PMC10006395 DOI: 10.1016/j.neuropharm.2023.109463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023]
Abstract
Alcohol use disorder is associated with altered neuron function including those in orbitofrontal cortex (OFC) and basolateral amygdala (BLA) that send glutamatergic inputs to areas of the dorsal striatum (DS) that mediate goal and habit directed actions. Previous studies reported that chronic intermittent (CIE) exposure to ethanol alters the electrophysiological properties of OFC and BLA neurons, although projection targets for these neurons were not identified. In this study, we used male and female mice and recorded current-evoked spiking of retrobead labeled DS-projecting OFC and BLA neurons in the same animals following air or CIE treatment. DS-projecting OFC neurons were hyperexcitable 3- and 7-days following CIE exposure and spiking returned to control levels after 14 days of withdrawal. In contrast, firing was decreased in DS-projecting BLA neurons at 3-days withdrawal, increased at 7- and 14-days and returned to baseline at 28 days post-CIE. CIE exposure enhanced the amplitude and frequency of spontaneous excitatory postsynaptic currents (sEPSCs) of DS-projecting OFC neurons but had no effect on inhibitory postsynaptic currents (sIPSCs). In DS-projecting BLA neurons, the amplitude and frequency of sIPSCs was enhanced 3 days post-CIE with no change in sEPSCs while at 7-days post-withdrawal, sEPSC amplitude and frequency were increased and sIPSCs had returned to normal. Finally, in CIE-treated mice, acute ethanol no longer inhibited spike firing of DS-projecting OFC and BLA neurons. Overall, these results suggest that CIE-induced changes in the excitability of DS-projecting OFC and BLA neurons could underlie deficits in behavioral control often observed in alcohol-dependent individuals.
Collapse
Affiliation(s)
| | - Dominic Gioia
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Marcelo F Lopez
- Department of Psychiatry and Behavioral Sciences, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Christina M Glaser
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - John J Woodward
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA; Department of Psychiatry and Behavioral Sciences, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
8
|
Kahnt T. Computationally Informed Interventions for Targeting Compulsive Behaviors. Biol Psychiatry 2023; 93:729-738. [PMID: 36464521 PMCID: PMC9989040 DOI: 10.1016/j.biopsych.2022.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/04/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2022]
Abstract
Compulsive behaviors are central to addiction and obsessive-compulsive disorder and can be understood as a failure of adaptive decision making. Particularly, they can be conceptualized as an imbalance in behavioral control, such that behavior is guided predominantly by learned rather than inferred outcome expectations. Inference is a computational process required for adaptive behavior, and recent work across species has identified the neural circuitry that supports inference-based decision making. This includes the orbitofrontal cortex, which has long been implicated in disorders of compulsive behavior. Inspired by evidence that modulating orbitofrontal cortex activity can alter inference-based behaviors, here we discuss noninvasive approaches to target these circuits in humans. Specifically, we discuss the potential of network-targeted transcranial magnetic stimulation and real-time neurofeedback to modulate the neural underpinnings of inference. Both interventions leverage recent advances in our understanding of the neurocomputational mechanisms of inference-based behavior and may be used to complement current treatment approaches for behavioral disorders.
Collapse
Affiliation(s)
- Thorsten Kahnt
- National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland.
| |
Collapse
|
9
|
Synaptic effects of IL-1β and CRF in the central amygdala after protracted alcohol abstinence in male rhesus macaques. Neuropsychopharmacology 2022; 47:847-856. [PMID: 34837077 PMCID: PMC8882167 DOI: 10.1038/s41386-021-01231-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/14/2021] [Accepted: 11/02/2021] [Indexed: 12/21/2022]
Abstract
A major barrier to remission from an alcohol use disorder (AUD) is the continued risk of relapse during abstinence. Assessing the neuroadaptations after chronic alcohol and repeated abstinence is important to identify mechanisms that may contribute to relapse. In this study, we used a rhesus macaque model of long-term alcohol use and repeated abstinence, providing a platform to extend mechanistic findings from rodents to primates. The central amygdala (CeA) displays elevated GABA release following chronic alcohol in rodents and in abstinent male macaques, highlighting this neuroadaptation as a conserved mechanism that may underlie excessive alcohol consumption. Here, we determined circulating interleukin-1β (IL-1β) levels, CeA transcriptomic changes, and the effects of IL-1β and corticotropin releasing factor (CRF) signaling on CeA GABA transmission in male controls and abstinent drinkers. While no significant differences in peripheral IL-1β or the CeA transcriptome were observed, pathway analysis identified several canonical immune-related pathways. We addressed this potential dysregulation of CeA immune signaling in abstient drinkers with an electrophysiological approach. We found that IL-1β decreased CeA GABA release in controls while abstinent drinkers were less sensitive to IL-1β's effects, suggesting adaptations in the neuromodulatory role of IL-1β. In contrast, CRF enhanced CeA GABA release similarly in controls and abstinent drinkers, consistent with rodent studies. Notably, CeA CRF expression was inversely correlated with intoxication, suggesting that CRF levels during abstinence may predict future intoxication. Together, our findings highlight conserved and divergent actions of chronic alcohol on neuroimmune and stress signaling on CeA GABA transmission across rodents and macaques.
Collapse
|
10
|
Schuh KM, Sneddon EA, Nader AM, Muench MA, Radke AK. Orbitofrontal cortex subregion inhibition during binge-like and aversion-resistant alcohol drinking. Alcohol 2022; 99:1-8. [PMID: 34863917 PMCID: PMC8844094 DOI: 10.1016/j.alcohol.2021.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/29/2021] [Accepted: 11/28/2021] [Indexed: 01/10/2023]
Abstract
Two important contributors to alcohol-related problems and alcohol use disorder (AUD) are binge- and compulsive-like drinking. The orbitofrontal cortex (OFC), a brain region implicated in outcome valuation and behavioral flexibility, is functionally altered by alcohol exposure. Data from animal models also suggest that both the medial (mOFC) and lateral (lOFC) subregions of the OFC regulate alcohol-related behaviors. The current study was designed to examine the contributions of mOFC and lOFC using a model of binge-like and aversion-resistant ethanol drinking in C57BL/6J male and female mice. The inhibitory Designer Receptor Exclusively Activated by Designer Drugs (DREADD) hM4Di were used to inhibit neurons in either the mOFC or the lOFC in mice drinking 15% ethanol in a two-bottle, limited-access, modified drinking in the dark paradigm. The effects of chemogenetic inhibition on consumption of quinine-adulterated ethanol, water, and water + quinine were also assessed. Inhibiting the mOFC did not alter consumption of ethanol or aversion-resistant drinking of ethanol + quinine. In contrast, inhibition of neurons in the lOFC increased consumption, but not preference, of ethanol alone. mOFC and lOFC inhibition did not alter water or quinine-adulterated water intake, indicating the effects shown here are specific to ethanol drinking. These data support the role of the lOFC in regulating alcohol consumption but fail to find a similar role for mOFC.
Collapse
Affiliation(s)
| | | | | | | | - Anna K. Radke
- Correspondence to: Anna K. Radke, Ph.D., 90 N. Patterson Ave., Oxford, OH, USA 45056, , Phone: 513-529-6941, Fax: 513-529-2420
| |
Collapse
|
11
|
Egervari G, Siciliano CA, Whiteley EL, Ron D. Alcohol and the brain: from genes to circuits. Trends Neurosci 2021; 44:1004-1015. [PMID: 34702580 DOI: 10.1016/j.tins.2021.09.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/08/2021] [Accepted: 09/30/2021] [Indexed: 01/27/2023]
Abstract
Alcohol use produces wide-ranging and diverse effects on the central nervous system. It influences intracellular signaling mechanisms, leading to changes in gene expression, chromatin remodeling, and translation. As a result of these molecular alterations, alcohol affects the activity of neuronal circuits. Together, these mechanisms produce long-lasting cellular adaptations in the brain that in turn can drive the development and maintenance of alcohol use disorder (AUD). We provide an update on alcohol research, focusing on multiple levels of alcohol-induced adaptations, from intracellular changes to changes in neural circuits. A better understanding of how alcohol affects these diverse and interlinked mechanisms may lead to the identification of novel therapeutic targets and to the development of much-needed novel and efficacious treatment options.
Collapse
Affiliation(s)
- Gabor Egervari
- Department of Cell and Developmental Biology, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Cody A Siciliano
- Department of Pharmacology, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37203, USA.
| | - Ellanor L Whiteley
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dorit Ron
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
12
|
Effects of ceftriaxone on ethanol drinking and GLT-1 expression in ethanol dependence and relapse drinking. Alcohol 2021; 92:1-9. [PMID: 33465464 DOI: 10.1016/j.alcohol.2021.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/11/2020] [Accepted: 01/12/2021] [Indexed: 12/26/2022]
Abstract
Repeated cycles of chronic intermittent ethanol (CIE) exposure increase voluntary consumption of alcohol (ethanol) in mice. Previous reports from our laboratory show that CIE increases extracellular glutamate in the nucleus accumbens (NAc) and that manipulating accumbal glutamate concentrations will alter ethanol drinking, indicating that glutamate homeostasis plays a crucial role in ethanol drinking in this model. A number of studies have shown that ceftriaxone increases GLT-1 expression, the major glutamate transporter, and that treatment with this antibiotic reduces ethanol drinking. The present studies examined the effects of ceftriaxone on ethanol drinking and GLT-1 in a mouse model of ethanol dependence and relapse drinking. The results show that ceftriaxone did not influence drinking at any dose in either ethanol-dependent or non-dependent mice. Further, ceftriaxone did not increase GLT-1 expression in the accumbens core or shell, with the exception of the ethanol-dependent mice receiving the highest dose of ceftriaxone. Interestingly, ethanol-dependent mice treated with only vehicle displayed reduced expression of GLT-1 in the accumbens shell and of the presynaptic mGlu2 receptor in the accumbens core. The reduced expression of the major glutamate transporter (GLT-1), as well as a receptor that regulates glutamate release (mGlu2), may help explain, at least in part, increased glutamatergic transmission in this model of ethanol dependence and relapse drinking.
Collapse
|
13
|
Different Effects of Alcohol Exposure on Action and Outcome-Related Orbitofrontal Cortex Activity. eNeuro 2021; 8:ENEURO.0052-21.2021. [PMID: 33785522 PMCID: PMC8174034 DOI: 10.1523/eneuro.0052-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 11/21/2022] Open
Abstract
Alcohol dependence can result in long-lasting deficits to decision-making and action control. Neurobiological investigations have identified orbitofrontal cortex (OFC) as important for outcome-related contributions to goal-directed actions during decision-making. Prior work has shown that alcohol dependence induces long-lasting changes to OFC function that persist into protracted withdrawal and disrupts goal-directed control over actions. However, it is unclear whether these changes in function alter representation of action and outcome-related neural activity in OFC. Here, we used the well-validated chronic intermittent ethanol (CIE) exposure and withdrawal procedure to model alcohol dependence in mice and performed in vivo extracellular recordings during an instrumental task in which lever-press actions made for a food outcome. We found alcohol dependence disrupted goal-directed action control and increased OFC activity associated with lever-pressing but decreased OFC activity during outcome-related epochs. The ability to decode outcome-related information, but not action information, from OFC activity following CIE exposure was reduced. Hence, chronic alcohol exposure induced a long-lasting disruption to OFC function such that activity associated with actions was enhanced, but OFC activity contributions to outcome-related information was diminished. This has important implications for hypotheses regarding compulsive and habitual phenotypes observed in addiction.
Collapse
|
14
|
Yalcinbas EA, Cazares C, Gremel CM. Call for a more balanced approach to understanding orbital frontal cortex function. Behav Neurosci 2021; 135:255-266. [PMID: 34060878 DOI: 10.1037/bne0000450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Orbital frontal cortex (OFC) research has historically emphasized the function of this associative cortical area within top-down theoretical frameworks. This approach has largely focused on mapping OFC activity onto human-defined psychological or cognitive constructs and has often led to OFC circuitry bearing the weight of entire theoretical frameworks. New techniques and tools developed in the last decade have made it possible to revisit long-standing basic science questions in neuroscience and answer them with increasing sophistication. We can now study and specify the genetic, molecular, cellular, and circuit architecture of a brain region in much greater detail, which allows us to piece together how they contribute to emergent circuit functions. For instance, adopting such systematic and unbiased bottom-up approaches to elucidating the function of the visual system has paved the way to building a greater understanding of the spectrum of its computational capabilities. In the same vein, we argue that OFC research would benefit from a more balanced approach that also places focus on novel bottom-up investigations into OFC's computational capabilities. Furthermore, we believe that the knowledge gained by employing a more bottom-up approach to investigating OFC function will ultimately allow us to look at OFC's dysfunction in disease through a more nuanced biological lens. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
Affiliation(s)
- Ege A Yalcinbas
- The Neurosciences Graduate Program, University of California, San Diego
| | - Christian Cazares
- The Neurosciences Graduate Program, University of California, San Diego
| | | |
Collapse
|
15
|
Renteria R, Cazares C, Baltz ET, Schreiner DC, Yalcinbas EA, Steinkellner T, Hnasko TS, Gremel CM. Mechanism for differential recruitment of orbitostriatal transmission during actions and outcomes following chronic alcohol exposure. eLife 2021; 10:67065. [PMID: 33729155 PMCID: PMC8016477 DOI: 10.7554/elife.67065] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/16/2021] [Indexed: 12/26/2022] Open
Abstract
Psychiatric disease often produces symptoms that have divergent effects on neural activity. For example, in drug dependence, dysfunctional value-based decision-making and compulsive-like actions have been linked to hypo- and hyperactivity of orbital frontal cortex (OFC)-basal ganglia circuits, respectively; however, the underlying mechanisms are unknown. Here we show that alcohol-exposed mice have enhanced activity in OFC terminals in dorsal striatum (OFC-DS) associated with actions, but reduced activity of the same terminals during periods of outcome retrieval, corresponding with a loss of outcome control over decision-making. Disrupted OFC-DS terminal activity was due to a dysfunction of dopamine-type 1 receptors on spiny projection neurons (D1R SPNs) that resulted in increased retrograde endocannabinoid signaling at OFC-D1R SPN synapses reducing OFC-DS transmission. Blocking CB1 receptors restored OFC-DS activity in vivo and rescued outcome-based control over decision-making. These findings demonstrate a circuit-, synapse-, and computation-specific mechanism gating OFC activity in alcohol-exposed mice.
Collapse
Affiliation(s)
- Rafael Renteria
- Department of Psychology, University of California San Diego, San Diego, United States
| | - Christian Cazares
- The Neurosciences Graduate Program, University of California San Diego, San Diego, United States
| | - Emily T Baltz
- The Neurosciences Graduate Program, University of California San Diego, San Diego, United States
| | - Drew C Schreiner
- Department of Psychology, University of California San Diego, San Diego, United States
| | - Ege A Yalcinbas
- The Neurosciences Graduate Program, University of California San Diego, San Diego, United States
| | - Thomas Steinkellner
- Department of Neurosciences, University of California San Diego, San Diego, United States
| | - Thomas S Hnasko
- The Neurosciences Graduate Program, University of California San Diego, San Diego, United States.,Department of Neurosciences, University of California San Diego, San Diego, United States.,Research Service, VA San Diego Healthcare System, San Diego, United States
| | - Christina M Gremel
- Department of Psychology, University of California San Diego, San Diego, United States.,The Neurosciences Graduate Program, University of California San Diego, San Diego, United States
| |
Collapse
|
16
|
Wiegand A, Kreifelts B, Munk MHJ, Geiselhart N, Ramadori KE, MacIsaac JL, Fallgatter AJ, Kobor MS, Nieratschker V. DNA methylation differences associated with social anxiety disorder and early life adversity. Transl Psychiatry 2021; 11:104. [PMID: 33542190 PMCID: PMC7862482 DOI: 10.1038/s41398-021-01225-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 12/31/2022] Open
Abstract
Social anxiety disorder (SAD) is a psychiatric disorder characterized by extensive fear in social situations. Multiple genetic and environmental factors are known to contribute to its pathogenesis. One of the main environmental risk factors is early life adversity (ELA). Evidence is emerging that epigenetic mechanisms such as DNA methylation might play an important role in the biological mechanisms underlying SAD and ELA. To investigate the relationship between ELA, DNA methylation, and SAD, we performed an epigenome-wide association study for SAD and ELA examining DNA from whole blood of a cohort of 143 individuals using DNA methylation arrays. We identified two differentially methylated regions (DMRs) associated with SAD located within the genes SLC43A2 and TNXB. As this was the first epigenome-wide association study for SAD, it is worth noting that both genes have previously been associated with panic disorder. Further, we identified two DMRs associated with ELA within the SLC17A3 promoter region and the SIAH3 gene and several DMRs that were associated with the interaction of SAD and ELA. Of these, the regions within C2CD2L and MRPL28 showed the largest difference in DNA methylation. Lastly, we found that two DMRs were associated with both the severity of social anxiety and ELA, however, neither of them was found to mediate the contribution of ELA to SAD later in life. Future studies are needed to replicate our findings in independent cohorts and to investigate the biological pathways underlying these effects.
Collapse
Affiliation(s)
- Ariane Wiegand
- grid.10392.390000 0001 2190 1447Department of Psychiatry and Psychotherapy, Eberhard Karls University of Tübingen, Tübingen, Germany ,grid.10392.390000 0001 2190 1447Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Benjamin Kreifelts
- grid.10392.390000 0001 2190 1447Department of Psychiatry and Psychotherapy, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Matthias H. J. Munk
- grid.10392.390000 0001 2190 1447Department of Psychiatry and Psychotherapy, Eberhard Karls University of Tübingen, Tübingen, Germany ,grid.6546.10000 0001 0940 1669Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Nadja Geiselhart
- grid.10392.390000 0001 2190 1447Department of Psychiatry and Psychotherapy, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Katia E. Ramadori
- grid.17091.3e0000 0001 2288 9830Department of Medical Genetics, University of British Columbia, BC Children’s Hospital Research Institute, Vancouver, V5Z 4H4 BC Canada
| | - Julia L. MacIsaac
- grid.17091.3e0000 0001 2288 9830Department of Medical Genetics, University of British Columbia, BC Children’s Hospital Research Institute, Vancouver, V5Z 4H4 BC Canada
| | - Andreas J. Fallgatter
- grid.10392.390000 0001 2190 1447Department of Psychiatry and Psychotherapy, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Michael S. Kobor
- grid.17091.3e0000 0001 2288 9830Department of Medical Genetics, University of British Columbia, BC Children’s Hospital Research Institute, Vancouver, V5Z 4H4 BC Canada
| | - Vanessa Nieratschker
- Department of Psychiatry and Psychotherapy, Eberhard Karls University of Tübingen, Tübingen, Germany. .,Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany.
| |
Collapse
|
17
|
Cannady R, Nguyen T, Padula AE, Rinker JA, Lopez MF, Becker HC, Woodward JJ, Mulholland PJ. Interaction of chronic intermittent ethanol and repeated stress on structural and functional plasticity in the mouse medial prefrontal cortex. Neuropharmacology 2021; 182:108396. [PMID: 33181147 PMCID: PMC7942177 DOI: 10.1016/j.neuropharm.2020.108396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/05/2020] [Accepted: 11/06/2020] [Indexed: 01/27/2023]
Abstract
Stress is a risk factor that plays a considerable role in the development and maintenance of alcohol (ethanol) abuse and relapse. Preclinical studies examining ethanol-stress interactions have demonstrated elevated ethanol drinking, cognitive deficits, and negative affective behaviors in mice. However, the neural adaptations in prefrontal cortical regions that drive these aberrant behaviors produced by ethanol-stress interactions are unknown. In this study, male C57BL/6J mice were exposed to chronic intermittent ethanol (CIE) and repeated forced swim stress (FSS). After two cycles of CIE x FSS, brain slices containing the prelimbic (PrL) and infralimbic (IfL) cortex were prepared for analysis of adaptations in dendritic spines and synaptic plasticity. In the PrL cortex, total spine density was increased in mice exposed to CIE. Immediately following induction of long-term potentiation (LTP), the fEPSP slope was increased in the PrL of CIE x FSS treated mice, indicative of a presynaptic adaptation on post-tetanic potentiation (PTP). In the IfL cortex, CIE exposure regardless of FSS experience resulted in an increase in spine density. FSS alone or when combined with CIE exposure increased PTP following LTP induction. Repeated FSS episodes increased IfL cortical paired-pulse facilitation, a second measure of presynaptic plasticity. In summary, CIE exposure resulted in structural adaptations while repeated stress exposure drove metaplastic changes in presynaptic function, demonstrating distinct morphological and functional changes in PrL and IfL cortical neurons. Thus, the structural and functional adaptations may be one mechanism underlying the development of excessive drinking and cognitive deficits associated with ethanol-stress interactions.
Collapse
Affiliation(s)
- Reginald Cannady
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC, 29425, USA; Department of Biology, College of Science and Technology, North Carolina Agricultural & Technical State University, 1601 East Market Street, Barnes Hall 215, Greensboro, NC, 27411, USA
| | - Tiffany Nguyen
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC, 29425, USA
| | - Audrey E Padula
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC, 29425, USA
| | - Jennifer A Rinker
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC, 29425, USA
| | - Marcelo F Lopez
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC, 29425, USA
| | - Howard C Becker
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC, 29425, USA
| | - John J Woodward
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC, 29425, USA
| | - Patrick J Mulholland
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC, 29425, USA.
| |
Collapse
|
18
|
Le TM, Zhornitsky S, Wang W, Zhang S, Li CR. Problem drinking alters gray matter volume and food cue responses of the lateral orbitofrontal cortex. Addict Biol 2021; 26:e12857. [PMID: 31746092 DOI: 10.1111/adb.12857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/18/2019] [Accepted: 11/03/2019] [Indexed: 01/01/2023]
Abstract
Alcohol misuse is associated with significant energy deficits. As feeding involves multiple sensory, cognitive, and affective processes, low food intake in problem drinkers likely reflects alterations in both regional and inter-regional responses. To investigate the effects of problem drinking on feeding-related neural activities and connectivities, we examined functional magnetic resonance imaging (fMRI) data in 82 drinkers who viewed palatable food and nonfood images in alternating blocks. Drinking severity was assessed with the Alcohol Use Disorders Identification Test (AUDIT). A whole-brain multiple regression with AUDIT scores as the predictor showed a negative correlation between drinking severity and activation to food vs nonfood cues in the lateral orbitofrontal cortex (lOFC). AUDIT scores were also negatively correlated with the gray matter volume (GMV) of the lOFC and regions that responded preferentially to food stimuli, including the left middle frontal gyrus, bilateral middle insula, and occipital cortices. Connectivity strength between the lOFC and these regions was negatively modulated by drinking severity. In contrast, there was no relationship between AUDIT scores and lOFC connectivity with regions that did not show either selectivity to food images or GMV loss. A mediation analysis further suggested that alcohol misuse may have compromised lOFC's structural integrity, which in turn disrupted lOFC interactions with regions that support the processing of visual food cues. Overall, the findings provide evidence for the effects of problem drinking on the brain substrates of feeding, potentially shedding light on the neural mechanisms underlying energy deficits in at-risk drinkers.
Collapse
Affiliation(s)
- Thang M. Le
- Department of Psychiatry Yale University School of Medicine New Haven Connecticut
| | - Simon Zhornitsky
- Department of Psychiatry Yale University School of Medicine New Haven Connecticut
| | - Wuyi Wang
- Department of Psychiatry Yale University School of Medicine New Haven Connecticut
| | - Sheng Zhang
- Department of Psychiatry Yale University School of Medicine New Haven Connecticut
| | - Chiang‐Shan R. Li
- Department of Psychiatry Yale University School of Medicine New Haven Connecticut
- Department of Neuroscience Yale University School of Medicine New Haven Connecticut
- Interdepartmental Neuroscience Program Yale University School of Medicine New Haven Connecticut
| |
Collapse
|
19
|
Shields CN, Gremel CM. Review of Orbitofrontal Cortex in Alcohol Dependence: A Disrupted Cognitive Map? Alcohol Clin Exp Res 2020; 44:1952-1964. [PMID: 32852095 PMCID: PMC8261866 DOI: 10.1111/acer.14441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/13/2020] [Indexed: 12/18/2022]
Abstract
Alcoholism is a persistent worldwide problem associated with long-lasting impairments to decision making processes. Some aspects of dysfunction are thought to reflect alcohol-induced changes to relevant brain areas such as the orbitofrontal cortex (OFC). In this review, we will examine how chronic alcohol exposure alters OFC function to potentially contribute to maladaptive decision making, and explore experimental behavioral approaches that may be better suited to test whether alcohol dependence disrupts OFC's function. We argue that although past works suggest impairments in aspects of OFC function, more information may be gained by specifically targeting tasks to the broader function of OFC as put forth by the recent hypothesis of OFC as a "cognitive map" of task space. Overall, we suggest that such a focus could provide a better understanding of how OFC function changes in alcohol dependence, and could inform better assessment tools and treatment options for clinicians working with this population.
Collapse
Affiliation(s)
- Chloe N. Shields
- Department of Psychology, University of California San Diego, La Jolla, CA 92093, USA
| | - Christina M. Gremel
- Department of Psychology, University of California San Diego, La Jolla, CA 92093, USA
- The Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
20
|
Orbitofrontal Cortex Encodes Preference for Alcohol. eNeuro 2020; 7:ENEURO.0402-19.2020. [PMID: 32661066 PMCID: PMC7365858 DOI: 10.1523/eneuro.0402-19.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/24/2020] [Accepted: 02/12/2020] [Indexed: 01/03/2023] Open
Abstract
Orbitofrontal cortex (OFC) plays a key role in representation and regulation of reward value, preference, and seeking. OFC function is disrupted in drug use and dependence, but its specific role in alcohol use disorders has not been thoroughly studied. In alcohol-dependent humans OFC activity is increased by alcohol cue presentation. Ethanol (EtOH) also alters OFC neuron excitability in vitro, and OFC manipulation influences EtOH seeking and drinking in rodents. Orbitofrontal cortex (OFC) plays a key role in representation and regulation of reward value, preference, and seeking. OFC function is disrupted in drug use and dependence, but its specific role in alcohol use disorders has not been thoroughly studied. In alcohol-dependent humans OFC activity is increased by alcohol cue presentation. Ethanol (EtOH) also alters OFC neuron excitability in vitro, and OFC manipulation influences EtOH seeking and drinking in rodents. To understand the relationship between OFC function and individual alcohol use, we recorded OFC neuron activity in rats during EtOH self-administration, characterizing the neural correlates of individual preference for alcohol. After one month of intermittent access to 20% EtOH, male Long–Evans rats were trained to self-administer 20% EtOH, 10% EtOH, and 15% sucrose. OFC neuronal activity was recorded and associated with task performance and EtOH preference. Rats segregated into high and low EtOH drinkers based on homecage consumption and operant seeking of 20% EtOH. Motivation for 10% EtOH and sucrose was equally high in both groups. OFC neuronal activity was robustly increased or decreased during sucrose and EtOH seeking and consumption, and strength of changes in OFC activity was directly associated with individual preference for 20% EtOH. EtOH-associated OFC activity was more similar to sucrose-associated activity in high versus low EtOH drinkers. The results show that OFC neurons are activated during alcohol seeking based on individual preference, supporting this brain region as a potential substrate for alcohol motivation that may be dysregulated in alcohol misuse.
Collapse
|
21
|
Cannady R, Nimitvilai-Roberts S, Jennings SD, Woodward JJ, Mulholland PJ. Distinct Region- and Time-Dependent Functional Cortical Adaptations in C57BL/6J Mice after Short and Prolonged Alcohol Drinking. eNeuro 2020; 7:ENEURO.0077-20.2020. [PMID: 32439714 PMCID: PMC7307629 DOI: 10.1523/eneuro.0077-20.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/03/2020] [Accepted: 05/15/2020] [Indexed: 12/27/2022] Open
Abstract
Alcohol (ethanol) use disorder is associated with changes in frontal cortical areas including the anterior cingulate cortex (ACC) and orbitofrontal cortex (OFC) that contribute to cognitive deficits, uncontrolled drinking, and relapse. Acute ethanol exposure reduces intrinsic excitability of lateral OFC (lOFC) neurons, while chronic exposure and long-term drinking influence plasticity of intrinsic excitability and function of glutamatergic synapses. However, the time course that these adaptations occur across a history of ethanol drinking is unknown. The current study examined whether short-term and long-term voluntary ethanol consumption using an intermittent access paradigm would alter the biophysical properties of deep-layer pyramidal neurons in the ACC and lOFC. Neuronal spiking varied in the ACC with an initial increase in evoked firing after 1 d of drinking followed by a decrease in firing in mice that consumed ethanol for one week. No difference in lOFC spike number was observed between water controls and 1-d ethanol drinking mice, but mice that consumed ethanol for one week or more showed a significant increase in evoked firing. Voluntary ethanol drinking for 4 weeks also produced a total loss of ethanol inhibition of lOFC neurons. There was no effect of drinking on excitatory or inhibitory synaptic events in ACC or lOFC neurons across all time points in this model. Overall, these results demonstrate that voluntary drinking alters neuronal excitability in the ACC and lOFC in distinct ways and on a different time scale that may contribute to the impairment of prefrontal cortex-dependent behaviors observed in individuals with alcohol use disorder (AUD).
Collapse
Affiliation(s)
| | | | - Sarah D Jennings
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC 29425
| | - John J Woodward
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC 29425
| | - Patrick J Mulholland
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC 29425
| |
Collapse
|
22
|
Morisot N, Phamluong K, Ehinger Y, Berger AL, Moffat JJ, Ron D. mTORC1 in the orbitofrontal cortex promotes habitual alcohol seeking. eLife 2019; 8:51333. [PMID: 31820733 PMCID: PMC6959998 DOI: 10.7554/elife.51333] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) plays an important role in dendritic translation and in learning and memory. We previously showed that heavy alcohol use activates mTORC1 in the orbitofrontal cortex (OFC) of rodents (Laguesse et al., 2017a). Here, we set out to determine the consequences of alcohol-dependent mTORC1 activation in the OFC. We found that inhibition of mTORC1 activity in the OFC attenuates alcohol seeking and restores sensitivity to outcome devaluation in rats that habitually seek alcohol. In contrast, habitual responding for sucrose was unaltered by mTORC1 inhibition, suggesting that mTORC1’s role in habitual behavior is specific to alcohol. We further show that inhibition of GluN2B in the OFC attenuates alcohol-dependent mTORC1 activation, alcohol seeking and habitual responding for alcohol. Together, these data suggest that the GluN2B/mTORC1 axis in the OFC drives alcohol seeking and habit.
Collapse
Affiliation(s)
- Nadege Morisot
- Department of Neurology, University of California, San Francisco, San Francisco, United States
| | - Khanhky Phamluong
- Department of Neurology, University of California, San Francisco, San Francisco, United States
| | - Yann Ehinger
- Department of Neurology, University of California, San Francisco, San Francisco, United States
| | - Anthony L Berger
- Department of Neurology, University of California, San Francisco, San Francisco, United States
| | - Jeffrey J Moffat
- Department of Neurology, University of California, San Francisco, San Francisco, United States
| | - Dorit Ron
- Department of Neurology, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
23
|
Das J. SNARE Complex-Associated Proteins and Alcohol. Alcohol Clin Exp Res 2019; 44:7-18. [PMID: 31724225 DOI: 10.1111/acer.14238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/07/2019] [Indexed: 12/23/2022]
Abstract
Alcohol addiction causes major health problems throughout the world, causing numerous deaths and incurring a huge economic burden to society. To develop an intervention for alcohol addiction, it is necessary to identify molecular target(s) of alcohol and associated molecular mechanisms of alcohol action. The functions of many central and peripheral synapses are impacted by low concentrations of ethanol (EtOH). While the postsynaptic targets and mechanisms are studied extensively, there are limited studies on the presynaptic targets and mechanisms. This article is an endeavor in this direction, focusing on the effect of EtOH on the presynaptic proteins associated with the neurotransmitter release machinery. Studies on the effects of EtOH at the levels of gene, protein, and behavior are highlighted in this article.
Collapse
Affiliation(s)
- Joydip Das
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| |
Collapse
|
24
|
Synaptic adaptations in the central amygdala and hypothalamic paraventricular nucleus associated with protracted ethanol abstinence in male rhesus monkeys. Neuropsychopharmacology 2019; 44:982-993. [PMID: 30555160 PMCID: PMC6461779 DOI: 10.1038/s41386-018-0290-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/25/2018] [Accepted: 11/27/2018] [Indexed: 01/06/2023]
Abstract
Alcohol use disorder is a significant global burden. Stress has been identified as an etiological factor in the initiation and continuation of ethanol consumption. Understanding adaptations within stress circuitry is an important step toward novel treatment strategies. The effects of protracted abstinence following long-term ethanol self-administration on the central nucleus of the amygdala (CeA) and the hypothalamic paraventricular nucleus (PVN) were evaluated in male rhesus monkeys. Using whole-cell patch-clamp electrophysiology, inhibitory GABAergic transmission in the CeA and excitatory glutamatergic transmission in the PVN were measured. CeA neurons from abstinent drinkers displayed an elevated baseline spontaneous inhibitory postsynaptic current (sIPSC) frequency compared with controls, indicating increased presynaptic GABA release. Application of acute ethanol significantly increased the frequency of sIPSCs in controls, but not in abstinent drinkers, suggesting a tolerance to ethanol-enhanced GABA release in abstinent rhesus monkeys with a history of chronic ethanol self-administration and repeated abstinence. In the PVN, the frequency of spontaneous excitatory postsynaptic currents (sEPSC) was elevated in abstinent drinkers compared with controls, indicating increased presynaptic glutamate release. Notably, acute ethanol decreased presynaptic glutamate release onto parvocellular PVN neurons in both controls and abstinent drinkers, suggesting a lack of tolerance to acute ethanol among PVN neurons. These results are the first to demonstrate distinct synaptic adaptations and ethanol sensitivity in both the extrahypothalamic and hypothalamic stress circuits in abstinent rhesus males. Importantly, our findings describe adaptations in stress circuitry present in the brain at a state during abstinence, just prior to relapse to ethanol drinking.
Collapse
|
25
|
Lipid transporter TMEM24/C2CD2L is a Ca 2+-regulated component of ER-plasma membrane contacts in mammalian neurons. Proc Natl Acad Sci U S A 2019; 116:5775-5784. [PMID: 30819882 DOI: 10.1073/pnas.1820156116] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Close appositions between the endoplasmic reticulum (ER) and the plasma membrane (PM) are a general feature of all cells and are abundant in neurons. A function of these appositions is lipid transport between the two adjacent bilayers via tethering proteins that also contain lipid transport modules. However, little is known about the properties and dynamics of these proteins in neurons. Here we focused on TMEM24/C2CD2L, an ER-localized SMP domain containing phospholipid transporter expressed at high levels in the brain, previously shown to be a component of ER-PM contacts in pancreatic β-cells. TMEM24 is enriched in neurons versus glial cells and its levels increase in parallel with neuronal differentiation. It populates ER-PM contacts in resting neurons, but elevations of cytosolic Ca2+ mediated by experimental manipulations or spontaneous activity induce its transient redistribution throughout the entire ER. Dissociation of TMEM24 from the plasma membrane is mediated by phosphorylation of an array of sites in the C-terminal region of the protein. These sites are only partially conserved in C2CD2, the paralogue of TMEM24 primarily expressed in nonneuronal tissues, which correspondingly display a much lower sensitivity to Ca2+ elevations. ER-PM contacts in neurons are also sites where Kv2 (the major delayed rectifier K+ channels in brain) and other PM and ER ion channels are concentrated, raising the possibility of a regulatory feedback mechanism between neuronal excitability and lipid exchange between the ER and the PM.
Collapse
|
26
|
Moorman DE. The role of the orbitofrontal cortex in alcohol use, abuse, and dependence. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:85-107. [PMID: 29355587 PMCID: PMC6072631 DOI: 10.1016/j.pnpbp.2018.01.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/22/2017] [Accepted: 01/13/2018] [Indexed: 12/21/2022]
Abstract
One of the major functions of the orbitofrontal cortex (OFC) is to promote flexible motivated behavior. It is no surprise, therefore, that recent work has demonstrated a prominent impact of chronic drug use on the OFC and a potential role for OFC disruption in drug abuse and addiction. Among drugs of abuse, the use of alcohol is particularly salient with respect to OFC function. Although a number of studies in humans have implicated OFC dysregulation in alcohol use disorders, animal models investigating the association between OFC and alcohol use are only beginning to be developed, and there is still a great deal to be revealed. The goal of this review is to consider what is currently known regarding the role of the OFC in alcohol use and dependence. I will first provide a brief, general overview of current views of OFC function and its contributions to drug seeking and addiction. I will then discuss research to date related to the OFC and alcohol use, both in human clinical populations and in non-human models. Finally I will consider issues and strategies to guide future study that may identify this brain region as a key player in the transition from moderated to problematic alcohol use and dependence.
Collapse
Affiliation(s)
- David E. Moorman
- Department of Psychological and Brain Sciences, Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst MA 01003 USA
| |
Collapse
|
27
|
Defining the place of habit in substance use disorders. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:22-32. [PMID: 28663112 PMCID: PMC5748018 DOI: 10.1016/j.pnpbp.2017.06.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/23/2017] [Accepted: 06/25/2017] [Indexed: 12/20/2022]
Abstract
It has long been suggested that alcohol or substance use disorders could emerge from the progressive development and dominance of drug habits. Like habits, drug-related behaviors are often triggered by drug-associated cues. Like habits, addictive behaviors are strong, rigid and "hard to break". Like habits, these behaviors are insensitive to their outcome and persist despite negative consequences. "Pathological habit" thus appears as a good candidate to explain the transition to compulsive drug use. However, drug use could also be considered as a goal-directed choice, driven by the expectation of drug outcomes. For example, drug addicts may engage in drug-seeking behaviors because they view the drug as more valuable than available alternatives. Substance use disorders therefore may not be all about habit, nor fully intentional, and could be considered as resulting from an imbalance between goal-directed and habitual control. The main objective of this review is to disentangle the relative contribution of habit formation and impairment of goal-directed behavior in this unbalanced control of addictive behaviors. Although deficits in goal-directed behavior have been demonstrated in alcohol and substance use disorders, reliable demonstration of abnormal habit formation has been curtailed by the paucity of paradigms designed to assess habit as a positive result. Refining our animal and human model of habit is therefore required to precisely define the place of habit in substance use disorders and develop appropriate and adapted neurobehavioral treatments.
Collapse
|
28
|
From Synapse to Function: A Perspective on the Role of Neuroproteomics in Elucidating Mechanisms of Drug Addiction. Proteomes 2018; 6:proteomes6040050. [PMID: 30544849 PMCID: PMC6315754 DOI: 10.3390/proteomes6040050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 12/18/2022] Open
Abstract
Drug addiction is a complex disorder driven by dysregulation in molecular signaling across several different brain regions. Limited therapeutic options currently exist for treating drug addiction and related psychiatric disorders in clinical populations, largely due to our incomplete understanding of the molecular pathways that influence addiction pathology. Recent work provides strong evidence that addiction-related behaviors emerge from the convergence of many subtle changes in molecular signaling networks that include neuropeptides (neuropeptidome), protein-protein interactions (interactome) and post-translational modifications such as protein phosphorylation (phosphoproteome). Advancements in mass spectrometry methodology are well positioned to identify these novel molecular underpinnings of addiction and further translate these findings into druggable targets for therapeutic development. In this review, we provide a general perspective of the utility of novel mass spectrometry-based approaches for addressing critical questions in addiction neuroscience, highlighting recent innovative studies that exemplify how functional assessments of the neuroproteome can provide insight into the mechanisms of drug addiction.
Collapse
|
29
|
Womersley JS, Townsend DM, Kalivas PW, Uys JD. Targeting redox regulation to treat substance use disorder using N‐acetylcysteine. Eur J Neurosci 2018; 50:2538-2551. [PMID: 30144182 DOI: 10.1111/ejn.14130] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/28/2018] [Accepted: 07/25/2018] [Indexed: 12/17/2022]
Abstract
Substance use disorder (SUD) is a chronic relapsing disorder characterized by transitioning from acute drug reward to compulsive drug use. Despite the heavy personal and societal burden of SUDs, current treatments are limited and unsatisfactory. For this reason, a deeper understanding of the mechanisms underlying addiction is required. Altered redox status, primarily due to drug-induced increases in dopamine metabolism, is a unifying feature of abused substances. In recent years, knowledge of the effects of oxidative stress in the nervous system has evolved from strictly neurotoxic to include a more nuanced role in redox-sensitive signaling. More specifically, S-glutathionylation, a redox-sensitive post-translational modification, has been suggested to influence the response to drugs of abuse. In this review we will examine the evidence for redox-mediating drugs as therapeutic tools focusing on N-acetylcysteine as a treatment for cocaine addiction. We will conclude by suggesting future research directions that may further advance this field.
Collapse
Affiliation(s)
- Jacqueline S Womersley
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 409 Drug Discovery Building, 70 President Street, Charleston, SC, 29425, USA
| | - Danyelle M Townsend
- Department of Drug Discover and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Joachim D Uys
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 409 Drug Discovery Building, 70 President Street, Charleston, SC, 29425, USA
| |
Collapse
|
30
|
Alexander NJ, Rau AR, Jimenez VA, Daunais JB, Grant KA, McCool BA. SNARE Complex-Associated Proteins in the Lateral Amygdala of Macaca mulatta Following Long-Term Ethanol Drinking. Alcohol Clin Exp Res 2018; 42:1661-1673. [PMID: 29944190 DOI: 10.1111/acer.13821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/21/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Recent work with long-term ethanol (EtOH) self-administration in nonhuman primate models has revealed a complex array of behavioral and physiological effects that closely mimic human alcohol abuse. Detailed neurophysiological analysis in these models suggests a myriad of pre- and postsynaptic neurobiological effects that may contribute to the behavioral manifestations of long-term EtOH drinking. The molecular mechanisms regulating presynaptic effects of this chronic EtOH exposure are largely unknown. To this end, we analyzed the effects of long-term EtOH self-administration on the levels of presynaptic SNARE complex proteins in Macaca mulatta basolateral amygdala, a brain region known to regulate both aversive and reward-seeking behaviors. METHODS Basolateral amygdala samples from control and EtOH-drinking male and female monkeys were processed. Total basolateral amygdala protein was analyzed by Western blotting using antibodies directed against both core SNARE and SNARE-associated proteins. We also performed correlational analyses between protein expression levels and a number of EtOH drinking parameters, including lifetime grams of EtOH consumed, preference, and blood alcohol concentration. RESULTS Significant interactions or main effects of sex/drinking were seen for a number of SNARE core and SNARE-associated proteins. Across the range of EtOH-drinking phenotypes, SNAP25 and Munc13-1 proteins levels were significantly different between males and females, and Munc13-2 levels were significantly lower in animals with a history of EtOH drinking. A separate analysis of very heavy-drinking individuals revealed significant decreases in Rab3c (females) and complexin 2 (males). CONCLUSIONS Protein expression analysis of basolateral amygdala total protein from controls and animals following long-term EtOH self-administration suggests a number of alterations in core SNARE or SNARE-associated components that could dramatically alter presynaptic function. A number of proteins or multiprotein components were also correlated with EtOH drinking behavior, which suggest a potentially heritable role for presynaptic SNARE proteins.
Collapse
Affiliation(s)
- Nancy J Alexander
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Andrew R Rau
- Department of Behavioral Neuroscience, Oregon National Primate Research Center, Oregon Health Sciences University, Portland, Oregon
| | - Vanessa A Jimenez
- Department of Behavioral Neuroscience, Oregon National Primate Research Center, Oregon Health Sciences University, Portland, Oregon
| | - James B Daunais
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Kathleen A Grant
- Department of Behavioral Neuroscience, Oregon National Primate Research Center, Oregon Health Sciences University, Portland, Oregon
| | - Brian A McCool
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
31
|
Chronic alcohol exposure disrupts top-down control over basal ganglia action selection to produce habits. Nat Commun 2018; 9:211. [PMID: 29335427 PMCID: PMC5768774 DOI: 10.1038/s41467-017-02615-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 12/13/2017] [Indexed: 12/15/2022] Open
Abstract
Addiction involves a predominance of habitual control mediated through action selection processes in dorsal striatum. Research has largely focused on neural mechanisms mediating a proposed progression from ventral to dorsal lateral striatal control in addiction. However, over reliance on habit striatal processes may also arise from reduced cortical input to striatum, thereby disrupting executive control over action selection. Here, we identify novel mechanisms through which chronic intermittent ethanol exposure and withdrawal (CIE) disrupts top-down control over goal-directed action selection processes to produce habits. We find CIE results in decreased excitability of orbital frontal cortex (OFC) excitatory circuits supporting goal-directed control, and, strikingly, selectively reduces OFC output to the direct output pathway in dorsal medial striatum. Increasing the activity of OFC circuits restores goal-directed control in CIE-exposed mice. Our findings show habitual control in alcohol dependence can arise through disrupted communication between top-down, goal-directed processes onto basal ganglia pathways controlling action selection. Drug dependence shifts the balance in action selection away from goal-directed to habitual responding. Here, the authors report that chronic passive exposure to alcohol leads to suppression of orbitofrontal cortex inputs to dorsomedial striatum resulting in downregulation of goal-directed behavior.
Collapse
|
32
|
Siciliano CA, Karkhanis AN, Holleran KM, Melchior JR, Jones SR. Cross-Species Alterations in Synaptic Dopamine Regulation After Chronic Alcohol Exposure. Handb Exp Pharmacol 2018; 248:213-238. [PMID: 29675581 PMCID: PMC6195853 DOI: 10.1007/164_2018_106] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alcohol use disorders are a leading public health concern, engendering enormous costs in terms of both economic loss and human suffering. These disorders are characterized by compulsive and excessive alcohol use, as well as negative affect and alcohol craving during abstinence. Extensive research has implicated the dopamine system in both the acute pharmacological effects of alcohol and the symptomology of alcohol use disorders that develop after extended alcohol use. Preclinical research has shed light on many mechanisms by which chronic alcohol exposure dysregulates the dopamine system. However, many of the findings are inconsistent across experimental parameters such as alcohol exposure length, route of administration, and model organism. We propose that the dopaminergic alterations driving the core symptomology of alcohol use disorders are likely to be relatively stable across experimental settings. Recent work has been aimed at using multiple model organisms (mouse, rat, monkey) across various alcohol exposure procedures to search for commonalities. Here, we review recent advances in our understanding of the effects of chronic alcohol use on the dopamine system by highlighting findings that are consistent across experimental setting and species.
Collapse
Affiliation(s)
- Cody A Siciliano
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Anushree N Karkhanis
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Katherine M Holleran
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - James R Melchior
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Sara R Jones
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
33
|
Abstract
Ionotropic glutamate receptors (AMPA, NMDA, and kainate receptors) play a central role in excitatory glutamatergic signaling throughout the brain. As a result, functional changes, especially long-lasting forms of plasticity, have the potential to profoundly alter neuronal function and the expression of adaptive and pathological behaviors. Thus, alcohol-related adaptations in ionotropic glutamate receptors are of great interest, since they could promote excessive alcohol consumption, even after long-term abstinence. Alcohol- and drug-related adaptations in NMDARs have been recently reviewed, while less is known about kainate receptor adaptations. Thus, we focus here on functional changes in AMPARs, tetramers composed of GluA1-4 subunits. Long-lasting increases or decreases in AMPAR function, the so-called long-term potentiation or depression, have widely been considered to contribute to normal and pathological memory states. In addition, a great deal has been learned about the acute regulation of AMPARs by signaling pathways, scaffolding and auxiliary proteins, intracellular trafficking, and other mechanisms. One important common adaptation is a shift in AMPAR subunit composition from GluA2-containing, calcium-impermeable AMPARs (CIARs) to GluA2-lacking, calcium-permeable AMPARs (CPARs), which is observed under a broad range of conditions including intoxicant exposure or intake, stress, novelty, food deprivation, and ischemia. This shift has the potential to facilitate AMPAR currents, since CPARs have much greater single-channel currents than CIARs, as well as faster AMPAR activation kinetics (although with faster inactivation) and calcium-related activity. Many tools have been developed to interrogate particular aspects of AMPAR signaling, including compounds that selectively inhibit CPARs, raising exciting translational possibilities. In addition, recent studies have used transgenic animals and/or optogenetics to identify AMPAR adaptations in particular cell types and glutamatergic projections, which will provide critical information about the specific circuits that CPARs act within. Also, less is known about the specific nature of alcohol-related AMPAR adaptations, and thus we use other examples that illustrate more fully how particular AMPAR changes might influence intoxicant-related behavior. Thus, by identifying alcohol-related AMPAR adaptations, the specific molecular events that underlie them, and the cells and projections in which they occur, we hope to better inform the development of new therapeutic interventions for addiction.
Collapse
|
34
|
Cannady R, Rinker JA, Nimitvilai S, Woodward JJ, Mulholland PJ. Chronic Alcohol, Intrinsic Excitability, and Potassium Channels: Neuroadaptations and Drinking Behavior. Handb Exp Pharmacol 2018; 248:311-343. [PMID: 29374839 DOI: 10.1007/164_2017_90] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neural mechanisms underlying alcohol use disorder remain elusive, and this lack of understanding has slowed the development of efficacious treatment strategies for reducing relapse rates and prolonging abstinence. While synaptic adaptations produced by chronic alcohol exposure have been extensively characterized in a variety of brain regions, changes in intrinsic excitability of critical projection neurons are understudied. Accumulating evidence suggests that prolonged alcohol drinking and alcohol dependence produce plasticity of intrinsic excitability as measured by changes in evoked action potential firing and after-hyperpolarization amplitude. In this chapter, we describe functional changes in cell firing of projection neurons after long-term alcohol exposure that occur across species and in multiple brain regions. Adaptations in calcium-activated (KCa2), voltage-dependent (KV7), and G protein-coupled inwardly rectifying (Kir3 or GIRK) potassium channels that regulate the evoked firing and after-hyperpolarization parallel functional changes in intrinsic excitability induced by chronic alcohol. Moreover, there are strong genetic links between alcohol-related behaviors and genes encoding KCa2, KV7, and GIRK channels, and pharmacologically targeting these channels reduces alcohol consumption and alcohol-related behaviors. Together, these studies demonstrate that chronic alcohol drinking produces adaptations in KCa2, KV7, and GIRK channels leading to impaired regulation of the after-hyperpolarization and aberrant cell firing. Correcting the deficit in the after-hyperpolarization with positive modulators of KCa2 and KV7 channels and altering the GIRK channel binding pocket to block the access of alcohol represent a potentially highly effective pharmacological approach that can restore changes in intrinsic excitability and reduce alcohol consumption in affected individuals.
Collapse
Affiliation(s)
- Reginald Cannady
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Charleston Alcohol Research Center, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC, USA
| | - Jennifer A Rinker
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Charleston Alcohol Research Center, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC, USA
| | - Sudarat Nimitvilai
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Charleston Alcohol Research Center, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC, USA
| | - John J Woodward
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Charleston Alcohol Research Center, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC, USA
| | - Patrick J Mulholland
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Charleston Alcohol Research Center, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
35
|
Allen DC, Gonzales SW, Grant KA. Effect of repeated abstinence on chronic ethanol self-administration in the rhesus monkey. Psychopharmacology (Berl) 2018; 235:109-120. [PMID: 29051997 PMCID: PMC5922986 DOI: 10.1007/s00213-017-4748-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/19/2017] [Indexed: 12/28/2022]
Abstract
RATIONALE Abstinence-based approaches to treating alcohol use disorder (AUD) are highly prevalent, but abstinence from chronic drinking may exacerbate subsequent levels of alcohol intake in relapse. OBJECTIVE Use a non-human primate model that encompasses a range of chronic voluntary ethanol drinking to isolate biological responses to repeated cycles of imposed abstinence as a function of baseline voluntary alcohol drinking levels. METHODS Over a 26-month protocol, young adult male rhesus macaques were first induced to drink alcohol and then given continuous access to 4% (w/v) ethanol (n = 8) or water (n = 4) for approximately 14 months, followed by three 28- to 35-day abstinence phases, with 3 months of ethanol access in between. Ethanol intake and blood ethanol concentration (BEC) were the primary dependent variables. Observational signs of physical dependence and circulating ACTH and cortisol were monitored. RESULTS Prior to abstinence, stable, categorical, individual differences in voluntary ethanol intake under chronic access conditions were found. Following abstinence, categorical "non-heavy" drinking subjects increased drinking transiently (increased between 0.7 and 1.4 g/kg/day in first month after abstinence) but returned to baseline after 3 months. Categorical "heavy" drinkers, however, maintained drinking 1.0-2.6 g/kg above baseline for over 3 months following abstinence. Signs of physical dependence were rare, although huddling and social withdrawal increased in ethanol and control subjects. The most prominent effect on hormonal measures was heightened cortisol during abstinence that increased to a greater extent in ethanol subjects. CONCLUSION Involuntary abstinence increases drinking in the absence of overt physical withdrawal symptoms, and heavy drinkers are more robustly affected compared to non-heavy drinkers.
Collapse
Affiliation(s)
- Daicia C. Allen
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Steve W. Gonzales
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Kathleen A. Grant
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA,Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| |
Collapse
|
36
|
Rinker JA, Mulholland PJ. Promising pharmacogenetic targets for treating alcohol use disorder: evidence from preclinical models. Pharmacogenomics 2017; 18:555-570. [PMID: 28346058 DOI: 10.2217/pgs-2016-0193] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Inherited genetic variants contribute to risk factors for developing an alcohol use disorder, and polymorphisms may inform precision medicine strategies for treating alcohol addiction. Targeting genetic mutations linked to alcohol phenotypes has provided promising initial evidence for reducing relapse rates in alcoholics. Although successful in some studies, there are conflicting findings and the reports of adverse effects may ultimately limit their clinical utility, suggesting that novel pharmacogenetic targets are necessary to advance precision medicine approaches. Here, we describe promising novel genetic variants derived from preclinical models of alcohol consumption and dependence that may uncover disease mechanisms that drive uncontrolled drinking and identify novel pharmacogenetic targets that facilitate therapeutic intervention for the treatment of alcohol use disorder.
Collapse
Affiliation(s)
- Jennifer A Rinker
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Psychiatry & Behavioral Sciences, Charleston Alcohol Research Center, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Patrick J Mulholland
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Psychiatry & Behavioral Sciences, Charleston Alcohol Research Center, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|