1
|
Krause TB, Cepko CL. Abortive and productive infection of CNS cell types following in vivo delivery of VSV. Proc Natl Acad Sci U S A 2024; 121:e2406421121. [PMID: 39159381 PMCID: PMC11363278 DOI: 10.1073/pnas.2406421121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/11/2024] [Indexed: 08/21/2024] Open
Abstract
Viral infection is frequently assayed by ongoing expression of viral genes. These assays fail to identify cells that have been exposed to the virus but limit or inhibit viral replication. To address this limitation, we used a dual-labeling vesicular stomatitis virus (DL-VSV), which has a deletion of the viral glycoprotein gene, to allow evaluation of primary infection outcomes. This virus encodes Cre, which can stably mark any cell with even a minimal level of viral gene expression. Additionally, the virus encodes GFP, which distinguishes cells with higher levels of viral gene expression, typically due to genome replication. Stereotactic injections of DL-VSV into the murine brain showed that different cell types had very different responses to the virus. Almost all neurons hosted high levels of viral gene expression, while glial cells varied in their responses. Astrocytes (Sox9+) were predominantly productively infected, while oligodendrocytes (Sox10+) were largely abortively infected. Microglial cells (Iba1+) were primarily uninfected. Furthermore, we monitored the early innate immune response to viral infection and identified unique patterns of interferon (IFN) induction. Shortly after infection, microglia were the main producers of IFNb, whereas later, oligodendrocytes were the main producers. IFNb+ cells were primarily abortively infected regardless of cell type. Last, we investigated whether IFN signaling had any impact on the outcome of primary infection and did not observe significant changes, suggesting that intrinsic factors are likely responsible for determining the outcome of primary infection.
Collapse
Affiliation(s)
- Tyler B Krause
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Constance L. Cepko
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA02115
- Howard Hughes Medical Institute, Chevy Chase, MD20815
| |
Collapse
|
2
|
Xiao W, Li P, Kong F, Kong J, Pan A, Long L, Yan X, Xiao B, Gong J, Wan L. Unraveling the Neural Circuits: Techniques, Opportunities and Challenges in Epilepsy Research. Cell Mol Neurobiol 2024; 44:27. [PMID: 38443733 PMCID: PMC10914928 DOI: 10.1007/s10571-024-01458-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/24/2024] [Indexed: 03/07/2024]
Abstract
Epilepsy, a prevalent neurological disorder characterized by high morbidity, frequent recurrence, and potential drug resistance, profoundly affects millions of people globally. Understanding the microscopic mechanisms underlying seizures is crucial for effective epilepsy treatment, and a thorough understanding of the intricate neural circuits underlying epilepsy is vital for the development of targeted therapies and the enhancement of clinical outcomes. This review begins with an exploration of the historical evolution of techniques used in studying neural circuits related to epilepsy. It then provides an extensive overview of diverse techniques employed in this domain, discussing their fundamental principles, strengths, limitations, as well as their application. Additionally, the synthesis of multiple techniques to unveil the complexity of neural circuits is summarized. Finally, this review also presents targeted drug therapies associated with epileptic neural circuits. By providing a critical assessment of methodologies used in the study of epileptic neural circuits, this review seeks to enhance the understanding of these techniques, stimulate innovative approaches for unraveling epilepsy's complexities, and ultimately facilitate improved treatment and clinical translation for epilepsy.
Collapse
Affiliation(s)
- Wenjie Xiao
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Peile Li
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Fujiao Kong
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jingyi Kong
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jiaoe Gong
- Department of Neurology, Hunan Children's Hospital, Changsha, Hunan Province, China.
| | - Lily Wan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China.
| |
Collapse
|
3
|
Zhang A, Jin L, Yao S, Matsuyama M, van Velthoven CTJ, Sullivan HA, Sun N, Kellis M, Tasic B, Wickersham I, Chen X. Rabies virus-based barcoded neuroanatomy resolved by single-cell RNA and in situ sequencing. eLife 2024; 12:RP87866. [PMID: 38319699 PMCID: PMC10942611 DOI: 10.7554/elife.87866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Mapping the connectivity of diverse neuronal types provides the foundation for understanding the structure and function of neural circuits. High-throughput and low-cost neuroanatomical techniques based on RNA barcode sequencing have the potential to map circuits at cellular resolution and a brain-wide scale, but existing Sindbis virus-based techniques can only map long-range projections using anterograde tracing approaches. Rabies virus can complement anterograde tracing approaches by enabling either retrograde labeling of projection neurons or monosynaptic tracing of direct inputs to genetically targeted postsynaptic neurons. However, barcoded rabies virus has so far been only used to map non-neuronal cellular interactions in vivo and synaptic connectivity of cultured neurons. Here we combine barcoded rabies virus with single-cell and in situ sequencing to perform retrograde labeling and transsynaptic labeling in the mouse brain. We sequenced 96 retrogradely labeled cells and 295 transsynaptically labeled cells using single-cell RNA-seq, and 4130 retrogradely labeled cells and 2914 transsynaptically labeled cells in situ. We found that the transcriptomic identities of rabies virus-infected cells can be robustly identified using both single-cell RNA-seq and in situ sequencing. By associating gene expression with connectivity inferred from barcode sequencing, we distinguished long-range projecting cortical cell types from multiple cortical areas and identified cell types with converging or diverging synaptic connectivity. Combining in situ sequencing with barcoded rabies virus complements existing sequencing-based neuroanatomical techniques and provides a potential path for mapping synaptic connectivity of neuronal types at scale.
Collapse
Affiliation(s)
- Aixin Zhang
- Allen Institute for Brain ScienceSeattleUnited States
| | - Lei Jin
- McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Shenqin Yao
- Allen Institute for Brain ScienceSeattleUnited States
| | - Makoto Matsuyama
- McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridgeUnited States
| | | | - Heather Anne Sullivan
- McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Na Sun
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Broad Institute of MIT and HarvardCambridgeUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - Manolis Kellis
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Broad Institute of MIT and HarvardCambridgeUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
| | | | - Ian Wickersham
- McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Xiaoyin Chen
- Allen Institute for Brain ScienceSeattleUnited States
| |
Collapse
|
4
|
Zhang A, Jin L, Yao S, Matsuyama M, van Velthoven C, Sullivan H, Sun N, Kellis M, Tasic B, Wickersham IR, Chen X. Rabies virus-based barcoded neuroanatomy resolved by single-cell RNA and in situ sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532873. [PMID: 36993334 PMCID: PMC10055146 DOI: 10.1101/2023.03.16.532873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Mapping the connectivity of diverse neuronal types provides the foundation for understanding the structure and function of neural circuits. High-throughput and low-cost neuroanatomical techniques based on RNA barcode sequencing have the potential to map circuits at cellular resolution and a brain-wide scale, but existing Sindbis virus-based techniques can only map long-range projections using anterograde tracing approaches. Rabies virus can complement anterograde tracing approaches by enabling either retrograde labeling of projection neurons or monosynaptic tracing of direct inputs to genetically targeted postsynaptic neurons. However, barcoded rabies virus has so far been only used to map non-neuronal cellular interactions in vivo and synaptic connectivity of cultured neurons. Here we combine barcoded rabies virus with single-cell and in situ sequencing to perform retrograde labeling and transsynaptic labeling in the mouse brain. We sequenced 96 retrogradely labeled cells and 295 transsynaptically labeled cells using single-cell RNA-seq, and 4,130 retrogradely labeled cells and 2,914 transsynaptically labeled cells in situ. We found that the transcriptomic identities of rabies virus-infected cells can be robustly identified using both single-cell RNA-seq and in situ sequencing. By associating gene expression with connectivity inferred from barcode sequencing, we distinguished long-range projecting cortical cell types from multiple cortical areas and identified cell types with converging or diverging synaptic connectivity. Combining in situ sequencing with barcoded rabies virus complements existing sequencing-based neuroanatomical techniques and provides a potential path for mapping synaptic connectivity of neuronal types at scale.
Collapse
Affiliation(s)
- Aixin Zhang
- Allen Institute for Brain Science, Seattle, WA
| | - Lei Jin
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA
- Current address: Lingang Laboratory, Shanghai, China
| | - Shenqin Yao
- Allen Institute for Brain Science, Seattle, WA
| | - Makoto Matsuyama
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA
- Current address: Metcela Inc., Kawasaki, Kanagawa, Japan
| | | | - Heather Sullivan
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA
| | - Na Sun
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Manolis Kellis
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Ian R. Wickersham
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA
| | | |
Collapse
|
5
|
Wang B, Zhang Y. Asymmetric connections with starburst amacrine cells underlie the upward motion selectivity of J-type retinal ganglion cells. PLoS Biol 2023; 21:e3002301. [PMID: 37721959 PMCID: PMC10538761 DOI: 10.1371/journal.pbio.3002301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 09/28/2023] [Accepted: 08/17/2023] [Indexed: 09/20/2023] Open
Abstract
Motion is an important aspect of visual information. The directions of visual motion are encoded in the retina by direction-selective ganglion cells (DSGCs). ON-OFF DSGCs and ON DSGCs co-stratify with starburst amacrine cells (SACs) in the inner plexiform layer and depend on SACs for their direction selectivity. J-type retinal ganglion cells (J-RGCs), a type of OFF DSGCs in the mouse retina, on the other hand, do not co-stratify with SACs, and how direction selectivity in J-RGCs emerges has not been understood. Here, we report that both the excitatory and inhibitory synaptic inputs to J-RGCs are direction-selective (DS), with the inhibitory inputs playing a more important role for direction selectivity. The DS inhibitory inputs come from SACs, and the functional connections between J-RGCs and SACs are spatially asymmetric. Thus, J-RGCs and SACs form functionally important synaptic contacts even though their dendritic arbors show little overlap. These findings underscore the need to look beyond the neurons' stratification patterns in retinal circuit studies. Our results also highlight the critical role of SACs for retinal direction selectivity.
Collapse
Affiliation(s)
- Bo Wang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yifeng Zhang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
6
|
O'Brien CA, Bennett FC, Bennett ML. Microglia in antiviral immunity of the brain and spinal cord. Semin Immunol 2022; 60:101650. [PMID: 36099864 PMCID: PMC9934594 DOI: 10.1016/j.smim.2022.101650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/17/2022] [Accepted: 08/30/2022] [Indexed: 01/15/2023]
Abstract
Viral infections of the central nervous system (CNS) are a significant cause of neurological impairment and mortality worldwide. As tissue resident macrophages, microglia are critical initial responders to CNS viral infection. Microglia seem to coordinate brain-wide antiviral responses of both brain resident cells and infiltrating immune cells. This review discusses how microglia may promote this antiviral response at a molecular level, from potential mechanisms of virus recognition to downstream cytokine responses and interaction with antiviral T cells. Recent advancements in genetic tools to specifically target microglia in vivo promise to further our understanding about the precise mechanistic role of microglia in CNS infection.
Collapse
Affiliation(s)
- Carleigh A O'Brien
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States.
| | - F Chris Bennett
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States; Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Mariko L Bennett
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| |
Collapse
|
7
|
IL-1 reprogramming of adult neural stem cells limits neurocognitive recovery after viral encephalitis by maintaining a proinflammatory state. Brain Behav Immun 2022; 99:383-396. [PMID: 34695572 DOI: 10.1016/j.bbi.2021.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023] Open
Abstract
Innate immune responses to emerging RNA viruses are increasingly recognized as having significant contributions to neurologic sequelae, especially memory disorders. Using a recovery model of West Nile virus (WNV) encephalitis, we show that, while macrophages deliver the antiviral and anti-neurogenic cytokine IL-1β during acute infection; viral recovery is associated with continued astrocyte inflammasome-mediated production of inflammatory levels of IL-1β, which is maintained by hippocampal astrogenesis via IL-1R1 signaling in neural stem cells (NSC). Accordingly, aberrant astrogenesis is prevented in the absence of IL-1 signaling in NSC, indicating that only newly generated astrocytes exert neurotoxic effects, preventing synapse repair and promoting spatial learning deficits. Ex vivo evaluation of IL-1β-treated adult hippocampal NSC revealed the upregulation of developmental differentiation pathways that derail adult neurogenesis in favor of astrogenesis, following viral infection. We conclude that NSC-specific IL-1 signaling within the hippocampus during viral encephalitis prevents synapse recovery and promotes spatial learning defects via altered fates of NSC progeny that maintain inflammation.
Collapse
|
8
|
Mouse Lines with Cre-Mediated Recombination in Retinal Amacrine Cells. eNeuro 2022; 9:ENEURO.0255-21.2021. [PMID: 35045975 PMCID: PMC8856716 DOI: 10.1523/eneuro.0255-21.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 11/21/2022] Open
Abstract
Amacrine cells (ACs) are the most diverse neuronal cell type in the vertebrate retina. Yet little is known about the contribution of ACs to visual processing and retinal disease. A major challenge in evaluating AC function is genetic accessibility. A classic tool of mouse genetics, Cre-mediated recombination, can provide such access. We have screened existing genetically-modified mouse strains and identified multiple candidates that express Cre-recombinase in subsets of retinal ACs. The Cre-expressing mice were crossed to fluorescent-reporter mice to assay Cre expression. In addition, a Cre-dependent fluorescent reporter plasmid was electroporated into the subretinal space of Cre strains. Herein, we report three mouse lines (Tac1::IRES-cre, Camk2a-cre, and Scx-cre) that express Cre recombinase in sub-populations of ACs. In two of these lines, recombination occurred in multiple AC types and a small number of other retinal cell types, while recombination in the Camk2a-cre line appears specific to a morphologically distinct AC. We anticipate that these characterized mouse lines will be valuable tools to the community of researchers who study retinal biology and disease.
Collapse
|
9
|
Kler S, Ma M, Narayan S, Ahrens MB, Pan YA. Cre-Dependent Anterograde Transsynaptic Labeling and Functional Imaging in Zebrafish Using VSV With Reduced Cytotoxicity. Front Neuroanat 2021; 15:758350. [PMID: 34720892 PMCID: PMC8549678 DOI: 10.3389/fnana.2021.758350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
The small size and translucency of larval zebrafish (Danio rerio) have made it a unique experimental system to investigate whole-brain neural circuit structure and function. Still, the connectivity patterns between most neuronal types remain mostly unknown. This gap in knowledge underscores the critical need for effective neural circuit mapping tools, especially ones that can integrate structural and functional analyses. To address this, we previously developed a vesicular stomatitis virus (VSV) based approach called Tracer with Restricted Anterograde Spread (TRAS). TRAS utilizes lentivirus to complement replication-incompetent VSV (VSVΔG) to allow restricted (monosynaptic) anterograde labeling from projection neurons to their target cells in the brain. Here, we report the second generation of TRAS (TRAS-M51R), which utilizes a mutant variant of VSVΔG [VSV(M51R)ΔG] with reduced cytotoxicity. Within the primary visual pathway, we found that TRAS-M51R significantly improved long-term viability of transsynaptic labeling (compared to TRAS) while maintaining anterograde spread activity. By using Cre-expressing VSV(M51R)ΔG, TRAS-M51R could selectively label excitatory (vglut2a positive) and inhibitory (gad1b positive) retinorecipient neurons. We further show that these labeled excitatory and inhibitory retinorecipient neurons retained neuronal excitability upon visual stimulation at 5-8 days post fertilization (2-5 days post-infection). Together, these findings show that TRAS-M51R is suitable for neural circuit studies that integrate structural connectivity, cell-type identity, and neurophysiology.
Collapse
Affiliation(s)
- Stanislav Kler
- Center for Neurobiology Research, Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, United States
| | - Manxiu Ma
- Center for Neurobiology Research, Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, United States
| | - Sujatha Narayan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Misha B. Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Y. Albert Pan
- Center for Neurobiology Research, Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, United States
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| |
Collapse
|
10
|
Grimes WN, Aytürk DG, Hoon M, Yoshimatsu T, Gamlin C, Carrera D, Nath A, Nadal-Nicolás FM, Ahlquist RM, Sabnis A, Berson DM, Diamond JS, Wong RO, Cepko C, Rieke F. A High-Density Narrow-Field Inhibitory Retinal Interneuron with Direct Coupling to Müller Glia. J Neurosci 2021; 41:6018-6037. [PMID: 34083252 PMCID: PMC8276741 DOI: 10.1523/jneurosci.0199-20.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 11/21/2022] Open
Abstract
Amacrine cells are interneurons composing the most diverse cell class in the mammalian retina. They help encode visual features, such as edges or directed motion, by mediating excitatory and inhibitory interactions between input (i.e., bipolar) and output (i.e., ganglion) neurons in the inner plexiform layer (IPL). Like other brain regions, the retina also contains glial cells that contribute to neurotransmitter uptake, metabolic regulation, and neurovascular control. Here, we report that, in mouse retina (of either sex), an abundant, though previously unstudied inhibitory amacrine cell is coupled directly to Müller glia. Electron microscopic reconstructions of this amacrine type revealed chemical synapses with known retinal cell types and extensive associations with Müller glia, the processes of which often completely ensheathe the neurites of this amacrine cell. Microinjecting small tracer molecules into the somas of these amacrine cells led to selective labeling of nearby Müller glia, leading us to suggest the name "Müller glia-coupled amacrine cell," or MAC. Our data also indicate that MACs release glycine at conventional chemical synapses, and viral retrograde transsynaptic tracing from the dorsal lateral geniculate nucleus showed selective connections between MACs and a subpopulation of retinal ganglion cell types. Visually evoked responses revealed a strong preference for light increments; these "ON" responses were primarily mediated by excitatory chemical synaptic input and direct electrical coupling with other cells. This initial characterization of the MAC provides the first evidence for neuron-glia coupling in the mammalian retina and identifies the MAC as a potential link between inhibitory processing and glial function.SIGNIFICANCE STATEMENT Gap junctions between pairs of neurons or glial cells are commonly found throughout the nervous system and play multiple roles, including electrical coupling and metabolic exchange. In contrast, gap junctions between neurons and glia cells have rarely been reported and are poorly understood. Here we report the first evidence for neuron-glia coupling in the mammalian retina, specifically between an abundant (but previously unstudied) inhibitory interneuron and Müller glia. Moreover, viral tracing, optogenetics, and serial electron microscopy provide new information about the neuron's synaptic partners and physiological responses.
Collapse
Affiliation(s)
- William N Grimes
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
- National Institute of Neurological Disease and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Didem Göz Aytürk
- Harvard Medical School, Blavatnik Institute, Howard Hughes Medical Institute, Boston, Massachusetts 02115
| | - Mrinalini Hoon
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
| | - Takeshi Yoshimatsu
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
| | - Clare Gamlin
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
| | - Daniel Carrera
- National Institute of Neurological Disease and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Amurta Nath
- National Institute of Neurological Disease and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Francisco M Nadal-Nicolás
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Richard M Ahlquist
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| | - Adit Sabnis
- National Institute of Neurological Disease and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - David M Berson
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | - Jeffrey S Diamond
- National Institute of Neurological Disease and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Rachel O Wong
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
| | - Connie Cepko
- Harvard Medical School, Blavatnik Institute, Howard Hughes Medical Institute, Boston, Massachusetts 02115
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| |
Collapse
|
11
|
Pottackal J, Singer JH, Demb JB. Receptoral Mechanisms for Fast Cholinergic Transmission in Direction-Selective Retinal Circuitry. Front Cell Neurosci 2020; 14:604163. [PMID: 33324168 PMCID: PMC7726240 DOI: 10.3389/fncel.2020.604163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/22/2020] [Indexed: 01/09/2023] Open
Abstract
Direction selectivity represents an elementary sensory computation that can be related to underlying synaptic mechanisms. In mammalian retina, direction-selective ganglion cells (DSGCs) respond strongly to visual motion in a "preferred" direction and weakly to motion in the opposite, "null" direction. The DS mechanism depends on starburst amacrine cells (SACs), which provide null direction-tuned GABAergic inhibition and untuned cholinergic excitation to DSGCs. GABAergic inhibition depends on conventional synaptic transmission, whereas cholinergic excitation apparently depends on paracrine (i.e., non-synaptic) transmission. Despite its paracrine mode of transmission, cholinergic excitation is more transient than GABAergic inhibition, yielding a temporal difference that contributes essentially to the DS computation. To isolate synaptic mechanisms that generate the distinct temporal properties of cholinergic and GABAergic transmission from SACs to DSGCs, we optogenetically stimulated SACs while recording postsynaptic currents (PSCs) from DSGCs in mouse retina. Direct recordings from channelrhodopsin-2-expressing (ChR2+) SACs during quasi-white noise (WN) (0-30 Hz) photostimulation demonstrated precise, graded optogenetic control of SAC membrane current and potential. Linear systems analysis of ChR2-evoked PSCs recorded in DSGCs revealed cholinergic transmission to be faster than GABAergic transmission. A deconvolution-based analysis showed that distinct postsynaptic receptor kinetics fully account for the temporal difference between cholinergic and GABAergic transmission. Furthermore, GABAA receptor blockade prolonged cholinergic transmission, identifying a new functional role for GABAergic inhibition of SACs. Thus, fast cholinergic transmission from SACs to DSGCs arises from at least two distinct mechanisms, yielding temporal properties consistent with conventional synapses despite its paracrine nature.
Collapse
Affiliation(s)
- Joseph Pottackal
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States
| | - Joshua H. Singer
- Department of Biology, University of Maryland, College Park, MD, United States
| | - Jonathan B. Demb
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States
- Department of Ophthalmology and Visual Science, Yale University, New Haven, CT, United States
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, United States
- Department of Neuroscience, Yale University, New Haven, CT, United States
| |
Collapse
|
12
|
Rogers A, Beier KT. Can transsynaptic viral strategies be used to reveal functional aspects of neural circuitry? J Neurosci Methods 2020; 348:109005. [PMID: 33227339 DOI: 10.1016/j.jneumeth.2020.109005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 01/19/2023]
Abstract
Viruses have proved instrumental to elucidating neuronal connectivity relationships in a variety of organisms. Recent advances in genetic technologies have facilitated analysis of neurons directly connected to a defined starter population. These advances have also made viral transneuronal mapping available to the broader neuroscience community, where one-step rabies virus mapping has become routine. This method is commonly used to identify inputs onto defined cell populations, to demonstrate the quantitative proportion of inputs coming from specific brain regions, or to compare input patterns between two or more cell populations. Furthermore, the number of inputs labeled is often assumed to reflect the number of synaptic connections, and these viruses are commonly believed to label strong synapses more efficiently than weak synapses. While these maps are often interpreted to provide a quantitative estimate of the synaptic landscape onto starter cell populations, in fact very little is known about how transneuronal transmission takes place. We do not know how these viruses transmit between neurons, if they display biases in the cell types labeled, or even if transmission is synapse-specific. In this review, we discuss the experimental evidence against or in support of key concepts in viral tracing, focusing mostly on the use of one-step rabies input mapping and related methods. Does spread of these viruses occur specifically through synaptic connections, preferentially through synapses, or non-specifically? How efficient is viral transneuronal transmission, and is this efficiency equal in all cell types? And lastly, to what extent does viral labeling reflect functional connectivity?
Collapse
Affiliation(s)
- Alexandra Rogers
- Department of Pharmaceutical Sciences, Irvine, Irvine, CA, 92617, United States
| | - Kevin T Beier
- Department of Physiology and Biophysics, Irvine, Irvine, CA, 92617, United States; Department of Pharmaceutical Sciences, Irvine, Irvine, CA, 92617, United States; Department of Biomedical Engineering, Irvine, Irvine, CA, 92617, United States; Department of Neurobiology and Behavior, Irvine, Irvine CA, 92617, United States; Center for the Neurobiology of Learning and Memory, Irvine, Irvine, CA, 92617, United States; UCI Mind, University of California, Irvine, Irvine, CA, 92617, United States.
| |
Collapse
|
13
|
Xu X, Holmes TC, Luo MH, Beier KT, Horwitz GD, Zhao F, Zeng W, Hui M, Semler BL, Sandri-Goldin RM. Viral Vectors for Neural Circuit Mapping and Recent Advances in Trans-synaptic Anterograde Tracers. Neuron 2020; 107:1029-1047. [PMID: 32755550 DOI: 10.1016/j.neuron.2020.07.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/23/2020] [Accepted: 07/12/2020] [Indexed: 12/17/2022]
Abstract
Viral tracers are important tools for neuroanatomical mapping and genetic payload delivery. Genetically modified viruses allow for cell-type-specific targeting and overcome many limitations of non-viral tracers. Here, we summarize the viruses that have been developed for neural circuit mapping, and we provide a primer on currently applied anterograde and retrograde viral tracers with practical guidance on experimental uses. We also discuss and highlight key technical and conceptual considerations for developing new safer and more effective anterograde trans-synaptic viral vectors for neural circuit analysis in multiple species.
Collapse
Affiliation(s)
- Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA 92697-1275, USA; Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697-4025, USA; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697-2715, USA; The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA 92697, USA.
| | - Todd C Holmes
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697-4560, USA; The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA 92697, USA
| | - Min-Hua Luo
- State Key Laboratory of Virology, Wuhan Institute of Virology, CAS Center for Excellence in Brain Science, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA 92697, USA
| | - Kevin T Beier
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697-4560, USA; The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA 92697, USA
| | - Gregory D Horwitz
- The Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA; Department of Physiology & Biophysics, University of Washington, Seattle, WA 98195, USA; The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA 92697, USA
| | - Fei Zhao
- School of Basic Medical Sciences, Capital Medical University, Beijing 102206, China; Chinese Institute for Brain Research (CIBR), Beijing 102206, China
| | - Wenbo Zeng
- State Key Laboratory of Virology, Wuhan Institute of Virology, CAS Center for Excellence in Brain Science, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - May Hui
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697-4560, USA
| | - Bert L Semler
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697-4025, USA; The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA 92697, USA
| | - Rozanne M Sandri-Goldin
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697-4025, USA; The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
14
|
Cain MD, Salimi H, Diamond MS, Klein RS. Mechanisms of Pathogen Invasion into the Central Nervous System. Neuron 2020; 103:771-783. [PMID: 31487528 DOI: 10.1016/j.neuron.2019.07.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 06/09/2019] [Accepted: 07/12/2019] [Indexed: 12/16/2022]
Abstract
CNS infections continue to rise in incidence in conjunction with increases in immunocompromised populations or conditions that contribute to the emergence of pathogens, such as global travel, climate change, and human encroachment on animal territories. The severity and complexity of these diseases is impacted by the diversity of etiologic agents and their routes of neuroinvasion. In this review, we present historical, clinical, and molecular concepts regarding the mechanisms of pathogen invasion of the CNS. We also discuss the structural components of CNS compartments that influence pathogen entry and recent discoveries of the pathways exploited by pathogens to facilitate CNS infections. Advances in our understanding of the CNS invasion mechanisms of different neurotropic pathogens may enable the development of strategies to control their entry and deliver drugs to mitigate established infections.
Collapse
Affiliation(s)
- Matthew D Cain
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hamid Salimi
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robyn S Klein
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
15
|
A mutant vesicular stomatitis virus with reduced cytotoxicity and enhanced anterograde trans-synaptic efficiency. Mol Brain 2020; 13:45. [PMID: 32197632 PMCID: PMC7085170 DOI: 10.1186/s13041-020-00588-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/12/2020] [Indexed: 12/15/2022] Open
Abstract
Understanding the connecting structure of brain network is the basis to reveal the principle of the brain function and elucidate the mechanism of brain diseases. Trans-synaptic tracing with neurotropic viruses has become one of the most effective technologies to dissect the neural circuits. Although the retrograde trans-synaptic tracing for analyzing the input neural networks with recombinant rabies and pseudorabies virus has been broadly applied in neuroscience, viral tools for analyzing the output neural networks are still lacking. The recombinant vesicular stomatitis virus (VSV) has been used for the mapping of synaptic outputs. However, several drawbacks, including high neurotoxicity and rapid lethality in experimental animals, hinder its application in long-term studies of the structure and function of neural networks. To overcome these limitations, we generated a recombinant VSV with replication-related N gene mutation, VSV-NR7A, and examined its cytotoxicity and efficiency of trans-synaptic spreading. We found that by comparison with the wild-type tracer of VSV, the NR7A mutation endowed the virus lower rate of propagation and cytotoxicity in vitro, as well as significantly reduced neural inflammatory responses in vivo and much longer animal survival when it was injected into the nucleus of the mice brain. Besides, the spreading of the attenuated VSV was delayed when injected into the VTA. Importantly, with the reduced toxicity and extended animal survival, the number of brain regions that was trans-synaptically labeled by the mutant VSV was more than that of the wild-type VSV. These results indicated that the VSV-NR7A, could be a promising anterograde tracer that enables researchers to explore more downstream connections of a given brain region, and observe the anatomical structure and the function of the downstream circuits over a longer time window. Our work could provide an improved tool for structural and functional studies of neurocircuit.
Collapse
|
16
|
|
17
|
El-Danaf RN, Huberman AD. Sub-topographic maps for regionally enhanced analysis of visual space in the mouse retina. J Comp Neurol 2018; 527:259-269. [PMID: 29675855 DOI: 10.1002/cne.24457] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 01/28/2023]
Abstract
In many species, neurons are unevenly distributed across the retina, leading to nonuniform analysis of specific visual features at certain locations in visual space. In recent years, the mouse has emerged as a premiere model for probing visual system function, development, and disease. Thus, achieving a detailed understanding of mouse visual circuit architecture is of paramount importance. The general belief is that mice possess a relatively even topographic distribution of retinal ganglion cells (RGCs)-the output neurons of the eye. However, mouse RGCs include ∼30 subtypes; each responds best to a specific feature in the visual scene and conveys that information to central targets. Given the crucial role of RGCs and the prominence of the mouse as a model, we asked how different RGC subtypes are distributed across the retina. We targeted and filled individual fluorescently tagged RGC subtypes from across the retinal surface and evaluated the dendritic arbor extent and soma size of each cell according to its specific retinotopic position. Three prominent RGC subtypes: On-Off direction selective RGCs, object-motion-sensitive RGCs, and a specialized subclass of nonimage-forming RGCs each had marked topographic variations in their dendritic arbor sizes. Moreover, the pattern of variation was distinct for each RGC subtype. Thus, there is increasing evidence that the mouse retina encodes visual space in a region-specific manner. As a consequence, some visual features are sampled far more densely at certain retinal locations than others. These findings have implications for central visual processing, perception, and behavior in this prominent model species.
Collapse
Affiliation(s)
- Rana N El-Danaf
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California
| | - Andrew D Huberman
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California.,Department of Ophthalmology, Stanford University School of Medicine, Stanford, California.,Stanford Neurosciences Institute, Stanford, California.,BioX, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
18
|
Yu WQ, El-Danaf RN, Okawa H, Pacholec JM, Matti U, Schwarz K, Odermatt B, Dunn FA, Lagnado L, Schmitz F, Huberman AD, Wong ROL. Synaptic Convergence Patterns onto Retinal Ganglion Cells Are Preserved despite Topographic Variation in Pre- and Postsynaptic Territories. Cell Rep 2018; 25:2017-2026.e3. [PMID: 30463000 PMCID: PMC6317877 DOI: 10.1016/j.celrep.2018.10.089] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/13/2018] [Accepted: 10/24/2018] [Indexed: 11/25/2022] Open
Abstract
Sensory processing can be tuned by a neuron's integration area, the types of inputs, and the proportion and number of connections with those inputs. Integration areas often vary topographically to sample space differentially across regions. Here, we highlight two visual circuits in which topographic changes in the postsynaptic retinal ganglion cell (RGC) dendritic territories and their presynaptic bipolar cell (BC) axonal territories are either matched or unmatched. Despite this difference, in both circuits, the proportion of inputs from each BC type, i.e., synaptic convergence between specific BCs and RGCs, remained constant across varying dendritic territory sizes. Furthermore, synapse density between BCs and RGCs was invariant across topography. Our results demonstrate a wiring design, likely engaging homotypic axonal tiling of BCs, that ensures consistency in synaptic convergence between specific BC types onto their target RGCs while enabling independent regulation of pre- and postsynaptic territory sizes and synapse number between cell pairs.
Collapse
Affiliation(s)
- Wan-Qing Yu
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Rana N El-Danaf
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Haruhisa Okawa
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Justin M Pacholec
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Ulf Matti
- Department of Neuroanatomy, Medical School Homburg/Saar, Institute for Anatomy and Cell Biology, Saarland University, 66421 Homburg/Saar, Germany
| | - Karin Schwarz
- Department of Neuroanatomy, Medical School Homburg/Saar, Institute for Anatomy and Cell Biology, Saarland University, 66421 Homburg/Saar, Germany
| | | | - Felice A Dunn
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Leon Lagnado
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Frank Schmitz
- Department of Neuroanatomy, Medical School Homburg/Saar, Institute for Anatomy and Cell Biology, Saarland University, 66421 Homburg/Saar, Germany
| | - Andrew D Huberman
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Neurobiology and Ophthalmology, Stanford Neurosciences Institute, and BioX, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
19
|
Molecular Fingerprinting of On-Off Direction-Selective Retinal Ganglion Cells Across Species and Relevance to Primate Visual Circuits. J Neurosci 2018; 39:78-95. [PMID: 30377226 DOI: 10.1523/jneurosci.1784-18.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/08/2018] [Accepted: 10/23/2018] [Indexed: 12/27/2022] Open
Abstract
The ability to detect moving objects is an ethologically salient function. Direction-selective neurons have been identified in the retina, thalamus, and cortex of many species, but their homology has remained unclear. For instance, it is unknown whether direction-selective retinal ganglion cells (DSGCs) exist in primates and, if so, whether they are the equivalent to mouse and rabbit DSGCs. Here, we used a molecular/circuit approach in both sexes to address these issues. In mice, we identify the transcription factor Satb2 (special AT-rich sequence-binding protein 2) as a selective marker for three RGC types: On-Off DSGCs encoding motion in either the anterior or posterior direction, a newly identified type of Off-DSGC, and an Off-sustained RGC type. In rabbits, we find that expression of Satb2 is conserved in On-Off DSGCs; however, it has evolved to include On-Off DSGCs encoding upward and downward motion in addition to anterior and posterior motion. Next, we show that macaque RGCs express Satb2 most likely in a single type. We used rabies virus-based circuit-mapping tools to reveal the identity of macaque Satb2-RGCs and discovered that their dendritic arbors are relatively large and monostratified. Together, these data indicate Satb2-expressing On-Off DSGCs are likely not present in the primate retina. Moreover, if DSGCs are present in the primate retina, it is unlikely that they express Satb2.SIGNIFICANCE STATEMENT The ability to detect object motion is a fundamental feature of almost all visual systems. Here, we identify a novel marker for retinal ganglion cells encoding directional motion that is evolutionarily conserved in mice and rabbits, but not in primates. We show in macaque monkeys that retinal ganglion cells (RGCs) that express this marker comprise a single type and are morphologically distinct from mouse and rabbit direction-selective RGCs. Our findings indicate that On-Off direction-selective retinal neurons may have evolutionarily diverged in primates and more generally provide novel insight into the identity and organization of primate parallel visual pathways.
Collapse
|
20
|
Sethuramanujam S, Awatramani GB, Slaughter MM. Cholinergic excitation complements glutamate in coding visual information in retinal ganglion cells. J Physiol 2018; 596:3709-3724. [PMID: 29758086 DOI: 10.1113/jp275073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 04/25/2018] [Indexed: 01/07/2023] Open
Abstract
KEY POINTS Starburst amacrine cells release GABA and ACh. This study explores the coordinated function of starburst-mediated cholinergic excitation and GABAergic inhibition to bistratified retinal ganglion cells, predominantly direction-selective ganglion cells (DSGCs). In rat retina, under our recording conditions, starbursts were found to provide the major excitatory drive to a sub-population of ganglion cells whose dendrites co-stratify with starburst dendrites (putative DSGCs). In mouse retina, recordings from genetically identified DSGCs at physiological temperatures reveal that ACh inputs dominate the response to small spot-high contrast light stimuli, with preferential addition of bipolar cell input shifting the balance towards glutamate for larger spot stimuli In addition, starbursts also appear to gate glutamatergic excitation to DSGCs by postsynaptic and possibly presynaptic inhibitory processes ABSTRACT: Starburst amacrine cells release both GABA and ACh, allowing them to simultaneously mediate inhibition and excitation. However, the precise pre- and postsynaptic targets for ACh and GABA remain under intense investigation. Most previous studies have focused on starburst-mediated postsynaptic GABAergic inhibition and its role in the formation of directional selectivity in ganglion cells. However, the significance of postsynaptic cholinergic excitation is only beginning to be appreciated. Here, we found that light-evoked responses measured in bi-stratified rat ganglion cells with dendrites that co-fasciculate with ON and OFF starburst dendrites (putative direction-selective ganglion cells, DSGCs) were abolished by the application of nicotinic receptor antagonists, suggesting ACh could act as the primary source of excitation. Recording from genetically labelled DSGCs in mouse retina at physiological temperatures revealed that cholinergic synaptic inputs dominated the excitation for high contrast stimuli only when the size of the stimulus was small. Canonical glutamatergic inputs mediated by bipolar cells were prominent when GABA/glycine receptors were blocked or when larger spot stimuli were utilized. In mouse DSGCs, bipolar cell excitation could also be unmasked through the activation of mGluR2,3 receptors, which we show suppresses starburst output, suggesting that GABA from starbursts serves to inhibit bipolar cell signals in DSGCs. Taken together, these results suggest that starbursts amplify excitatory signals traversing the retina, endowing DSGCs with the ability to encode fine spatial information without compromising their ability to encode direction.
Collapse
Affiliation(s)
- Santhosh Sethuramanujam
- Center for Neuroscience and Department of Physiology and Biophysics, University at Buffalo, Buffalo, NY, 14214, USA.,Department of Biology, University of Victoria, Victoria, BC, V8W2Y2, Canada
| | | | - Malcolm M Slaughter
- Center for Neuroscience and Department of Physiology and Biophysics, University at Buffalo, Buffalo, NY, 14214, USA
| |
Collapse
|
21
|
Park SJH, Pottackal J, Ke JB, Jun NY, Rahmani P, Kim IJ, Singer JH, Demb JB. Convergence and Divergence of CRH Amacrine Cells in Mouse Retinal Circuitry. J Neurosci 2018; 38:3753-3766. [PMID: 29572434 PMCID: PMC5895998 DOI: 10.1523/jneurosci.2518-17.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 03/01/2018] [Accepted: 03/07/2018] [Indexed: 11/21/2022] Open
Abstract
Inhibitory interneurons sculpt the outputs of excitatory circuits to expand the dynamic range of information processing. In mammalian retina, >30 types of amacrine cells provide lateral inhibition to vertical, excitatory bipolar cell circuits, but functional roles for only a few amacrine cells are well established. Here, we elucidate the function of corticotropin-releasing hormone (CRH)-expressing amacrine cells labeled in Cre-transgenic mice of either sex. CRH cells costratify with the ON alpha ganglion cell, a neuron highly sensitive to positive contrast. Electrophysiological and optogenetic analyses demonstrate that two CRH types (CRH-1 and CRH-3) make GABAergic synapses with ON alpha cells. CRH-1 cells signal via graded membrane potential changes, whereas CRH-3 cells fire action potentials. Both types show sustained ON-type responses to positive contrast over a range of stimulus conditions. Optogenetic control of transmission at CRH-1 synapses demonstrates that these synapses are tuned to low temporal frequencies, maintaining GABA release during fast hyperpolarizations during brief periods of negative contrast. CRH amacrine cell output is suppressed by prolonged negative contrast, when ON alpha ganglion cells continue to receive inhibitory input from converging OFF-pathway amacrine cells; the converging ON- and OFF-pathway inhibition balances tonic excitatory drive to ON alpha cells. Previously, it was demonstrated that CRH-1 cells inhibit firing by suppressed-by-contrast (SbC) ganglion cells during positive contrast. Therefore, divergent outputs of CRH-1 cells inhibit two ganglion cell types with opposite responses to positive contrast. The opposing responses of ON alpha and SbC ganglion cells are explained by differing excitation/inhibition balance in the two circuits.SIGNIFICANCE STATEMENT A goal of neuroscience research is to explain the function of neural circuits at the level of specific cell types. Here, we studied the function of specific types of inhibitory interneurons, corticotropin-releasing hormone (CRH) amacrine cells, in the mouse retina. Genetic tools were used to identify and manipulate CRH cells, which make GABAergic synapses with a well studied ganglion cell type, the ON alpha cell. CRH cells converge with other types of amacrine cells to tonically inhibit ON alpha cells and balance their high level of excitation. CRH cells diverge to different types of ganglion cell, the unique properties of which depend on their balance of excitation and inhibition.
Collapse
Affiliation(s)
| | | | - Jiang-Bin Ke
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | | | | | - In-Jung Kim
- Department of Ophthalmology and Visual Science
- Interdepartmental Neuroscience Program
- Department of Neuroscience
| | - Joshua H Singer
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | - Jonathan B Demb
- Department of Ophthalmology and Visual Science,
- Interdepartmental Neuroscience Program
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut 06511, and
| |
Collapse
|
22
|
Dendro-dendritic cholinergic excitation controls dendritic spike initiation in retinal ganglion cells. Nat Commun 2017; 8:15683. [PMID: 28589928 PMCID: PMC5477517 DOI: 10.1038/ncomms15683] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 04/12/2017] [Indexed: 02/06/2023] Open
Abstract
The retina processes visual images to compute features such as the direction of image motion. Starburst amacrine cells (SACs), axonless feed-forward interneurons, are essential components of the retinal direction-selective circuitry. Recent work has highlighted that SAC-mediated dendro-dendritic inhibition controls the action potential output of direction-selective ganglion cells (DSGCs) by vetoing dendritic spike initiation. However, SACs co-release GABA and the excitatory neurotransmitter acetylcholine at dendritic sites. Here we use direct dendritic recordings to show that preferred direction light stimuli evoke SAC-mediated acetylcholine release, which powerfully controls the stimulus sensitivity, receptive field size and action potential output of ON-DSGCs by acting as an excitatory drive for the initiation of dendritic spikes. Consistent with this, paired recordings reveal that the activation of single ON-SACs drove dendritic spike generation, because of predominate cholinergic excitation received on the preferred side of ON-DSGCs. Thus, dendro-dendritic release of neurotransmitters from SACs bi-directionally gate dendritic spike initiation to control the directionally selective action potential output of retinal ganglion cells. Neural computations performed by the retinal microcircuit have been extensively studied. Here the authors report using dendritic recordings that the direction selective responses of retinal ganglion cells are controlled by dendro-dendritic cholinergic excitation from starburst amacrine cells.
Collapse
|
23
|
Gene Expression Profiling with Cre-Conditional Pseudorabies Virus Reveals a Subset of Midbrain Neurons That Participate in Reward Circuitry. J Neurosci 2017; 37:4128-4144. [PMID: 28283558 DOI: 10.1523/jneurosci.3193-16.2017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/06/2017] [Accepted: 02/27/2017] [Indexed: 01/29/2023] Open
Abstract
The mesolimbic dopamine pathway receives inputs from numerous regions of the brain as part of a neural system that detects rewarding stimuli and coordinates a behavioral response. The capacity to simultaneously map and molecularly define the components of this complex multisynaptic circuit would thus advance our understanding of the determinants of motivated behavior. To accomplish this, we have constructed pseudorabies virus (PRV) strains in which viral propagation and fluorophore expression are activated only after exposure to Cre recombinase. Once activated in Cre-expressing neurons, the virus serially labels chains of presynaptic neurons. Dual injection of GFP and mCherry tracing viruses simultaneously illuminates nigrostriatal and mesolimbic circuitry and shows no overlap, demonstrating that PRV transmission is confined to synaptically connected neurons. To molecularly profile mesolimbic dopamine neurons and their presynaptic inputs, we injected Cre-conditional GFP virus into the NAc of (anti-GFP) nanobody-L10 transgenic mice and immunoprecipitated translating ribosomes from neurons infected after retrograde tracing. Analysis of purified RNA revealed an enrichment of transcripts expressed in neurons of the dorsal raphe nuclei and lateral hypothalamus that project to the mesolimbic dopamine circuit. These studies identify important inputs to the mesolimbic dopamine pathway and further show that PRV circuit-directed translating ribosome affinity purification can be broadly applied to identify molecularly defined neurons comprising complex, multisynaptic circuits.SIGNIFICANCE STATEMENT The mesolimbic dopamine circuit integrates signals from key brain regions to detect and respond to rewarding stimuli. To further define this complex multisynaptic circuit, we constructed a panel of Cre recombinase-activated pseudorabies viruses (PRVs) that enabled retrograde tracing of neural inputs that terminate on Cre-expressing neurons. Using these viruses and Retro-TRAP (translating ribosome affinity purification), a previously reported molecular profiling method, we developed a novel technique that provides anatomic as well as molecular information about the neural components of polysynaptic circuits. We refer to this new method as PRV-Circuit-TRAP (PRV circuit-directed TRAP). Using it, we have identified major projections to the mesolimbic dopamine circuit from the lateral hypothalamus and dorsal raphe nucleus and defined a discrete subset of transcripts expressed in these projecting neurons, which will allow further characterization of this important pathway. Moreover, the method we report is general and can be applied to the study of other neural circuits.
Collapse
|
24
|
The brain parenchyma has a type I interferon response that can limit virus spread. Proc Natl Acad Sci U S A 2016; 114:E95-E104. [PMID: 27980033 DOI: 10.1073/pnas.1618157114] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The brain has a tightly regulated environment that protects neurons and limits inflammation, designated "immune privilege." However, there is not an absolute lack of an immune response. We tested the ability of the brain to initiate an innate immune response to a virus, which was directly injected into the brain parenchyma, and to determine whether this response could limit viral spread. We injected vesicular stomatitis virus (VSV), a transsynaptic tracer, or naturally occurring VSV-derived defective interfering particles (DIPs), into the caudate-putamen (CP) and scored for an innate immune response and inhibition of virus spread. We found that the brain parenchyma has a functional type I interferon (IFN) response that can limit VSV spread at both the inoculation site and among synaptically connected neurons. Furthermore, we characterized the response of microglia to VSV infection and found that infected microglia produced type I IFN and uninfected microglia induced an innate immune response following virus injection.
Collapse
|
25
|
Vlasits AL, Morrie RD, Tran-Van-Minh A, Bleckert A, Gainer CF, DiGregorio DA, Feller MB. A Role for Synaptic Input Distribution in a Dendritic Computation of Motion Direction in the Retina. Neuron 2016; 89:1317-1330. [PMID: 26985724 DOI: 10.1016/j.neuron.2016.02.020] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 12/22/2015] [Accepted: 02/10/2016] [Indexed: 12/21/2022]
Abstract
The starburst amacrine cell in the mouse retina presents an opportunity to examine the precise role of sensory input location on neuronal computations. Using visual receptive field mapping, glutamate uncaging, two-photon Ca(2+) imaging, and genetic labeling of putative synapses, we identify a unique arrangement of excitatory inputs and neurotransmitter release sites on starburst amacrine cell dendrites: the excitatory input distribution is skewed away from the release sites. By comparing computational simulations with Ca(2+) transients recorded near release sites, we show that this anatomical arrangement of inputs and outputs supports a dendritic mechanism for computing motion direction. Direction-selective Ca(2+) transients persist in the presence of a GABA-A receptor antagonist, though the directional tuning is reduced. These results indicate a synergistic interaction between dendritic and circuit mechanisms for generating direction selectivity in the starburst amacrine cell.
Collapse
Affiliation(s)
- Anna L Vlasits
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ryan D Morrie
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Alexandra Tran-Van-Minh
- Unit of Dynamic Neuronal Imaging, Institut Pasteur, 75724 Paris Cedex 15, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, 75724 Paris Cedex 15, France
| | - Adam Bleckert
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Christian F Gainer
- Department of Optometry, University of California, Berkeley, Berkeley, CA 94704, USA
| | - David A DiGregorio
- Unit of Dynamic Neuronal Imaging, Institut Pasteur, 75724 Paris Cedex 15, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, 75724 Paris Cedex 15, France.
| | - Marla B Feller
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
26
|
Ghanem A, Conzelmann KK. G gene-deficient single-round rabies viruses for neuronal circuit analysis. Virus Res 2016; 216:41-54. [DOI: 10.1016/j.virusres.2015.05.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/28/2015] [Accepted: 05/31/2015] [Indexed: 12/11/2022]
|
27
|
Beier KT, Mundell NA, Pan YA, Cepko CL. Anterograde or Retrograde Transsynaptic Circuit Tracing in Vertebrates with Vesicular Stomatitis Virus Vectors. ACTA ACUST UNITED AC 2016; 74:1.26.1-1.26.27. [PMID: 26729030 DOI: 10.1002/0471142301.ns0126s74] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Viruses have been used as transsynaptic tracers, allowing one to map the inputs and outputs of neuronal populations, due to their ability to replicate in neurons and transmit in vivo only across synaptically connected cells. To date, their use has been largely restricted to mammals. In order to explore the use of such viruses in an expanded host range, we tested the transsynaptic tracing ability of recombinant vesicular stomatitis virus (rVSV) vectors in a variety of organisms. Successful infection and gene expression were achieved in a wide range of organisms, including vertebrate and invertebrate model organisms. Moreover, rVSV enabled transsynaptic tracing of neural circuitry in predictable directions dictated by the viral envelope glycoprotein (G), derived from either VSV or rabies virus (RABV). Anterograde and retrograde labeling, from initial infection and/or viral replication and transmission, was observed in Old and New World monkeys, seahorses, jellyfish, zebrafish, chickens, and mice. These vectors are widely applicable for gene delivery, afferent tract tracing, and/or directional connectivity mapping. Here, we detail the use of these vectors and provide protocols for propagating virus, changing the surface glycoprotein, and infecting multiple organisms using several injection strategies.
Collapse
Affiliation(s)
- Kevin T Beier
- Department of Biology, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California.,These authors contributed equally to this unit
| | - Nathan A Mundell
- Department of Genetics, Department of Ophthalmology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts.,These authors contributed equally to this unit
| | - Y Albert Pan
- Department of Neuroscience and Regenerative Medicine, Department of Neurology, James & Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, Georgia.,These authors contributed equally to this unit
| | - Constance L Cepko
- Department of Genetics, Department of Ophthalmology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
28
|
Abstract
The mammalian retina is an important model system for studying neural circuitry: Its role in sensation is clear, its cell types are relatively well defined, and its responses to natural stimuli-light patterns-can be studied in vitro. To solve the retina, we need to understand how the circuits presynaptic to its output neurons, ganglion cells, divide the visual scene into parallel representations to be assembled and interpreted by the brain. This requires identifying the component interneurons and understanding how their intrinsic properties and synapses generate circuit behaviors. Because the cellular composition and fundamental properties of the retina are shared across species, basic mechanisms studied in the genetically modifiable mouse retina apply to primate vision. We propose that the apparent complexity of retinal computation derives from a straightforward mechanism-a dynamic balance of synaptic excitation and inhibition regulated by use-dependent synaptic depression-applied differentially to the parallel pathways that feed ganglion cells.
Collapse
Affiliation(s)
- Jonathan B Demb
- Department of Ophthalmology and Visual Science and Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut 06511;
| | - Joshua H Singer
- Department of Biology, University of Maryland, College Park, Maryland 20742;
| |
Collapse
|
29
|
Abstract
UNLABELLED Visual processing in the retina depends on coordinated signaling by interneurons. Photoreceptor signals are relayed to ∼20 ganglion cell types through a dozen excitatory bipolar interneurons, each responsive to light increments (ON) or decrements (OFF). ON and OFF bipolar cell pathways become tuned through specific connections with inhibitory interneurons: horizontal and amacrine cells. A major obstacle for understanding retinal circuitry is the unknown function of most of the ∼30-40 amacrine cell types, each of which synapses onto a subset of bipolar cell terminals, ganglion cell dendrites, and other amacrine cells. Here, we used a transgenic mouse line in which vasoactive intestinal polypeptide-expressing (VIP+) GABAergic interneurons express Cre recombinase. Targeted whole-cell recordings of fluorescently labeled VIP+ cells revealed three predominant types: wide-field bistratified and narrow-field monostratified cells with somas in the inner nuclear layer (INL) and medium-field monostratified cells with somas in the ganglion cell layer (GCL). Bistratified INL cells integrated excitation and inhibition driven by both ON and OFF pathways with little spatial tuning. Narrow-field INL cells integrated excitation driven by the ON pathway and inhibition driven by both pathways, with pronounced hyperpolarizations at light offset. Monostratified GCL cells integrated excitation and inhibition driven by the ON pathway and showed center-surround spatial tuning. Optogenetic experiments showed that, collectively, VIP+ cells made strong connections with OFF δ, ON-OFF direction-selective, and W3 ganglion cells but weak, inconsistent connections with ON and OFF α cells. Revealing VIP+ cell morphologies, receptive fields and synaptic connections advances our understanding of their role in visual processing. SIGNIFICANCE STATEMENT The retina is a model system for understanding nervous system function. At the first stage, rod and cone photoreceptors encode light and communicate with a complex network of interneurons. These interneurons drive the responses of ganglion cells, which form the optic nerve and transmit visual information to the brain. Presently, we lack information about many of the retina's inhibitory amacrine interneurons. In this study, we used genetically modified mice to study the light responses and intercellular connections of specific amacrine cell types. The results show diversity in the shape and function of the studied amacrine cells and elucidate their connections with specific types of ganglion cell. The findings advance our understanding of the cellular basis for retinal function.
Collapse
|
30
|
Nassi JJ, Cepko CL, Born RT, Beier KT. Neuroanatomy goes viral! Front Neuroanat 2015; 9:80. [PMID: 26190977 PMCID: PMC4486834 DOI: 10.3389/fnana.2015.00080] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 05/25/2015] [Indexed: 02/03/2023] Open
Abstract
The nervous system is complex not simply because of the enormous number of neurons it contains but by virtue of the specificity with which they are connected. Unraveling this specificity is the task of neuroanatomy. In this endeavor, neuroanatomists have traditionally exploited an impressive array of tools ranging from the Golgi method to electron microscopy. An ideal method for studying anatomy would label neurons that are interconnected, and, in addition, allow expression of foreign genes in these neurons. Fortuitously, nature has already partially developed such a method in the form of neurotropic viruses, which have evolved to deliver their genetic material between synaptically connected neurons while largely eluding glia and the immune system. While these characteristics make some of these viruses a threat to human health, simple modifications allow them to be used in controlled experimental settings, thus enabling neuroanatomists to trace multi-synaptic connections within and across brain regions. Wild-type neurotropic viruses, such as rabies and alpha-herpes virus, have already contributed greatly to our understanding of brain connectivity, and modern molecular techniques have enabled the construction of recombinant forms of these and other viruses. These newly engineered reagents are particularly useful, as they can target genetically defined populations of neurons, spread only one synapse to either inputs or outputs, and carry instructions by which the targeted neurons can be made to express exogenous proteins, such as calcium sensors or light-sensitive ion channels, that can be used to study neuronal function. In this review, we address these uniquely powerful features of the viruses already in the neuroanatomist's toolbox, as well as the aspects of their biology that currently limit their utility. Based on the latter, we consider strategies for improving viral tracing methods by reducing toxicity, improving control of transsynaptic spread, and extending the range of species that can be studied.
Collapse
Affiliation(s)
- Jonathan J Nassi
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies La Jolla, CA, USA
| | - Constance L Cepko
- Department of Genetics, Harvard Medical School Boston, MA, USA ; Department of Ophthalmology, Howard Hughes Medical Institute, Harvard Medical School Boston, MA, USA
| | - Richard T Born
- Department of Neurobiology, Harvard Medical School Boston, MA, USA ; Center for Brain Science, Harvard University Cambridge, MA, USA
| | - Kevin T Beier
- Department of Psychiatry and Behavioral Sciences and Department of Biology, Stanford University Stanford, CA, USA
| |
Collapse
|
31
|
Common circuit design in fly and mammalian motion vision. Nat Neurosci 2015; 18:1067-76. [PMID: 26120965 DOI: 10.1038/nn.4050] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/18/2015] [Indexed: 12/12/2022]
Abstract
Motion-sensitive neurons have long been studied in both the mammalian retina and the insect optic lobe, yet striking similarities have become obvious only recently. Detailed studies at the circuit level revealed that, in both systems, (i) motion information is extracted from primary visual information in parallel ON and OFF pathways; (ii) in each pathway, the process of elementary motion detection involves the correlation of signals with different temporal dynamics; and (iii) primary motion information from both pathways converges at the next synapse, resulting in four groups of ON-OFF neurons, selective for the four cardinal directions. Given that the last common ancestor of insects and mammals lived about 550 million years ago, this general strategy seems to be a robust solution for how to compute the direction of visual motion with neural hardware.
Collapse
|
32
|
Characteristic patterns of dendritic remodeling in early-stage glaucoma: evidence from genetically identified retinal ganglion cell types. J Neurosci 2015; 35:2329-43. [PMID: 25673829 DOI: 10.1523/jneurosci.1419-14.2015] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Retinal ganglion cell (RGC) loss is a hallmark of glaucoma and the second leading cause of blindness worldwide. The type and timing of cellular changes leading to RGC loss in glaucoma remain incompletely understood, including whether specific RGC subtypes are preferentially impacted at early stages of this disease. Here we applied the microbead occlusion model of glaucoma to different transgenic mouse lines, each expressing green fluorescent protein in 1-2 specific RGC subtypes. Targeted filling, reconstruction, and subsequent comparison of the genetically identified RGCs in control and bead-injected eyes revealed that some subtypes undergo significant dendritic rearrangements as early as 7 d following induction of elevated intraocular pressure (IOP). By comparing specific On-type, On-Off-type and Off-type RGCs, we found that RGCs that target the majority of their dendritic arbors to the scleral half or "Off" sublamina of the inner plexiform layer (IPL) undergo the greatest changes, whereas RGCs with the majority of their dendrites in the On sublamina did not alter their structure at this time point. Moreover, M1 intrinsically photosensitive RGCs, which functionally are On RGCs but structurally stratify their dendrites in the Off sublamina of the IPL, also underwent significant changes in dendritic structure 1 week after elevated IOP. Thus, our findings reveal that certain RGC subtypes manifest significant changes in dendritic structure after very brief exposure to elevated IOP. The observation that RGCs stratifying most of their dendrites in the Off sublamina are first to alter their structure may inform the development of new strategies to detect, monitor, and treat glaucoma in humans.
Collapse
|
33
|
Mundell NA, Beier KT, Pan YA, Lapan SW, Göz Aytürk D, Berezovskii VK, Wark AR, Drokhlyansky E, Bielecki J, Born RT, Schier AF, Cepko CL. Vesicular stomatitis virus enables gene transfer and transsynaptic tracing in a wide range of organisms. J Comp Neurol 2015; 523:1639-63. [PMID: 25688551 PMCID: PMC4458151 DOI: 10.1002/cne.23761] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/03/2015] [Accepted: 02/10/2015] [Indexed: 12/20/2022]
Abstract
Current limitations in technology have prevented an extensive analysis of the connections among neurons, particularly within nonmammalian organisms. We developed a transsynaptic viral tracer originally for use in mice, and then tested its utility in a broader range of organisms. By engineering the vesicular stomatitis virus (VSV) to encode a fluorophore and either the rabies virus glycoprotein (RABV‐G) or its own glycoprotein (VSV‐G), we created viruses that can transsynaptically label neuronal circuits in either the retrograde or anterograde direction, respectively. The vectors were investigated for their utility as polysynaptic tracers of chicken and zebrafish visual pathways. They showed patterns of connectivity consistent with previously characterized visual system connections, and revealed several potentially novel connections. Further, these vectors were shown to infect neurons in several other vertebrates, including Old and New World monkeys, seahorses, axolotls, and Xenopus. They were also shown to infect two invertebrates, Drosophila melanogaster, and the box jellyfish, Tripedalia cystophora, a species previously intractable for gene transfer, although no clear evidence of transsynaptic spread was observed in these species. These vectors provide a starting point for transsynaptic tracing in most vertebrates, and are also excellent candidates for gene transfer in organisms that have been refractory to other methods. J. Comp. Neurol. 523:1639–1663, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nathan A Mundell
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, 02115.,Department of Ophthalmology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, 02115
| | - Kevin T Beier
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, 02115.,Department of Ophthalmology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, 02115
| | - Y Albert Pan
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, 01238
| | - Sylvain W Lapan
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, 02115.,Department of Ophthalmology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, 02115
| | - Didem Göz Aytürk
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, 02115.,Department of Ophthalmology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, 02115
| | | | - Abigail R Wark
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, 02115
| | - Eugene Drokhlyansky
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, 02115.,Department of Ophthalmology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, 02115
| | - Jan Bielecki
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, California, 93106
| | - Richard T Born
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, 02115
| | - Alexander F Schier
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, 01238
| | - Constance L Cepko
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, 02115.,Department of Ophthalmology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, 02115
| |
Collapse
|
34
|
Abstract
We describe recent progress toward defining neuronal cell types in the mouse retina and attempt to extract lessons that may be generally useful in the mammalian brain. Achieving a comprehensive catalog of retinal cell types now appears within reach, because researchers have achieved consensus concerning two fundamental challenges. The first is accuracy-defining pure cell types rather than settling for neuronal classes that are mixtures of types. The second is completeness-developing methods guaranteed to eventually identify all cell types, as well as criteria for determining when all types have been found. Case studies illustrate how these two challenges are handled by combining state-of-the-art molecular, anatomical, and physiological techniques. Progress is also being made in observing and modeling connectivity between cell types. Scaling up to larger brain regions, such as the cortex, will require not only technical advances but also careful consideration of the challenges of accuracy and completeness.
Collapse
|
35
|
Dunn FA, Wong ROL. Wiring patterns in the mouse retina: collecting evidence across the connectome, physiology and light microscopy. J Physiol 2014; 592:4809-23. [PMID: 25172948 DOI: 10.1113/jphysiol.2014.277228] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The visual system has often been thought of as a parallel processor because distinct regions of the brain process different features of visual information. However, increasing evidence for convergence and divergence of circuit connections, even at the level of the retina where visual information is first processed, chips away at a model of dedicated and distinct pathways for parallel information flow. Instead, our current understanding is that parallel channels may emerge, not from exclusive microcircuits for each channel, but from unique combinations of microcircuits. This review depicts diagrammatically the current knowledge and remaining puzzles about the retinal circuit with a focus on the mouse retina. Advances in techniques for labelling cells and genetic manipulations have popularized the use of transgenic mice. We summarize evidence gained from serial electron microscopy, electrophysiology and light microscopy to illustrate the wiring patterns in mouse retina. We emphasize the need to explore proposed retinal connectivity using multiple methods to verify circuits both structurally and functionally.
Collapse
Affiliation(s)
- Felice A Dunn
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, 94143-0730, USA
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
36
|
Osterhout JA, El-Danaf RN, Nguyen PL, Huberman AD. Birthdate and outgrowth timing predict cellular mechanisms of axon target matching in the developing visual pathway. Cell Rep 2014; 8:1006-17. [PMID: 25088424 DOI: 10.1016/j.celrep.2014.06.063] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 04/25/2014] [Accepted: 06/30/2014] [Indexed: 12/11/2022] Open
Abstract
How axons select their appropriate targets in the brain remains poorly understood. Here, we explore the cellular mechanisms of axon target matching in the developing visual system by comparing four transgenic mouse lines, each with a different population of genetically labeled retinal ganglion cells (RGCs) that connect to unique combinations of brain targets. We find that the time when an RGC axon arrives in the brain is correlated with its target selection strategy. Early-born, early-arriving RGC axons initially innervate multiple targets. Subsequently, most of those connections are removed. By contrast, later-born, later-arriving RGC axons are highly accurate in their initial target choices. These data reveal the diversity of cellular mechanisms that mammalian CNS axons use to pick their targets and highlight the key role of birthdate and outgrowth timing in influencing this precision. Timing-based mechanisms may underlie the assembly of the other sensory pathways and complex neural circuitry in the brain.
Collapse
Affiliation(s)
- Jessica A Osterhout
- Neurobiology Section, Division of Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Rana N El-Danaf
- Neurobiology Section, Division of Biology, University of California, San Diego, La Jolla, CA 92093, USA; Neurosciences Department, University of California, San Diego, La Jolla, CA 92093, USA
| | - Phong L Nguyen
- Neurobiology Section, Division of Biology, University of California, San Diego, La Jolla, CA 92093, USA; Neurosciences Department, University of California, San Diego, La Jolla, CA 92093, USA
| | - Andrew D Huberman
- Neurobiology Section, Division of Biology, University of California, San Diego, La Jolla, CA 92093, USA; Neurosciences Department, University of California, San Diego, La Jolla, CA 92093, USA; Department of Ophthalmology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
37
|
Excitatory synaptic inputs to mouse on-off direction-selective retinal ganglion cells lack direction tuning. J Neurosci 2014; 34:3976-81. [PMID: 24623775 DOI: 10.1523/jneurosci.5017-13.2014] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Direction selectivity represents a fundamental visual computation. In mammalian retina, On-Off direction-selective ganglion cells (DSGCs) respond strongly to motion in a preferred direction and weakly to motion in the opposite, null direction. Electrical recordings suggested three direction-selective (DS) synaptic mechanisms: DS GABA release during null-direction motion from starburst amacrine cells (SACs) and DS acetylcholine and glutamate release during preferred direction motion from SACs and bipolar cells. However, evidence for DS acetylcholine and glutamate release has been inconsistent and at least one bipolar cell type that contacts another DSGC (On-type) lacks DS release. Here, whole-cell recordings in mouse retina showed that cholinergic input to On-Off DSGCs lacked DS, whereas the remaining (glutamatergic) input showed apparent DS. Fluorescence measurements with the glutamate biosensor intensity-based glutamate-sensing fluorescent reporter (iGluSnFR) conditionally expressed in On-Off DSGCs showed that glutamate release in both On- and Off-layer dendrites lacked DS, whereas simultaneously recorded excitatory currents showed apparent DS. With GABA-A receptors blocked, both iGluSnFR signals and excitatory currents lacked DS. Our measurements rule out DS release from bipolar cells onto On-Off DSGCs and support a theoretical model suggesting that apparent DS excitation in voltage-clamp recordings results from inadequate voltage control of DSGC dendrites during null-direction inhibition. SAC GABA release is the apparent sole source of DS input onto On-Off DSGCs.
Collapse
|
38
|
Cruz-Martín A, El-Danaf RN, Osakada F, Sriram B, Dhande OS, Nguyen PL, Callaway EM, Ghosh A, Huberman AD. A dedicated circuit links direction-selective retinal ganglion cells to the primary visual cortex. Nature 2014; 507:358-61. [PMID: 24572358 PMCID: PMC4143386 DOI: 10.1038/nature12989] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 12/31/2013] [Indexed: 12/27/2022]
Abstract
How specific features in the environment are represented within the brain is an important unanswered question in neuroscience. A subset of retinal neurons, called direction-selective ganglion cells (DSGCs), are specialized for detecting motion along specific axes of the visual field. Despite extensive study of the retinal circuitry that endows DSGCs with their unique tuning properties, their downstream circuitry in the brain and thus their contribution to visual processing has remained unclear. In mice, several different types of DSGCs connect to the dorsal lateral geniculate nucleus (dLGN), the visual thalamic structure that harbours cortical relay neurons. Whether direction-selective information computed at the level of the retina is routed to cortical circuits and integrated with other visual channels, however, is unknown. Here we show that there is a di-synaptic circuit linking DSGCs with the superficial layers of the primary visual cortex (V1) by using viral trans-synaptic circuit mapping and functional imaging of visually driven calcium signals in thalamocortical axons. This circuit pools information from several types of DSGCs, converges in a specialized subdivision of the dLGN, and delivers direction-tuned and orientation-tuned signals to superficial V1. Notably, this circuit is anatomically segregated from the retino-geniculo-cortical pathway carrying non-direction-tuned visual information to deeper layers of V1, such as layer 4. Thus, the mouse harbours several functionally specialized, parallel retino-geniculo-cortical pathways, one of which originates with retinal DSGCs and delivers direction- and orientation-tuned information specifically to the superficial layers of the primary visual cortex. These data provide evidence that direction and orientation selectivity of some V1 neurons may be influenced by the activation of DSGCs.
Collapse
Affiliation(s)
- Alberto Cruz-Martín
- 1] Department of Neurosciences, University of California, San Diego, California 92093, USA [2] Neurobiology Section in the Division of Biological Sciences, University of California, San Diego, California 92093, USA
| | - Rana N El-Danaf
- 1] Department of Neurosciences, University of California, San Diego, California 92093, USA [2] Neurobiology Section in the Division of Biological Sciences, University of California, San Diego, California 92093, USA
| | - Fumitaka Osakada
- Salk Institute for Biological Studies, La Jolla, California 92097, USA
| | - Balaji Sriram
- Neurobiology Section in the Division of Biological Sciences, University of California, San Diego, California 92093, USA
| | - Onkar S Dhande
- 1] Department of Neurosciences, University of California, San Diego, California 92093, USA [2] Neurobiology Section in the Division of Biological Sciences, University of California, San Diego, California 92093, USA
| | - Phong L Nguyen
- 1] Department of Neurosciences, University of California, San Diego, California 92093, USA [2] Neurobiology Section in the Division of Biological Sciences, University of California, San Diego, California 92093, USA
| | - Edward M Callaway
- Salk Institute for Biological Studies, La Jolla, California 92097, USA
| | - Anirvan Ghosh
- Neuroscience Discovery, F. Hoffman La Roche, 4070 Basel, Switzerland
| | - Andrew D Huberman
- 1] Department of Neurosciences, University of California, San Diego, California 92093, USA [2] Neurobiology Section in the Division of Biological Sciences, University of California, San Diego, California 92093, USA [3] Salk Institute for Biological Studies, La Jolla, California 92097, USA [4] Department of Ophthalmology, University of California, San Diego, California 92093, USA
| |
Collapse
|
39
|
Mori T, Morimoto K. Rabies virus glycoprotein variants display different patterns in rabies monosynaptic tracing. Front Neuroanat 2014; 7:47. [PMID: 24427117 PMCID: PMC3877770 DOI: 10.3389/fnana.2013.00047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 12/09/2013] [Indexed: 11/13/2022] Open
Abstract
Rabies virus (RV) has been widely used to trace multi-synaptic neuronal circuits. The recent development of glycoprotein-deficient rabies virus (RV-ΔG) expressing various proteins has enabled analyzes of both the structure and function of neuronal circuits. The main advantage of RV-ΔG is its ability to trace monosynaptic circuits by the complementation of rabies virus glycoprotein (RVG), but it has the disadvantage of cytotoxicity. Several strain variants of RV have different biological characteristics, such as synaptic spreading and cytotoxicity, mainly due to amino acid mutations in RVG. We developed an improved protocol for the production of a highly attenuated strain of RV-ΔG and assessed whether RVG variants affect rabies monosynaptic tracing and the health of infected neurons. We demonstrated that (1) rabies monosynaptic tracing with RVG variants traced different subsets of presynaptic partners, (2) RVG of the attenuated strain also labeled astrocytes, and (3) the cytotoxicity of RV-ΔG did not depend on RVG but on RV-ΔG. These findings indicate that RVG variants are an important determinant of rabies monosynaptic tracing.
Collapse
Affiliation(s)
- Takuma Mori
- Department of Informative Physiology, National Institute for Physiological Sciences Okazaki, Aichi, Japan
| | - Kinjiro Morimoto
- Department of Medical Pharmacy, Faculty of Pharmacy, Yasuda Women's University Hiroshima, Japan
| |
Collapse
|
40
|
Genetic dissection of retinal inputs to brainstem nuclei controlling image stabilization. J Neurosci 2013; 33:17797-813. [PMID: 24198370 DOI: 10.1523/jneurosci.2778-13.2013] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
When the head rotates, the image of the visual world slips across the retina. A dedicated set of retinal ganglion cells (RGCs) and brainstem visual nuclei termed the "accessory optic system" (AOS) generate slip-compensating eye movements that stabilize visual images on the retina and improve visual performance. Which types of RGCs project to each of the various AOS nuclei remain unresolved. Here we report a new transgenic mouse line, Hoxd10-GFP, in which the RGCs projecting to all the AOS nuclei are fluorescently labeled. Electrophysiological recordings of Hoxd10-GFP RGCs revealed that they include all three subtypes of On direction-selective RGCs (On-DSGCs), responding to upward, downward, or forward motion. Hoxd10-GFP RGCs also include one subtype of On-Off DSGCs tuned for forward motion. Retrograde circuit mapping with modified rabies viruses revealed that the On-DSGCs project to the brainstem centers involved in both horizontal and vertical retinal slip compensation. In contrast, the On-Off DSGCs labeled in Hoxd10-GFP mice projected to AOS nuclei controlling horizontal but not vertical image stabilization. Moreover, the forward tuned On-Off DSGCs appear physiologically and molecularly distinct from all previously genetically identified On-Off DSGCs. These data begin to clarify the cell types and circuits underlying image stabilization during self-motion, and they support an unexpected diversity of DSGC subtypes.
Collapse
|
41
|
Sivyer B, Williams SR. Direction selectivity is computed by active dendritic integration in retinal ganglion cells. Nat Neurosci 2013; 16:1848-56. [PMID: 24162650 DOI: 10.1038/nn.3565] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/04/2013] [Indexed: 12/12/2022]
Abstract
Active dendritic integration is thought to enrich the computational power of central neurons. However, a direct role of active dendritic processing in the execution of defined neuronal computations in intact neural networks has not been established. Here we used multi-site electrophysiological recording techniques to demonstrate that active dendritic integration underlies the computation of direction selectivity in rabbit retinal ganglion cells. Direction-selective retinal ganglion cells fire action potentials in response to visual image movement in a preferred direction. Dendritic recordings revealed that preferred-direction moving-light stimuli led to dendritic spike generation in terminal dendrites, which were further integrated and amplified as they spread through the dendritic arbor to the axon to drive action potential output. In contrast, when light bars moved in a null direction, synaptic inhibition vetoed neuronal output by directly inhibiting terminal dendritic spike initiation. Active dendritic integration therefore underlies a physiologically engaged circuit-based computation in the retina.
Collapse
Affiliation(s)
- Benjamin Sivyer
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | | |
Collapse
|
42
|
Marc RE, Jones BW, Watt CB, Anderson JR, Sigulinsky C, Lauritzen S. Retinal connectomics: towards complete, accurate networks. Prog Retin Eye Res 2013; 37:141-62. [PMID: 24016532 PMCID: PMC4045117 DOI: 10.1016/j.preteyeres.2013.08.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 08/22/2013] [Accepted: 08/28/2013] [Indexed: 11/17/2022]
Abstract
Connectomics is a strategy for mapping complex neural networks based on high-speed automated electron optical imaging, computational assembly of neural data volumes, web-based navigational tools to explore 10(12)-10(15) byte (terabyte to petabyte) image volumes, and annotation and markup tools to convert images into rich networks with cellular metadata. These collections of network data and associated metadata, analyzed using tools from graph theory and classification theory, can be merged with classical systems theory, giving a more completely parameterized view of how biologic information processing systems are implemented in retina and brain. Networks have two separable features: topology and connection attributes. The first findings from connectomics strongly validate the idea that the topologies of complete retinal networks are far more complex than the simple schematics that emerged from classical anatomy. In particular, connectomics has permitted an aggressive refactoring of the retinal inner plexiform layer, demonstrating that network function cannot be simply inferred from stratification; exposing the complex geometric rules for inserting different cells into a shared network; revealing unexpected bidirectional signaling pathways between mammalian rod and cone systems; documenting selective feedforward systems, novel candidate signaling architectures, new coupling motifs, and the highly complex architecture of the mammalian AII amacrine cell. This is but the beginning, as the underlying principles of connectomics are readily transferrable to non-neural cell complexes and provide new contexts for assessing intercellular communication.
Collapse
Affiliation(s)
- Robert E. Marc
- University of Utah School of Medicine, Department of Ophthalmology / John A. Moran Eye Center, 65 Mario Capecchi Dr, Salt Lake City UT 84132
| | - Bryan W. Jones
- University of Utah School of Medicine, Department of Ophthalmology / John A. Moran Eye Center, 65 Mario Capecchi Dr, Salt Lake City UT 84132
| | - Carl B. Watt
- University of Utah School of Medicine, Department of Ophthalmology / John A. Moran Eye Center, 65 Mario Capecchi Dr, Salt Lake City UT 84132
| | - James R. Anderson
- University of Utah School of Medicine, Department of Ophthalmology / John A. Moran Eye Center, 65 Mario Capecchi Dr, Salt Lake City UT 84132
| | - Crystal Sigulinsky
- University of Utah School of Medicine, Department of Ophthalmology / John A. Moran Eye Center, 65 Mario Capecchi Dr, Salt Lake City UT 84132
| | - Scott Lauritzen
- University of Utah School of Medicine, Department of Ophthalmology / John A. Moran Eye Center, 65 Mario Capecchi Dr, Salt Lake City UT 84132
| |
Collapse
|
43
|
Two-photon imaging of nonlinear glutamate release dynamics at bipolar cell synapses in the mouse retina. J Neurosci 2013; 33:10972-85. [PMID: 23825403 DOI: 10.1523/jneurosci.1241-13.2013] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alpha/Y-type retinal ganglion cells encode visual information with a receptive field composed of nonlinear subunits. This nonlinear subunit structure enhances sensitivity to patterns composed of high spatial frequencies. The Y-cell's subunits are the presynaptic bipolar cells, but the mechanism for the nonlinearity remains incompletely understood. We investigated the synaptic basis of the subunit nonlinearity by combining whole-cell recording of mouse Y-type ganglion cells with two-photon fluorescence imaging of a glutamate sensor (iGluSnFR) expressed on their dendrites and throughout the inner plexiform layer. A control experiment designed to assess iGluSnFR's dynamic range showed that fluorescence responses from Y-cell dendrites increased proportionally with simultaneously recorded excitatory current. Spatial resolution was sufficient to readily resolve independent release at intermingled ON and OFF bipolar terminals. iGluSnFR responses at Y-cell dendrites showed strong surround inhibition, reflecting receptive field properties of presynaptic release sites. Responses to spatial patterns located the origin of the Y-cell nonlinearity to the bipolar cell output, after the stage of spatial integration. The underlying mechanism differed between OFF and ON pathways: OFF synapses showed transient release and strong rectification, whereas ON synapses showed relatively sustained release and weak rectification. At ON synapses, the combination of fast release onset with slower release offset explained the nonlinear response of the postsynaptic ganglion cell. Imaging throughout the inner plexiform layer, we found transient, rectified release at the central-most levels, with increasingly sustained release near the borders. By visualizing glutamate release in real time, iGluSnFR provides a powerful tool for characterizing glutamate synapses in intact neural circuits.
Collapse
|
44
|
Packer AM, Roska B, Häusser M. Targeting neurons and photons for optogenetics. Nat Neurosci 2013; 16:805-15. [PMID: 23799473 PMCID: PMC4928704 DOI: 10.1038/nn.3427] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 05/10/2013] [Indexed: 12/11/2022]
Abstract
Optogenetic approaches promise to revolutionize neuroscience by using light to manipulate neural activity in genetically or functionally defined neurons with millisecond precision. Harnessing the full potential of optogenetic tools, however, requires light to be targeted to the right neurons at the right time. Here we discuss some barriers and potential solutions to this problem. We review methods for targeting the expression of light-activatable molecules to specific cell types, under genetic, viral or activity-dependent control. Next we explore new ways to target light to individual neurons to allow their precise activation and inactivation. These techniques provide a precision in the temporal and spatial activation of neurons that was not achievable in previous experiments. In combination with simultaneous recording and imaging techniques, these strategies will allow us to mimic the natural activity patterns of neurons in vivo, enabling previously impossible 'dream experiments'.
Collapse
Affiliation(s)
- Adam M. Packer
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Botond Roska
- Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Michael Häusser
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|