1
|
Wydrych A, Pakuła B, Janikiewicz J, Dobosz AM, Jakubek-Olszewska P, Skowrońska M, Kurkowska-Jastrzębska I, Cwyl M, Popielarz M, Pinton P, Zavan B, Dobrzyń A, Lebiedzińska-Arciszewska M, Więckowski MR. Metabolic impairments in neurodegeneration with brain iron accumulation. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149517. [PMID: 39366438 DOI: 10.1016/j.bbabio.2024.149517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/12/2024] [Accepted: 09/18/2024] [Indexed: 10/06/2024]
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is a broad, heterogeneous group of rare inherited diseases (1-3 patients/1,000,000 people) characterized by progressive symptoms associated with excessive abnormal iron deposition in the brain. Approximately 15,000-20,000 individuals worldwide are estimated to be affected by NBIA. NBIA is usually associated with slowly progressive pyramidal and extrapyramidal symptoms, axonal motor neuropathy, optic nerve atrophy, cognitive impairment and neuropsychiatric disorders. To date, eleven subtypes of NBIA have been described and the most common ones include pantothenate kinase-associated neurodegeneration (PKAN), PLA2G6-associated neurodegeneration (PLAN), mitochondrial membrane protein-associated neurodegeneration (MPAN) and beta-propeller protein-associated neurodegeneration (BPAN). We present a comprehensive overview of the evidence for disturbed cellular homeostasis and metabolic alterations in NBIA variants, with a careful focus on mitochondrial bioenergetics and lipid metabolism which drives a new perspective in understanding the course of this infrequent malady.
Collapse
Affiliation(s)
- Agata Wydrych
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Barbara Pakuła
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Justyna Janikiewicz
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Warsaw
| | - Aneta M Dobosz
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Warsaw
| | - Patrycja Jakubek-Olszewska
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Marta Skowrońska
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | | | - Maciej Cwyl
- Warsaw University of Technology, Warsaw, Poland; NBIA Poland Association, Warsaw, Poland
| | | | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Barbara Zavan
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Agnieszka Dobrzyń
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Warsaw
| | | | - Mariusz R Więckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland.
| |
Collapse
|
2
|
Bradshaw PC, Aldridge JL, Jamerson LE, McNeal C, Pearson AC, Frasier CR. The Role of Cardiolipin in Brain Bioenergetics, Neuroinflammation, and Neurodegeneration. Mol Neurobiol 2024:10.1007/s12035-024-04630-6. [PMID: 39557801 DOI: 10.1007/s12035-024-04630-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Cardiolipin (CL) is an essential phospholipid that supports the functions of mitochondrial membrane transporters and oxidative phosphorylation complexes. Due to the high level of fatty acyl chain unsaturation, CL is prone to peroxidation during aging, neurodegenerative disease, stroke, and traumatic brain or spinal cord injury. Therefore, effective therapies that stabilize and preserve CL levels or enhance healthy CL fatty acyl chain remodeling are needed. In the last few years, great strides have been made in determining the mechanisms through which precursors for CL biosynthesis, such as phosphatidic acid (PA), are transferred from the ER to the outer mitochondrial membrane (OMM) and then to the inner mitochondrial membrane (IMM) where CL biosynthesis takes place. Many neurodegenerative disorders show dysfunctional mitochondrial ER contact sites that may perturb PA transport and CL biosynthesis. However, little is currently known on how neuronal mitochondria regulate the synthesis, remodeling, and degradation of CL. This review will focus on recent developments on the role of CL in neurological disorders. Importantly, due to CL species in the brain being more unsaturated and diverse than in other tissues, this review will also identify areas where more research is needed to determine a complete picture of brain and spinal cord CL function so that effective therapeutics can be developed to restore the rates of CL synthesis and remodeling in neurological disorders.
Collapse
Affiliation(s)
- Patrick C Bradshaw
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Box 70582, Johnson City, TN, 37614, USA
| | - Jessa L Aldridge
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Box 70582, Johnson City, TN, 37614, USA
| | - Leah E Jamerson
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Box 70582, Johnson City, TN, 37614, USA
| | - Canah McNeal
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Box 70582, Johnson City, TN, 37614, USA
| | - A Catherine Pearson
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Chad R Frasier
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Box 70582, Johnson City, TN, 37614, USA.
| |
Collapse
|
3
|
Jiao L, Shao W, Quan W, Xu L, Liu P, Yang J, Peng X. iPLA2β loss leads to age-related cognitive decline and neuroinflammation by disrupting neuronal mitophagy. J Neuroinflammation 2024; 21:228. [PMID: 39294744 PMCID: PMC11409585 DOI: 10.1186/s12974-024-03219-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND During brain aging, disturbances in neuronal phospholipid metabolism result in impaired cognitive function and dysregulation of neurological processes. Mutations in iPLA2β are associated with neurodegenerative conditions that significantly impact brain phospholipids. iPLA2β deficiency exacerbates mitochondrial dysfunction and abnormal mitochondrial accumulation. We hypothesized that iPLA2β contributes to age-related cognitive decline by disrupting neuronal mitophagy. METHODOLOGY We used aged wild-type (WT) mice and iPLA2β-/- mice as natural aging models to assess cognitive performance, iPLA2β expression in the cortex, levels of chemokines and inflammatory cytokines, and mitochondrial dysfunction, with a specific focus on mitophagy and the mitochondrial phospholipid profile. To further elucidate the role of iPLA2β, we employed adeno-associated virus (AAV)-mediated iPLA2β overexpression in aged mice and re-evaluated these parameters. RESULTS Our findings revealed a significant reduction in iPLA2β levels in the prefrontal cortex of aged brains. Notably, iPLA2β-deficient mice exhibited impaired learning and memory. Loss of iPLA2β in the PFC of aged mice led to increased levels of chemokines and inflammatory cytokines. This damage was associated with altered mitochondrial morphology, reduced ATP levels due to dysregulation of the parkin-independent mitophagy pathway, and changes in the mitochondrial phospholipid profile. AAV-mediated overexpression of iPLA2β alleviated age-related parkin-independent mitophagy pathway dysregulation in primary neurons and the PFC of aged mice, reduced inflammation, and improved cognitive function. CONCLUSIONS Our study suggests that age-related iPLA2β loss in the PFC leads to cognitive decline through the disruption of mitophagy. These findings highlight the potential of targeting iPLA2β to ameliorate age-related neurocognitive disorders.
Collapse
Affiliation(s)
- Li Jiao
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan, China
| | - Wenxin Shao
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan, China
| | - Wenqi Quan
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan, China
| | - Longjiang Xu
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan, China
| | - Penghui Liu
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan, China
| | - Jinling Yang
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan, China
| | - Xiaozhong Peng
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, Innovation for Animal Model, Institute of Laboratory Animal Sciences, National Center of Technology, CAMS & PUMC, Beijing, 100021, China.
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, CAMS & PUMC, Beijing, 100005, China.
| |
Collapse
|
4
|
Liu J, Tan J, Tang B, Guo J. Unveiling the role of iPLA 2β in neurodegeneration: From molecular mechanisms to advanced therapies. Pharmacol Res 2024; 202:107114. [PMID: 38395207 DOI: 10.1016/j.phrs.2024.107114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Calcium-independent phospholipase A2β (iPLA2β), a member of the phospholipase A2 (PLA2s) superfamily, is encoded by the PLA2G6 gene. Mutations in the PLA2G6 gene have been identified as the primary cause of infantile neuroaxonal dystrophy (INAD) and, less commonly, as a contributor to Parkinson's disease (PD). Recent studies have revealed that iPLA2β deficiency leads to neuroinflammation, iron accumulation, mitochondrial dysfunction, lipid dysregulation, and other pathological changes, forming a complex pathogenic network. These discoveries shed light on potential mechanisms underlying PLA2G6-associated neurodegeneration (PLAN) and offer valuable insights for therapeutic development. This review provides a comprehensive analysis of the fundamental characteristics of iPLA2β, its association with neurodegeneration, the pathogenic mechanisms involved in PLAN, and potential targets for therapeutic intervention. It offers an overview of the latest advancements in this field, aiming to contribute to ongoing research endeavors and facilitate the development of effective therapies for PLAN.
Collapse
Affiliation(s)
- Jiabin Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jieqiong Tan
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
5
|
Tanaka M, Fujikawa R, Sekiguchi T, Hernandez J, Johnson OT, Tanaka D, Kumafuji K, Serikawa T, Hoang Trung H, Hattori K, Mashimo T, Kuwamura M, Gestwicki JE, Kuramoto T. A missense mutation in the Hspa8 gene encoding heat shock cognate protein 70 causes neuroaxonal dystrophy in rats. Front Neurosci 2024; 18:1263724. [PMID: 38384479 PMCID: PMC10880117 DOI: 10.3389/fnins.2024.1263724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/16/2024] [Indexed: 02/23/2024] Open
Abstract
Neuroaxonal dystrophy (NAD) is a neurodegenerative disease characterized by spheroid (swollen axon) formation in the nervous system. In the present study, we focused on a newly established autosomal recessive mutant strain of F344-kk/kk rats with hind limb gait abnormalities and ataxia from a young age. Histopathologically, a number of axonal spheroids were observed throughout the central nervous system, including the spinal cord (mainly in the dorsal cord), brain stem, and cerebellum in F344-kk/kk rats. Transmission electron microscopic observation of the spinal cord revealed accumulation of electron-dense bodies, degenerated abnormal mitochondria, as well as membranous or tubular structures in the axonal spheroids. Based on these neuropathological findings, F344-kk/kk rats were diagnosed with NAD. By a positional cloning approach, we identified a missense mutation (V95E) in the Hspa8 (heat shock protein family A (Hsp70) member 8) gene located on chromosome 8 of the F344-kk/kk rat genome. Furthermore, we developed the Hspa8 knock-in (KI) rats with the V95E mutation using the CRISPR-Cas system. Homozygous Hspa8-KI rats exhibited ataxia and axonal spheroids similar to those of F344-kk/kk rats. The V95E mutant HSC70 protein exhibited the significant but modest decrease in the maximum hydrolysis rate of ATPase when stimulated by co-chaperons DnaJB4 and BAG1 in vitro, which suggests the functional deficit in the V95E HSC70. Together, our findings provide the first evidence that the genetic alteration of the Hspa8 gene caused NAD in mammals.
Collapse
Affiliation(s)
- Miyuu Tanaka
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
- Laboratory of Veterinary Pathology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka, Japan
| | - Ryoko Fujikawa
- Laboratory of Veterinary Pathology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka, Japan
| | - Takahiro Sekiguchi
- Laboratory of Veterinary Pathology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka, Japan
| | - Jason Hernandez
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, United States
| | - Oleta T. Johnson
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, United States
| | - Daisuke Tanaka
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kenta Kumafuji
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Tadao Serikawa
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Hieu Hoang Trung
- Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Kosuke Hattori
- Division of Animal Genetics, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Tomoji Mashimo
- Division of Animal Genetics, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka, Japan
| | - Jason E. Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, United States
| | - Takashi Kuramoto
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
- Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| |
Collapse
|
6
|
Sugihara R, Taneike M, Murakawa T, Tamai T, Ueda H, Kitazume-Taneike R, Oka T, Akazawa Y, Nishida H, Mine K, Hioki A, Omi J, Omiya S, Aoki J, Ikeda K, Nishida K, Arita M, Yamaguchi O, Sakata Y, Otsu K. Lysophosphatidylserine induces necrosis in pressure overloaded male mouse hearts via G protein coupled receptor 34. Nat Commun 2023; 14:4494. [PMID: 37524709 PMCID: PMC10390482 DOI: 10.1038/s41467-023-40201-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 07/17/2023] [Indexed: 08/02/2023] Open
Abstract
Heart failure is a leading cause of mortality in developed countries. Cell death is a key player in the development of heart failure. Calcium-independent phospholipase A2β (iPLA2β) produces lipid mediators by catalyzing lipids and induces nuclear shrinkage in caspase-independent cell death. Here, we show that lysophosphatidylserine generated by iPLA2β induces necrotic cardiomyocyte death, as well as contractile dysfunction mediated through its receptor, G protein-coupled receptor 34 (GPR34). Cardiomyocyte-specific iPLA2β-deficient male mice were subjected to pressure overload. While control mice showed left ventricular systolic dysfunction with necrotic cardiomyocyte death, iPLA2β-deficient mice preserved cardiac function. Lipidomic analysis revealed a reduction of 18:0 lysophosphatidylserine in iPLA2β-deficient hearts. Knockdown of Gpr34 attenuated 18:0 lysophosphatidylserine-induced necrosis in neonatal male rat cardiomyocytes, while the ablation of Gpr34 in male mice reduced the development of pressure overload-induced cardiac remodeling. Thus, the iPLA2β-lysophosphatidylserine-GPR34-necrosis signaling axis plays a detrimental role in the heart in response to pressure overload.
Collapse
Affiliation(s)
- Ryuta Sugihara
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Manabu Taneike
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomokazu Murakawa
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takahito Tamai
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiromichi Ueda
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Preventive Diagnostics, Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Rika Kitazume-Taneike
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takafumi Oka
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasuhiro Akazawa
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroki Nishida
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kentaro Mine
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ayana Hioki
- Preventive Diagnostics, Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Jumpei Omi
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shigemiki Omiya
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, 125 Coldharbour Lane, London, SE5 9NU, UK
- National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shinmachi, Suita, Osaka, 564-8565, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kazutaka Ikeda
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
- Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama-City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Kazuhiko Nishida
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
- Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama-City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
- Division of Physiological Chemistry and Metabolism, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Osamu Yamaguchi
- Department of Cardiology, Pulmonology, Hypertension & Nephrology, Ehime University Graduate School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kinya Otsu
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, 125 Coldharbour Lane, London, SE5 9NU, UK.
- National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shinmachi, Suita, Osaka, 564-8565, Japan.
| |
Collapse
|
7
|
Hayashi D, Dennis EA. Molecular basis of unique specificity and regulation of group VIA calcium-independent phospholipase A 2 (PNPLA9) and its role in neurodegenerative diseases. Pharmacol Ther 2023; 245:108395. [PMID: 36990122 PMCID: PMC10174669 DOI: 10.1016/j.pharmthera.2023.108395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Glycerophospholipids are major components of cell membranes and consist of a glycerol backbone esterified with one of over 30 unique fatty acids at each of the sn-1 and sn-2 positions. In addition, in some human cells and tissues as much as 20% of the glycerophospholipids contain a fatty alcohol rather than an ester in the sn-1 position, although it can also occur in the sn-2 position. The sn-3 position of the glycerol backbone contains a phosphodiester bond linked to one of more than 10 unique polar head-groups. Hence, humans contain thousands of unique individual molecular species of phospholipids given the heterogeneity of the sn-1 and sn-2 linkage and carbon chains and the sn-3 polar groups. Phospholipase A2 (PLA2) is a superfamily of enzymes that hydrolyze the sn-2 fatty acyl chain resulting in lyso-phospholipids and free fatty acids that then undergo further metabolism. PLA2's play a critical role in lipid-mediated biological responses and membrane phospholipid remodeling. Among the PLA2 enzymes, the Group VIA calcium-independent PLA2 (GVIA iPLA2), also referred to as PNPLA9, is a fascinating enzyme with broad substrate specificity and it is implicated in a wide variety of diseases. Especially notable, the GVIA iPLA2 is implicated in the sequelae of several neurodegenerative diseases termed "phospholipase A2-associated neurodegeneration" (PLAN) diseases. Despite many reports on the physiological role of the GVIA iPLA2, the molecular basis of its enzymatic specificity was unclear. Recently, we employed state-of-the-art lipidomics and molecular dynamics techniques to elucidate the detailed molecular basis of its substrate specificity and regulation. In this review, we summarize the molecular basis of the enzymatic action of GVIA iPLA2 and provide a perspective on future therapeutic strategies for PLAN diseases targeting GVIA iPLA2.
Collapse
Affiliation(s)
- Daiki Hayashi
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Kobe 657-8501, Japan.
| | - Edward A Dennis
- Department of Pharmacology, Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0601, USA
| |
Collapse
|
8
|
Lin G, Tepe B, McGrane G, Tipon RC, Croft G, Panwala L, Hope A, Liang AJH, Zuo Z, Byeon SK, Wang L, Pandey A, Bellen HJ. Exploring therapeutic strategies for infantile neuronal axonal dystrophy (INAD/PARK14). eLife 2023; 12:82555. [PMID: 36645408 PMCID: PMC9889087 DOI: 10.7554/elife.82555] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/15/2023] [Indexed: 01/17/2023] Open
Abstract
Infantile neuroaxonal dystrophy (INAD) is caused by recessive variants in PLA2G6 and is a lethal pediatric neurodegenerative disorder. Loss of the Drosophila homolog of PLA2G6, leads to ceramide accumulation, lysosome expansion, and mitochondrial defects. Here, we report that retromer function, ceramide metabolism, the endolysosomal pathway, and mitochondrial morphology are affected in INAD patient-derived neurons. We show that in INAD mouse models, the same features are affected in Purkinje cells, arguing that the neuropathological mechanisms are evolutionary conserved and that these features can be used as biomarkers. We tested 20 drugs that target these pathways and found that Ambroxol, Desipramine, Azoramide, and Genistein alleviate neurodegenerative phenotypes in INAD flies and INAD patient-derived neural progenitor cells. We also develop an AAV-based gene therapy approach that delays neurodegeneration and prolongs lifespan in an INAD mouse model.
Collapse
Affiliation(s)
- Guang Lin
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
| | - Burak Tepe
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
| | - Geoff McGrane
- New York Stem Cell Foundation Research InstituteNew YorkUnited States
| | - Regine C Tipon
- New York Stem Cell Foundation Research InstituteNew YorkUnited States
| | - Gist Croft
- New York Stem Cell Foundation Research InstituteNew YorkUnited States
| | | | | | - Agnes JH Liang
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
| | - Seul Kee Byeon
- Department of Laboratory Medicine and Pathology, Mayo ClinicRochesterUnited States
| | - Lily Wang
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo ClinicRochesterUnited States
- Manipal Academy of Higher Education, ManipalKarnatakaIndia
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
9
|
Villalón-García I, Povea-Cabello S, Álvarez-Córdoba M, Talaverón-Rey M, Suárez-Rivero JM, Suárez-Carrillo A, Munuera-Cabeza M, Reche-López D, Cilleros-Holgado P, Piñero-Pérez R, Sánchez-Alcázar JA. Vicious cycle of lipid peroxidation and iron accumulation in neurodegeneration. Neural Regen Res 2022; 18:1196-1202. [PMID: 36453394 PMCID: PMC9838166 DOI: 10.4103/1673-5374.358614] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Lipid peroxidation and iron accumulation are closely associated with neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's diseases, or neurodegeneration with brain iron accumulation disorders. Mitochondrial dysfunction, lipofuscin accumulation, autophagy disruption, and ferroptosis have been implicated as the critical pathomechanisms of lipid peroxidation and iron accumulation in these disorders. Currently, the connection between lipid peroxidation and iron accumulation and the initial cause or consequence in neurodegeneration processes is unclear. In this review, we have compiled the known mechanisms by which lipid peroxidation triggers iron accumulation and lipofuscin formation, and the effect of iron overload on lipid peroxidation and cellular function. The vicious cycle established between both pathological alterations may lead to the development of neurodegeneration. Therefore, the investigation of these mechanisms is essential for exploring therapeutic strategies to restrict neurodegeneration. In addition, we discuss the interplay between lipid peroxidation and iron accumulation in neurodegeneration, particularly in PLA2G6-associated neurodegeneration, a rare neurodegenerative disease with autosomal recessive inheritance, which belongs to the group of neurodegeneration with brain iron accumulation disorders.
Collapse
Affiliation(s)
- Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Juan M. Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Alejandra Suárez-Carrillo
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Manuel Munuera-Cabeza
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Diana Reche-López
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Paula Cilleros-Holgado
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Rocío Piñero-Pérez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - José A. Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain,Correspondence to: José A. Sánchez-Alcázar, MD, PhD, .
| |
Collapse
|
10
|
Ma M, Moulton MJ, Lu S, Bellen HJ. 'Fly-ing' from rare to common neurodegenerative disease mechanisms. Trends Genet 2022; 38:972-984. [PMID: 35484057 PMCID: PMC9378361 DOI: 10.1016/j.tig.2022.03.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 12/14/2022]
Abstract
Advances in genome sequencing have enabled researchers and clinicians to probe vast numbers of human variants to distinguish pathogenic from benign variants. Model organisms have been crucial in variant assessment and in delineating the molecular mechanisms of some of the diseases caused by these variants. The fruit fly, Drosophila melanogaster, has played a valuable role in this endeavor, taking advantage of its genetic technologies and established biological knowledge. We highlight the utility of the fly in studying the function of genes associated with rare neurological diseases that have led to a better understanding of common disease mechanisms. We emphasize that shared themes emerge among disease mechanisms, including the importance of lipids, in two prominent neurodegenerative diseases: Alzheimer's disease (AD) and Parkinson's disease (PD).
Collapse
Affiliation(s)
- Mengqi Ma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Matthew J Moulton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
11
|
Poupon-Bejuit L, Hughes MP, Liu W, Geard A, Faour-Slika N, Whaler S, Massaro G, Rahim AA. A GLP1 receptor agonist diabetes drug ameliorates neurodegeneration in a mouse model of infantile neurometabolic disease. Sci Rep 2022; 12:13825. [PMID: 35970890 PMCID: PMC9378686 DOI: 10.1038/s41598-022-17338-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Infantile neuroaxonal dystrophy (INAD) is a rare paediatric neurodegenerative condition caused by mutations in the PLA2G6 gene, which is also the causative gene for PARK14-linked young adult-onset dystonia parkinsonism. INAD patients usually die within their first decade of life, and there are currently no effective treatments available. GLP1 receptor (GLP-1R) agonists are licensed for treating type 2 diabetes mellitus but have also demonstrated neuroprotective properties in a clinical trial for Parkinson's disease. Therefore, we evaluated the therapeutic efficacy of a new recently licensed GLP-1R agonist diabetes drug in a mouse model of INAD. Systemically administered high-dose semaglutide delivered weekly to juvenile INAD mice improved locomotor function and extended the lifespan. An investigation into the mechanisms underlying these therapeutic effects revealed that semaglutide significantly increased levels of key neuroprotective molecules while decreasing those involved in pro-neurodegenerative pathways. The expression of mediators in both the apoptotic and necroptotic pathways were also significantly reduced in semaglutide treated mice. A reduction of neuronal loss and neuroinflammation was observed. Finally, there was no obvious inflammatory response in wild-type mice associated with the repeated high doses of semaglutide used in this study.
Collapse
Affiliation(s)
- L Poupon-Bejuit
- UCL School of Pharmacy, University College London, London, UK
| | - M P Hughes
- UCL School of Pharmacy, University College London, London, UK
| | - W Liu
- UCL School of Pharmacy, University College London, London, UK
| | - A Geard
- UCL School of Pharmacy, University College London, London, UK
| | - N Faour-Slika
- UCL School of Pharmacy, University College London, London, UK
| | - S Whaler
- UCL School of Pharmacy, University College London, London, UK
| | - G Massaro
- UCL School of Pharmacy, University College London, London, UK.
| | - A A Rahim
- UCL School of Pharmacy, University College London, London, UK.
| |
Collapse
|
12
|
Villalón-García I, Álvarez-Córdoba M, Povea-Cabello S, Talaverón-Rey M, Villanueva-Paz M, Luzón-Hidalgo R, Suárez-Rivero JM, Suárez-Carrillo A, Munuera-Cabeza M, Salas JJ, Falcón-Moya R, Rodríguez-Moreno A, Armengol JA, Sánchez-Alcázar JA. Vitamin E prevents lipid peroxidation and iron accumulation in PLA2G6-Associated Neurodegeneration. Neurobiol Dis 2022; 165:105649. [PMID: 35122944 DOI: 10.1016/j.nbd.2022.105649] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/11/2022] [Accepted: 01/31/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND PLA2G6-Associated Neurodegeneration (PLAN) is a rare neurodegenerative disease with autosomal recessive inheritance, which belongs to the NBIA (Neurodegeneration with Brain Iron Accumulation) group. Although the pathogenesis of the disease remains largely unclear, lipid peroxidation seems to play a central role in the pathogenesis. Currently, there is no cure for the disease. OBJECTIVE In this work, we examined the presence of lipid peroxidation, iron accumulation and mitochondrial dysfunction in two cellular models of PLAN, patients-derived fibroblasts and induced neurons, and assessed the effects of α-tocopherol (vitamin E) in correcting the pathophysiological alterations in PLAN cell cultures. METHODS Pathophysiological alterations were examined in fibroblasts and induced neurons generated by direct reprograming. Iron and lipofuscin accumulation were assessed using light and electron microscopy, as well as biochemical analysis techniques. Reactive Oxygen species production, lipid peroxidation and mitochondrial dysfunction were measured using specific fluorescent probes analysed by fluorescence microscopy and flow cytometry. RESULTS PLAN fibroblasts and induced neurons clearly showed increased lipid peroxidation, iron accumulation and altered mitochondrial membrane potential. All these pathological features were reverted with vitamin E treatment. CONCLUSIONS PLAN fibroblasts and induced neurons reproduce the main pathological alterations of the disease and provide useful tools for disease modelling. The main pathological alterations were corrected by Vitamin E supplementation in both models, suggesting that blocking lipid peroxidation progression is a critical therapeutic target.
Collapse
Affiliation(s)
- Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain
| | - Marina Villanueva-Paz
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain
| | - Raquel Luzón-Hidalgo
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain
| | - Juan M Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain
| | - Alejandra Suárez-Carrillo
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain
| | - Manuel Munuera-Cabeza
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain
| | - Joaquín J Salas
- Departamento de Bioquímica y Biología Molecular de Productos Vegetales, Instituto de la Grasa (CSIC), Sevilla, Spain.
| | - Rafael Falcón-Moya
- Laboratorio de Neurociencia Celular y Plasticidad, Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla, Spain.
| | - Antonio Rodríguez-Moreno
- Laboratorio de Neurociencia Celular y Plasticidad, Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla, Spain.
| | - José A Armengol
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla, Spain.
| | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain.
| |
Collapse
|
13
|
Li JL, Lin TY, Chen PL, Guo TN, Huang SY, Chen CH, Lin CH, Chan CC. Mitochondrial Function and Parkinson's Disease: From the Perspective of the Electron Transport Chain. Front Mol Neurosci 2021; 14:797833. [PMID: 34955747 PMCID: PMC8695848 DOI: 10.3389/fnmol.2021.797833] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/18/2021] [Indexed: 12/21/2022] Open
Abstract
Parkinson’s disease (PD) is known as a mitochondrial disease. Some even regarded it specifically as a disorder of the complex I of the electron transport chain (ETC). The ETC is fundamental for mitochondrial energy production which is essential for neuronal health. In the past two decades, more than 20 PD-associated genes have been identified. Some are directly involved in mitochondrial functions, such as PRKN, PINK1, and DJ-1. While other PD-associate genes, such as LRRK2, SNCA, and GBA1, regulate lysosomal functions, lipid metabolism, or protein aggregation, some have been shown to indirectly affect the electron transport chain. The recent identification of CHCHD2 and UQCRC1 that are critical for functions of complex IV and complex III, respectively, provide direct evidence that PD is more than just a complex I disorder. Like UQCRC1 in preventing cytochrome c from release, functions of ETC proteins beyond oxidative phosphorylation might also contribute to the pathogenesis of PD.
Collapse
Affiliation(s)
- Jeng-Lin Li
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.,Division of Neurology, Department of Internal Medicine, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan County, Taiwan
| | - Tai-Yi Lin
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Lin Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Ting-Ni Guo
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| | - Shu-Yi Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Hong Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Chiang Chan
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
14
|
Mandik F, Vos M. Neurodegenerative Disorders: Spotlight on Sphingolipids. Int J Mol Sci 2021; 22:ijms222111998. [PMID: 34769423 PMCID: PMC8584905 DOI: 10.3390/ijms222111998] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases are incurable diseases of the nervous system that lead to a progressive loss of brain areas and neuronal subtypes, which is associated with an increase in symptoms that can be linked to the affected brain areas. The key findings that appear in many neurodegenerative diseases are deposits of proteins and the damage of mitochondria, which mainly affect energy production and mitophagy. Several causative gene mutations have been identified in various neurodegenerative diseases; however, a large proportion are considered sporadic. In the last decade, studies linking lipids, and in particular sphingolipids, to neurodegenerative diseases have shown the importance of these sphingolipids in the underlying pathogenesis. Sphingolipids are bioactive lipids consisting of a sphingoid base linked to a fatty acid and a hydrophilic head group. They are involved in various cellular processes, such as cell growth, apoptosis, and autophagy, and are an essential component of the brain. In this review, we will cover key findings that demonstrate the relevance of sphingolipids in neurodegenerative diseases and will focus on neurodegeneration with brain iron accumulation and Parkinson’s disease.
Collapse
|
15
|
Yeh TH, Liu HF, Chiu CC, Cheng ML, Huang GJ, Huang YC, Liu YC, Huang YZ, Lu CS, Chen YC, Chen HY, Cheng YC. PLA2G6 mutations cause motor dysfunction phenotypes of young-onset dystonia-parkinsonism type 14 and can be relieved by DHA treatment in animal models. Exp Neurol 2021; 346:113863. [PMID: 34520727 DOI: 10.1016/j.expneurol.2021.113863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
Parkinson's disease (PD), the most common neurodegenerative motor disorder, is currently incurable. Although many studies have provided insights on the substantial influence of genetic factors on the occurrence and development of PD, the molecular mechanism underlying the disease is largely unclear. Previous studies have shown that point mutations in the phospholipase A2 group VI gene (PLA2G6) correlate with young-onset dystonia-parkinsonism type 14 (PARK14). However, limited information is available regarding the pathogenic role of this gene and the mechanism underlying its function. To study the role of PLA2G6 mutations, we first used zebrafish larvae to screen six PLA2G6 mutations and revealed that injection of D331Y, T572I, and R741Q mutation constructs induced phenotypes such as motility defects and reduction in dopaminergic neurons. The motility defects could be alleviated by treatment with L-3, 4-dihydroxyphenylalanine (L-dopa), indicating that these mutations are pathological for PARK14 symptoms. Furthermore, the injection of D331Y and T572I mutation constructs reduced phospholipase activity of PLA2G6 and its lipid metabolites, which confirmed that these two mutations are loss-of-function mutations. Metabolomic analysis revealed that D331Y or T572I mutation led to higher phospholipid and lower docosahexaenoic acid (DHA) levels, indicating that reduced DHA levels are pathological for defective motor functions. Further, a dietary DHA supplement relieved the motility defects in PLA2G6D331Y/D331Y knock-in mice. This result revealed that the D331Y mutation caused defective PLA2G6 phospholipase activity and consequently reduced the DHA level, which is the pathogenic factor responsible for PARK14. The results of this study will facilitate the development of therapeutic strategies for PARK14.
Collapse
Affiliation(s)
- Tu-Hsueh Yeh
- Department of Neurology, Taipei Medical University Hospital, Taipei, Taiwan; School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Han-Fang Liu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ching-Chi Chiu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
| | - Mei-Ling Cheng
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan.; Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Guo-Jen Huang
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Yin-Cheng Huang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou Medical Center, Taoyuan, Taiwan
| | - Yu-Chien Liu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ying-Zu Huang
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Department of Neurology, Chang Gung Memorial Hospital at Linkou Medical Center, Taoyuan, Taiwan
| | - Chin-Song Lu
- Department of Neurology, Chang Gung Memorial Hospital at Linkou Medical Center, Taoyuan, Taiwan; Section of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou Medical Center, Taoyuan, Taiwan
| | - Yi-Chieh Chen
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Department of Neurology, Chang Gung Memorial Hospital at Linkou Medical Center, Taoyuan, Taiwan
| | - Hao-Yuan Chen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Chuan Cheng
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.
| |
Collapse
|
16
|
iPLA2-VIA is required for healthy aging of neurons, muscle, and the female germline in Drosophila melanogaster. PLoS One 2021; 16:e0256738. [PMID: 34506510 PMCID: PMC8432841 DOI: 10.1371/journal.pone.0256738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/13/2021] [Indexed: 11/19/2022] Open
Abstract
Neurodegenerative disease (ND) is a growing health burden worldwide, but its causes and treatments remain elusive. Although most cases of ND are sporadic, rare familial cases have been attributed to single genes, which can be investigated in animal models. We have generated a new mutation in the calcium-independent phospholipase A2 (iPLA2) VIA gene CG6718, the Drosophila melanogaster ortholog of human PLA2G6/PARK14, mutations in which cause a suite of NDs collectively called PLA2G6-associated neurodegeneration (PLAN). Our mutants display age-related loss of climbing ability, a symptom of neurodegeneration in flies. Although phospholipase activity commonly is presumed to underlie iPLA2-VIA function, locomotor decline in our mutants is rescued by a transgene carrying a serine-to-alanine mutation in the catalytic residue, suggesting that important functional aspects are independent of phospholipase activity. Additionally, we find that iPLA2-VIA knockdown in either muscle or neurons phenocopies locomotor decline with age, demonstrating its necessity in both neuronal and non-neuronal tissues. Furthermore, RNA in situ hybridization shows high endogenous iPLA2-VIA mRNA expression in adult germ cells, and transgenic HA-tagged iPLA2-VIA colocalizes with mitochondria there. Mutant males are fertile with normal spermatogenesis, while fertility is reduced in mutant females. Mutant female germ cells display age-related mitochondrial aggregation, loss of mitochondrial potential, and elevated cell death. These results suggest that iPLA2-VIA is critical for mitochondrial integrity in the Drosophila female germline, which may provide a novel context to investigate its functions with parallels to PLAN.
Collapse
|
17
|
Hayashi D, Mouchlis VD, Dennis EA. Omega-3 versus Omega-6 fatty acid availability is controlled by hydrophobic site geometries of phospholipase A 2s. J Lipid Res 2021; 62:100113. [PMID: 34474084 PMCID: PMC8551542 DOI: 10.1016/j.jlr.2021.100113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 11/12/2022] Open
Abstract
Human phospholipase A2s (PLA2) constitute a superfamily of enzymes that hydrolyze the sn-2 acyl-chain of glycerophospholipids, producing lysophospholipids and free fatty acids. Each PLA2 enzyme type contributes to specific biological functions based on its expression, subcellular localization, and substrate specificity. Among the PLA2 superfamily, the cytosolic cPLA2 enzymes, calcium-independent iPLA2 enzymes, and secreted sPLA2 enzymes are implicated in many diseases, but a central issue is the preference for double-bond positions in polyunsaturated fatty acids (PUFAs) occupying the sn-2 position of membrane phospholipids. We demonstrate that each PLA2 has a unique preference between the specific omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and the omega-6 arachidonic acid (AA), which are the precursors of most proinflammatory and anti-inflammatory or resolving eicosanoids and related oxylipins. Surprisingly, we discovered that human cPLA2 selectively prefers AA, whereas iPLA2 prefers EPA, and sPLA2 prefers DHA as substrate. We determined the optimal binding of each phospholipid substrate in the active site of each PLA2 to explain these specificities. To investigate this, we utilized recently developed lipidomics-based LC-MS/MS and GC/MS assays to determine the sn-2 acyl chain specificity in mixtures of phospholipids. We performed μs timescale molecular dynamics (MD) simulations to reveal unique active site properties, especially how the precise hydrophobic cavity accommodation of the sn-2 acyl chain contributes to the stability of substrate binding and the specificity of each PLA2 for AA, EPA, or DHA. This study provides the first comprehensive picture of the unique substrate selectivity of each PLA2 for omega-3 and omega-6 fatty acids.
Collapse
Affiliation(s)
- Daiki Hayashi
- Department of Chemistry and Biochemistry and Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Varnavas D Mouchlis
- Department of Chemistry and Biochemistry and Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Edward A Dennis
- Department of Chemistry and Biochemistry and Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
18
|
Parkinson's Disease-Related Genes and Lipid Alteration. Int J Mol Sci 2021; 22:ijms22147630. [PMID: 34299248 PMCID: PMC8305702 DOI: 10.3390/ijms22147630] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
Parkinson’s disease (PD) is a complex and progressive neurodegenerative disorder with a prevalence of approximately 0.5–1% among those aged 65–70 years. Although most of its clinical manifestations are due to a loss of dopaminergic neurons, the PD etiology is largely unknown. PD is caused by a combination of genetic and environmental factors, and the exact interplay between genes and the environment is still debated. Several biological processes have been implicated in PD, including mitochondrial or lysosomal dysfunctions, alteration in protein clearance, and neuroinflammation, but a common molecular mechanism connecting the different cellular alterations remains incompletely understood. Accumulating evidence underlines a significant role of lipids in the pathological pathways leading to PD. Beside the well-described lipid alteration in idiopathic PD, this review summarizes the several lipid alterations observed in experimental models expressing PD-related genes and suggests a possible scenario in relationship to the molecular mechanisms of neuronal toxicity. PD could be considered a lipid-induced proteinopathy, where alteration in lipid composition or metabolism could induce protein alteration—for instance, alpha-synuclein accumulation—and finally neuronal death.
Collapse
|
19
|
Jin T, Lin J, Gong Y, Bi X, Hu S, Lv Q, Chen J, Li X, Chen J, Zhang W, Wang M, Fu G. iPLA 2β Contributes to ER Stress-Induced Apoptosis during Myocardial Ischemia/Reperfusion Injury. Cells 2021; 10:1446. [PMID: 34207793 PMCID: PMC8227999 DOI: 10.3390/cells10061446] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 01/09/2023] Open
Abstract
Both calcium-independent phospholipase A2 beta (iPLA2β) and endoplasmic reticulum (ER) stress regulate important pathophysiological processes including inflammation, calcium homeostasis and apoptosis. However, their roles in ischemic heart disease are poorly understood. Here, we show that the expression of iPLA2β is increased during myocardial ischemia/reperfusion (I/R) injury, concomitant with the induction of ER stress and the upregulation of cell death. We further show that the levels of iPLA2β in serum collected from acute myocardial infarction (AMI) patients and in samples collected from both in vivo and in vitro I/R injury models are significantly elevated. Further, iPLA2β knockout mice and siRNA mediated iPLA2β knockdown are employed to evaluate the ER stress and cell apoptosis during I/R injury. Additionally, cell surface protein biotinylation and immunofluorescence assays are used to trace and locate iPLA2β. Our data demonstrate the increase of iPLA2β augments ER stress and enhances cardiomyocyte apoptosis during I/R injury in vitro and in vivo. Inhibition of iPLA2β ameliorates ER stress and decreases cell death. Mechanistically, iPLA2β promotes ER stress and apoptosis by translocating to ER upon myocardial I/R injury. Together, our study suggests iPLA2β contributes to ER stress-induced apoptosis during myocardial I/R injury, which may serve as a potential therapeutic target against ischemic heart disease.
Collapse
Affiliation(s)
- Tingting Jin
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310020, China; (T.J.); (J.L.); (Y.G.); (X.B.); (S.H.); (Q.L.); (X.L.)
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310027, China; (J.C.); (J.C.)
| | - Jun Lin
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310020, China; (T.J.); (J.L.); (Y.G.); (X.B.); (S.H.); (Q.L.); (X.L.)
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310027, China; (J.C.); (J.C.)
| | - Yingchao Gong
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310020, China; (T.J.); (J.L.); (Y.G.); (X.B.); (S.H.); (Q.L.); (X.L.)
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310027, China; (J.C.); (J.C.)
| | - Xukun Bi
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310020, China; (T.J.); (J.L.); (Y.G.); (X.B.); (S.H.); (Q.L.); (X.L.)
| | - Shasha Hu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310020, China; (T.J.); (J.L.); (Y.G.); (X.B.); (S.H.); (Q.L.); (X.L.)
| | - Qingbo Lv
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310020, China; (T.J.); (J.L.); (Y.G.); (X.B.); (S.H.); (Q.L.); (X.L.)
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310027, China; (J.C.); (J.C.)
| | - Jiaweng Chen
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310027, China; (J.C.); (J.C.)
| | - Xiaoting Li
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310020, China; (T.J.); (J.L.); (Y.G.); (X.B.); (S.H.); (Q.L.); (X.L.)
| | - Jiaqi Chen
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310027, China; (J.C.); (J.C.)
| | - Wenbin Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310020, China; (T.J.); (J.L.); (Y.G.); (X.B.); (S.H.); (Q.L.); (X.L.)
| | - Meihui Wang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310027, China; (J.C.); (J.C.)
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310020, China; (T.J.); (J.L.); (Y.G.); (X.B.); (S.H.); (Q.L.); (X.L.)
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310027, China; (J.C.); (J.C.)
| |
Collapse
|
20
|
Toth-Bencsik R, Balicza P, Varga ET, Lengyel A, Rudas G, Gal A, Molnar MJ. New Insights of Phospholipase A2 Associated Neurodegeneration Phenotype Based on the Long-Term Follow-Up of a Large Hungarian Family. Front Genet 2021; 12:628904. [PMID: 34168672 PMCID: PMC8217829 DOI: 10.3389/fgene.2021.628904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction Phospholipase A2-associated Neurodegeneration (PLAN) is a group of neurodegenerative diseases associated with the alterations of PLA2G6. Some phenotype-genotype association are well known but there is no clear explanation why some cases can be classified into distinct subgroups, while others follow a continuous clinical spectrum. Methods Long-term neurological, and psychiatric follow-up, neuropathological, radiological, and genetic examinations, were performed in three affected girls and their family. Results Two 24-years old twins and their 22-years old sister harbored the p.P622S, and p.R600W mutation in PLA2G6. The age of onset and the most prominent presenting symptoms (gaze palsy, ataxia, dystonia, psychomotor regression indicated atypical neuroaxonal dystrophy (ANAD), however, optic atrophy, severe tetraparesis would fit into infantile neuroaxonal dystrophy (INAD). All siblings had hyperintensity in the globi pallidi and substantiae nigrae which is reported in ANAD, whereas it is considered a later neuroradiological marker in INAD. The slow progression, rigidity, bradykinesis, and the prominent psychiatric symptoms indicate PLA2G6-related dystonia-parkinsonism. Abnormal mitochondria, lipid accumulation and axonal spheroids were observed in the muscle and nerve tissue. Brain deposition appeared 6 years following the initial cerebellar atrophy. Mild MRI alterations were detected in the asymptomatic carrier parents. Conclusion The colorful clinical symptoms, the slightly discordant phenotype, and the neuroimaging data in the family supports the view that despite the distinct definition of age-related phenotypes in PLAN, these are not strict disease categories, but rather a continuous phenotypic spectrum. The mild MRI alterations of the parents and the family history suggest that even heterozygous pathogenic variants might be associated with clinical symptoms, although systematic study is needed to prove this.
Collapse
Affiliation(s)
- Renata Toth-Bencsik
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Peter Balicza
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Edina Timea Varga
- Department of Neurology, Albert Szent-Györgyi Medical and Pharmaceutical Center, University of Szeged, Szeged, Hungary
| | - Andras Lengyel
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Gabor Rudas
- MR Research Center, Semmelweis University, Budapest, Hungary
| | - Aniko Gal
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Maria Judit Molnar
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| |
Collapse
|
21
|
Neutral lipids as early biomarkers of cellular fate: the case of α-synuclein overexpression. Cell Death Dis 2021; 12:52. [PMID: 33414430 PMCID: PMC7791139 DOI: 10.1038/s41419-020-03254-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023]
Abstract
α-synuclein (α-syn) accumulation and aggregation is a common pathological factor found in synucleinopathies, a group of neurodegenerative disorders that includes Parkinson´s disease (PD). It has been proposed that lipid dyshomeostasis is responsible for the occurrence of PD-related processes, however, the precise role of lipids in the onset and progression of neurodegenerative disorders remains unclear. Our aim was to investigate the effect of α-syn overexpression on neutral lipid metabolism and how this impacts on neuronal fate. We found lipid droplet (LD) accumulation in cells overexpressing α-syn to be associated with a rise in triacylglycerol (TAG) and cholesteryl ester (CE) levels. α-syn overexpression promoted diacylglycerol acyltransferase 2 upregulation and acyl-CoA synthetase activation, triggering TAG buildup, that was accompanied by an increase in diacylglycerol acylation. Moreover, the CE increment was associated with higher activity of acyl-CoA:cholesterol acyltransferase. Interestingly, α-syn overexpression increased cholesterol lysosomal accumulation. We observed that sterol regulatory element-binding protein (SREBP)-1 and SREBP-2 were differentially regulated by α-syn overexpression. The latter gave rise to a reduction in SREBP-1 nuclear translocation and consequently in fatty acid synthase expression, whereas it produced an increase in SREBP-2 nuclear localization. Surprisingly, and despite increased cholesterol levels, SREBP-2 downstream genes related to cholesterolgenesis were not upregulated as expected. Notably, phospholipid (PL) levels were diminished in cells overexpressing α-syn. This decrease was related to the activation of phospholipase A2 (PLA2) with a concomitant imbalance of the PL deacylation-acylation cycle. Fatty acids released from PLs by iPLA2 and cPLA2 action were esterified into TAGs, thus promoting a biological response to α-syn overexpression with uncompromised cell viability. When the described steady-state was disturbed under conditions favoring higher levels of α-syn, the response was an enhanced LD accumulation, this imbalance ultimately leading to neuronal death.
Collapse
|
22
|
Minkley M, MacLeod P, Anderson CK, Nashmi R, Walter PB. Loss of tyrosine hydroxylase, motor deficits and elevated iron in a mouse model of phospholipase A2G6-associated neurodegeneration (PLAN). Brain Res 2020; 1748:147066. [PMID: 32818532 DOI: 10.1016/j.brainres.2020.147066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 07/22/2020] [Accepted: 08/15/2020] [Indexed: 10/23/2022]
Abstract
Phospholipase A2G6-associated neurodegeneration (PLAN) is a rare early-onset monogenic neurodegenerative movement disorder which targets the basal ganglia and other regions in the central and peripheral nervous system; presenting as a series of heterogenous subtypes in patients. We describe here a B6.C3-Pla2g6m1J/CxRwb mouse model of PLAN which presents with early-onset neurodegeneration at 90 days which is analogous of the disease progression that is observed in PLAN patients. Homozygous mice had a progressively worsening motor deficit, which presented as tremors starting at 65 days and progressed to severe motor dysfunction and increased falls on the wire hang test at 90 days. This motor deficit positively correlated with a reduction in tyrosine hydroxylase (TH) protein expression in dopaminergic neurons of the substantia nigra (SN) without any neuronal loss. Fluorescence imaging of Thy1-YFP revealed spheroid formation in the SN. The spheroids in homozygous mice strongly mirrors those observed in patients and were demonstrated to correlate strongly with the motor deficits as measured by the wire hang test. The appearance of spheroids preceded TH loss and increased spheroid numbers negatively correlated with TH expression. Perls/DAB staining revealed the presence of iron accumulation within the SN of mice. This mouse model captures many of the major hallmarks of PLAN including severe-early onset neurodegeneration, a motor deficit that correlates directly to TH levels, spheroid formation and iron accumulation within the basal ganglia. Thus, this mouse line is a useful tool for further research efforts to improve understanding of how these disease mechanisms give rise to the disease presentations seen in PLAN patients as well as to test novel therapies.
Collapse
Affiliation(s)
- Michael Minkley
- Department of Biology, Centre for Biomedical Research, University of Victoria, Canada
| | - Patrick MacLeod
- Division of Medical Genetics, Vancouver Island Health Authority, Victoria, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | | | - Raad Nashmi
- Department of Biology, Centre for Biomedical Research, University of Victoria, Canada.
| | - Patrick B Walter
- Department of Biology, Centre for Biomedical Research, University of Victoria, Canada; Hematology/Oncology, UCSF Benioff Children's Hospital, Oakland, USA.
| |
Collapse
|
23
|
Hinarejos I, Machuca C, Sancho P, Espinós C. Mitochondrial Dysfunction, Oxidative Stress and Neuroinflammation in Neurodegeneration with Brain Iron Accumulation (NBIA). Antioxidants (Basel) 2020; 9:antiox9101020. [PMID: 33092153 PMCID: PMC7589120 DOI: 10.3390/antiox9101020] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022] Open
Abstract
The syndromes of neurodegeneration with brain iron accumulation (NBIA) encompass a group of invalidating and progressive rare diseases that share the abnormal accumulation of iron in the basal ganglia. The onset of NBIA disorders ranges from infancy to adulthood. Main clinical signs are related to extrapyramidal features (dystonia, parkinsonism and choreoathetosis), and neuropsychiatric abnormalities. Ten NBIA forms are widely accepted to be caused by mutations in the genes PANK2, PLA2G6, WDR45, C19ORF12, FA2H, ATP13A2, COASY, FTL1, CP, and DCAF17. Nonetheless, many patients remain without a conclusive genetic diagnosis, which shows that there must be additional as yet undiscovered NBIA genes. In line with this, isolated cases of known monogenic disorders, and also, new genetic diseases, which present with abnormal brain iron phenotypes compatible with NBIA, have been described. Several pathways are involved in NBIA syndromes: iron and lipid metabolism, mitochondrial dynamics, and autophagy. However, many neurodegenerative conditions share features such as mitochondrial dysfunction and oxidative stress, given the bioenergetics requirements of neurons. This review aims to describe the existing link between the classical ten NBIA forms by examining their connection with mitochondrial impairment as well as oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Isabel Hinarejos
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (I.H.); (C.M.); (P.S.)
- Rare Diseases Joint Units, CIPF-IIS La Fe & INCLIVA, 46012 Valencia, Spain
| | - Candela Machuca
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (I.H.); (C.M.); (P.S.)
- Rare Diseases Joint Units, CIPF-IIS La Fe & INCLIVA, 46012 Valencia, Spain
- Unit of Stem Cells Therapies in Neurodegenerative Diseases, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Paula Sancho
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (I.H.); (C.M.); (P.S.)
- Rare Diseases Joint Units, CIPF-IIS La Fe & INCLIVA, 46012 Valencia, Spain
| | - Carmen Espinós
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (I.H.); (C.M.); (P.S.)
- Rare Diseases Joint Units, CIPF-IIS La Fe & INCLIVA, 46012 Valencia, Spain
- Department of Genetics, University of Valencia, 46100 Valencia, Spain
- Correspondence: ; Tel.: +34-963-289-680
| |
Collapse
|
24
|
Adams D, Midei M, Dastgir J, Flora C, Molinari RJ, Heerinckx F, Endemann S, Atwal P, Milner P, Shchepinov MS. Treatment of infantile neuroaxonal dystrophy with RT001: A di-deuterated ethyl ester of linoleic acid: Report of two cases. JIMD Rep 2020; 54:54-60. [PMID: 32685351 PMCID: PMC7358664 DOI: 10.1002/jmd2.12116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Infantile neuroaxonal dystrophy (INAD) is a rare, autosomal recessive disease due to defects in PLA2G6 and is associated with lipid peroxidation. RT001 is a di-deuterated form of linoleic acid that protects lipids from oxidative damage. METHODS We evaluated the pharmacokinetics (PK), safety, and effectiveness of RT001 in two subjects with INAD (subject 1: 34 months; subject 2: 10 months). After screening and baseline evaluations, subjects received 1.8 g of RT001 BD. PK analysis and clinical evaluations were made periodically. MAIN FINDINGS Plasma levels of deuterated linoleic acid (D2-LA), deuterated arachidonic acid (D2-AA), D2-LA to total LA, and D2-AA to total AA ratios were measured. The targeted plasma D2-LA ratio (>20%) was achieved by month 1 and maintained throughout the study. RBC AA-ratios were 0.11 and 0.18 at 6 months for subjects 1 and 2; respectively. No treatment-related adverse events occurred. Limited slowing of disease progression and some return of lost developmental milestones were seen. CONCLUSIONS Oral RT001 was administered safely in two subjects with INAD. Early findings suggest that the compound was well tolerated, metabolized and incorporated in the RBC membrane. A clinical trial is underway to assess efficacy.
Collapse
Affiliation(s)
- Darius Adams
- Atlantic Health SystemGoryeb Children's HospitalMorristownNew JerseyUSA
| | - Mark Midei
- Clinical DivisionRetrotope, Inc.Los AltosCaliforniaUSA
| | - Jahannaz Dastgir
- Atlantic Health SystemGoryeb Children's HospitalMorristownNew JerseyUSA
| | - Christina Flora
- Atlantic Health SystemGoryeb Children's HospitalMorristownNew JerseyUSA
| | | | | | | | - Paldeep Atwal
- Clinical DivisionRetrotope, Inc.Los AltosCaliforniaUSA
| | - Peter Milner
- Clinical DivisionRetrotope, Inc.Los AltosCaliforniaUSA
| | | |
Collapse
|
25
|
Li K, Ge YL, Gu CC, Zhang JR, Jin H, Li J, Cheng XY, Yang YP, Wang F, Zhang YC, Chen J, Mao CJ, Liu CF. Substantia nigra echogenicity is associated with serum ferritin, gender and iron-related genes in Parkinson's disease. Sci Rep 2020; 10:8660. [PMID: 32457446 PMCID: PMC7250839 DOI: 10.1038/s41598-020-65537-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 04/29/2020] [Indexed: 01/17/2023] Open
Abstract
Substantia nigra (SN) hyperechogenicity is present in most Parkinson’s disease (PD) cases but is occasionally absent in some. To date, age, gender, disease severity, and other factors have been reported to be associated with SN hyperechogenicity in PD. Previous studies have discovered that excess iron deposition in the SN underlies its hyperechogenicity in PD, which may also indicate the involvement of genes associated with iron metabolism in hyperechogenicity. The objective of our study is to explore the potential associations between variants in iron metabolism-associated genes and SN echogenicity in Han Chinese PD. Demographic profiles, clinical data, SN echogenicity and genotypes were obtained from 221 Han Chinese PD individuals with a sufficient bone window. Serum ferritin levels were quantified in 92 of these individuals by immunochemical assay. We then compared factors between PD individuals with SN hyperechogenicity and those with SN hypoechogenicity to identify factors that predispose to SN hyperechogenicity. Of our 221 participants, 122 (55.2%) displayed SN hyperechogenicity, and 99 (44.8%) displayed SN hypoechogenicity. Gender and serum ferritin levels were found to be associated with SN hyperechogenicity. In total, 14 genes were included in the sequencing part. After data processing, 34 common single nucleotide polymorphisms were included in our further analyses. In our data, we also found a significantly higher frequency of PANK2 rs3737084 (genotype: OR = 2.07, P = 0.013; allele: OR = 2.51, P = 0.002) in the SN hyperechogenic group and a higher frequency of PLA2G6 rs731821 (genotype: OR = 0.45, P = 0.016; allele: OR = 0.44, P = 0.011) in the SN hypoechogenic group. However, neither of the two variants was found to be correlated with serum ferritin. This study demonstrated that genetic factors, serum ferritin level, and gender may explain the interindividual variability in SN echogenicity in PD. This is an explorative study, and further replication is warranted in larger samples and different populations.
Collapse
Affiliation(s)
- Kai Li
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yi-Lun Ge
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chen-Chen Gu
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jin-Ru Zhang
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hong Jin
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jiao Li
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiao-Yu Cheng
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ya-Ping Yang
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Fen Wang
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Ying-Chun Zhang
- Department of Ultrasound, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jing Chen
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Cheng-Jie Mao
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chun-Feng Liu
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China. .,Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
26
|
Smolders S, Van Broeckhoven C. Genetic perspective on the synergistic connection between vesicular transport, lysosomal and mitochondrial pathways associated with Parkinson's disease pathogenesis. Acta Neuropathol Commun 2020; 8:63. [PMID: 32375870 PMCID: PMC7201634 DOI: 10.1186/s40478-020-00935-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) and atypical parkinsonian syndromes (APS) are symptomatically characterized by parkinsonism, with the latter presenting additionally a distinctive range of atypical features. Although the majority of patients with PD and APS appear to be sporadic, genetic causes of several rare monogenic disease variants were identified. The knowledge acquired from these genetic factors indicated that defects in vesicular transport pathways, endo-lysosomal dysfunction, impaired autophagy-lysosomal protein and organelle degradation pathways, α-synuclein aggregation and mitochondrial dysfunction play key roles in PD pathogenesis. Moreover, membrane dynamics are increasingly recognized as a key player in the disease pathogenesis due lipid homeostasis alterations, associated with lysosomal dysfunction, caused by mutations in several PD and APS genes. The importance of lysosomal dysfunction and lipid homeostasis is strengthened by both genetic discoveries and clinical epidemiology of the association between parkinsonism and lysosomal storage disorders (LSDs), caused by the disruption of lysosomal biogenesis or function. A synergistic coordination between vesicular trafficking, lysosomal and mitochondria defects exist whereby mutations in PD and APS genes encoding proteins primarily involved one PD pathway are frequently associated with defects in other PD pathways as a secondary effect. Moreover, accumulating clinical and genetic observations suggest more complex inheritance patters of familial PD exist, including oligogenic and polygenic inheritance of genes in the same or interconnected PD pathways, further strengthening their synergistic connection.Here, we provide a comprehensive overview of PD and APS genes with functions in vesicular transport, lysosomal and mitochondrial pathways, and highlight functional and genetic evidence of the synergistic connection between these PD associated pathways.
Collapse
Affiliation(s)
- Stefanie Smolders
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, University of Antwerp - CDE, Universiteitsplein 1, 2610, Antwerpen, Belgium
- Biomedical Sciences, University of Antwerp, Antwerpen, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, University of Antwerp - CDE, Universiteitsplein 1, 2610, Antwerpen, Belgium.
- Biomedical Sciences, University of Antwerp, Antwerpen, Belgium.
| |
Collapse
|
27
|
Darios F, Mochel F, Stevanin G. Lipids in the Physiopathology of Hereditary Spastic Paraplegias. Front Neurosci 2020; 14:74. [PMID: 32180696 PMCID: PMC7059351 DOI: 10.3389/fnins.2020.00074] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Hereditary spastic paraplegias (HSP) are a group of neurodegenerative diseases sharing spasticity in lower limbs as common symptom. There is a large clinical variability in the presentation of patients, partly underlined by the large genetic heterogeneity, with more than 60 genes responsible for HSP. Despite this large heterogeneity, the proteins with known function are supposed to be involved in a limited number of cellular compartments such as shaping of the endoplasmic reticulum or endolysosomal function. Yet, it is difficult to understand why alteration of such different cellular compartments can lead to degeneration of the axons of cortical motor neurons. A common feature that has emerged over the last decade is the alteration of lipid metabolism in this group of pathologies. This was first revealed by the identification of mutations in genes encoding proteins that have or are supposed to have enzymatic activities on lipid substrates. However, it also appears that mutations in genes affecting endoplasmic reticulum, mitochondria, or endolysosome function can lead to changes in lipid distribution or metabolism. The aim of this review is to discuss the role of lipid metabolism alterations in the physiopathology of HSP, to evaluate how such alterations contribute to neurodegenerative phenotypes, and to understand how this knowledge can help develop therapeutic strategy for HSP.
Collapse
Affiliation(s)
- Frédéric Darios
- Sorbonne Université, Paris, France.,Inserm, U1127, Paris, France.,CNRS, UMR 7225, Paris, France.,Institut du Cerveau et de la Moelle Epinière, Paris, France
| | - Fanny Mochel
- Sorbonne Université, Paris, France.,Inserm, U1127, Paris, France.,CNRS, UMR 7225, Paris, France.,Institut du Cerveau et de la Moelle Epinière, Paris, France.,National Reference Center for Neurometabolic Diseases, Pitié-Salpêtrière University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Giovanni Stevanin
- Sorbonne Université, Paris, France.,Inserm, U1127, Paris, France.,CNRS, UMR 7225, Paris, France.,Institut du Cerveau et de la Moelle Epinière, Paris, France.,Equipe de Neurogénétique, Ecole Pratique des Hautes Etudes, PSL Research University, Paris, France
| |
Collapse
|
28
|
Abstract
While the initial causes of Parkinson's disease (PD) are not clearly defined, iron deposition has long been implicated in the pathogenesis of PD. The substantia nigra of PD patients, where the selective loss of dopaminergic neurons occurs, show a fairly selective and significant elevation in iron contents. However, the question remains whether iron deposition represents the initiation cause or merely the consequence of nigral degeneration. Here, we describe existing findings regarding the interaction of iron with neuromelanin and alpha synuclein, the iron deposition in experimental animal model of PD and sporadic and familial PD patients, and the treatment option involving the use of iron chelators for targeting the aberration of iron level in brain. This review may provide us a better understanding of the role of iron in PD to address the question of cause or consequence.
Collapse
|
29
|
Parkinson's disease-associated iPLA2-VIA/PLA2G6 regulates neuronal functions and α-synuclein stability through membrane remodeling. Proc Natl Acad Sci U S A 2019; 116:20689-20699. [PMID: 31548400 PMCID: PMC6789907 DOI: 10.1073/pnas.1902958116] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The mechanisms of α-synuclein aggregation and subsequent Lewy body formation are a key pathogenesis of Parkinson’s disease (PD). PARK14-linked PD, which is caused by mutations of the iPLA2-VIA/PLA2G6 gene, exhibits a marked Lewy body pathology. iPLA2-VIA, which belongs to the phospholipase A2 family, is another causative gene of neurodegeneration with brain iron accumulation (NBIA). Here, we demonstrate that iPLA2-VIA loss results in acyl-chain shortening in phospholipids, which affects ER homeostasis and neurotransmission and promotes α-synuclein aggregation. The administration of linoleic acid or the overexpression of C19orf12, one of the NBIA-causative genes, also suppresses the acyl-chain shortening by iPLA2-VIA loss. The rescue of iPLA2-VIA phenotypes by C19orf12 provides significant molecular insight into the underlying common pathogenesis of PD and NBIA. Mutations in the iPLA2-VIA/PLA2G6 gene are responsible for PARK14-linked Parkinson’s disease (PD) with α-synucleinopathy. However, it is unclear how iPLA2-VIA mutations lead to α-synuclein (α-Syn) aggregation and dopaminergic (DA) neurodegeneration. Here, we report that iPLA2-VIA–deficient Drosophila exhibits defects in neurotransmission during early developmental stages and progressive cell loss throughout the brain, including degeneration of the DA neurons. Lipid analysis of brain tissues reveals that the acyl-chain length of phospholipids is shortened by iPLA2-VIA loss, which causes endoplasmic reticulum (ER) stress through membrane lipid disequilibrium. The introduction of wild-type human iPLA2-VIA or the mitochondria–ER contact site-resident protein C19orf12 in iPLA2-VIA–deficient flies rescues the phenotypes associated with altered lipid composition, ER stress, and DA neurodegeneration, whereas the introduction of a disease-associated missense mutant, iPLA2-VIA A80T, fails to suppress these phenotypes. The acceleration of α-Syn aggregation by iPLA2-VIA loss is suppressed by the administration of linoleic acid, correcting the brain lipid composition. Our findings suggest that membrane remodeling by iPLA2-VIA is required for the survival of DA neurons and α-Syn stability.
Collapse
|
30
|
Wang ZB, Liu JY, Xu XJ, Mao XY, Zhang W, Zhou HH, Liu ZQ. Neurodegeneration with brain iron accumulation: Insights into the mitochondria dysregulation. Biomed Pharmacother 2019; 118:109068. [PMID: 31404774 DOI: 10.1016/j.biopha.2019.109068] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 12/16/2022] Open
Abstract
NBIA (Neurodegeneration with brain iron accumulation) is a group of inherited neurologic disorders characterized by marked genetic heterogeneity, in which iron atypical accumulates in basal ganglia resulting in brain magnetic resonance imaging changes, histopathological abnormalities, and neuropsychiatric clinical symptoms. With the rapid development of high-throughput sequencing technologies, ten candidate genes have been identified, including PANK2, PLA2G6, C19orf12, WDR45, FA2H, ATP13A2, FTL, CP, C2orf37, and COASY. They are involved in seemingly unrelated cellular pathways, such as iron homeostasis (FTL, CP), lipid metabolism (PLA2G6, C19orf12, FA2H), Coenzyme A synthesis (PANK2, COASY), and autophagy (WDR45, ATP13A2). In particular, PANK2, COASY, PLA2G6, and C19orf12 are located on mitochondria, which associate with certain subtypes of NBIA showing mitochondria dysregulation. However, the relationships among those four genes are still unclear. Therefore, this review is specifically focused on dysregulation of mitochondria in NBIA and afore-mentioned four genes, with summaries of both pathological and clinical findings.
Collapse
Affiliation(s)
- Zhi-Bin Wang
- Departments of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Jun-Yan Liu
- Department of Orthopaedics, The First Affiliated Hospital of the University of South China, Hengyang 421001, PR China
| | - Xiao-Jing Xu
- Departments of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Xiao-Yuan Mao
- Departments of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Wei Zhang
- Departments of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Hong-Hao Zhou
- Departments of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Zhao-Qian Liu
- Departments of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China.
| |
Collapse
|
31
|
Neurodegeneration with Brain Iron Accumulation Disorders: Valuable Models Aimed at Understanding the Pathogenesis of Iron Deposition. Pharmaceuticals (Basel) 2019; 12:ph12010027. [PMID: 30744104 PMCID: PMC6469182 DOI: 10.3390/ph12010027] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 02/07/2023] Open
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is a set of neurodegenerative disorders, which includes very rare monogenetic diseases. They are heterogeneous in regard to the onset and the clinical symptoms, while the have in common a specific brain iron deposition in the region of the basal ganglia that can be visualized by radiological and histopathological examinations. Nowadays, 15 genes have been identified as causative for NBIA, of which only two code for iron-proteins, while all the other causative genes codify for proteins not involved in iron management. Thus, how iron participates to the pathogenetic mechanism of most NBIA remains unclear, essentially for the lack of experimental models that fully recapitulate the human phenotype. In this review we reported the recent data on new models of these disorders aimed at highlight the still scarce knowledge of the pathogenesis of iron deposition.
Collapse
|
32
|
Guo YP, Tang BS, Liu HL, Huang JJ, Xu Q, Sun QY, Yan XX, Guo JF. Impaired iPLA 2β activity affects iron uptake and storage without iron accumulation: An in vitro study excluding decreased iPLA 2β activity as the cause of iron deposition in PLAN. Brain Res 2019; 1712:25-33. [PMID: 30707893 DOI: 10.1016/j.brainres.2019.01.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/13/2019] [Accepted: 01/27/2019] [Indexed: 01/12/2023]
Abstract
PLA2G6-associated neurodegeneration (PLAN, NBIA2) is the second most common type of neurodegeneration with brain iron accumulation (NBIA), caused by recessive mutations of PLA2G6 gene, which encodes Ca2+-independent phospholipase A2β (iPLA2β). In most PLAN cases, decreased iPLA2β activity and iron deposition was observed meanwhile, and researchers also identified a PLA2G6 mutation family without iron deposition shown by MRI images. This brought us the question of whether decreased iPLA2β activity was the cause of iron deposition in PLAN. In this study, we used S-BEL as the antagonist of iPLA2β to block its activity and used SH-SY5Y cells as the expression system. We incubated SH-SY5Y cells with different concentrations of S-BEL. The results showed that decreased iPLA2β activity led no obvious iron accumulation, while changes of cells state and activation of apoptosis were observed. To further investigate the cause of unchanged iron level, we examined the cellular iron regulatory proteins involved in iron uptake, storage and export. The results were as follows: TfR1 (iron uptake protein) expression was decreased, the expression of ferritin heavy chain and light chain (iron storage protein) was increased. There was no alteration of the expression of DMT1 (iron uptake protein) and FPN1 (iron export protein). Under the condition of decreased iPLA2β activity, there was no obvious iron accumulation but iron uptake activity decreased and iron storage activity increased. Therefore, we speculate that the decreased iPLA2β activity may not be the main reason for iron deposition in PLAN.
Collapse
Affiliation(s)
- Yu-Pei Guo
- Center for Brain Disorders Research, Capital Medical University and Beijing Institute of Brain Disorders, Beijing 100069, People's Republic of China; Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Bei-Sha Tang
- Center for Brain Disorders Research, Capital Medical University and Beijing Institute of Brain Disorders, Beijing 100069, People's Republic of China; Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha 410008, Hunan, People's Republic of China; Center for Medical Genetics, Central South University, Changsha 410008, Hunan, People's Republic of China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Hong-Li Liu
- Center for Brain Disorders Research, Capital Medical University and Beijing Institute of Brain Disorders, Beijing 100069, People's Republic of China; Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Juan-Juan Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha 410008, Hunan, People's Republic of China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Qi-Ying Sun
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha 410008, Hunan, People's Republic of China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Xin-Xiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Ji-Feng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha 410008, Hunan, People's Republic of China; Center for Medical Genetics, Central South University, Changsha 410008, Hunan, People's Republic of China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha 410008, Hunan, People's Republic of China.
| |
Collapse
|
33
|
Iron Pathophysiology in Neurodegeneration with Brain Iron Accumulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1173:153-177. [DOI: 10.1007/978-981-13-9589-5_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
34
|
Babin PL, Rao SNR, Chacko A, Alvina FB, Panwala A, Panwala L, Fumagalli DC. Infantile Neuroaxonal Dystrophy: Diagnosis and Possible Treatments. Front Genet 2018; 9:597. [PMID: 30619446 PMCID: PMC6295457 DOI: 10.3389/fgene.2018.00597] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 11/15/2018] [Indexed: 12/26/2022] Open
Abstract
Infantile Neuroaxonal Dystrophy (INAD) is a rare neurodegenerative disease that often cuts short the life span of a child to 10 years. With a typical onset at 6 months of age, INAD is characterized by regression of acquired motor skills, delayed motor coordination and eventual loss of voluntary muscle control. Biallelic mutations in the PLA2G6 gene have been identified as the most frequent cause of INAD. We highlight the salient features of INAD molecular pathology and the progress made in molecular diagnostics. We reiterate that enhanced molecular diagnostic methodologies such as targeted gene panel testing, exome sequencing, and whole genome sequencing can help ascertain a molecular diagnosis. We describe how the defective catalytic activity of the PLA2G6 gene could be potentially overcome by enzyme replacement or gene correction, giving examples and challenges specific to INAD. This is expected to encourage steps toward developing and testing emerging therapies that might alleviate INAD progression and help realize objectives of patient formed organizations such as the INADcure Foundation.
Collapse
Affiliation(s)
| | | | - Anita Chacko
- Rare Genomics Institute, Downey, CA, United States
| | | | - Anil Panwala
- INADcure Foundation, Fairfield, NJ, United States
| | | | | |
Collapse
|
35
|
Turk J, White TD, Nelson AJ, Lei X, Ramanadham S. iPLA 2β and its role in male fertility, neurological disorders, metabolic disorders, and inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:846-860. [PMID: 30408523 DOI: 10.1016/j.bbalip.2018.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 02/06/2023]
Abstract
The Ca2+-independent phospholipases, designated as group VI iPLA2s, also referred to as PNPLAs due to their shared homology with patatin, include the β, γ, δ, ε, ζ, and η forms of the enzyme. The iPLA2s are ubiquitously expressed, share a consensus GXSXG catalytic motif, and exhibit organelle/cell-specific localization. Among the iPLA2s, iPLA2β has received wide attention as it is recognized to be involved in membrane remodeling, cell proliferation, cell death, and signal transduction. Ongoing studies implicate participation of iPLA2β in a variety of disease processes including cancer, cardiovascular abnormalities, glaucoma, and peridonditis. This review will focus on iPLA2β and its links to male fertility, neurological disorders, metabolic disorders, and inflammation.
Collapse
Affiliation(s)
- John Turk
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Tayleur D White
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Alexander J Nelson
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Xiaoyong Lei
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| |
Collapse
|
36
|
Lin G, Lee PT, Chen K, Mao D, Tan KL, Zuo Z, Lin WW, Wang L, Bellen HJ. Phospholipase PLA2G6, a Parkinsonism-Associated Gene, Affects Vps26 and Vps35, Retromer Function, and Ceramide Levels, Similar to α-Synuclein Gain. Cell Metab 2018; 28:605-618.e6. [PMID: 29909971 DOI: 10.1016/j.cmet.2018.05.019] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/23/2018] [Accepted: 05/22/2018] [Indexed: 11/16/2022]
Abstract
Mutations in PLA2G6 (PARK14) cause neurodegenerative disorders in humans, including autosomal recessive neuroaxonal dystrophy and early-onset parkinsonism. We show that loss of iPLA2-VIA, the fly homolog of PLA2G6, reduces lifespan, impairs synaptic transmission, and causes neurodegeneration. Phospholipases typically hydrolyze glycerol phospholipids, but loss of iPLA2-VIA does not affect the phospholipid composition of brain tissue but rather causes an elevation in ceramides. Reducing ceramides with drugs, including myriocin or desipramine, alleviates lysosomal stress and suppresses neurodegeneration. iPLA2-VIA binds the retromer subunits Vps35 and Vps26 and enhances retromer function to promote protein and lipid recycling. Loss of iPLA2-VIA impairs retromer function, leading to a progressive increase in ceramide. This induces a positive feedback loop that affects membrane fluidity and impairs retromer function and neuronal function. Similar defects are observed upon loss of vps26 or vps35 or overexpression of α-synuclein, indicating that these defects may be common in Parkinson disease.
Collapse
Affiliation(s)
- Guang Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Pei-Tseng Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Kuchuan Chen
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Dongxue Mao
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Kai Li Tan
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Wen-Wen Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Liping Wang
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
37
|
Gitiaux C, Kaminska A, Boddaert N, Barcia G, Guéden S, The Tich SN, De Lonlay P, Quijano-Roy S, Hully M, Péréon Y, Desguerre I. PLA2G6-associated neurodegeneration: Lessons from neurophysiological findings. Eur J Paediatr Neurol 2018; 22:854-861. [PMID: 29859652 DOI: 10.1016/j.ejpn.2018.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 10/16/2022]
Abstract
BACKGROUND AND AIMS Phospholipase A2 associated neurodegeneration (PLAN) is a heterogeneous autosomal recessive disorder caused by mutations in the ubiquitously expressed PLA2G6 gene. It is responsible for delayed brain iron accumulation and induces progressive psychomotor regression. We report the concomitant clinical, radiological and neurophysiological findings in PLAN patients in an attempt to determine the contribution of each test to guide diagnosis. METHODS Concomitant clinical, radiological, electroencephalographic (EEG) and electrodiagnostic testing (EDX) findings in a series of 8 consecutive genetically confirmed PLAN patients were collected. RESULTS All patients presented marked motor axonal loss, with decreased or absent distal compound muscle action potentials, acute and chronic denervation at needle electromyography, in contrast with preservation of sensory conduction. EEG showed high-amplitude fast activity in all patients aged above 15 months. Two patients showing severe neonatal hypotonia displayed atypical hypsarhythmia and epileptic spasms. Iron deposition in globus pallidus was observed in only two patients aged above 6 years. CONCLUSIONS Peripheral involvement is an early feature in PLAN recognizable by EDX at an earlier stage than typical iron accumulation in the brain. Furthermore, the association of West syndrome and axonal motor neuropathy may represent positive clues in favor of PLAN. This results emphasize the interest of early and repeated EDX.
Collapse
Affiliation(s)
- Cyril Gitiaux
- Department of Clinical Pediatric Neurophysiology, AP-HP, Necker-Enfants Malades Hospital, Université Paris Descartes, Paris, France; Reference Center for Neuromuscular Diseases, FILNEMUS, Paris, France.
| | - Anna Kaminska
- Department of Clinical Pediatric Neurophysiology, AP-HP, Necker-Enfants Malades Hospital, Université Paris Descartes, Paris, France
| | - Nathalie Boddaert
- Department of Pediatric Radiology, Necker-Enfants Malades Hospital, AP-HP, Paris, France
| | - Giulia Barcia
- Unité INSERM U781, Université Paris Descartes, Département de génétique, Hôpital Necker Enfants Malades, AP-HP, Paris, France
| | - Sophie Guéden
- Department of Pediatric Neurology, CHU Angers, Angers, France
| | | | - Pascale De Lonlay
- Reference Center of Inherited Metabolic Diseases, Necker Enfants Malades Hospital, AP-HP, Imagine Institute, University Paris Descartes, Paris, France
| | | | - Marie Hully
- Department of Pediatric Neurology, Necker-Enfants Malades Hospital, AP-HP, Paris, France
| | - Yann Péréon
- Reference Centre for Neuromuscular Diseases Atlantique-Occitanie-Caraïbes, FILNEMUS, CHU Nantes, Nantes, France
| | - Isabelle Desguerre
- Reference Center for Neuromuscular Diseases, FILNEMUS, Paris, France; Department of Pediatric Neurology, Necker-Enfants Malades Hospital, AP-HP, Paris, France
| |
Collapse
|
38
|
Chiu CC, Lu CS, Weng YH, Chen YL, Huang YZ, Chen RS, Cheng YC, Huang YC, Liu YC, Lai SC, Lin KJ, Lin YW, Chen YJ, Chen CL, Yeh TH, Wang HL. PARK14 (D331Y) PLA2G6 Causes Early-Onset Degeneration of Substantia Nigra Dopaminergic Neurons by Inducing Mitochondrial Dysfunction, ER Stress, Mitophagy Impairment and Transcriptional Dysregulation in a Knockin Mouse Model. Mol Neurobiol 2018; 56:3835-3853. [PMID: 30088174 DOI: 10.1007/s12035-018-1118-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/11/2018] [Indexed: 12/27/2022]
Abstract
PARK14 patients with homozygous (D331Y) PLA2G6 mutation display motor deficits of pure early-onset Parkinson's disease (PD). The aim of this study is to investigate the pathogenic mechanism of mutant (D331Y) PLA2G6-induced PD. We generated knockin (KI) mouse model of PARK14 harboring homozygous (D331Y) PLA2G6 mutation. Then, we investigated neuropathological and neurological phenotypes of PLA2G6D331Y/D331Y KI mice and molecular pathogenic mechanisms of (D331Y) PLA2G6-induced degeneration of substantia nigra (SN) dopaminergic neurons. Six-or nine-month-old PLA2G6D331Y/D331Y KI mice displayed early-onset cell death of SNpc dopaminergic neurons. Lewy body pathology was found in the SN of PLA2G6D331Y/D331Y mice. Six-or nine-month-old PLA2G6D331Y/D331Y KI mice exhibited early-onset parkinsonism phenotypes. Disrupted cristae of mitochondria were found in SNpc dopaminergic neurons of PLA2G6D331Y/D331Y mice. PLA2G6D331Y/D331Y mice displayed mitochondrial dysfunction and upregulated ROS production, which may lead to activation of apoptotic cascade. Upregulated protein levels of Grp78, IRE1, PERK, and CHOP, which are involved in activation of ER stress, were found in the SN of PLA2G6D331Y/D331Y mice. Protein expression of mitophagic proteins, including parkin and BNIP3, was downregulated in the SN of PLA2G6D331Y/D331Y mice, suggesting that (D331Y) PLA2G6 mutation causes mitophagy dysfunction. In the SN of PLA2G6D331Y/D331Y mice, mRNA levels of eight genes that are involved in neuroprotection/neurogenesis were decreased, while mRNA levels of two genes that promote apoptotic death were increased. Our results suggest that PARK14 (D331Y) PLA2G6 mutation causes degeneration of SNpc dopaminergic neurons by causing mitochondrial dysfunction, elevated ER stress, mitophagy impairment, and transcriptional abnormality.
Collapse
Affiliation(s)
- Ching-Chi Chiu
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taoyuan, Taiwan.,Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chin-Song Lu
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Hsin Weng
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ying-Ling Chen
- Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Ying-Zu Huang
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
| | - Rou-Shayn Chen
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Chuan Cheng
- Graduate Institute of Biomedical Sciences, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yin-Cheng Huang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yu-Chuan Liu
- Division of Sports Medicine, Taiwan Landseed Hospital, Taoyuan, Taiwan
| | - Szu-Chia Lai
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kun-Jun Lin
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taoyuan, Taiwan.,Molecular Imaging Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yan-Wei Lin
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yu-Jie Chen
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taoyuan, Taiwan
| | - Chao-Lang Chen
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taoyuan, Taiwan
| | - Tu-Hsueh Yeh
- Department of Neurology, Taipei Medical University Hospital, No. 252, Wuxing St, Xinyi District, Taipei City, 110, Taiwan. .,School of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Hung-Li Wang
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taoyuan, Taiwan. .,Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan. .,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan. .,Department of Physiology and Pharmacology, Chang Gung University College of Medicine, No. 259, Wen-Hwa 1st Road, Kweishan, Taoyuan, 333, Taiwan.
| |
Collapse
|
39
|
Di Meo I, Tiranti V. Classification and molecular pathogenesis of NBIA syndromes. Eur J Paediatr Neurol 2018; 22:272-284. [PMID: 29409688 DOI: 10.1016/j.ejpn.2018.01.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 12/06/2017] [Accepted: 01/08/2018] [Indexed: 12/14/2022]
Abstract
Brain iron accumulation is the hallmark of a group of seriously invalidating and progressive rare diseases collectively denominated Neurodegeneration with Brain Iron Accumulation (NBIA), characterized by movement disorder, painful dystonia, parkinsonism, mental disability and early death. Currently there is no established therapy available to slow down or reverse the progression of these conditions. Several genes have been identified as responsible for NBIA but only two encode for proteins playing a direct role in iron metabolism. The other genes encode for proteins either with various functions in lipid metabolism, lysosomal activity and autophagic processes or with still unknown roles. The different NBIA subtypes have been classified and denominated on the basis of the mutated genes and, despite genetic heterogeneity, some of them code for proteins, which share or converge on common metabolic pathways. In the last ten years, the implementation of genetic screening based on Whole Exome Sequencing has greatly accelerated gene discovery, nevertheless our knowledge of the pathogenic mechanisms underlying the NBIA syndromes is still largely incomplete.
Collapse
Affiliation(s)
- Ivano Di Meo
- Unit of Molecular Neurogenetics, Pierfranco and Luisa Mariani Centre for the Study of Mitochondrial Disorders in Children, Foundation IRCCS Neurological Institute C. Besta, Via Temolo 4, 20126, Milan, Italy
| | - Valeria Tiranti
- Unit of Molecular Neurogenetics, Pierfranco and Luisa Mariani Centre for the Study of Mitochondrial Disorders in Children, Foundation IRCCS Neurological Institute C. Besta, Via Temolo 4, 20126, Milan, Italy.
| |
Collapse
|
40
|
Iliadi KG, Gluscencova OB, Iliadi N, Boulianne GL. Mutations in the Drosophila homolog of human PLA2G6 give rise to age-dependent loss of psychomotor activity and neurodegeneration. Sci Rep 2018; 8:2939. [PMID: 29440694 PMCID: PMC5811537 DOI: 10.1038/s41598-018-21343-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/20/2017] [Indexed: 12/24/2022] Open
Abstract
Infantile neuroaxonal dystrophy (INAD) is a fatal neurodegenerative disorder that typically begins within the first few years of life and leads to progressive impairment of movement and cognition. Several years ago, it was shown that >80% of patients with INAD have mutations in the phospholipase gene, PLA2G6. Interestingly, mutations in PLA2G6 are also causative in two other related neurodegenerative diseases, atypical neuroaxonal dystrophy and Dystonia-parkinsonism. While all three disorders give rise to similar defects in movement and cognition, some defects are unique to a specific disorder. At present, the cellular mechanisms underlying PLA2G6-associated neuropathology are poorly understood and there is no cure or treatment that can delay disease progression. Here, we show that loss of iPLA2-VIA, the Drosophila homolog of PLA2G6, gives rise to age-dependent defects in climbing and spontaneous locomotion. Moreover, using a newly developed assay, we show that iPLA2-VIA mutants also display impairments in fine-tune motor movements, motor coordination and psychomotor learning, which are distinct features of PLA2G6-associated disease in humans. Finally, we show that iPLA2-VIA mutants exhibit increased sensitivity to oxidative stress, progressive neurodegeneration and a severely reduced lifespan. Altogether, these data demonstrate that Drosophila iPLA2-VIA mutants provide a useful model to study human PLA2G6-associated neurodegeneration.
Collapse
Affiliation(s)
- Konstantin G Iliadi
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada.
| | - Oxana B Gluscencova
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | - Natalia Iliadi
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | - Gabrielle L Boulianne
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
41
|
Plotegher N, Duchen MR. Crosstalk between Lysosomes and Mitochondria in Parkinson's Disease. Front Cell Dev Biol 2017; 5:110. [PMID: 29312935 PMCID: PMC5732996 DOI: 10.3389/fcell.2017.00110] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/30/2017] [Indexed: 11/15/2022] Open
Abstract
Parkinson's disease (PD) is the most common motor neurodegenerative disorder. In most cases the cause of the disease is unknown, while in about 10% of subjects, it is associated with mutations in a number of different genes. Several different mutations in 15 genes have been identified as causing familial forms of the disease, while many others have been identified as risk factors. A striking number of these genes are either involved in the regulation of mitochondrial function or of endo-lysosomal pathways. Mutations affecting one of these two pathways are often coupled with defects in the other pathway, suggesting a crosstalk between them. Moreover, PD-linked mutations in genes encoding proteins with other functions are frequently associated with defects in mitochondrial and/or autophagy/lysosomal function as a secondary effect. Even toxins that impair mitochondrial function and cause parkinsonian phenotypes, such as rotenone, also impair lysosomal function. In this review, we explore the reciprocal relationship between mitochondrial and lysosomal pathways in PD. We will discuss the impact of mitochondrial dysfunction on the lysosomal compartment and of endo-lysosomal defects on mitochondrial function, and explore the roles of both causative genes and genes that are risk factors for PD. Understanding the pathways that govern these interactions should help to define a framework to understand the roles and mechanisms of mitochondrial and lysosomal miscommunication in the pathophysiology of PD.
Collapse
Affiliation(s)
- Nicoletta Plotegher
- Department of Cell and Developmental Biology and UCL Consortium for Mitochondrial Research, University College London, London, United Kingdom
| | - Michael R Duchen
- Department of Cell and Developmental Biology and UCL Consortium for Mitochondrial Research, University College London, London, United Kingdom
| |
Collapse
|
42
|
Helley MP, Pinnell J, Sportelli C, Tieu K. Mitochondria: A Common Target for Genetic Mutations and Environmental Toxicants in Parkinson's Disease. Front Genet 2017; 8:177. [PMID: 29204154 PMCID: PMC5698285 DOI: 10.3389/fgene.2017.00177] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/01/2017] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is a devastating neurological movement disorder. Since its first discovery 200 years ago, genetic and environmental factors have been identified to play a role in PD development and progression. Although genetic studies have been the predominant driving force in PD research over the last few decades, currently only a small fraction of PD cases can be directly linked to monogenic mutations. The remaining cases have been attributed to other risk associated genes, environmental exposures and gene-environment interactions, making PD a multifactorial disorder with a complex etiology. However, enormous efforts from global research have yielded significant insights into pathogenic mechanisms and potential therapeutic targets for PD. This review will highlight mitochondrial dysfunction as a common pathway involved in both genetic mutations and environmental toxicants linked to PD.
Collapse
Affiliation(s)
- Martin P. Helley
- Department of Environmental Health Sciences, Florida International University, Miami, FL, United States
| | - Jennifer Pinnell
- Department of Environmental Health Sciences, Florida International University, Miami, FL, United States
- Peninsula Schools of Medicine and Dentistry, Plymouth University, Plymouth, United Kingdom
| | - Carolina Sportelli
- Department of Environmental Health Sciences, Florida International University, Miami, FL, United States
- Peninsula Schools of Medicine and Dentistry, Plymouth University, Plymouth, United Kingdom
| | - Kim Tieu
- Department of Environmental Health Sciences, Florida International University, Miami, FL, United States
| |
Collapse
|
43
|
Tanaka M, Yamaguchi S, Akiyoshi H, Tsuboi M, Uchida K, Izawa T, Yamate J, Kuwamura M. Ultrastructural features of canine neuroaxonal dystrophy in a Papillon dog. J Vet Med Sci 2017; 79:1927-1930. [PMID: 28993562 PMCID: PMC5745166 DOI: 10.1292/jvms.17-0487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neuroaxonal dystrophy (NAD) is a neurodegenerative disease characterized by severe axonal swelling (spheroids) throughout the nervous system. In dogs, NAD has been reported in several breeds and a missense mutation in PLA2G6 gene has recently been identified in the Papillon dog NAD. Here we performed ultrastructural analysis to clarify the detailed ultrastructural features of the Papillon dog NAD. Dystrophic axons consisted of accumulation of filamentous materials, tubulovesicular structures, and swollen edematous mitochondria with degenerated inner membranes were often observed in the central nervous system. At axonal terminals, degeneration of presynaptic membrane was also detected. As reported in Pla2g6 knockout mice, mitochondrial and presynaptic degeneration may be related with the pathogenesis of NAD in Papillon dogs.
Collapse
Affiliation(s)
- Miyuu Tanaka
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Science, Osaka Prefecture University, Rinkuu Ourai Kita 1-58, Izumisano, Osaka 598-8531, Japan
| | - Shinobu Yamaguchi
- Hataeda Animal Hospital, 680 Iwakura Hataedacho, Sakyo-ku, Kyoto 606-0015, Japan
| | - Hideo Akiyoshi
- Laboratory of Veterinary Surgery, Graduate School of Life and Environmental Science, Osaka Prefecture University, Rinkuu Ourai Kita 1-58, Izumisano, Osaka 598-8531, Japan
| | - Masaya Tsuboi
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Takeshi Izawa
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Science, Osaka Prefecture University, Rinkuu Ourai Kita 1-58, Izumisano, Osaka 598-8531, Japan
| | - Jyoji Yamate
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Science, Osaka Prefecture University, Rinkuu Ourai Kita 1-58, Izumisano, Osaka 598-8531, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Science, Osaka Prefecture University, Rinkuu Ourai Kita 1-58, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|
44
|
PARK14 PLA2G6 mutants are defective in preventing rotenone-induced mitochondrial dysfunction, ROS generation and activation of mitochondrial apoptotic pathway. Oncotarget 2017; 8:79046-79060. [PMID: 29108286 PMCID: PMC5668019 DOI: 10.18632/oncotarget.20893] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 08/17/2017] [Indexed: 11/25/2022] Open
Abstract
Mutations in the gene encoding Ca2+-independent phospholipase A2 group 6 (PLA2G6) cause the recessive familial type 14 of Parkinson’s disease (PARK14). Mitochondrial dysfunction is involved in the pathogenesis of Parkinson’s disease (PD). PLA2G6 is believed to be required for maintaining mitochondrial function. In the present study, rotenone-induced cellular model of PD was used to investigate possible molecular pathogenic mechanism of PARK14 mutant PLA2G6-induced PD. Overexpression of wild-type (WT) PLA2G6 ameliorated rotenone-induced apoptotic death of SH-SY5Y dopaminergic cells. PARK14 mutant (D331Y), (G517C), (T572I), (R632W), (N659S) or (R741Q) PLA2G6 failed to prevent rotenone-induced activation of mitochondrial apoptotic pathway and exert a neuroprotective effect. WT PLA2G6, but not PARK14 mutant PLA2G6, prevented rotenone-induced mitophagy impairment. In contrast to WT PLA2G6, PARK14 mutant PLA2G6 was ineffective in attenuating rotenone-induced decrease in mitochondrial membrane potential and increase in the level of mitochondrial superoxide. WT PLA2G6, but not PARK14 PLA2G6 mutants, restored enzyme activity of mitochondrial complex I and cellular ATP content in rotenone-treated SH-SY5Y dopaminergic cells. In contrast to WT PLA2G6, PARK14 mutant PLA2G6 failed to prevent rotenone-induced mitochondrial lipid peroxidation and cytochrome c release. These results suggest that PARK14 PLA2G6 mutants lose their ability to maintain mitochondrial function and are defective inpreventing mitochondrial dysfunction, ROS production and activation of mitochondrial apoptotic pathway in rotenone-induced cellular model of PD.
Collapse
|
45
|
Neurons and astrocytes in an infantile neuroaxonal dystrophy (INAD) mouse model show characteristic alterations in glutamate-induced Ca 2+ signaling. Neurochem Int 2017; 108:121-132. [DOI: 10.1016/j.neuint.2017.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/03/2017] [Accepted: 03/03/2017] [Indexed: 01/01/2023]
|
46
|
Miki Y, Tanji K, Mori F, Kakita A, Takahashi H, Wakabayashi K. Alteration of mitochondrial protein PDHA1 in Lewy body disease and PARK14. Biochem Biophys Res Commun 2017; 489:439-444. [PMID: 28564592 DOI: 10.1016/j.bbrc.2017.05.162] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 05/27/2017] [Indexed: 10/19/2022]
Abstract
The histopathological hallmark of Parkinson's disease (PD) and dementia with Lewy bodies (DLB) is the occurrence of insoluble fibrillary aggregates known as Lewy bodies. Mitochondria play a vital role in energy production, and the pathogenesis of PD is associated with altered cellular metabolism due to mitochondrial dysfunction. The pyruvate dehydrogenase (PDH) complex provides a primary step in aerobic glucose metabolism by catalyzing the oxidative decarboxylation of pyruvate to acetyl CoA. Pyruvate dehydrogenase alpha 1 (PDHA1) forms the core structure of the PDH complex. Dysfunction of the PDH complex leads to energy production failure, resulting in various neurological disorders. However, no study has investigated the involvement of PDHA1 in the pathogenesis of PD. In the present study, we performed immunohistochemistry and immunoblotting to clarify the involvement of PDHA1 in idiopathic PD, DLB, PARK14-linked parkinsonism (PARK14; a familial form of PD), and multiple system atrophy, in comparison with normal controls. Here we report PDHA1 as a new component of brainstem-type Lewy bodies in idiopathic PD, DLB and PARK14, the level of PDHA1 protein being significantly decreased in the putamen and substantia nigra of patients with idiopathic PD. Our findings suggest that alteration of glucose metabolism through dysfunction of the PDH complex might occur in the pathogenesis of Lewy body disease and PARK14.
Collapse
Affiliation(s)
- Yasuo Miki
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| | - Kunikazu Tanji
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Fumiaki Mori
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Akiyoshi Kakita
- Department of Pathological Neuroscience, Center for Bioresource-based Researches, Brain Research Institute, University of Niigata, Niigata 951-8585, Japan
| | - Hitoshi Takahashi
- Department of Pathology, Brain Research Institute, University of Niigata, Niigata 951-8585, Japan
| | - Koichi Wakabayashi
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| |
Collapse
|
47
|
Miki Y, Tanji K, Mori F, Kakita A, Takahashi H, Wakabayashi K. PLA2G6 accumulates in Lewy bodies in PARK14 and idiopathic Parkinson's disease. Neurosci Lett 2017; 645:40-45. [DOI: 10.1016/j.neulet.2017.02.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 01/25/2017] [Accepted: 02/09/2017] [Indexed: 11/16/2022]
|
48
|
RIBEYE(B)-domain binds to lipid components of synaptic vesicles in an NAD(H)-dependent, redox-sensitive manner. Biochem J 2017; 474:1205-1220. [PMID: 28202712 DOI: 10.1042/bcj20160886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 02/14/2017] [Accepted: 02/14/2017] [Indexed: 12/26/2022]
Abstract
Synaptic ribbons are needed for fast and continuous exocytosis in ribbon synapses. RIBEYE is a main protein component of synaptic ribbons and is necessary to build the synaptic ribbon. RIBEYE consists of a unique A-domain and a carboxyterminal B-domain, which binds NAD(H). Within the presynaptic terminal, the synaptic ribbons are in physical contact with large numbers of synaptic vesicle (SV)s. How this physical contact between ribbons and synaptic vesicles is established at a molecular level is not well understood. In the present study, we demonstrate that the RIBEYE(B)-domain can directly interact with lipid components of SVs using two different sedimentation assays with liposomes of defined chemical composition. Similar binding results were obtained with a SV-containing membrane fraction. The binding of liposomes to RIBEYE(B) depends upon the presence of a small amount of lysophospholipids present in the liposomes. Interestingly, binding of liposomes to RIBEYE(B) depends on NAD(H) in a redox-sensitive manner. The binding is enhanced by NADH, the reduced form, and is inhibited by NAD+, the oxidized form. Lipid-mediated attachment of vesicles is probably part of a multi-step process that also involves additional, protein-dependent processes.
Collapse
|
49
|
Iodice A, Spagnoli C, Salerno GG, Frattini D, Bertani G, Bergonzini P, Pisani F, Fusco C. Infantile neuroaxonal dystrophy and PLA2G6-associated neurodegeneration: An update for the diagnosis. Brain Dev 2017; 39:93-100. [PMID: 27884548 DOI: 10.1016/j.braindev.2016.08.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 11/25/2022]
Abstract
Infantile neuroaxonal dystrophy is a rare neurodegenerative disorder characterized by infantile onset of rapid motor and cognitive regression and hypotonia evolving into spasticity. Recessively inherited mutations of the PLA2G6 gene are causative of infantile neuroaxonal dystrophy and other PLA2G6-associated neurodegeneration, which includes conditions known as atypical neuroaxonal dystrophy, Karak syndrome and early-onset dystonia-parkinsonism with cognitive impairment. Phenotypic spectrum continues to evolve and genotype-phenotype correlations are currently limited. Due to the overlapping phenotypes and heterogeneity of clinical findings characterization of the syndrome is not always achievable. We reviewed the most recent clinical and neuroradiological information in the way to make easier differential diagnosis with other degenerative disorders in the paediatric age. Recognizing subtle signs and symptoms is a fascinating challenge to drive towards better diagnostic and genetic investigations.
Collapse
Affiliation(s)
- Alessandro Iodice
- Child Neurology Unit, Arcispedale Santa Maria Nuova Hospital - IRCCS, Reggio Emilia, Italy.
| | - Carlotta Spagnoli
- Child Neurology Unit, Arcispedale Santa Maria Nuova Hospital - IRCCS, Reggio Emilia, Italy
| | | | - Daniele Frattini
- Child Neurology Unit, Arcispedale Santa Maria Nuova Hospital - IRCCS, Reggio Emilia, Italy
| | - Gianna Bertani
- Child Neurology Unit, Arcispedale Santa Maria Nuova Hospital - IRCCS, Reggio Emilia, Italy
| | - Patrizia Bergonzini
- Pediatric Neurology Unit, Department of Mother & Child, University Hospital of Modena, Italy
| | - Francesco Pisani
- Child Neuropsychiatry Unit, Neuroscience Department, University of Parma, Italy
| | - Carlo Fusco
- Child Neurology Unit, Arcispedale Santa Maria Nuova Hospital - IRCCS, Reggio Emilia, Italy
| |
Collapse
|
50
|
Tsuboi M, Watanabe M, Nibe K, Yoshimi N, Kato A, Sakaguchi M, Yamato O, Tanaka M, Kuwamura M, Kushida K, Ishikura T, Harada T, Chambers JK, Sugano S, Uchida K, Nakayama H. Identification of the PLA2G6 c.1579G>A Missense Mutation in Papillon Dog Neuroaxonal Dystrophy Using Whole Exome Sequencing Analysis. PLoS One 2017; 12:e0169002. [PMID: 28107443 PMCID: PMC5249094 DOI: 10.1371/journal.pone.0169002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 12/09/2016] [Indexed: 12/29/2022] Open
Abstract
Whole exome sequencing (WES) has become a common tool for identifying genetic causes of human inherited disorders, and it has also recently been applied to canine genome research. We conducted WES analysis of neuroaxonal dystrophy (NAD), a neurodegenerative disease that sporadically occurs worldwide in Papillon dogs. The disease is considered an autosomal recessive monogenic disease, which is histopathologically characterized by severe axonal swelling, known as “spheroids,” throughout the nervous system. By sequencing all eleven DNA samples from one NAD-affected Papillon dog and her parents, two unrelated NAD-affected Papillon dogs, and six unaffected control Papillon dogs, we identified 10 candidate mutations. Among them, three candidates were determined to be “deleterious” by in silico pathogenesis evaluation. By subsequent massive screening by TaqMan genotyping analysis, only the PLA2G6 c.1579G>A mutation had an association with the presence or absence of the disease, suggesting that it may be a causal mutation of canine NAD. As a human homologue of this gene is a causative gene for infantile neuroaxonal dystrophy, this canine phenotype may serve as a good animal model for human disease. The results of this study also indicate that WES analysis is a powerful tool for exploring canine hereditary diseases, especially in rare monogenic hereditary diseases.
Collapse
Affiliation(s)
- Masaya Tsuboi
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Manabu Watanabe
- Laboratory of Functional Genomics, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazumi Nibe
- Japan Animal Referral Medical Center, Kanagawa, Japan
| | | | | | - Masahiro Sakaguchi
- Laboratory of Veterinary Microbiology I, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Osamu Yamato
- Laboratory of Clinical Pathology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Miyuu Tanaka
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Kazuya Kushida
- Laboratory of Clinical Pathology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Takashi Ishikura
- Thermo Fisher Scientific, Life Technologies Japan Ltd., Tokyo, Japan
| | - Tomoyuki Harada
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - James Kenn Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Sumio Sugano
- Laboratory of Functional Genomics, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- * E-mail:
| | - Hiroyuki Nakayama
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|