1
|
Lin J, Hou X, Liu Y, Cai Y, Pan J, Liao J. Elevated peripheral glutamate and upregulated expression of NMDA receptor NR1 subunit in insomnia disorder. Front Psychiatry 2024; 15:1436024. [PMID: 39435127 PMCID: PMC11491378 DOI: 10.3389/fpsyt.2024.1436024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/18/2024] [Indexed: 10/23/2024] Open
Abstract
Background The present study explored the serum glutamate (Glu), glutamine (Gln), glutamic acid dehydrogenase (GAD) concentrations and the mRNA expression levels of the N-methyl-D-aspartate receptor (NMDAR) NR1 subunit in the peripheral blood of patients with insomnia disorder (ID). To our knowledge, this is the first study showing an increase in the mRNA expression levels of the NMDAR NR1 subunit in patients with ID. Methods This study included 30 ID patients and 30 matched healthy controls. We investigated the demographic and illness information and assessed subjective sleep quality using the Pittsburgh Sleep Quality Index. The Hamilton Depression Scale-17 and Hamilton Anxiety Scale were used to evaluate the patients' symptoms of depression and anxiety, respectively. The quantifications of Glu, Gln and GAD concentrations were performed by Enzyme-linked immunosorbent assay (ELISA). Real-time PCR was used to detect the mRNA expression levels of the NMDAR NR1 subunit in peripheral blood. Results Compared with the healthy control group, the serum Glu concentrations and the mRNA expression levels of the NMDAR NR1 subunit in the ID group were significantly higher. However, there was no significant difference in Gln and GAD between the two groups. The receiver operating characteristic (ROC) analysis showed that the mRNA expression levels of the NMDAR NR1 subunit could distinguish ID patients from healthy individuals (area under the curve: 0.758; sensitivity: 73.3%; specificity: 76.7%). A negative correlation was found between the mRNA expression levels of the NMDAR NR1 subunit for age, total duration of illness, and age of first onset in the ID group, whereas a positive correlation was detected for daytime dysfunction. Conclusion Glutamatergic neurotransmission was abnormal in ID patients. Additionally, the mRNA expression levels of the NMDAR NR1 subunit appeared to have potential as a clinical biomarker for ID. However, the sample size of our study was limited, and future studies with larger sample sizes are needed to further validate and explore the mechanisms involved and to assess the reliability of the biomarker.
Collapse
Affiliation(s)
- Jingjing Lin
- Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Department of Psychiatry, Sleep Medicine Centre, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Xiaohui Hou
- Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yaxi Liu
- Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Department of Psychiatry, Sleep Medicine Centre, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yixian Cai
- Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Department of Psychiatry, Sleep Medicine Centre, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jiyang Pan
- Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Department of Psychiatry, Sleep Medicine Centre, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jiwu Liao
- Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Meng H, Chen X, Chen S. Sleep Disturbances in Autoimmune Neurological Diseases: Mechanisms, Clinical Characteristics, Assessment, and Treatment Strategies. Curr Neurol Neurosci Rep 2024:10.1007/s11910-024-01377-4. [PMID: 39297918 DOI: 10.1007/s11910-024-01377-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2024] [Indexed: 09/21/2024]
Abstract
PURPOSE OF REVIEW Sleep disturbances are a hallmark feature of various autoimmune neurological diseases (AINDs). However, limited awareness of these sleep manifestations exists among clinicians. We provide a comprehensive overview of assessment methods, characteristic sleep disturbances, the impact of specific antibodies on sleep patterns, and treatment strategies for sleep disturbances in AINDs. RECENT FINDINGS Research advancements in sleep disturbances in autoimmune neurological disease focus primarily on four areas: mechanisms, clinical characteristics, assessment, and treatment. Regarding mechanisms, animal models for AINDs, particularly those involving specific antibodies like anti-NMDAR, anti-LGI1, and anti-IgLON5, have become more comprehensive. Recent advancements in animal models have led to the establishment of numerous models for AINDs; these models include a wide range of antibodies, including anti-NMDAR, anti-LGI1, and anti-IgLON5. Several studies using these models have revealed common mechanisms underlying sleep disturbances in these diseases. In terms of clinical characteristics, the identification of antibodies associated with recently discovered AINDs has expanded the spectrum of sleep disturbance symptoms observed compared to prior findings. A comprehensive evaluation system for the assessment of sleep disturbances has been established, including questionnaires, polysomnography, functional magnetic resonance imaging, and 18F-FDG PET/CT. Additionally, cardiopulmonary coupling shows promise as a novel assessment tool. Currently, no universally effective treatment exists for sleep disturbances in autoimmune neurological diseases, either through symptomatic treatment or immunosuppressive therapy. Further studies are needed to confirm the efficacy of new therapies and validate the benefits of existing treatments. Sleep disturbances are a hallmark feature of AINDs. Recent advancements have significantly expanded our understanding of their assessment and treatment. However, further studies are needed to address the remaining uncertainties in sleep disturbance management.
Collapse
Affiliation(s)
- Huanyu Meng
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2 Road, Shanghai, 200025, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xiaoyu Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2 Road, Shanghai, 200025, China
| | - Sheng Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2 Road, Shanghai, 200025, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China.
| |
Collapse
|
3
|
Cao Z, Yung WH, Ke Y. Distinct populations of lateral preoptic nucleus neurons jointly contribute to depressive-like behaviors through divergent projections in male mice. Neurobiol Stress 2024; 32:100667. [PMID: 39233784 PMCID: PMC11372801 DOI: 10.1016/j.ynstr.2024.100667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024] Open
Abstract
The lateral preoptic area (LPO) is a component of the hypothalamus involved in various physiological functions including sleep-wakefulness transition, thermoregulation, and water-salt balance. In this study, we discovered that distinct LPO excitatory neurons project separately to the aversive processing center lateral habenula (LHb) and the reward processing hub ventral tegmental area (VTA). Following chronic restraint stress (CRS), the LHb-projecting and VTA-projecting LPO neurons exhibited increased and decreased neuronal activities, respectively. Optogenetic activation of LHb-projecting LPO excitatory neurons and LPO excitatory neuronal terminals within LHb evoked aversion and avoidance behaviors, while activation of VTA-projecting LPO excitatory neurons and LPO excitatory neuronal terminals within VTA produced preference and exploratory behaviors in mice. Furthermore, either optogenetic inhibition of LHb-projecting LPO excitatory neurons or activation of VTA-projecting LPO excitatory neurons during CRS effectively prevented the development of depressive-like behaviors. Our study unveils, for the first-time, divergent pathways originating from LPO that regulate opposite affective states in mice and implicates that an imbalance of their activities could lead to depressive-like behaviors. These circuitries represent promising therapeutic targets to relieve emotional dysfunctions in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Zhiping Cao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, 999077, Hong Kong, China
| | - Wing-Ho Yung
- Department of Neuroscience, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Ya Ke
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, 999077, Hong Kong, China
| |
Collapse
|
4
|
Ba W, Nollet M, Yin C, Yu X, Wong S, Miao A, Beckwith EJ, Harding EC, Ma Y, Yustos R, Vyssotski AL, Wisden W, Franks NP. A REM-active basal ganglia circuit that regulates anxiety. Curr Biol 2024; 34:3301-3314.e4. [PMID: 38944034 DOI: 10.1016/j.cub.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 04/22/2024] [Accepted: 06/05/2024] [Indexed: 07/01/2024]
Abstract
Rapid eye movement (REM) sleep has been hypothesized to promote emotional resilience, but any neuronal circuits mediating this have not been identified. We find that in mice, somatostatin (Som) neurons in the entopeduncular nucleus (EPSom)/internal globus pallidus are predominantly active during REM sleep. This unique REM activity is both necessary and sufficient for maintaining normal REM sleep. Inhibiting or exciting EPSom neurons reduced or increased REM sleep duration, respectively. Activation of the sole downstream target of EPSom neurons, Vglut2 cells in the lateral habenula (LHb), increased sleep via the ventral tegmental area (VTA). A simple chemogenetic scheme to periodically inhibit the LHb over 4 days selectively removed a significant amount of cumulative REM sleep. Chronic, but not acute, REM reduction correlated with mice becoming anxious and more sensitive to aversive stimuli. Therefore, we suggest that cumulative REM sleep, in part generated by the EP → LHb → VTA circuit identified here, could contribute to stabilizing reactions to habitual aversive stimuli.
Collapse
Affiliation(s)
- Wei Ba
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Mathieu Nollet
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; UK Dementia Research Institute, Imperial College London, London SW7 2AZ, UK
| | - Chunyu Yin
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; Department of Neonatal Medical Center, Children's Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Xiao Yu
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Sara Wong
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; UK Dementia Research Institute, Imperial College London, London SW7 2AZ, UK
| | - Andawei Miao
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; UK Dementia Research Institute, Imperial College London, London SW7 2AZ, UK
| | - Esteban J Beckwith
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Edward C Harding
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Ying Ma
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Raquel Yustos
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Alexei L Vyssotski
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich 8057, Switzerland
| | - William Wisden
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; UK Dementia Research Institute, Imperial College London, London SW7 2AZ, UK.
| | - Nicholas P Franks
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; UK Dementia Research Institute, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
5
|
Luppi PH, Malcey J, Chancel A, Duval B, Cabrera S, Fort P. Neuronal network controlling REM sleep. J Sleep Res 2024:e14266. [PMID: 38972672 DOI: 10.1111/jsr.14266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 07/09/2024]
Abstract
Rapid eye movement sleep is a state characterized by concomitant occurrence of rapid eye movements, electroencephalographic activation and muscle atonia. In this review, we provide up to date knowledge on the neuronal network controlling its onset and maintenance. It is now accepted that muscle atonia during rapid eye movement sleep is due to activation of glutamatergic neurons localized in the pontine sublaterodorsal tegmental nucleus. These neurons directly project and excite glycinergic/γ-aminobutyric acid-ergic pre-motoneurons localized in the ventromedial medulla. The sublaterodorsal tegmental nucleus rapid eye movement-on neurons are inactivated during wakefulness and non-rapid eye movement by rapid eye movement-off γ-aminobutyric acid-ergic neurons localized in the ventrolateral periaqueductal grey and the adjacent dorsal deep mesencephalic reticular nucleus. Melanin-concentrating hormone and γ-aminobutyric acid-ergic rapid eye movement sleep-on neurons localized in the lateral hypothalamus would inhibit these rapid eye movement sleep-off neurons initiating the state. Finally, the activation of a few limbic cortical structures during rapid eye movement sleep by the claustrum and the supramammillary nucleus as well as that of the basolateral amygdala would be involved in the function(s) of rapid eye movement sleep. In summary, rapid eye movement sleep is generated by a brainstem generator controlled by forebrain structures involved in autonomic control.
Collapse
Affiliation(s)
- Pierre-Hervé Luppi
- INSERM, U1028; CNRS, UMR5292, Lyon Neuroscience Research Center, Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
- University Lyon 1, Lyon, France
| | - Justin Malcey
- INSERM, U1028; CNRS, UMR5292, Lyon Neuroscience Research Center, Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
- University Lyon 1, Lyon, France
| | - Amarine Chancel
- INSERM, U1028; CNRS, UMR5292, Lyon Neuroscience Research Center, Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
- University Lyon 1, Lyon, France
| | - Blandine Duval
- INSERM, U1028; CNRS, UMR5292, Lyon Neuroscience Research Center, Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
| | - Sébastien Cabrera
- INSERM, U1028; CNRS, UMR5292, Lyon Neuroscience Research Center, Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
- University Lyon 1, Lyon, France
| | - Patrice Fort
- INSERM, U1028; CNRS, UMR5292, Lyon Neuroscience Research Center, Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
- University Lyon 1, Lyon, France
| |
Collapse
|
6
|
Maurer JJ, Lin A, Jin X, Hong J, Sathi N, Cardis R, Osorio-Forero A, Lüthi A, Weber F, Chung S. Homeostatic regulation of rapid eye movement sleep by the preoptic area of the hypothalamus. eLife 2024; 12:RP92095. [PMID: 38884573 PMCID: PMC11182646 DOI: 10.7554/elife.92095] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024] Open
Abstract
Rapid eye movement sleep (REMs) is characterized by activated electroencephalogram (EEG) and muscle atonia, accompanied by vivid dreams. REMs is homeostatically regulated, ensuring that any loss of REMs is compensated by a subsequent increase in its amount. However, the neural mechanisms underlying the homeostatic control of REMs are largely unknown. Here, we show that GABAergic neurons in the preoptic area of the hypothalamus projecting to the tuberomammillary nucleus (POAGAD2→TMN neurons) are crucial for the homeostatic regulation of REMs in mice. POAGAD2→TMN neurons are most active during REMs, and inhibiting them specifically decreases REMs. REMs restriction leads to an increased number and amplitude of calcium transients in POAGAD2→TMN neurons, reflecting the accumulation of REMs pressure. Inhibiting POAGAD2→TMN neurons during REMs restriction blocked the subsequent rebound of REMs. Our findings reveal a hypothalamic circuit whose activity mirrors the buildup of homeostatic REMs pressure during restriction and that is required for the ensuing rebound in REMs.
Collapse
Affiliation(s)
- John J Maurer
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Alexandra Lin
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Xi Jin
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Jiso Hong
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Nicholas Sathi
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Romain Cardis
- Department of Fundamental Neurosciences, University of LausanneLausanneSwitzerland
| | | | - Anita Lüthi
- Department of Fundamental Neurosciences, University of LausanneLausanneSwitzerland
| | - Franz Weber
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Shinjae Chung
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
7
|
Luppi PH, Chancel A, Malcey J, Cabrera S, Fort P, Maciel RM. Which structure generates paradoxical (REM) sleep: The brainstem, the hypothalamus, the amygdala or the cortex? Sleep Med Rev 2024; 74:101907. [PMID: 38422648 DOI: 10.1016/j.smrv.2024.101907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/31/2023] [Accepted: 01/19/2024] [Indexed: 03/02/2024]
Abstract
Paradoxical or Rapid eye movement (REM) sleep (PS) is a state characterized by REMs, EEG activation and muscle atonia. In this review, we discuss the contribution of brainstem, hypothalamic, amygdalar and cortical structures in PS genesis. We propose that muscle atonia during PS is due to activation of glutamatergic neurons localized in the pontine sublaterodorsal tegmental nucleus (SLD) projecting to glycinergic/GABAergic pre-motoneurons localized in the ventro-medial medulla (vmM). The SLD PS-on neurons are inactivated during wakefulness and slow-wave sleep by PS-off GABAergic neurons localized in the ventrolateral periaqueductal gray (vPAG) and the adjacent deep mesencephalic reticular nucleus. Melanin concentrating hormone (MCH) and GABAergic PS-on neurons localized in the posterior hypothalamus would inhibit these PS-off neurons to initiate the state. Finally, the activation of a few limbic cortical structures during PS by the claustrum and the supramammillary nucleus as well as that of the basolateral amygdala would also contribute to PS expression. Accumulating evidence indicates that the activation of these limbic structures plays a role in memory consolidation and would communicate to the PS-generating structures the need for PS to process memory. In summary, PS generation is controlled by structures distributed from the cortex to the medullary level of the brain.
Collapse
Affiliation(s)
- Pierre-Hervé Luppi
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, SLEEP Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France; University Claude Bernard, Lyon 1, Lyon, France.
| | - Amarine Chancel
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, SLEEP Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France; University Claude Bernard, Lyon 1, Lyon, France
| | - Justin Malcey
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, SLEEP Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France; University Claude Bernard, Lyon 1, Lyon, France
| | - Sébastien Cabrera
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, SLEEP Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France; University Claude Bernard, Lyon 1, Lyon, France
| | - Patrice Fort
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, SLEEP Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France; University Claude Bernard, Lyon 1, Lyon, France
| | - Renato M Maciel
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, SLEEP Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France; University Claude Bernard, Lyon 1, Lyon, France
| |
Collapse
|
8
|
Chen P, Wang W, Ban W, Zhang K, Dai Y, Yang Z, You Y. Deciphering Post-Stroke Sleep Disorders: Unveiling Neurological Mechanisms in the Realm of Brain Science. Brain Sci 2024; 14:307. [PMID: 38671959 PMCID: PMC11047862 DOI: 10.3390/brainsci14040307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
Sleep disorders are the most widespread mental disorders after stroke and hurt survivors' functional prognosis, response to restoration, and quality of life. This review will address an overview of the progress of research on the biological mechanisms associated with stroke-complicating sleep disorders. Extensive research has investigated the negative impact of stroke on sleep. However, a bidirectional association between sleep disorders and stroke exists; while stroke elevates the risk of sleep disorders, these disorders also independently contribute as a risk factor for stroke. This review aims to elucidate the mechanisms of stroke-induced sleep disorders. Possible influences were examined, including functional changes in brain regions, cerebrovascular hemodynamics, neurological deficits, sleep ion regulation, neurotransmitters, and inflammation. The results provide valuable insights into the mechanisms of stroke complicating sleep disorders.
Collapse
Affiliation(s)
- Pinqiu Chen
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China; (P.C.)
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Wenyan Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China; (P.C.)
| | - Weikang Ban
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Kecan Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Yanan Dai
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Zhihong Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Yuyang You
- School of Automation, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
9
|
Maurer J, Lin A, Jin X, Hong J, Sathi N, Cardis R, Osorio-Forero A, Lüthi A, Weber F, Chung S. Homeostatic regulation of REM sleep by the preoptic area of the hypothalamus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.22.554341. [PMID: 37662417 PMCID: PMC10473649 DOI: 10.1101/2023.08.22.554341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Rapid-eye-movement sleep (REMs) is characterized by activated electroencephalogram (EEG) and muscle atonia, accompanied by vivid dreams. REMs is homeostatically regulated, ensuring that any loss of REMs is compensated by a subsequent increase in its amount. However, the neural mechanisms underlying the homeostatic control of REMs are largely unknown. Here, we show that GABAergic neurons in the preoptic area of the hypothalamus projecting to the tuberomammillary nucleus (POAGAD2→TMN neurons) are crucial for the homeostatic regulation of REMs. POAGAD2→TMN neurons are most active during REMs, and inhibiting them specifically decreases REMs. REMs restriction leads to an increased number and amplitude of calcium transients in POAGAD2→TMN neurons, reflecting the accumulation of REMs pressure. Inhibiting POAGAD2→TMN neurons during REMs restriction blocked the subsequent rebound of REMs. Our findings reveal a hypothalamic circuit whose activity mirrors the buildup of homeostatic REMs pressure during restriction and that is required for the ensuing rebound in REMs.
Collapse
Affiliation(s)
- John Maurer
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alex Lin
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xi Jin
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jiso Hong
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas Sathi
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Romain Cardis
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005 Lausanne, Switzerland
| | - Alejandro Osorio-Forero
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005 Lausanne, Switzerland
| | - Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005 Lausanne, Switzerland
| | - Franz Weber
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shinjae Chung
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Smith J, Honig-Frand A, Antila H, Choi A, Kim H, Beier KT, Weber F, Chung S. Regulation of stress-induced sleep fragmentation by preoptic glutamatergic neurons. Curr Biol 2024; 34:12-23.e5. [PMID: 38096820 PMCID: PMC10872481 DOI: 10.1016/j.cub.2023.11.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/28/2023] [Accepted: 11/15/2023] [Indexed: 01/11/2024]
Abstract
Sleep disturbances are detrimental to our behavioral and emotional well-being. Stressful events disrupt sleep, in particular by inducing brief awakenings (microarousals, MAs), resulting in sleep fragmentation. The preoptic area of the hypothalamus (POA) is crucial for sleep control. However, how POA neurons contribute to the regulation of MAs and thereby impact sleep quality is unknown. Using fiber photometry in mice, we examine the activity of genetically defined POA subpopulations during sleep. We find that POA glutamatergic neurons are rhythmically activated in synchrony with an infraslow rhythm in the spindle band of the electroencephalogram during non-rapid eye movement sleep (NREMs) and are transiently activated during MAs. Optogenetic stimulation of these neurons promotes MAs and wakefulness. Exposure to acute social defeat stress fragments NREMs and significantly increases the number of transients in the calcium activity of POA glutamatergic neurons during NREMs. By reducing MAs, optogenetic inhibition during spontaneous sleep and after stress consolidates NREMs. Monosynaptically restricted rabies tracing reveals that POA glutamatergic neurons are innervated by brain regions regulating stress and sleep. In particular, presynaptic glutamatergic neurons in the lateral hypothalamus become activated after stress, and stimulating their projections to the POA promotes MAs and wakefulness. Our findings uncover a novel circuit mechanism by which POA excitatory neurons regulate sleep quality after stress.
Collapse
Affiliation(s)
- Jennifer Smith
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adam Honig-Frand
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hanna Antila
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ashley Choi
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hannah Kim
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kevin T Beier
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92617, USA
| | - Franz Weber
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shinjae Chung
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
11
|
Ma W, Li L, Kong L, Zhang H, Yuan P, Huang Z, Wang Y. Whole-brain monosynaptic inputs to lateral periaqueductal gray glutamatergic neurons in mice. CNS Neurosci Ther 2023; 29:4147-4159. [PMID: 37424163 PMCID: PMC10651995 DOI: 10.1111/cns.14338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/26/2023] [Accepted: 06/24/2023] [Indexed: 07/11/2023] Open
Abstract
OBJECTIVE The lateral periaqueductal gray (LPAG), which mainly contains glutamatergic neurons, plays an important role in social responses, pain, and offensive and defensive behaviors. Currently, the whole-brain monosynaptic inputs to LPAG glutamatergic neurons are unknown. This study aims to explore the structural framework of the underlying neural mechanisms of LPAG glutamatergic neurons. METHODS This study used retrograde tracing systems based on the rabies virus, Cre-LoxP technology, and immunofluorescence analysis. RESULTS We found that 59 nuclei projected monosynaptic inputs to the LPAG glutamatergic neurons. In addition, seven hypothalamic nuclei, namely the lateral hypothalamic area (LH), lateral preoptic area (LPO), substantia innominata (SI), medial preoptic area, ventral pallidum, posterior hypothalamic area, and lateral globus pallidus, projected most densely to the LPAG glutamatergic neurons. Notably, we discovered through further immunofluorescence analysis that the inputs to the LPAG glutamatergic neurons were colocalized with several markers related to important neurological functions associated with physiological behaviors. CONCLUSION The LPAG glutamatergic neurons received dense projections from the hypothalamus, especially nuclei such as LH, LPO, and SI. The input neurons were colocalized with several markers of physiological behaviors, which show the pivotal role of glutamatergic neurons in the physiological behaviors regulation by LPAG.
Collapse
Affiliation(s)
- Wei‐Xiang Ma
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Lei Li
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Ling‐Xi Kong
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Hui Zhang
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Provincial Engineering Laboratory for Screening and Re‐evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of PharmacyWannan Medical CollegeWuhuChina
| | - Ping‐Chuan Yuan
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Provincial Engineering Laboratory for Screening and Re‐evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of PharmacyWannan Medical CollegeWuhuChina
| | - Zhi‐Li Huang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Yi‐Qun Wang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain ScienceFudan UniversityShanghaiChina
| |
Collapse
|
12
|
Tossell K, Yu X, Giannos P, Anuncibay Soto B, Nollet M, Yustos R, Miracca G, Vicente M, Miao A, Hsieh B, Ma Y, Vyssotski AL, Constandinou T, Franks NP, Wisden W. Somatostatin neurons in prefrontal cortex initiate sleep-preparatory behavior and sleep via the preoptic and lateral hypothalamus. Nat Neurosci 2023; 26:1805-1819. [PMID: 37735497 PMCID: PMC10545541 DOI: 10.1038/s41593-023-01430-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/14/2023] [Indexed: 09/23/2023]
Abstract
The prefrontal cortex (PFC) enables mammals to respond to situations, including internal states, with appropriate actions. One such internal state could be 'tiredness'. Here, using activity tagging in the mouse PFC, we identified particularly excitable, fast-spiking, somatostatin-expressing, γ-aminobutyric acid (GABA) (PFCSst-GABA) cells that responded to sleep deprivation. These cells projected to the lateral preoptic (LPO) hypothalamus and the lateral hypothalamus (LH). Stimulating PFCSst-GABA terminals in the LPO hypothalamus caused sleep-preparatory behavior (nesting, elevated theta power and elevated temperature), and stimulating PFCSst-GABA terminals in the LH mimicked recovery sleep (non-rapid eye-movement sleep with higher delta power and lower body temperature). PFCSst-GABA terminals had enhanced activity during nesting and sleep, inducing inhibitory postsynaptic currents on diverse cells in the LPO hypothalamus and the LH. The PFC also might feature in deciding sleep location in the absence of excessive fatigue. These findings suggest that the PFC instructs the hypothalamus to ensure that optimal sleep takes place in a suitable place.
Collapse
Affiliation(s)
- Kyoko Tossell
- Department of Life Sciences, Imperial College London, London, UK
| | - Xiao Yu
- Department of Life Sciences, Imperial College London, London, UK
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | | | - Berta Anuncibay Soto
- Department of Life Sciences, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Mathieu Nollet
- Department of Life Sciences, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Raquel Yustos
- Department of Life Sciences, Imperial College London, London, UK
| | - Giulia Miracca
- Department of Life Sciences, Imperial College London, London, UK
| | - Mikal Vicente
- Department of Life Sciences, Imperial College London, London, UK
| | - Andawei Miao
- Department of Life Sciences, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Bryan Hsieh
- Department of Life Sciences, Imperial College London, London, UK
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK
- Center for Neurotechnology, Imperial College London, London, UK
| | - Ying Ma
- Department of Life Sciences, Imperial College London, London, UK
| | - Alexei L Vyssotski
- Institute of Neuroinformatics, University of Zürich-ETH Zürich, Zürich, Switzerland
| | - Tim Constandinou
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK
- Center for Neurotechnology, Imperial College London, London, UK
- Care Research and Technology Centre, UK Dementia Research Institute, London, UK
| | - Nicholas P Franks
- Department of Life Sciences, Imperial College London, London, UK.
- UK Dementia Research Institute, Imperial College London, London, UK.
- Center for Neurotechnology, Imperial College London, London, UK.
| | - William Wisden
- Department of Life Sciences, Imperial College London, London, UK.
- UK Dementia Research Institute, Imperial College London, London, UK.
- Center for Neurotechnology, Imperial College London, London, UK.
| |
Collapse
|
13
|
Arnold E, Soler-Llavina G, Kambara K, Bertrand D. The importance of ligand gated ion channels in sleep and sleep disorders. Biochem Pharmacol 2023; 212:115532. [PMID: 37019187 DOI: 10.1016/j.bcp.2023.115532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
On average, humans spend about 26 years of their life sleeping. Increased sleep duration and quality has been linked to reduced disease risk; however, the cellular and molecular underpinnings of sleep remain open questions. It has been known for some time that pharmacological modulation of neurotransmission in the brain can promote either sleep or wakefulness thereby providing some clues about the molecular mechanisms at play. However, the field of sleep research has developed an increasingly detailed understanding of the requisite neuronal circuitry and key neurotransmitter receptor subtypes, suggesting that it may be possible to identify next generation pharmacological interventions to treat sleep disorders within this same space. The aim of this work is to examine the latest physiological and pharmacological findings highlighting the contribution of ligand gated ion channels including the inhibitory GABAA and glycine receptors and excitatory nicotinic acetylcholine receptors and glutamate receptors in the sleep-wake cycle regulation. Overall, a better understanding of ligand gated ion channels in sleep will help determine if these highly druggable targets could facilitate a better night's sleep.
Collapse
|
14
|
Sulaman BA, Wang S, Tyan J, Eban-Rothschild A. Neuro-orchestration of sleep and wakefulness. Nat Neurosci 2023; 26:196-212. [PMID: 36581730 DOI: 10.1038/s41593-022-01236-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/16/2022] [Indexed: 12/31/2022]
Abstract
Although considered an inactive state for centuries, sleep entails many active processes occurring at the cellular, circuit and organismal levels. Over the last decade, several key technological advances, including calcium imaging and optogenetic and chemogenetic manipulations, have facilitated a detailed understanding of the functions of different neuronal populations and circuits in sleep-wake regulation. Here, we present recent progress and summarize our current understanding of the circuitry underlying the initiation, maintenance and coordination of wakefulness, rapid eye movement sleep (REMS) and non-REMS (NREMS). We propose a de-arousal model for sleep initiation, in which the neuromodulatory milieu necessary for sleep initiation is achieved by engaging in repetitive pre-sleep behaviors that gradually reduce vigilance to the external environment and wake-promoting neuromodulatory tone. We also discuss how brain processes related to thermoregulation, hunger and fear intersect with sleep-wake circuits to control arousal. Lastly, we discuss controversies and lingering questions in the sleep field.
Collapse
Affiliation(s)
- Bibi A Sulaman
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Su Wang
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Jean Tyan
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
15
|
Taksokhan A, Kim K. Lateral Preoptic Hypothalamus: A Window to Understanding Insomnia. J Neurosci 2023; 43:682-684. [PMID: 36725343 PMCID: PMC9899078 DOI: 10.1523/jneurosci.1560-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 02/03/2023] Open
Affiliation(s)
- Anita Taksokhan
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G3, Canada
| | - Kyungwook Kim
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G3, Canada
- Collaborative Program in Neuroscience, University of Toronto, Toronto, Ontario M5S 3G3, Canada
| |
Collapse
|
16
|
Nollet M, Franks NP, Wisden W. Understanding Sleep Regulation in Normal and Pathological Conditions, and Why It Matters. J Huntingtons Dis 2023; 12:105-119. [PMID: 37302038 PMCID: PMC10473105 DOI: 10.3233/jhd-230564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
Sleep occupies a peculiar place in our lives and in science, being both eminently familiar and profoundly enigmatic. Historically, philosophers, scientists and artists questioned the meaning and purpose of sleep. If Shakespeare's verses from MacBeth depicting "Sleep that soothes away all our worries" and "relieves the weary laborer and heals hurt minds" perfectly epitomize the alleviating benefits of sleep, it is only during the last two decades that the growing understanding of the sophisticated sleep regulatory mechanisms allows us to glimpse putative biological functions of sleep. Sleep control brings into play various brain-wide processes occurring at the molecular, cellular, circuit, and system levels, some of them overlapping with a number of disease-signaling pathways. Pathogenic processes, including mood disorders (e.g., major depression) and neurodegenerative illnesses such Huntington's or Alzheimer's diseases, can therefore affect sleep-modulating networks which disrupt the sleep-wake architecture, whereas sleep disturbances may also trigger various brain disorders. In this review, we describe the mechanisms underlying sleep regulation and the main hypotheses drawn about its functions. Comprehending sleep physiological orchestration and functions could ultimately help deliver better treatments for people living with neurodegenerative diseases.
Collapse
Affiliation(s)
- Mathieu Nollet
- UK Dementia Research Institute and Department of Life Sciences, Imperial College London, London, UK
| | - Nicholas P. Franks
- UK Dementia Research Institute and Department of Life Sciences, Imperial College London, London, UK
| | - William Wisden
- UK Dementia Research Institute and Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|