1
|
Rajendran VG, Tsdaka Y, Keung TY, Schnupp JW, Nelken I. Rats synchronize predictively to metronomes. iScience 2024; 27:111053. [PMID: 39507253 PMCID: PMC11539146 DOI: 10.1016/j.isci.2024.111053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/29/2024] [Accepted: 09/24/2024] [Indexed: 11/08/2024] Open
Abstract
Predictive auditory-motor synchronization, in which rhythmic movements anticipate rhythmic sounds, is at the core of the human capacity for music. Rodents show impressive capabilities in timing and motor tasks, but their ability to predictively coordinate sensation and action has not been demonstrated. Here, we reveal a clear capacity for predictive auditory-motor synchronization in rodent species using a modeling approach for the quantitative exploration of synchronization behaviors. We trained 8 rats to synchronize their licking to metronomes with tempi ranging from 0.5to 2 Hz and observed periodic lick patterns locked to metronome beats. We developed a flexible Markovian modeling framework to formally test how well different candidate strategies could explain the observed lick patterns. The best models required predictive control of licking that could not be explained by reactive strategies, indicating that predictive auditory-motor synchronization may be more widely shared across mammalian species than previously appreciated.
Collapse
Affiliation(s)
- Vani G. Rajendran
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Yehonadav Tsdaka
- Edmond and Lily Safra Center for Brain Sciences and the Department for Neurobiology, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tung Yee Keung
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Jan W.H. Schnupp
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong, China
- Department of Otolaryngology, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Israel Nelken
- Edmond and Lily Safra Center for Brain Sciences and the Department for Neurobiology, Hebrew University of Jerusalem, Jerusalem, Israel
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
2
|
Cao R, Bright IM, Howard MW. Ramping cells in the rodent medial prefrontal cortex encode time to past and future events via real Laplace transform. Proc Natl Acad Sci U S A 2024; 121:e2404169121. [PMID: 39254998 PMCID: PMC11420195 DOI: 10.1073/pnas.2404169121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
In interval reproduction tasks, animals must remember the event starting the interval and anticipate the time of the planned response to terminate the interval. The interval reproduction task thus allows for studying both memory for the past and anticipation of the future. We analyzed previously published recordings from the rodent medial prefrontal cortex [J. Henke et al., eLife10, e71612 (2021)] during an interval reproduction task and identified two cell groups by modeling their temporal receptive fields using hierarchical Bayesian models. The firing in the "past cells" group peaked at the start of the interval and relaxed exponentially back to baseline. The firing in the "future cells" group increased exponentially and peaked right before the planned action at the end of the interval. Contrary to the previous assumption that timing information in the brain has one or two time scales for a given interval, we found strong evidence for a continuous distribution of the exponential rate constants for both past and future cell populations. The real Laplace transformation of time predicts exponential firing with a continuous distribution of rate constants across the population. Therefore, the firing pattern of the past cells can be identified with the Laplace transform of time since the past event while the firing pattern of the future cells can be identified with the Laplace transform of time until the planned future event.
Collapse
Affiliation(s)
- Rui Cao
- Department of Psychological and Brain Sciences, Boston University, Boston, MA02215
| | - Ian M. Bright
- Department of Psychological and Brain Sciences, Boston University, Boston, MA02215
| | - Marc W. Howard
- Department of Psychological and Brain Sciences, Boston University, Boston, MA02215
| |
Collapse
|
3
|
Garcia-Saldivar P, de León C, Mendez Salcido FA, Concha L, Merchant H. White matter structural bases for phase accuracy during tapping synchronization. eLife 2024; 13:e83838. [PMID: 39230417 PMCID: PMC11483129 DOI: 10.7554/elife.83838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 05/30/2024] [Indexed: 09/05/2024] Open
Abstract
We determined the intersubject association between the rhythmic entrainment abilities of human subjects during a synchronization-continuation tapping task (SCT) and the macro- and microstructural properties of their superficial (SWM) and deep (DWM) white matter. Diffusion-weighted images were obtained from 32 subjects who performed the SCT with auditory or visual metronomes and five tempos ranging from 550 to 950 ms. We developed a method to determine the density of short-range fibers that run underneath the cortical mantle, interconnecting nearby cortical regions (U-fibers). Notably, individual differences in the density of U-fibers in the right audiomotor system were correlated with the degree of phase accuracy between the stimuli and taps across subjects. These correlations were specific to the synchronization epoch with auditory metronomes and tempos around 1.5 Hz. In addition, a significant association was found between phase accuracy and the density and bundle diameter of the corpus callosum (CC), forming an interval-selective map where short and long intervals were behaviorally correlated with the anterior and posterior portions of the CC. These findings suggest that the structural properties of the SWM and DWM in the audiomotor system support the tapping synchronization abilities of subjects, as cortical U-fiber density is linked to the preferred tapping tempo and the bundle properties of the CC define an interval-selective topography.
Collapse
Affiliation(s)
- Pamela Garcia-Saldivar
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Campus JuriquillaQuerétaroMexico
| | - Cynthia de León
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Campus JuriquillaQuerétaroMexico
| | - Felipe A Mendez Salcido
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Campus JuriquillaQuerétaroMexico
| | - Luis Concha
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Campus JuriquillaQuerétaroMexico
- International Laboratory for Brain, Music and Sound (BRAMS)MontrealCanada
| | - Hugo Merchant
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Campus JuriquillaQuerétaroMexico
| |
Collapse
|
4
|
Gong Y, Song P, Du X, Zhai Y, Xu H, Ye H, Bao X, Huang Q, Tu Z, Chen P, Zhao X, Pérez-González D, Malmierca MS, Yu X. Neural correlates of novelty detection in the primary auditory cortex of behaving monkeys. Cell Rep 2024; 43:113864. [PMID: 38421870 DOI: 10.1016/j.celrep.2024.113864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/11/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
The neural mechanisms underlying novelty detection are not well understood, especially in relation to behavior. Here, we present single-unit responses from the primary auditory cortex (A1) from two monkeys trained to detect deviant tones amid repetitive ones. Results show that monkeys can detect deviant sounds, and there is a strong correlation between late neuronal responses (250-350 ms after deviant onset) and the monkeys' perceptual decisions. The magnitude and timing of both neuronal and behavioral responses are increased by larger frequency differences between the deviant and standard tones and by increasing the number of standard tones preceding the deviant. This suggests that A1 neurons encode novelty detection in behaving monkeys, influenced by stimulus relevance and expectations. This study provides evidence supporting aspects of predictive coding in the sensory cortex.
Collapse
Affiliation(s)
- Yumei Gong
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, Shanghai, China; Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Hangzhou Extremely Weak Magnetic Field Major Science and Technology, Infrastructure Research Institute, Hangzhou 310000, China; Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical, Engineering, and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Peirun Song
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinyu Du
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuying Zhai
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haoxuan Xu
- Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical, Engineering, and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hangting Ye
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xuehui Bao
- Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical, Engineering, and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qianyue Huang
- Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical, Engineering, and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhiyi Tu
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, Shanghai, China
| | - Pei Chen
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, Shanghai, China
| | - Xuan Zhao
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, Shanghai, China
| | - David Pérez-González
- Cognitive and Auditory Neuroscience Laboratory (Lab 1), Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain; Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Department of Basic Psychology, Psychobiology, and Methodology of Behavioral Sciences, Faculty of Psychology, University of Salamanca, Salamanca, Spain
| | - Manuel S Malmierca
- Cognitive and Auditory Neuroscience Laboratory (Lab 1), Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain; Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Department of Cell Biology and Pathology, Faculty of Medicine, University of Salamanca, Salamanca, Spain.
| | - Xiongjie Yu
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, Shanghai, China; Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Sánchez-Moncada I, Concha L, Merchant H. Pre-supplementary Motor Cortex Mediates Learning Transfer from Perceptual to Motor Timing. J Neurosci 2024; 44:e3191202023. [PMID: 38123361 PMCID: PMC10883661 DOI: 10.1523/jneurosci.3191-20.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 09/30/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
When we intensively train a timing skill, such as learning to play the piano, we not only produce brain changes associated with task-specific learning but also improve our performance in other temporal behaviors that depend on these tuned neural resources. Since the neural basis of time learning and generalization is still unknown, we measured the changes in neural activity associated with the transfer of learning from perceptual to motor timing in a large sample of subjects (n = 65; 39 women). We found that intense training in an interval discrimination task increased the acuity of time perception in a group of subjects that also exhibited learning transfer, expressed as a reduction in inter-tap interval variability during an internally driven periodic motor task. In addition, we found subjects with no learning and/or generalization effects. Notably, functional imaging showed an increase in pre-supplementary motor area and caudate-putamen activity between the post- and pre-training sessions of the tapping task. This increase was specific to the subjects that generalized their timing acuity from the perceptual to the motor context. These results emphasize the central role of the cortico-basal ganglia circuit in the generalization of timing abilities between tasks.
Collapse
Affiliation(s)
| | - Luis Concha
- Instituto de Neurobiología, Querétaro 76230, México
- International Laboratory for Brain, Music and Sound (BRAMS), Montreal, Québec H2V 2S9, Canada
| | | |
Collapse
|
6
|
Cao R, Bright IM, Howard MW. Ramping cells in rodent mPFC encode time to past and future events via real Laplace transform. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580170. [PMID: 38405896 PMCID: PMC10888827 DOI: 10.1101/2024.02.13.580170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
In interval reproduction tasks, animals must remember the event starting the interval and anticipate the time of the planned response to terminate the interval. The interval reproduction task thus allows for studying both memory for the past and anticipation of the future. We analyzed previously published recordings from rodent mPFC (Henke et al., 2021) during an interval reproduction task and identified two cell groups by modeling their temporal receptive fields using hierarchical Bayesian models. The firing in the "past cells" group peaked at the start of the interval and relaxed exponentially back to baseline. The firing in the "future cells" group increased exponentially and peaked right before the planned action at the end of the interval. Contrary to the previous assumption that timing information in the brain has one or two time scales for a given interval, we found strong evidence for a continuous distribution of the exponential rate constants for both past and future cell populations. The real Laplace transformation of time predicts exponential firing with a continuous distribution of rate constants across the population. Therefore, the firing pattern of the past cells can be identified with the Laplace transform of time since the past event while the firing pattern of the future cells can be identified with the Laplace transform of time until the planned future event.
Collapse
Affiliation(s)
- Rui Cao
- Department of Psychological and Brain Sciences, Boston University
| | - Ian M Bright
- Department of Psychological and Brain Sciences, Boston University
| | - Marc W Howard
- Department of Psychological and Brain Sciences, Boston University
| |
Collapse
|
7
|
Merchant H, de Lafuente V. A Second Introduction to the Neurobiology of Interval Timing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1455:3-23. [PMID: 38918343 DOI: 10.1007/978-3-031-60183-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Time is a critical variable that organisms must be able to measure in order to survive in a constantly changing environment. Initially, this paper describes the myriad of contexts where time is estimated or predicted and suggests that timing is not a single process and probably depends on a set of different neural mechanisms. Consistent with this hypothesis, the explosion of neurophysiological and imaging studies in the last 10 years suggests that different brain circuits and neural mechanisms are involved in the ability to tell and use time to control behavior across contexts. Then, we develop a conceptual framework that defines time as a family of different phenomena and propose a taxonomy with sensory, perceptual, motor, and sensorimotor timing as the pillars of temporal processing in the range of hundreds of milliseconds.
Collapse
Affiliation(s)
- Hugo Merchant
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Querétaro, Mexico.
| | - Victor de Lafuente
- Institute of Neurobiology National Autonomous University of Mexico, Querétaro, Mexico
| |
Collapse
|
8
|
Balcı F, Simen P. Neurocomputational Models of Interval Timing: Seeing the Forest for the Trees. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1455:51-78. [PMID: 38918346 DOI: 10.1007/978-3-031-60183-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Extracting temporal regularities and relations from experience/observation is critical for organisms' adaptiveness (communication, foraging, predation, prediction) in their ecological niches. Therefore, it is not surprising that the internal clock that enables the perception of seconds-to-minutes-long intervals (interval timing) is evolutionarily well-preserved across many species of animals. This comparative claim is primarily supported by the fact that the timing behavior of many vertebrates exhibits common statistical signatures (e.g., on-average accuracy, scalar variability, positive skew). These ubiquitous statistical features of timing behaviors serve as empirical benchmarks for modelers in their efforts to unravel the processing dynamics of the internal clock (namely answering how internal clock "ticks"). In this chapter, we introduce prominent (neuro)computational approaches to modeling interval timing at a level that can be understood by general audience. These models include Treisman's pacemaker accumulator model, the information processing variant of scalar expectancy theory, the striatal beat frequency model, behavioral expectancy theory, the learning to time model, the time-adaptive opponent Poisson drift-diffusion model, time cell models, and neural trajectory models. Crucially, we discuss these models within an overarching conceptual framework that categorizes different models as threshold vs. clock-adaptive models and as dedicated clock/ramping vs. emergent time/population code models.
Collapse
Affiliation(s)
- Fuat Balcı
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada.
| | - Patrick Simen
- Department of Neuroscience, Oberlin College, Oberlin, OH, USA
| |
Collapse
|
9
|
Salgado-Ménez M, Espinoza-Monroy M, Malagón AM, Mercado K, Lafuente VD. Estimating Time and Rhythm by Predicting External Stimuli. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1455:159-169. [PMID: 38918351 DOI: 10.1007/978-3-031-60183-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
In this chapter, we present recent findings from our group showing that elapsed time, interval timing, and rhythm maintenance might be achieved by the well-known ability of the brain to predict the future states of the world. The difference between predictions and actual sensory evidence is used to generate perceptual and behavioral adjustments that help subjects achieve desired behavioral goals. Concretely, we show that (1) accumulating prediction errors is a plausible strategy humans could use to determine whether a train of consecutive stimuli arrives at regular or irregular intervals. By analyzing the behavior of human and non-human primate subjects performing rhythm perception tasks, we demonstrate that (2) the ability to estimate elapsed time and internally maintain rhythms is shared across primates and humans. Neurophysiological recordings show that (3) the medial premotor cortex engages in rhythm entrainment and maintains oscillatory activity that reveals an internal metronome's spatial and temporal characteristics. Finally, we demonstrate that (4) the amplitude of gamma oscillations within this cortex increases proportionally to the total elapsed time. In conjunction with our most recent experiments, our results suggest that timing might be achieved by an internal simulation of the sensory stimuli and the motor commands that define the timing task that needs to be performed.
Collapse
Affiliation(s)
- Mildred Salgado-Ménez
- Institute of Neurobiology, National Autonomous University of Mexico, Querétaro, México
| | | | - Ana M Malagón
- Institute of Neurobiology, National Autonomous University of Mexico, Querétaro, México
| | - Karla Mercado
- Institute of Neurobiology, National Autonomous University of Mexico, Querétaro, México
| | - Victor de Lafuente
- Institute of Neurobiology, National Autonomous University of Mexico, Querétaro, México.
| |
Collapse
|
10
|
Ordás CM, Alonso-Frech F. The neural basis of somatosensory temporal discrimination threshold as a paradigm for time processing in the sub-second range: An updated review. Neurosci Biobehav Rev 2024; 156:105486. [PMID: 38040074 DOI: 10.1016/j.neubiorev.2023.105486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND AND OBJECTIVE The temporal aspect of somesthesia is a feature of any somatosensory process and a pre-requisite for the elaboration of proper behavior. Time processing in the milliseconds range is crucial for most of behaviors in everyday life. The somatosensory temporal discrimination threshold (STDT) is the ability to perceive two successive stimuli as separate in time, and deals with time processing in this temporal range. Herein, we focus on the physiology of STDT, on a background of the anatomophysiology of somesthesia and the neurobiological substrates of timing. METHODS A review of the literature through PubMed & Cochrane databases until March 2023 was performed with inclusion and exclusion criteria following PRISMA recommendations. RESULTS 1151 abstracts were identified. 4 duplicate records were discarded before screening. 957 abstracts were excluded because of redundancy, less relevant content or not English-written. 4 were added after revision. Eventually, 194 articles were included. CONCLUSIONS STDT encoding relies on intracortical inhibitory S1 function and is modulated by the basal ganglia-thalamic-cortical interplay through circuits involving the nigrostriatal dopaminergic pathway and probably the superior colliculus.
Collapse
Affiliation(s)
- Carlos M Ordás
- Universidad Rey Juan Carlos, Móstoles, Madrid, Spain; Department of Neurology, Hospital Rey Juan Carlos, Móstoles, Madrid, Spain.
| | - Fernando Alonso-Frech
- Department of Neurology, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Spain
| |
Collapse
|
11
|
Merchant H, Mendoza G, Pérez O, Betancourt A, García-Saldivar P, Prado L. Diverse Time Encoding Strategies Within the Medial Premotor Areas of the Primate. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1455:117-140. [PMID: 38918349 DOI: 10.1007/978-3-031-60183-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The measurement of time in the subsecond scale is critical for many sophisticated behaviors, yet its neural underpinnings are largely unknown. Recent neurophysiological experiments from our laboratory have shown that the neural activity in the medial premotor areas (MPC) of macaques can represent different aspects of temporal processing. During single interval categorization, we found that preSMA encodes a subjective category limit by reaching a peak of activity at a time that divides the set of test intervals into short and long. We also observed neural signals associated with the category selected by the subjects and the reward outcomes of the perceptual decision. On the other hand, we have studied the behavioral and neurophysiological basis of rhythmic timing. First, we have shown in different tapping tasks that macaques are able to produce predictively and accurately intervals that are cued by auditory or visual metronomes or when intervals are produced internally without sensory guidance. In addition, we found that the rhythmic timing mechanism in MPC is governed by different layers of neural clocks. Next, the instantaneous activity of single cells shows ramping activity that encodes the elapsed or remaining time for a tapping movement. In addition, we found MPC neurons that build neural sequences, forming dynamic patterns of activation that flexibly cover all the produced interval depending on the tapping tempo. This rhythmic neural clock resets on every interval providing an internal representation of pulse. Furthermore, the MPC cells show mixed selectivity, encoding not only elapsed time, but also the tempo of the tapping and the serial order element in the rhythmic sequence. Hence, MPC can map different task parameters, including the passage of time, using different cell populations. Finally, the projection of the time varying activity of MPC hundreds of cells into a low dimensional state space showed circular neural trajectories whose geometry represented the internal pulse and the tapping tempo. Overall, these findings support the notion that MPC is part of the core timing mechanism for both single interval and rhythmic timing, using neural clocks with different encoding principles, probably to flexibly encode and mix the timing representation with other task parameters.
Collapse
Affiliation(s)
- Hugo Merchant
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Querétaro, Mexico.
| | - Germán Mendoza
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Querétaro, Mexico
| | - Oswaldo Pérez
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Querétaro, Mexico
| | | | | | - Luis Prado
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Querétaro, Mexico
| |
Collapse
|
12
|
Tanaka M, Kameda M, Okada KI. Temporal Information Processing in the Cerebellum and Basal Ganglia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1455:95-116. [PMID: 38918348 DOI: 10.1007/978-3-031-60183-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Temporal information processing in the range of a few hundred milliseconds to seconds involves the cerebellum and basal ganglia. In this chapter, we present recent studies on nonhuman primates. In the studies presented in the first half of the chapter, monkeys were trained to make eye movements when a certain amount of time had elapsed since the onset of the visual cue (time production task). The animals had to report time lapses ranging from several hundred milliseconds to a few seconds based on the color of the fixation point. In this task, the saccade latency varied with the time length to be measured and showed stochastic variability from one trial to the other. Trial-to-trial variability under the same conditions correlated well with pupil diameter and the preparatory activity in the deep cerebellar nuclei and the motor thalamus. Inactivation of these brain regions delayed saccades when asked to report subsecond intervals. These results suggest that the internal state, which changes with each trial, may cause fluctuations in cerebellar neuronal activity, thereby producing variations in self-timing. When measuring different time intervals, the preparatory activity in the cerebellum always begins approximately 500 ms before movements, regardless of the length of the time interval being measured. However, the preparatory activity in the striatum persists throughout the mandatory delay period, which can be up to 2 s, with different rate of increasing activity. Furthermore, in the striatum, the visual response and low-frequency oscillatory activity immediately before time measurement were altered by the length of the intended time interval. These results indicate that the state of the network, including the striatum, changes with the intended timing, which lead to different time courses of preparatory activity. Thus, the basal ganglia appear to be responsible for measuring time in the range of several hundred milliseconds to seconds, whereas the cerebellum is responsible for regulating self-timing variability in the subsecond range. The second half of this chapter presents studies related to periodic timing. During eye movements synchronized with alternating targets at regular intervals, different neurons in the cerebellar nuclei exhibit activity related to movement timing, predicted stimulus timing, and the temporal error of synchronization. Among these, the activity associated with target appearance is particularly enhanced during synchronized movements and may represent an internal model of the temporal structure of stimulus sequence. We also considered neural mechanism underlying the perception of periodic timing in the absence of movement. During perception of rhythm, we predict the timing of the next stimulus and focus our attention on that moment. In the missing oddball paradigm, the subjects had to detect the omission of a regularly repeated stimulus. When employed in humans, the results show that the fastest temporal limit for predicting each stimulus timing is about 0.25 s (4 Hz). In monkeys performing this task, neurons in the cerebellar nuclei, striatum, and motor thalamus exhibit periodic activity, with different time courses depending on the brain region. Since electrical stimulation or inactivation of recording sites changes the reaction time to stimulus omission, these neuronal activities must be involved in periodic temporal processing. Future research is needed to elucidate the mechanism of rhythm perception, which appears to be processed by both cortico-cerebellar and cortico-basal ganglia pathways.
Collapse
Affiliation(s)
- Masaki Tanaka
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan.
| | - Masashi Kameda
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan
| | - Ken-Ichi Okada
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan
| |
Collapse
|
13
|
Thibault N, Albouy P, Grondin S. Distinct brain dynamics and networks for processing short and long auditory time intervals. Sci Rep 2023; 13:22018. [PMID: 38086944 PMCID: PMC10716402 DOI: 10.1038/s41598-023-49562-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 12/09/2023] [Indexed: 12/18/2023] Open
Abstract
Psychophysical studies suggest that time intervals above and below 1.2 s are processed differently in the human brain. However, the neural underpinnings of this dissociation remain unclear. Here, we investigate whether distinct or common brain networks and dynamics support the passive perception of short (below 1.2 s) and long (above 1.2 s) empty time intervals. Twenty participants underwent an EEG recording during an auditory oddball paradigm with .8- and 1.6-s standard time intervals and deviant intervals either shorter (early) or longer (delayed) than the standard interval. We computed the auditory ERPs for each condition at the sensor and source levels. We then performed whole brain cluster-based permutation statistics for the CNV, N1 and P2, components, testing deviants against standards. A CNV was found only for above 1.2 s intervals (delayed deviants), with generators in temporo-parietal, SMA, and motor regions. Deviance detection of above 1.2 s intervals occurred during the N1 period over fronto-central sensors for delayed deviants only, with generators in parietal and motor regions. Deviance detection of below 1.2 s intervals occurred during the P2 period over fronto-central sensors for delayed deviants only, with generators in primary auditory cortex, SMA, IFG, cingulate and parietal cortex. We then identified deviance related changes in directed connectivity using bivariate Granger causality to highlight the networks dynamics associated with interval processing above and below 1.2. These results suggest that distinct brain dynamics and networks support the perception of time intervals above and below 1.2 s.
Collapse
Affiliation(s)
- Nicola Thibault
- École de Psychologie, Université Laval, Québec, G1V 0A6, Canada.
- CERVO Brain Research Centre, Québec, G1J 2G3, Canada.
| | - Philippe Albouy
- École de Psychologie, Université Laval, Québec, G1V 0A6, Canada
- CERVO Brain Research Centre, Québec, G1J 2G3, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS), CRBLM, Montreal, QC, H2V 2J2, Canada
| | - Simon Grondin
- École de Psychologie, Université Laval, Québec, G1V 0A6, Canada
- CERVO Brain Research Centre, Québec, G1J 2G3, Canada
| |
Collapse
|
14
|
Bufacchi RJ, Battaglia-Mayer A, Iannetti GD, Caminiti R. Cortico-spinal modularity in the parieto-frontal system: A new perspective on action control. Prog Neurobiol 2023; 231:102537. [PMID: 37832714 DOI: 10.1016/j.pneurobio.2023.102537] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/22/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
Classical neurophysiology suggests that the motor cortex (MI) has a unique role in action control. In contrast, this review presents evidence for multiple parieto-frontal spinal command modules that can bypass MI. Five observations support this modular perspective: (i) the statistics of cortical connectivity demonstrate functionally-related clusters of cortical areas, defining functional modules in the premotor, cingulate, and parietal cortices; (ii) different corticospinal pathways originate from the above areas, each with a distinct range of conduction velocities; (iii) the activation time of each module varies depending on task, and different modules can be activated simultaneously; (iv) a modular architecture with direct motor output is faster and less metabolically expensive than an architecture that relies on MI, given the slow connections between MI and other cortical areas; (v) lesions of the areas composing parieto-frontal modules have different effects from lesions of MI. Here we provide examples of six cortico-spinal modules and functions they subserve: module 1) arm reaching, tool use and object construction; module 2) spatial navigation and locomotion; module 3) grasping and observation of hand and mouth actions; module 4) action initiation, motor sequences, time encoding; module 5) conditional motor association and learning, action plan switching and action inhibition; module 6) planning defensive actions. These modules can serve as a library of tools to be recombined when faced with novel tasks, and MI might serve as a recombinatory hub. In conclusion, the availability of locally-stored information and multiple outflow paths supports the physiological plausibility of the proposed modular perspective.
Collapse
Affiliation(s)
- R J Bufacchi
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy; International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences (CAS), Shanghai, China
| | - A Battaglia-Mayer
- Department of Physiology and Pharmacology, University of Rome, Sapienza, Italy
| | - G D Iannetti
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy; Department of Neuroscience, Physiology and Pharmacology, University College London (UCL), London, UK
| | - R Caminiti
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy.
| |
Collapse
|
15
|
Delle Monache S, Paolocci G, Scalici F, Conti A, Lacquaniti F, Indovina I, Bosco G. Interception of vertically approaching objects: temporal recruitment of the internal model of gravity and contribution of optical information. Front Physiol 2023; 14:1266332. [PMID: 38046950 PMCID: PMC10690631 DOI: 10.3389/fphys.2023.1266332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/07/2023] [Indexed: 12/05/2023] Open
Abstract
Introduction: Recent views posit that precise control of the interceptive timing can be achieved by combining on-line processing of visual information with predictions based on prior experience. Indeed, for interception of free-falling objects under gravity's effects, experimental evidence shows that time-to-contact predictions can be derived from an internal gravity representation in the vestibular cortex. However, whether the internal gravity model is fully engaged at the target motion outset or reinforced by visual motion processing at later stages of motion is not yet clear. Moreover, there is no conclusive evidence about the relative contribution of internalized gravity and optical information in determining the time-to-contact estimates. Methods: We sought to gain insight on this issue by asking 32 participants to intercept free falling objects approaching directly from above in virtual reality. Object motion had durations comprised between 800 and 1100 ms and it could be either congruent with gravity (1 g accelerated motion) or not (constant velocity or -1 g decelerated motion). We analyzed accuracy and precision of the interceptive responses, and fitted them to Bayesian regression models, which included predictors related to the recruitment of a priori gravity information at different times during the target motion, as well as based on available optical information. Results: Consistent with the use of internalized gravity information, interception accuracy and precision were significantly higher with 1 g motion. Moreover, Bayesian regression indicated that interceptive responses were predicted very closely by assuming engagement of the gravity prior 450 ms after the motion onset, and that adding a predictor related to on-line processing of optical information improved only slightly the model predictive power. Discussion: Thus, engagement of a priori gravity information depended critically on the processing of the first 450 ms of visual motion information, exerting a predominant influence on the interceptive timing, compared to continuously available optical information. Finally, these results may support a parallel processing scheme for the control of interceptive timing.
Collapse
Affiliation(s)
- Sergio Delle Monache
- Laboratory of Visuomotor Control and Gravitational Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Systems Medicine and Centre for Space BioMedicine, University of Rome Tor Vergata, Rome, Italy
| | - Gianluca Paolocci
- Department of Systems Medicine and Centre for Space BioMedicine, University of Rome Tor Vergata, Rome, Italy
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Francesco Scalici
- Department of Systems Medicine and Centre for Space BioMedicine, University of Rome Tor Vergata, Rome, Italy
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Allegra Conti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Francesco Lacquaniti
- Department of Systems Medicine and Centre for Space BioMedicine, University of Rome Tor Vergata, Rome, Italy
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Iole Indovina
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Brain Mapping Lab, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Gianfranco Bosco
- Department of Systems Medicine and Centre for Space BioMedicine, University of Rome Tor Vergata, Rome, Italy
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
16
|
Betancourt A, Pérez O, Gámez J, Mendoza G, Merchant H. Amodal population clock in the primate medial premotor system for rhythmic tapping. Cell Rep 2023; 42:113234. [PMID: 37838944 DOI: 10.1016/j.celrep.2023.113234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 08/09/2023] [Accepted: 09/24/2023] [Indexed: 10/17/2023] Open
Abstract
The neural substrate for beat extraction and response entrainment to rhythms is not fully understood. Here we analyze the activity of medial premotor neurons in monkeys performing isochronous tapping guided by brief flashing stimuli or auditory tones. The population dynamics shared the following properties across modalities: the circular dynamics of the neural trajectories form a regenerating loop for every produced interval; the trajectories converge in similar state space at tapping times resetting the clock; and the tempo of the synchronized tapping is encoded in the trajectories by a combination of amplitude modulation and temporal scaling. Notably, the modality induces displacement in the neural trajectories in the auditory and visual subspaces without greatly altering the time-keeping mechanism. These results suggest that the interaction between the medial premotor cortex's amodal internal representation of pulse and a modality-specific external input generates a neural rhythmic clock whose dynamics govern rhythmic tapping execution across senses.
Collapse
Affiliation(s)
- Abraham Betancourt
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Boulevard Juriquilla No. 3001, Querétaro, Qro 76230, México
| | - Oswaldo Pérez
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, UNAM, Boulevard Juriquilla No. 3001, Querétaro, Qro 76230, México
| | - Jorge Gámez
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Boulevard Juriquilla No. 3001, Querétaro, Qro 76230, México
| | - Germán Mendoza
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Boulevard Juriquilla No. 3001, Querétaro, Qro 76230, México
| | - Hugo Merchant
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Boulevard Juriquilla No. 3001, Querétaro, Qro 76230, México.
| |
Collapse
|
17
|
Roland PE. How far neuroscience is from understanding brains. Front Syst Neurosci 2023; 17:1147896. [PMID: 37867627 PMCID: PMC10585277 DOI: 10.3389/fnsys.2023.1147896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/31/2023] [Indexed: 10/24/2023] Open
Abstract
The cellular biology of brains is relatively well-understood, but neuroscientists have not yet generated a theory explaining how brains work. Explanations of how neurons collectively operate to produce what brains can do are tentative and incomplete. Without prior assumptions about the brain mechanisms, I attempt here to identify major obstacles to progress in neuroscientific understanding of brains and central nervous systems. Most of the obstacles to our understanding are conceptual. Neuroscience lacks concepts and models rooted in experimental results explaining how neurons interact at all scales. The cerebral cortex is thought to control awake activities, which contrasts with recent experimental results. There is ambiguity distinguishing task-related brain activities from spontaneous activities and organized intrinsic activities. Brains are regarded as driven by external and internal stimuli in contrast to their considerable autonomy. Experimental results are explained by sensory inputs, behavior, and psychological concepts. Time and space are regarded as mutually independent variables for spiking, post-synaptic events, and other measured variables, in contrast to experimental results. Dynamical systems theory and models describing evolution of variables with time as the independent variable are insufficient to account for central nervous system activities. Spatial dynamics may be a practical solution. The general hypothesis that measurements of changes in fundamental brain variables, action potentials, transmitter releases, post-synaptic transmembrane currents, etc., propagating in central nervous systems reveal how they work, carries no additional assumptions. Combinations of current techniques could reveal many aspects of spatial dynamics of spiking, post-synaptic processing, and plasticity in insects and rodents to start with. But problems defining baseline and reference conditions hinder interpretations of the results. Furthermore, the facts that pooling and averaging of data destroy their underlying dynamics imply that single-trial designs and statistics are necessary.
Collapse
Affiliation(s)
- Per E. Roland
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Pérez O, Delle Monache S, Lacquaniti F, Bosco G, Merchant H. Rhythmic tapping to a moving beat motion kinematics overrules natural gravity. iScience 2023; 26:107543. [PMID: 37744410 PMCID: PMC10517406 DOI: 10.1016/j.isci.2023.107543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/30/2023] [Accepted: 08/01/2023] [Indexed: 09/26/2023] Open
Abstract
Beat induction is the cognitive ability that allows humans to listen to a regular pulse in music and move in synchrony with it. Although auditory rhythmic cues induce more consistent synchronization than flashing visual metronomes, this auditory-visual asymmetry can be canceled by visual moving stimuli. Here, we investigated whether the naturalness of visual motion or its kinematics could provide a synchronization advantage over flashing metronomes. Subjects were asked to tap in sync with visual metronomes defined by vertically accelerating/decelerating motion, either congruent or not with natural gravity; horizontally accelerating/decelerating motion; or flashing stimuli. We found that motion kinematics was the predominant factor determining rhythm synchronization, as accelerating moving metronomes in any cardinal direction produced more precise and predictive tapping than decelerating or flashing conditions. Our results support the notion that accelerating visual metronomes convey a strong sense of beat, as seen in the cueing movements of an orchestra director.
Collapse
Affiliation(s)
- Oswaldo Pérez
- Escuela Nacional de Estudios Superiores Unidad Juriquilla, Universidad Nacional Autónoma de México, Boulevard Juriquilla No. 3001, Querétaro, Qro 76230, México
| | - Sergio Delle Monache
- Laboratory of Visuomotor Control and Gravitational Physiology, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
- Department of Civil Engineering and Computer Science Engineering, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Francesco Lacquaniti
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Centre of Space Bio-medicine, University of Rome “Tor Vergata”, Rome, Italy
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Gianfranco Bosco
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Centre of Space Bio-medicine, University of Rome “Tor Vergata”, Rome, Italy
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Hugo Merchant
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla No. 3001, Querétaro, Qro 76230, México
| |
Collapse
|
19
|
Monteiro T, Rodrigues FS, Pexirra M, Cruz BF, Gonçalves AI, Rueda-Orozco PE, Paton JJ. Using temperature to analyze the neural basis of a time-based decision. Nat Neurosci 2023; 26:1407-1416. [PMID: 37443279 DOI: 10.1038/s41593-023-01378-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 06/12/2023] [Indexed: 07/15/2023]
Abstract
The basal ganglia are thought to contribute to decision-making and motor control. These functions are critically dependent on timing information, which can be extracted from the evolving state of neural populations in their main input structure, the striatum. However, it is debated whether striatal activity underlies latent, dynamic decision processes or kinematics of overt movement. Here, we measured the impact of temperature on striatal population activity and the behavior of rats, and compared the observed effects with neural activity and behavior collected in multiple versions of a temporal categorization task. Cooling caused dilation, and warming contraction, of both neural activity and patterns of judgment in time, mimicking endogenous decision-related variability in striatal activity. However, temperature did not similarly affect movement kinematics. These data provide compelling evidence that the timecourse of evolving striatal activity dictates the speed of a latent process that is used to guide choices, but not continuous motor control. More broadly, they establish temporal scaling of population activity as a likely neural basis for variability in timing behavior.
Collapse
Affiliation(s)
- Tiago Monteiro
- Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
- Department of Biology, University of Oxford, Oxford, UK
| | | | - Margarida Pexirra
- Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Bruno F Cruz
- Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
- NeuroGEARS Ltd., London, UK
| | - Ana I Gonçalves
- Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | | | - Joseph J Paton
- Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal.
| |
Collapse
|
20
|
Large EW, Roman I, Kim JC, Cannon J, Pazdera JK, Trainor LJ, Rinzel J, Bose A. Dynamic models for musical rhythm perception and coordination. Front Comput Neurosci 2023; 17:1151895. [PMID: 37265781 PMCID: PMC10229831 DOI: 10.3389/fncom.2023.1151895] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Rhythmicity permeates large parts of human experience. Humans generate various motor and brain rhythms spanning a range of frequencies. We also experience and synchronize to externally imposed rhythmicity, for example from music and song or from the 24-h light-dark cycles of the sun. In the context of music, humans have the ability to perceive, generate, and anticipate rhythmic structures, for example, "the beat." Experimental and behavioral studies offer clues about the biophysical and neural mechanisms that underlie our rhythmic abilities, and about different brain areas that are involved but many open questions remain. In this paper, we review several theoretical and computational approaches, each centered at different levels of description, that address specific aspects of musical rhythmic generation, perception, attention, perception-action coordination, and learning. We survey methods and results from applications of dynamical systems theory, neuro-mechanistic modeling, and Bayesian inference. Some frameworks rely on synchronization of intrinsic brain rhythms that span the relevant frequency range; some formulations involve real-time adaptation schemes for error-correction to align the phase and frequency of a dedicated circuit; others involve learning and dynamically adjusting expectations to make rhythm tracking predictions. Each of the approaches, while initially designed to answer specific questions, offers the possibility of being integrated into a larger framework that provides insights into our ability to perceive and generate rhythmic patterns.
Collapse
Affiliation(s)
- Edward W. Large
- Department of Psychological Sciences, University of Connecticut, Mansfield, CT, United States
- Department of Physics, University of Connecticut, Mansfield, CT, United States
| | - Iran Roman
- Music and Audio Research Laboratory, New York University, New York, NY, United States
| | - Ji Chul Kim
- Department of Psychological Sciences, University of Connecticut, Mansfield, CT, United States
| | - Jonathan Cannon
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Jesse K. Pazdera
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Laurel J. Trainor
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - John Rinzel
- Center for Neural Science, New York University, New York, NY, United States
- Courant Institute of Mathematical Sciences, New York University, New York, NY, United States
| | - Amitabha Bose
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
21
|
Xie T, Huang C, Zhang Y, Liu J, Yao H. Influence of Recent Trial History on Interval Timing. Neurosci Bull 2023; 39:559-575. [PMID: 36209314 PMCID: PMC10073370 DOI: 10.1007/s12264-022-00954-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 07/10/2022] [Indexed: 11/30/2022] Open
Abstract
Interval timing is involved in a variety of cognitive behaviors such as associative learning and decision-making. While it has been shown that time estimation is adaptive to the temporal context, it remains unclear how interval timing behavior is influenced by recent trial history. Here we found that, in mice trained to perform a licking-based interval timing task, a decrease of inter-reinforcement interval in the previous trial rapidly shifted the time of anticipatory licking earlier. Optogenetic inactivation of the anterior lateral motor cortex (ALM), but not the medial prefrontal cortex, for a short time before reward delivery caused a decrease in the peak time of anticipatory licking in the next trial. Electrophysiological recordings from the ALM showed that the response profiles preceded by short and long inter-reinforcement intervals exhibited task-engagement-dependent temporal scaling. Thus, interval timing is adaptive to recent experience of the temporal interval, and ALM activity during time estimation reflects recent experience of interval.
Collapse
Affiliation(s)
- Taorong Xie
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Can Huang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yijie Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haishan Yao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China.
| |
Collapse
|
22
|
Beiran M, Meirhaeghe N, Sohn H, Jazayeri M, Ostojic S. Parametric control of flexible timing through low-dimensional neural manifolds. Neuron 2023; 111:739-753.e8. [PMID: 36640766 PMCID: PMC9992137 DOI: 10.1016/j.neuron.2022.12.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 09/23/2022] [Accepted: 12/08/2022] [Indexed: 01/15/2023]
Abstract
Biological brains possess an unparalleled ability to adapt behavioral responses to changing stimuli and environments. How neural processes enable this capacity is a fundamental open question. Previous works have identified two candidate mechanisms: a low-dimensional organization of neural activity and a modulation by contextual inputs. We hypothesized that combining the two might facilitate generalization and adaptation in complex tasks. We tested this hypothesis in flexible timing tasks where dynamics play a key role. Examining trained recurrent neural networks, we found that confining the dynamics to a low-dimensional subspace allowed tonic inputs to parametrically control the overall input-output transform, enabling generalization to novel inputs and adaptation to changing conditions. Reverse-engineering and theoretical analyses demonstrated that this parametric control relies on a mechanism where tonic inputs modulate the dynamics along non-linear manifolds while preserving their geometry. Comparisons with data from behaving monkeys confirmed the behavioral and neural signatures of this mechanism.
Collapse
Affiliation(s)
- Manuel Beiran
- Laboratoire de Neurosciences Cognitives et Computationnelles, INSERM U960, Ecole Normale Superieure - PSL University, 75005 Paris, France; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Nicolas Meirhaeghe
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Institut de Neurosciences de la Timone (INT), UMR 7289, CNRS, Aix-Marseille Université, Marseille 13005, France
| | - Hansem Sohn
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mehrdad Jazayeri
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Srdjan Ostojic
- Laboratoire de Neurosciences Cognitives et Computationnelles, INSERM U960, Ecole Normale Superieure - PSL University, 75005 Paris, France.
| |
Collapse
|
23
|
Izadifar M. Lack of a timing system in the old but still new theory: towards elucidating schizophrenia. Gen Psychiatr 2022; 35:e100842. [PMID: 36688008 PMCID: PMC9806003 DOI: 10.1136/gpsych-2022-100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022] Open
Affiliation(s)
- Morteza Izadifar
- Institute of Medical Psychology and Human Science Center, Ludwig-Maximilian University Munich, Munich, Germany
| |
Collapse
|
24
|
Zhou S, Buonomano DV. Neural population clocks: Encoding time in dynamic patterns of neural activity. Behav Neurosci 2022; 136:374-382. [PMID: 35446093 PMCID: PMC9561006 DOI: 10.1037/bne0000515] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ability to predict and prepare for near- and far-future events is among the most fundamental computations the brain performs. Because of the importance of time for prediction and sensorimotor processing, the brain has evolved multiple mechanisms to tell and encode time across scales ranging from microseconds to days and beyond. Converging experimental and computational data indicate that, on the scale of seconds, timing relies on diverse neural mechanisms distributed across different brain areas. Among the different encoding mechanisms on the scale of seconds, we distinguish between neural population clocks and ramping activity as distinct strategies to encode time. One instance of neural population clocks, neural sequences, represents in some ways an optimal and flexible dynamic regime for the encoding of time. Specifically, neural sequences comprise a high-dimensional representation that can be used by downstream areas to flexibly generate arbitrarily simple and complex output patterns using biologically plausible learning rules. We propose that high-level integration areas may use high-dimensional dynamics such as neural sequences to encode time, providing downstream areas information to build low-dimensional ramp-like activity that can drive movements and temporal expectation. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
Affiliation(s)
- Shanglin Zhou
- Department of Neurobiology, University of California, Los Angeles, CA 90095, USA
| | - Dean V. Buonomano
- Department of Neurobiology, University of California, Los Angeles, CA 90095, USA
- Department of Psychology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
25
|
Neural signals regulating motor synchronization in the primate deep cerebellar nuclei. Nat Commun 2022; 13:2504. [PMID: 35523898 PMCID: PMC9076601 DOI: 10.1038/s41467-022-30246-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/21/2022] [Indexed: 11/09/2022] Open
Abstract
Movements synchronized with external rhythms are ubiquitous in our daily lives. Despite the involvement of the cerebellum, the underlying mechanism remains unclear. In monkeys performing synchronized saccades to periodically alternating visual stimuli, we found that neuronal activity in the cerebellar dentate nucleus correlated with the timing of the next saccade and the current temporal error. One-third of the neurons were active regardless of saccade direction and showed greater activity for synchronized than for reactive saccades. During the transition from reactive to predictive saccades in each trial, the activity of these neurons coincided with target onset, representing an internal model of rhythmic structure rather than a specific motor command. The behavioural changes induced by electrical stimulation were explained by activating different groups of neurons at various strengths, suggesting that the lateral cerebellum contains multiple functional modules for the acquisition of internal rhythms, predictive motor control, and error detection during synchronized movements.
Collapse
|
26
|
Henke J, Bunk D, von Werder D, Häusler S, Flanagin VL, Thurley K. Distributed coding of duration in rodent prefrontal cortex during time reproduction. eLife 2021; 10:71612. [PMID: 34939922 PMCID: PMC8786316 DOI: 10.7554/elife.71612] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/14/2021] [Indexed: 11/20/2022] Open
Abstract
As we interact with the external world, we judge magnitudes from sensory information. The estimation of magnitudes has been characterized in primates, yet it is largely unexplored in nonprimate species. Here, we use time interval reproduction to study rodent behavior and its neural correlates in the context of magnitude estimation. We show that gerbils display primate-like magnitude estimation characteristics in time reproduction. Most prominently their behavioral responses show a systematic overestimation of small stimuli and an underestimation of large stimuli, often referred to as regression effect. We investigated the underlying neural mechanisms by recording from medial prefrontal cortex and show that the majority of neurons respond either during the measurement or the reproduction of a time interval. Cells that are active during both phases display distinct response patterns. We categorize the neural responses into multiple types and demonstrate that only populations with mixed responses can encode the bias of the regression effect. These results help unveil the organizing neural principles of time reproduction and perhaps magnitude estimation in general.
Collapse
Affiliation(s)
- Josephine Henke
- Faculty of Biology, Ludwig-Maximilians-Universitaet Muenchen, Planegg-Martinsried, Germany
| | - David Bunk
- Faculty of Biology, Ludwig-Maximilians-Universitaet Muenchen, Planegg-Martinsried, Germany
| | - Dina von Werder
- Faculty of Biology, Ludwig-Maximilians-Universitaet Muenchen, Planegg-Martinsried, Germany
| | - Stefan Häusler
- Faculty of Biology, Ludwig-Maximilians-Universitaet Muenchen, Planegg-Martinsried, Germany
| | - Virginia L Flanagin
- German Center for Vertigo and Balance Disorders,, Ludwig-Maximilians-Universitaet Muenchen, Munich, Germany
| | - Kay Thurley
- Faculty of Biology, Ludwig-Maximilians-Universitaet Muenchen, Planegg-Martinsried, Germany
| |
Collapse
|
27
|
Patel AD. Vocal learning as a preadaptation for the evolution of human beat perception and synchronization. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200326. [PMID: 34420384 PMCID: PMC8380969 DOI: 10.1098/rstb.2020.0326] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2021] [Indexed: 12/18/2022] Open
Abstract
The human capacity to synchronize movements to an auditory beat is central to musical behaviour and to debates over the evolution of human musicality. Have humans evolved any neural specializations for music processing, or does music rely entirely on brain circuits that evolved for other reasons? The vocal learning and rhythmic synchronization hypothesis proposes that our ability to move in time with an auditory beat in a precise, predictive and tempo-flexible manner originated in the neural circuitry for complex vocal learning. In the 15 years, since the hypothesis was proposed a variety of studies have supported it. However, one study has provided a significant challenge to the hypothesis. Furthermore, it is increasingly clear that vocal learning is not a binary trait animals have or lack, but varies more continuously across species. In the light of these developments and of recent progress in the neurobiology of beat processing and of vocal learning, the current paper revises the vocal learning hypothesis. It argues that an advanced form of vocal learning acts as a preadaptation for sporadic beat perception and synchronization (BPS), providing intrinsic rewards for predicting the temporal structure of complex acoustic sequences. It further proposes that in humans, mechanisms of gene-culture coevolution transformed this preadaptation into a genuine neural adaptation for sustained BPS. The larger significance of this proposal is that it outlines a hypothesis of cognitive gene-culture coevolution which makes testable predictions for neuroscience, cross-species studies and genetics. This article is part of the theme issue 'Synchrony and rhythm interaction: from the brain to behavioural ecology'.
Collapse
Affiliation(s)
- Aniruddh D. Patel
- Department of Psychology, Tufts University, Medford, MA, USA
- Program in Brain, Mind, and Consciousness, Canadian Institute for Advanced Research, Toronto, Canada
| |
Collapse
|
28
|
Lenc T, Merchant H, Keller PE, Honing H, Varlet M, Nozaradan S. Mapping between sound, brain and behaviour: four-level framework for understanding rhythm processing in humans and non-human primates. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200325. [PMID: 34420381 PMCID: PMC8380981 DOI: 10.1098/rstb.2020.0325] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2021] [Indexed: 12/16/2022] Open
Abstract
Humans perceive and spontaneously move to one or several levels of periodic pulses (a meter, for short) when listening to musical rhythm, even when the sensory input does not provide prominent periodic cues to their temporal location. Here, we review a multi-levelled framework to understanding how external rhythmic inputs are mapped onto internally represented metric pulses. This mapping is studied using an approach to quantify and directly compare representations of metric pulses in signals corresponding to sensory inputs, neural activity and behaviour (typically body movement). Based on this approach, recent empirical evidence can be drawn together into a conceptual framework that unpacks the phenomenon of meter into four levels. Each level highlights specific functional processes that critically enable and shape the mapping from sensory input to internal meter. We discuss the nature, constraints and neural substrates of these processes, starting with fundamental mechanisms investigated in macaque monkeys that enable basic forms of mapping between simple rhythmic stimuli and internally represented metric pulse. We propose that human evolution has gradually built a robust and flexible system upon these fundamental processes, allowing more complex levels of mapping to emerge in musical behaviours. This approach opens promising avenues to understand the many facets of rhythmic behaviours across individuals and species. This article is part of the theme issue 'Synchrony and rhythm interaction: from the brain to behavioural ecology'.
Collapse
Affiliation(s)
- Tomas Lenc
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, New South Wales 2751, Australia
- Institute of Neuroscience (IONS), Université Catholique de Louvain (UCL), Brussels 1200, Belgium
| | - Hugo Merchant
- Instituto de Neurobiologia, UNAM, Campus Juriquilla, Querétaro 76230, Mexico
| | - Peter E. Keller
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, New South Wales 2751, Australia
| | - Henkjan Honing
- Amsterdam Brain and Cognition (ABC), Institute for Logic, Language and Computation (ILLC), University of Amsterdam, Amsterdam 1090 GE, The Netherlands
| | - Manuel Varlet
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, New South Wales 2751, Australia
- School of Psychology, Western Sydney University, Penrith, New South Wales 2751, Australia
| | - Sylvie Nozaradan
- Institute of Neuroscience (IONS), Université Catholique de Louvain (UCL), Brussels 1200, Belgium
| |
Collapse
|
29
|
Espinoza-Monroy M, de Lafuente V. Discrimination of Regular and Irregular Rhythms Explained by a Time Difference Accumulation Model. Neuroscience 2021; 459:16-26. [PMID: 33549694 DOI: 10.1016/j.neuroscience.2021.01.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023]
Abstract
Perceiving the temporal regularity in a sequence of repetitive sensory events facilitates the preparation and execution of relevant behaviors with tight temporal constraints. How we estimate temporal regularity from repeating patterns of sensory stimuli is not completely understood. We developed a decision-making task in which participants had to decide whether a train of visual, auditory, or tactile pulses, had a regular or an irregular temporal pattern. We tested the hypothesis that subjects categorize stimuli as irregular by accumulating the time differences between the predicted and observed times of sensory pulses defining a temporal rhythm. Results suggest that instead of waiting for a single large temporal deviation, participants accumulate timing-error signals and judge a pattern as irregular when the amount of evidence reaches a decision threshold. Model fits of bounded integration showed that this accumulation occurs with negligible leak of evidence. Consistent with previous findings, we show that participants perform better when evaluating the regularity of auditory pulses, as compared with visual or tactile stimuli. Our results suggest that temporal regularity is estimated by comparing expected and measured pulse onset times, and that each prediction error is accumulated towards a threshold to generate a behavioral choice.
Collapse
Affiliation(s)
- Marisol Espinoza-Monroy
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, Mexico
| | - Victor de Lafuente
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, Mexico.
| |
Collapse
|
30
|
Balasubramaniam R, Haegens S, Jazayeri M, Merchant H, Sternad D, Song JH. Neural Encoding and Representation of Time for Sensorimotor Control and Learning. J Neurosci 2021; 41:866-872. [PMID: 33380468 PMCID: PMC7880297 DOI: 10.1523/jneurosci.1652-20.2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 11/21/2022] Open
Abstract
The ability to perceive and produce movements in the real world with precise timing is critical for survival in animals, including humans. However, research on sensorimotor timing has rarely considered the tight interrelation between perception, action, and cognition. In this review, we present new evidence from behavioral, computational, and neural studies in humans and nonhuman primates, suggesting a pivotal link between sensorimotor control and temporal processing, as well as describing new theoretical frameworks regarding timing in perception and action. We first discuss the link between movement coordination and interval-based timing by addressing how motor training develops accurate spatiotemporal patterns in behavior and influences the perception of temporal intervals. We then discuss how motor expertise results from establishing task-relevant neural manifolds in sensorimotor cortical areas and how the geometry and dynamics of these manifolds help reduce timing variability. We also highlight how neural dynamics in sensorimotor areas are involved in beat-based timing. These lines of research aim to extend our understanding of how timing arises from and contributes to perceptual-motor behaviors in complex environments to seamlessly interact with other cognitive processes.
Collapse
Affiliation(s)
| | | | | | - Hugo Merchant
- Instituto de Neurobiologia, UNAM, campus Juriquilla, Querétaro, México 76230
| | | | | |
Collapse
|
31
|
Garcia-Saldivar P, Garimella A, Garza-Villarreal EA, Mendez FA, Concha L, Merchant H. PREEMACS: Pipeline for preprocessing and extraction of the macaque brain surface. Neuroimage 2020; 227:117671. [PMID: 33359348 DOI: 10.1016/j.neuroimage.2020.117671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/04/2020] [Accepted: 12/16/2020] [Indexed: 01/18/2023] Open
Abstract
Accurate extraction of the cortical brain surface is critical for cortical thickness estimation and a key element to perform multimodal imaging analysis, where different metrics are integrated and compared in a common space. While brain surface extraction has become widespread practice in human studies, several challenges unique to neuroimaging of non-human primates (NHP) have hindered its adoption for the study of macaques. Although, some of these difficulties can be addressed at the acquisition stage, several common artifacts can be minimized through image preprocessing. Likewise, there are several image analysis pipelines for human MRIs, but very few automated methods for extraction of cortical surfaces have been reported for NHPs and none have been tested on data from diverse sources. We present PREEMACS, a pipeline that standardizes the preprocessing of structural MRI images (T1- and T2-weighted) and carries out an automatic surface extraction of the macaque brain. Building upon and extending pre-existing tools, the first module performs volume orientation, image cropping, intensity non-uniformity correction, and volume averaging, before skull-stripping through a convolutional neural network. The second module performs quality control using an adaptation of MRIqc method to extract objective quality metrics that are then used to determine the likelihood of accurate brain surface estimation. The third and final module estimates the white matter (wm) and pial surfaces from the T1-weighted volume (T1w) using an NHP customized version of FreeSurfer aided by the T2-weighted volumes (T2w). To evaluate the generalizability of PREEMACS, we tested the pipeline using 57 T1w/T2w NHP volumes acquired at 11 different sites from the PRIME-DE public dataset. Results showed an accurate and robust automatic brain surface extraction from images that passed the quality control segment of our pipeline. This work offers a robust, efficient and generalizable pipeline for the automatic standardization of MRI surface analysis on NHP.
Collapse
Affiliation(s)
- Pamela Garcia-Saldivar
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Campus Juriquilla. Blvd. Juriquilla, 3001 Querétaro, Querétaro, México
| | - Arun Garimella
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Campus Juriquilla. Blvd. Juriquilla, 3001 Querétaro, Querétaro, México; International Institute of Information Technology, Hyderabad, India
| | - Eduardo A Garza-Villarreal
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Campus Juriquilla. Blvd. Juriquilla, 3001 Querétaro, Querétaro, México
| | - Felipe A Mendez
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Campus Juriquilla. Blvd. Juriquilla, 3001 Querétaro, Querétaro, México
| | - Luis Concha
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Campus Juriquilla. Blvd. Juriquilla, 3001 Querétaro, Querétaro, México.
| | - Hugo Merchant
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Campus Juriquilla. Blvd. Juriquilla, 3001 Querétaro, Querétaro, México.
| |
Collapse
|
32
|
Cannon JJ, Patel AD. How Beat Perception Co-opts Motor Neurophysiology. Trends Cogn Sci 2020; 25:137-150. [PMID: 33353800 DOI: 10.1016/j.tics.2020.11.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 02/08/2023]
Abstract
Beat perception offers cognitive scientists an exciting opportunity to explore how cognition and action are intertwined in the brain even in the absence of movement. Many believe the motor system predicts the timing of beats, yet current models of beat perception do not specify how this is neurally implemented. Drawing on recent insights into the neurocomputational properties of the motor system, we propose that beat anticipation relies on action-like processes consisting of precisely patterned neural time-keeping activity in the supplementary motor area (SMA), orchestrated and sequenced by activity in the dorsal striatum. In addition to synthesizing recent advances in cognitive science and motor neuroscience, our framework provides testable predictions to guide future work.
Collapse
Affiliation(s)
- Jonathan J Cannon
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Aniruddh D Patel
- Department of Psychology, Tufts University, Medford, MA, USA; Program in Brain, Mind, and Consciousness, Canadian Institute for Advanced Research (CIFAR), Toronto, CA.
| |
Collapse
|
33
|
Wang J, Hosseini E, Meirhaeghe N, Akkad A, Jazayeri M. Reinforcement regulates timing variability in thalamus. eLife 2020; 9:55872. [PMID: 33258769 PMCID: PMC7707818 DOI: 10.7554/elife.55872] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 11/06/2020] [Indexed: 01/19/2023] Open
Abstract
Learning reduces variability but variability can facilitate learning. This paradoxical relationship has made it challenging to tease apart sources of variability that degrade performance from those that improve it. We tackled this question in a context-dependent timing task requiring humans and monkeys to flexibly produce different time intervals with different effectors. We identified two opposing factors contributing to timing variability: slow memory fluctuation that degrades performance and reward-dependent exploratory behavior that improves performance. Signatures of these opposing factors were evident across populations of neurons in the dorsomedial frontal cortex (DMFC), DMFC-projecting neurons in the ventrolateral thalamus, and putative target of DMFC in the caudate. However, only in the thalamus were the performance-optimizing regulation of variability aligned to the slow performance-degrading memory fluctuations. These findings reveal how variability caused by exploratory behavior might help to mitigate other undesirable sources of variability and highlight a potential role for thalamocortical projections in this process.
Collapse
Affiliation(s)
- Jing Wang
- Department of Bioengineering, University of Missouri, Columbia, United States.,McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Eghbal Hosseini
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Nicolas Meirhaeghe
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, United States
| | - Adam Akkad
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Mehrdad Jazayeri
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
34
|
Florio TM. Stereotyped, automatized and habitual behaviours: are they similar constructs under the control of the same cerebral areas? AIMS Neurosci 2020; 7:136-152. [PMID: 32607417 PMCID: PMC7321770 DOI: 10.3934/neuroscience.2020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/18/2020] [Indexed: 11/19/2022] Open
Abstract
Comprehensive knowledge about higher executive functions of motor control has been covered in the last decades. Critical goals have been targeted through many different technological approaches. An abundant flow of new results greatly progressed our ability to respond at better-posited answers to look more than ever at the challenging neural system functioning. Behaviour is the observable result of the invisible, as complex cerebral functioning. Many pathological states are approached after symptomatology categorisation of behavioural impairments is achieved. Motor, non-motor and psychiatric signs are greatly shared by many neurological/psychiatric disorders. Together with the cerebral cortex, the basal ganglia contribute to the expression of behaviour promoting the correct action schemas and the selection of appropriate sub-goals based on the evaluation of action outcomes. The present review focus on the basic classification of higher motor control functioning, taking into account the recent advances in basal ganglia structural knowledge and the computational model of basal ganglia functioning. We discuss about the basal ganglia capability in executing ordered motor patterns in which any single movement is linked to each other into an action, and many actions are ordered into each other, giving them a syntactic value to the final behaviour. The stereotypic, automatized and habitual behaviour's constructs and controls are the expression of successive stages of rule internalization and categorisation aimed in producing the perfect spatial-temporal control of motor command.
Collapse
Affiliation(s)
- Tiziana M Florio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy
| |
Collapse
|
35
|
Mayer AR, Hanlon FM, Shaff NA, Stephenson DD, Ling JM, Dodd AB, Hogeveen J, Quinn DK, Ryman SG, Pirio-Richardson S. Evidence for asymmetric inhibitory activity during motor planning phases of sensorimotor synchronization. Cortex 2020; 129:314-328. [PMID: 32554227 DOI: 10.1016/j.cortex.2020.04.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/15/2020] [Accepted: 04/19/2020] [Indexed: 01/11/2023]
Abstract
Sensorimotor synchronization (SMS) is frequently dependent on coordination of excitatory and inhibitory activity across hemispheres, as well as the cognitive control over environmental distractors. However, the timing (motor planning versus execution) and cortical regions involved in these processes remain actively debated. Functional magnetic resonance imaging data were therefore analyzed from 34 strongly right-handed healthy adults performing a cued (to initiate motor planning) SMS task with either their right or left hand (motor execution phase) based on spatially congruent or incongruent visual stimuli. Behavioral effects of incongruent stimuli were limited to the first stimulus. Functionally, greater activation was observed in left sensorimotor cortex (SMC) and right cerebellar Lobule V for congruent versus incongruent stimuli. A negative blood-oxygen level dependent response, a putative marker of neural inhibition, was present in bilateral SMC, right supplemental motor area (SMA) and bilateral cerebellar Lobule V during the motor planning, but not execution phase. The magnitude of the inhibitory response was greater in right cortical regions and cerebellar Lobule V. Homologue connectivity was associated with inhibitory activity in the right SMA, suggesting that individual differences in intrinsic connectivity may mediate transcallosal inhibition. In summary, results suggest increased inhibition (i.e., greater negative BOLD response) within the right relative to left hemisphere, which was released once motor programs were executed. Both task and intrinsic functional connectivity results highlight a critical role of the left SMA in interhemispheric inhibition and motor planning.
Collapse
Affiliation(s)
- Andrew R Mayer
- The Mind Research Network/LBERI, Albuquerque, NM, USA; Departments of Psychology, University of New Mexico, Albuquerque, NM, USA; Department of Neurology, University of New Mexico, Albuquerque, NM, USA; Departments of Psychiatry, University of New Mexico, Albuquerque, NM, USA.
| | | | | | | | - Josef M Ling
- The Mind Research Network/LBERI, Albuquerque, NM, USA
| | - Andrew B Dodd
- The Mind Research Network/LBERI, Albuquerque, NM, USA
| | - Jeremy Hogeveen
- Departments of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Davin K Quinn
- Departments of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | | | | |
Collapse
|
36
|
Internal models of sensorimotor integration regulate cortical dynamics. Nat Neurosci 2019; 22:1871-1882. [PMID: 31591558 PMCID: PMC6903408 DOI: 10.1038/s41593-019-0500-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/16/2019] [Indexed: 01/20/2023]
Abstract
Sensorimotor control during overt movements is characterized in terms of three building blocks: a controller, a simulator, and a state estimator. We asked whether the same framework could explain the control of internal states in the absence of movements. Recently, it was shown that the brain controls the timing of future movements by adjusting an internal speed command. We trained monkeys in a novel task in which the speed command had to be controlled dynamically based on the timing of a sequence of flashes. Recordings from the frontal cortex provided evidence that the brain updates the internal speed command after each flash based on the error between the timing of the flash and the anticipated timing of the flash derived from a simulated motor plan. These findings suggest that cognitive control of internal states may be understood in terms of the same computational principles as motor control.
Collapse
|
37
|
Hidalgo-Balbuena AE, Luma AY, Pimentel-Farfan AK, Peña-Rangel T, Rueda-Orozco PE. Sensory representations in the striatum provide a temporal reference for learning and executing motor habits. Nat Commun 2019; 10:4074. [PMID: 31501436 PMCID: PMC6733846 DOI: 10.1038/s41467-019-12075-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 08/18/2019] [Indexed: 12/25/2022] Open
Abstract
Previous studies indicate that the dorsolateral striatum (DLS) integrates sensorimotor information from cortical and thalamic regions to learn and execute motor habits. However, the exact contribution of sensory representations to this process is still unknown. Here we explore the role of the forelimb somatosensory flow in the DLS during the learning and execution of motor habits. First, we compare rhythmic somesthetic representations in the DLS and primary somatosensory cortex in anesthetized rats, and find that sequential and temporal stimuli contents are more strongly represented in the DLS. Then, using a behavioral protocol in which rats developed a stereotyped motor sequence, functional disconnection experiments, and pharmacologic and optogenetic manipulations in apprentice and expert animals, we reveal that somatosensory thalamic- and cortical-striatal pathways are indispensable for the temporal component of execution. Our results indicate that the somatosensory flow in the DLS provides the temporal reference for the development and execution of motor habits. The authors combine anatomical mapping, electrophysiological recordings, lesions, and pharmacological and optogenetic manipulations in rats to examine the role of forelimb somatosensory flow in the dorsolateral striatum in the learning and execution of motor habits.
Collapse
Affiliation(s)
- Ana E Hidalgo-Balbuena
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM, Campus Juriquilla, Boulevard Juriquilla No. 3001, Querétaro, 76230, Mexico
| | - Annie Y Luma
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM, Campus Juriquilla, Boulevard Juriquilla No. 3001, Querétaro, 76230, Mexico
| | - Ana K Pimentel-Farfan
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM, Campus Juriquilla, Boulevard Juriquilla No. 3001, Querétaro, 76230, Mexico
| | - Teresa Peña-Rangel
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM, Campus Juriquilla, Boulevard Juriquilla No. 3001, Querétaro, 76230, Mexico
| | - Pavel E Rueda-Orozco
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM, Campus Juriquilla, Boulevard Juriquilla No. 3001, Querétaro, 76230, Mexico.
| |
Collapse
|
38
|
Paton JJ, Buonomano DV. The Neural Basis of Timing: Distributed Mechanisms for Diverse Functions. Neuron 2019; 98:687-705. [PMID: 29772201 DOI: 10.1016/j.neuron.2018.03.045] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 02/26/2018] [Accepted: 03/24/2018] [Indexed: 12/15/2022]
Abstract
Timing is critical to most forms of learning, behavior, and sensory-motor processing. Converging evidence supports the notion that, precisely because of its importance across a wide range of brain functions, timing relies on intrinsic and general properties of neurons and neural circuits; that is, the brain uses its natural cellular and network dynamics to solve a diversity of temporal computations. Many circuits have been shown to encode elapsed time in dynamically changing patterns of neural activity-so-called population clocks. But temporal processing encompasses a wide range of different computations, and just as there are different circuits and mechanisms underlying computations about space, there are a multitude of circuits and mechanisms underlying the ability to tell time and generate temporal patterns.
Collapse
Affiliation(s)
- Joseph J Paton
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal.
| | - Dean V Buonomano
- Departments of Neurobiology and Psychology and Brain Research Institute, Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
39
|
Rankin J, Rinzel J. Computational models of auditory perception from feature extraction to stream segregation and behavior. Curr Opin Neurobiol 2019; 58:46-53. [PMID: 31326723 DOI: 10.1016/j.conb.2019.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/22/2019] [Indexed: 10/26/2022]
Abstract
Audition is by nature dynamic, from brainstem processing on sub-millisecond time scales, to segregating and tracking sound sources with changing features, to the pleasure of listening to music and the satisfaction of getting the beat. We review recent advances from computational models of sound localization, of auditory stream segregation and of beat perception/generation. A wealth of behavioral, electrophysiological and imaging studies shed light on these processes, typically with synthesized sounds having regular temporal structure. Computational models integrate knowledge from different experimental fields and at different levels of description. We advocate a neuromechanistic modeling approach that incorporates knowledge of the auditory system from various fields, that utilizes plausible neural mechanisms, and that bridges our understanding across disciplines.
Collapse
Affiliation(s)
- James Rankin
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Harrison Building, North Park Rd, Exeter EX4 4QF, UK.
| | - John Rinzel
- Center for Neural Science, New York University, 4 Washington Place, 10003 New York, NY, United States; Courant Institute of Mathematical Sciences, New York University, 251 Mercer St, 10012 New York, NY, United States
| |
Collapse
|
40
|
Wei H, Du YF. A Temporal Signal-Processing Circuit Based on Spiking Neuron and Synaptic Learning. Front Comput Neurosci 2019; 13:41. [PMID: 31316363 PMCID: PMC6611394 DOI: 10.3389/fncom.2019.00041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 06/11/2019] [Indexed: 11/22/2022] Open
Abstract
Time is a continuous, homogeneous, one-way, and independent signal that cannot be modified by human will. The mechanism of how the brain processes temporal information remains elusive. According to previous work, time-keeping in medial premotor cortex (MPC) is governed by four kinds of ramp cell populations (Merchant et al., 2011). We believe that these cell populations participate in temporal information processing in MPC. Hence, in this the present study, we present a model that uses spiking neuron, including these cell populations, to construct a complete circuit for temporal processing. By combining the time-adaptive drift-diffusion model (TDDM) with the transmission of impulse information between neurons, this new model is able to successfully reproduce the result of synchronization-continuation tapping task (SCT). We also discovered that the neurons that we used exhibited some of the firing properties of time-related neurons detected by electrophysiological experiments in other studies. Therefore, we believe that our model reflects many of the physiological of neural circuits in the biological brain and can explain some of the phenomena in the temporal-perception process.
Collapse
Affiliation(s)
- Hui Wei
- Laboratory of Cognitive Model and Algorithm, Shanghai Key Laboratory of Data Science, Department of Computer Science, Fudan University, Shanghai, China
| | | |
Collapse
|
41
|
Bose A, Byrne Á, Rinzel J. A neuromechanistic model for rhythmic beat generation. PLoS Comput Biol 2019; 15:e1006450. [PMID: 31071078 PMCID: PMC6508617 DOI: 10.1371/journal.pcbi.1006450] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 03/01/2019] [Indexed: 11/18/2022] Open
Abstract
When listening to music, humans can easily identify and move to the beat. Numerous experimental studies have identified brain regions that may be involved with beat perception and representation. Several theoretical and algorithmic approaches have been proposed to account for this ability. Related to, but different from the issue of how we perceive a beat, is the question of how we learn to generate and hold a beat. In this paper, we introduce a neuronal framework for a beat generator that is capable of learning isochronous rhythms over a range of frequencies that are relevant to music and speech. Our approach combines ideas from error-correction and entrainment models to investigate the dynamics of how a biophysically-based neuronal network model synchronizes its period and phase to match that of an external stimulus. The model makes novel use of on-going faster gamma rhythms to form a set of discrete clocks that provide estimates, but not exact information, of how well the beat generator spike times match those of a stimulus sequence. The beat generator is endowed with plasticity allowing it to quickly learn and thereby adjust its spike times to achieve synchronization. Our model makes generalizable predictions about the existence of asymmetries in the synchronization process, as well as specific predictions about resynchronization times after changes in stimulus tempo or phase. Analysis of the model demonstrates that accurate rhythmic time keeping can be achieved over a range of frequencies relevant to music, in a manner that is robust to changes in parameters and to the presence of noise.
Collapse
Affiliation(s)
- Amitabha Bose
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey, United States of America
| | - Áine Byrne
- Center for Neural Science, New York University, New York, New York, United States of America
- * E-mail:
| | - John Rinzel
- Center for Neural Science, New York University, New York, New York, United States of America
- Courant Institute of Mathematical Sciences, New York University, New York, New York, United States of America
| |
Collapse
|
42
|
Gámez J, Mendoza G, Prado L, Betancourt A, Merchant H. The amplitude in periodic neural state trajectories underlies the tempo of rhythmic tapping. PLoS Biol 2019; 17:e3000054. [PMID: 30958818 PMCID: PMC6472824 DOI: 10.1371/journal.pbio.3000054] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 04/18/2019] [Accepted: 03/19/2019] [Indexed: 01/03/2023] Open
Abstract
Our motor commands can be exquisitely timed according to the demands of the environment, and the ability to generate rhythms of different tempos is a hallmark of musical cognition. Yet, the neuronal underpinnings behind rhythmic tapping remain elusive. Here, we found that the activity of hundreds of primate medial premotor cortices (MPCs; pre-supplementary motor area [preSMA] and supplementary motor area [SMA]) neurons show a strong periodic pattern that becomes evident when their responses are projected into a state space using dimensionality reduction analysis. We show that different tapping tempos are encoded by circular trajectories that travelled at a constant speed but with different radii, and that this neuronal code is highly resilient to the number of participating neurons. Crucially, the changes in the amplitude of the oscillatory dynamics in neuronal state space are a signature of duration encoding during rhythmic timing, regardless of whether it is guided by an external metronome or is internally controlled and is not the result of repetitive motor commands. This dynamic state signal predicted the duration of the rhythmically produced intervals on a trial-by-trial basis. Furthermore, the increase in variability of the neural trajectories accounted for the scalar property, a hallmark feature of temporal processing across tasks and species. Finally, we found that the interval-dependent increments in the radius of periodic neural trajectories are the result of a larger number of neurons engaged in the production of longer intervals. Our results support the notion that rhythmic timing during tapping behaviors is encoded in the radial curvature of periodic MPC neural population trajectories.
Collapse
Affiliation(s)
- Jorge Gámez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - Germán Mendoza
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - Luis Prado
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - Abraham Betancourt
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - Hugo Merchant
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
- * E-mail:
| |
Collapse
|
43
|
Nickl RW, Ankarali MM, Cowan NJ. Complementary spatial and timing control in rhythmic arm movements. J Neurophysiol 2019; 121:1543-1560. [PMID: 30811263 DOI: 10.1152/jn.00194.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Volitional rhythmic motor behaviors such as limb cycling and locomotion exhibit spatial and timing regularity. Such rhythmic movements are executed in the presence of exogenous visual and nonvisual cues, and previous studies have shown the pivotal role that vision plays in guiding spatial and temporal regulation. However, the influence of nonvisual information conveyed through auditory or touch sensory pathways, and its effect on control, remains poorly understood. To characterize the function of nonvisual feedback in rhythmic arm control, we designed a paddle juggling task in which volunteers bounced a ball off a rigid elastic surface to a target height in virtual reality by moving a physical handle with the right hand. Feedback was delivered at two key phases of movement: visual feedback at ball peaks only and simultaneous audio and haptic feedback at ball-paddle collisions. In contrast to previous work, we limited visual feedback to the minimum required for jugglers to assess spatial accuracy, and we independently perturbed the spatial dimensions and the timing of feedback. By separately perturbing this information, we evoked dissociable effects on spatial accuracy and timing, confirming that juggling, and potentially other rhythmic tasks, involves two complementary processes with distinct dynamics: spatial error correction and feedback timing synchronization. Moreover, we show evidence that audio and haptic feedback provide sufficient information for the brain to control the timing synchronization process by acting as a metronome-like cue that triggers hand movement. NEW & NOTEWORTHY Vision contains rich information for control of rhythmic arm movements; less is known, however, about the role of nonvisual feedback (touch and sound). Using a virtual ball bouncing task allowing independent real-time manipulation of spatial location and timing of cues, we show their dissociable roles in regulating motor behavior. We confirm that visual feedback is used to correct spatial error and provide new evidence that nonvisual event cues act to reset the timing of arm movements.
Collapse
Affiliation(s)
| | - M Mert Ankarali
- Johns Hopkins University , Baltimore, Maryland.,Middle East Technical University , Ankara , Turkey
| | | |
Collapse
|
44
|
Yc K, Prado L, Merchant H. The scalar property during isochronous tapping is disrupted by a D2-like agonist in the nonhuman primate. J Neurophysiol 2019; 121:940-949. [DOI: 10.1152/jn.00804.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dopamine, and specifically the D2 system, has been implicated in timing tasks where the absolute duration of individual time intervals is encoded discretely, yet the role of D2 during beat perception and entrainment remains largely unknown. In this type of timing, a beat is perceived as the pulse that marks equally spaced points in time and, once extracted, produces the tendency in humans to entrain or synchronize their movements to it. Hence, beat-based timing is crucial for musical execution. In this study we investigated the effects of systemic injections of quinpirole (0.005–0.05 mg/kg), a D2-like agonist, on the isochronous rhythmic tapping of rhesus monkeys, a classical task for the study of beat entrainment. We compared the rhythmic timing accuracy, precision, and the asynchronies of the monkeys with or without the effects of quinpirole, as well as their reaction times in a control serial reaction time task (SRTT). The results showed a dose-dependent disruption in the scalar property of rhythmic timing due to quinpirole administration. Specifically, we found similar temporal variabilities as a function of the metronome tempo at the largest dose, instead of the increase in variability across durations that is characteristic of the timing Weber law. Notably, these effects were not due to alterations in the basic sensorimotor mechanism for tapping to a sequence of flashing stimuli, because quinpirole did not change the reaction time of the monkeys during SRTT. These findings support the notion of a key role of the D2 system in the rhythmic timing mechanism, especially in the control of temporal precision. NEW & NOTEWORTHY Perceiving and moving to the beat of music is a fundamental trait of musical cognition. We measured the effect of quinpirole, a D2-like agonist, on the precision and accuracy of rhythmic tapping to a metronome in two rhesus monkeys. Quinpirole produced a flattening of the temporal variability as a function of tempo duration, instead of the increase in variability across durations that is characteristic of the scalar property, a hallmark property of timing.
Collapse
Affiliation(s)
- Karyna Yc
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - Luis Prado
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - Hugo Merchant
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| |
Collapse
|
45
|
Perturbation of Macaque Supplementary Motor Area Produces Context-Independent Changes in the Probability of Movement Initiation. J Neurosci 2019; 39:3217-3233. [PMID: 30755488 DOI: 10.1523/jneurosci.2335-18.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/16/2019] [Accepted: 02/04/2019] [Indexed: 01/26/2023] Open
Abstract
The contribution of the supplementary motor area (SMA) to movement initiation remains unclear. SMA exhibits premovement activity across a variety of contexts, including externally cued and self-initiated movements. Yet SMA lesions impair initiation primarily for self-initiated movements. Does SMA influence initiation across contexts or does it play a more specialized role, perhaps contributing only when initiation is less dependent on external cues? To address this question, we perturbed SMA activity via microstimulation at variable times before movement onset. Experiments used two adult male rhesus monkeys trained on a reaching task. We used three contexts that differed regarding how tightly movement initiation was linked to external cues. Movement kinematics were not altered by microstimulation. Instead, microstimulation induced a variety of changes in the timing of movement initiation, with different effects dominating for different contexts. Despite their diversity, these changes could be explained by a simple model where microstimulation has a stereotyped impact on the probability of initiation. Surprisingly, a unified model accounted for effects across all three contexts, regardless of whether initiation was determined more by external cues versus internal considerations. All effects were present for stimulation both contralateral and ipsilateral to the moving arm. Thus, the probability of initiating a pending movement is altered by perturbation of SMA activity. However, changes in initiation probability are independent of the balance of internal and external factors that establish the baseline initiation probability.SIGNIFICANCE STATEMENT The role of the supplementary motor area (SMA) in initiating movement remains unclear. Lesion experiments suggest that SMA makes a critical contribution only for self-initiated movements. Yet SMA is active before movements made under a range of contexts, suggesting a less-specialized role in movement initiation. Here, we use microstimulation to probe the role of SMA across a range of behavioral contexts that vary in the degree to which movement onset is influenced by external cues. We demonstrate that microstimulation produces a temporally stereotyped change in the probability of initiation that is independent of context. These results argue that SMA participates in the computations that lead to movement initiation and does so across a variety of contexts.
Collapse
|
46
|
Ravignani A, Thompson B, Lumaca M, Grube M. Why Do Durations in Musical Rhythms Conform to Small Integer Ratios? Front Comput Neurosci 2018; 12:86. [PMID: 30555314 PMCID: PMC6282044 DOI: 10.3389/fncom.2018.00086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 10/01/2018] [Indexed: 01/29/2023] Open
Abstract
One curious aspect of human timing is the organization of rhythmic patterns in small integer ratios. Behavioral and neural research has shown that adjacent time intervals in rhythms tend to be perceived and reproduced as approximate fractions of small numbers (e.g., 3/2). Recent work on iterated learning and reproduction further supports this: given a randomly timed drum pattern to reproduce, participants subconsciously transform it toward small integer ratios. The mechanisms accounting for this “attractor” phenomenon are little understood, but might be explained by combining two theoretical frameworks from psychophysics. The scalar expectancy theory describes time interval perception and reproduction in terms of Weber's law: just detectable durational differences equal a constant fraction of the reference duration. The notion of categorical perception emphasizes the tendency to perceive time intervals in categories, i.e., “short” vs. “long.” In this piece, we put forward the hypothesis that the integer-ratio bias in rhythm perception and production might arise from the interaction of the scalar property of timing with the categorical perception of time intervals, and that neurally it can plausibly be related to oscillatory activity. We support our integrative approach with mathematical derivations to formalize assumptions and provide testable predictions. We present equations to calculate durational ratios by: (i) parameterizing the relationship between durational categories, (ii) assuming a scalar timing constant, and (iii) specifying one (of K) category of ratios. Our derivations provide the basis for future computational, behavioral, and neurophysiological work to test our model.
Collapse
Affiliation(s)
- Andrea Ravignani
- Language and Cognition Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands.,Artificial Intelligence Lab, Vrije Universiteit Brussel, Brussels, Belgium.,Research Department, Sealcentre Pieterburen, Pieterburen, Netherlands
| | - Bill Thompson
- Language and Cognition Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands.,Artificial Intelligence Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Massimo Lumaca
- Department of Clinical Medicine, Center for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Manon Grube
- Department of Clinical Medicine, Center for Music in the Brain, Aarhus University, Aarhus, Denmark
| |
Collapse
|
47
|
Cadena-Valencia J, García-Garibay O, Merchant H, Jazayeri M, de Lafuente V. Entrainment and maintenance of an internal metronome in supplementary motor area. eLife 2018; 7:e38983. [PMID: 30346275 PMCID: PMC6249004 DOI: 10.7554/elife.38983] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/21/2018] [Indexed: 11/13/2022] Open
Abstract
To prepare timely motor actions, we constantly predict future events. Regularly repeating events are often perceived as a rhythm to which we can readily synchronize our movements, just as in dancing to music. However, the neuronal mechanisms underlying the capacity to encode and maintain rhythms are not understood. We trained nonhuman primates to maintain the rhythm of a visual metronome of diverse tempos and recorded neural activity in the supplementary motor area (SMA). SMA exhibited rhythmic bursts of gamma band (30-40 Hz) reflecting an internal tempo that matched the extinguished visual metronome. Moreover, gamma amplitude increased throughout the trial, providing an estimate of total elapsed time. Notably, the timing of gamma bursts and firing rate modulations allowed predicting whether monkeys were ahead or behind the correct tempo. Our results indicate that SMA uses dynamic motor plans to encode a metronome for rhythms and a stopwatch for total elapsed time.
Collapse
Affiliation(s)
| | - Otto García-Garibay
- Institute of Neurobiology, National Autonomous University of MexicoQuerétaroMéxico
| | - Hugo Merchant
- Institute of Neurobiology, National Autonomous University of MexicoQuerétaroMéxico
| | - Mehrdad Jazayeri
- McGovern Institute for Brain ResearchMassachusetts Institute of TechnologyCambridgeUnited States
| | - Victor de Lafuente
- Institute of Neurobiology, National Autonomous University of MexicoQuerétaroMéxico
| |
Collapse
|
48
|
Iwasaki M, Noguchi Y, Kakigi R. Neural correlates of time distortion in a preaction period. Hum Brain Mapp 2018; 40:804-817. [PMID: 30276935 DOI: 10.1002/hbm.24413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 08/19/2018] [Accepted: 09/24/2018] [Indexed: 11/09/2022] Open
Abstract
An intention to move distorts the perception of time. For example, a visual stimulus presented during the preparation of manual movements is perceived longer than actual. Although neural mechanisms underlying this action-induced time distortion have been unclear, here we propose a new model in which the distortion is caused by a sensory-motor interaction mediated by alpha rhythm. It is generally known that viewing a stimulus induces a reduction in amplitude of occipital 10-Hz wave ("alpha-blocking"). Preparing manual movements are also known to reduce alpha power in the motor cortex ("mu-suppression"). When human participants prepared movements while viewing a stimulus, we found that those two types of classical alpha suppression interacted in the third (time-processing) region in the brain, inducing a prominent decrease in alpha power in the supplementary motor cortex (SMA). Interestingly, this alpha suppression in the SMA occurred in an asymmetric manner (such that troughs of alpha rhythm was more strongly suppressed than peaks), which can produce a gradual increase (slow shift of baseline) in neural activity. Since the neural processing in the SMA encodes a subjective time length for a sensory event, the increased activity in this region (by the asymmetric alpha suppression) would cause an overestimation of elapsed time, resulting in the action-induced time distortion. Those results showed a unique role of alpha wave enabling communications across distant (visual, motor, and time-processing) regions in the brain and further suggested a new type of sensory-motor interaction based on neural desynchronization (rather than synchronization).
Collapse
Affiliation(s)
- Miho Iwasaki
- Department of Psychology, Graduate School of Humanities, Kobe University, Kobe, Japan
| | - Yasuki Noguchi
- Department of Psychology, Graduate School of Humanities, Kobe University, Kobe, Japan
| | - Ryusuke Kakigi
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
49
|
Egger SW, Jazayeri M. A nonlinear updating algorithm captures suboptimal inference in the presence of signal-dependent noise. Sci Rep 2018; 8:12597. [PMID: 30135441 PMCID: PMC6105733 DOI: 10.1038/s41598-018-30722-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/02/2018] [Indexed: 11/14/2022] Open
Abstract
Bayesian models have advanced the idea that humans combine prior beliefs and sensory observations to optimize behavior. How the brain implements Bayes-optimal inference, however, remains poorly understood. Simple behavioral tasks suggest that the brain can flexibly represent probability distributions. An alternative view is that the brain relies on simple algorithms that can implement Bayes-optimal behavior only when the computational demands are low. To distinguish between these alternatives, we devised a task in which Bayes-optimal performance could not be matched by simple algorithms. We asked subjects to estimate and reproduce a time interval by combining prior information with one or two sequential measurements. In the domain of time, measurement noise increases with duration. This property takes the integration of multiple measurements beyond the reach of simple algorithms. We found that subjects were able to update their estimates using the second measurement but their performance was suboptimal, suggesting that they were unable to update full probability distributions. Instead, subjects’ behavior was consistent with an algorithm that predicts upcoming sensory signals, and applies a nonlinear function to errors in prediction to update estimates. These results indicate that the inference strategies employed by humans may deviate from Bayes-optimal integration when the computational demands are high.
Collapse
Affiliation(s)
- Seth W Egger
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mehrdad Jazayeri
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
50
|
Kunimatsu J, Suzuki TW, Ohmae S, Tanaka M. Different contributions of preparatory activity in the basal ganglia and cerebellum for self-timing. eLife 2018; 7:35676. [PMID: 29963985 PMCID: PMC6050043 DOI: 10.7554/elife.35676] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/01/2018] [Indexed: 12/29/2022] Open
Abstract
The ability to flexibly adjust movement timing is important for everyday life. Although the basal ganglia and cerebellum have been implicated in monitoring of supra- and sub-second intervals, respectively, the underlying neuronal mechanism remains unclear. Here, we show that in monkeys trained to generate a self-initiated saccade at instructed timing following a visual cue, neurons in the caudate nucleus kept track of passage of time throughout the delay period, while those in the cerebellar dentate nucleus were recruited only during the last part of the delay period. Conversely, neuronal correlates of trial-by-trial variation of self-timing emerged earlier in the cerebellum than the striatum. Local inactivation of respective recording sites confirmed the difference in their relative contributions to supra- and sub-second intervals. These results suggest that the basal ganglia may measure elapsed time relative to the intended interval, while the cerebellum might be responsible for the fine adjustment of self-timing.
Collapse
Affiliation(s)
- Jun Kunimatsu
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan.,Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Tomoki W Suzuki
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan
| | - Shogo Ohmae
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan.,Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Masaki Tanaka
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan
| |
Collapse
|