1
|
Rufener KS, Wienke C, Salanje A, Haghikia A, Zaehle T. Effects of transcutaneous auricular vagus nerve stimulation paired with tones on electrophysiological markers of auditory perception. Brain Stimul 2023; 16:982-989. [PMID: 37336282 DOI: 10.1016/j.brs.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Transcutaneous auricular vagus nerve stimulation (taVNS) has been introduced as a non-invasive alternative to invasive vagus nerve stimulation (iVNS). While iVNS paired with tones has been highlighted as a potential effective therapy for the treatment of auditory disorders such as tinnitus, there is still scarce data available confirming the efficacy of non-invasive taVNS. Here, we assessed the effect of taVNS paired with acoustic stimuli on sensory-related electrophysiological responses. METHODS A total of 22 healthy participants were investigated with a taVNS tone-pairing paradigm using a within-subjects design. In a single session pure tones paired with either active taVNS or sham taVNS were repeatedly presented. Novel tones without electrical stimulation served as control condition. Auditory event related potentials and auditory cortex oscillations were compared before and after the tone pairing procedure between stimulation conditions. RESULTS From pre to post pairing, we observed a decrease in the N1 amplitude and in theta power to tones paired with sham taVNS while these electrophysiological measures remained stable for tones paired with active taVNS a pattern mirroring auditory sensory processing of novel, unpaired control tones. CONCLUSION Our results demonstrate the efficacy of a short-term application of non-invasive taVNS to modulate auditory processing in healthy individuals and, thereby, have potential implications for interventions in auditory processing deficits.
Collapse
Affiliation(s)
- Katharina S Rufener
- Department of Child and Adolescent Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke-University Magdeburg, Germany.
| | - Christian Wienke
- Department of Neurology, Otto-von-Guericke-University Magdeburg, Germany
| | - Alena Salanje
- Department of Neurology, Otto-von-Guericke-University Magdeburg, Germany
| | - Aiden Haghikia
- Department of Neurology, Otto-von-Guericke-University Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke-University Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Germany
| | - Tino Zaehle
- Department of Neurology, Otto-von-Guericke-University Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke-University Magdeburg, Germany
| |
Collapse
|
2
|
Jordan R, Keller GB. The locus coeruleus broadcasts prediction errors across the cortex to promote sensorimotor plasticity. eLife 2023; 12:RP85111. [PMID: 37285281 PMCID: PMC10328511 DOI: 10.7554/elife.85111] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023] Open
Abstract
Prediction errors are differences between expected and actual sensory input and are thought to be key computational signals that drive learning related plasticity. One way that prediction errors could drive learning is by activating neuromodulatory systems to gate plasticity. The catecholaminergic locus coeruleus (LC) is a major neuromodulatory system involved in neuronal plasticity in the cortex. Using two-photon calcium imaging in mice exploring a virtual environment, we found that the activity of LC axons in the cortex correlated with the magnitude of unsigned visuomotor prediction errors. LC response profiles were similar in both motor and visual cortical areas, indicating that LC axons broadcast prediction errors throughout the dorsal cortex. While imaging calcium activity in layer 2/3 of the primary visual cortex, we found that optogenetic stimulation of LC axons facilitated learning of a stimulus-specific suppression of visual responses during locomotion. This plasticity - induced by minutes of LC stimulation - recapitulated the effect of visuomotor learning on a scale that is normally observed during visuomotor development across days. We conclude that prediction errors drive LC activity, and that LC activity facilitates sensorimotor plasticity in the cortex, consistent with a role in modulating learning rates.
Collapse
Affiliation(s)
- Rebecca Jordan
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Georg B Keller
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- Faculty of Sciences, University of BaselBaselSwitzerland
| |
Collapse
|
3
|
Viglione A, Mazziotti R, Pizzorusso T. From pupil to the brain: New insights for studying cortical plasticity through pupillometry. Front Neural Circuits 2023; 17:1151847. [PMID: 37063384 PMCID: PMC10102476 DOI: 10.3389/fncir.2023.1151847] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/08/2023] [Indexed: 04/03/2023] Open
Abstract
Pupil size variations have been associated with changes in brain activity patterns related with specific cognitive factors, such as arousal, attention, and mental effort. The locus coeruleus (LC), a key hub in the noradrenergic system of the brain, is considered to be a key regulator of cognitive control on pupil size, with changes in pupil diameter corresponding to the release of norepinephrine (NE). Advances in eye-tracking technology and open-source software have facilitated accurate pupil size measurement in various experimental settings, leading to increased interest in using pupillometry to track the nervous system activation state and as a potential biomarker for brain disorders. This review explores pupillometry as a non-invasive and fully translational tool for studying cortical plasticity starting from recent literature suggesting that pupillometry could be a promising technique for estimating the degree of residual plasticity in human subjects. Given that NE is known to be a critical mediator of cortical plasticity and arousal, the review includes data revealing the importance of the LC-NE system in modulating brain plasticity and pupil size. Finally, we will review data suggesting that pupillometry could provide a quantitative and complementary measure of cortical plasticity also in pre-clinical studies.
Collapse
Affiliation(s)
| | | | - Tommaso Pizzorusso
- BIO@SNS Lab, Scuola Normale Superiore, Pisa, Italy
- Institute of Neuroscience, National Research Council, Pisa, Italy
| |
Collapse
|
4
|
Inhibition of norepinephrine signaling during a sensitive period disrupts locus coeruleus circuitry and emotional behaviors in adulthood. Sci Rep 2023; 13:3077. [PMID: 36813805 PMCID: PMC9946949 DOI: 10.1038/s41598-023-29175-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/31/2023] [Indexed: 02/24/2023] Open
Abstract
Deficits in arousal and stress responsiveness are a feature of numerous psychiatric disorders including depression and anxiety. Arousal is supported by norepinephrine (NE) released from specialized brainstem nuclei, including the locus coeruleus (LC) neurons into cortical and limbic areas. During development, the NE system matures in concert with increased exploration of the animal's environment. While several psychiatric medications target the NE system, the possibility that its modulation during discreet developmental periods can have long-lasting consequences has not yet been explored. We used a chemogenetic strategy in mice to reversibly inhibit NE signaling during brief developmental periods and then evaluated any long-lasting impact of our intervention on adult NE circuit function and on emotional behavior. We also tested whether developmental exposure to the α2 receptor agonist guanfacine, which is commonly used in the pediatric population and is not contraindicated during pregnancy and nursing, recapitulates the effect seen with the chemogenetic strategy. Our results reveal that postnatal days 10-21 constitute a sensitive period during which alterations in NE signaling lead to changes in baseline anxiety, increased anhedonia, and passive coping behaviors in adulthood. Disruption of NE signaling during this sensitive period also caused altered LC autoreceptor function, along with circuit specific changes in LC-NE target regions at baseline, and in response to stress. Our findings indicate an early critical role for NE in sculpting brain circuits that support adult emotional function. Interfering with this role by guanfacine and similar clinically used drugs can have lasting implications for mental health.
Collapse
|
5
|
Vinogradov S, Chafee MV, Lee E, Morishita H. Psychosis spectrum illnesses as disorders of prefrontal critical period plasticity. Neuropsychopharmacology 2023; 48:168-185. [PMID: 36180784 PMCID: PMC9700720 DOI: 10.1038/s41386-022-01451-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 01/05/2023]
Abstract
Emerging research on neuroplasticity processes in psychosis spectrum illnesses-from the synaptic to the macrocircuit levels-fill key gaps in our models of pathophysiology and open up important treatment considerations. In this selective narrative review, we focus on three themes, emphasizing alterations in spike-timing dependent and Hebbian plasticity that occur during adolescence, the critical period for prefrontal system development: (1) Experience-dependent dysplasticity in psychosis emerges from activity decorrelation within neuronal ensembles. (2) Plasticity processes operate bidirectionally: deleterious environmental and experiential inputs shape microcircuits. (3) Dysregulated plasticity processes interact across levels of scale and time and include compensatory mechanisms that have pathogenic importance. We present evidence that-given the centrality of progressive dysplastic changes, especially in prefrontal cortex-pharmacologic or neuromodulatory interventions will need to be supplemented by corrective learning experiences for the brain if we are to help people living with these illnesses to fully thrive.
Collapse
Affiliation(s)
- Sophia Vinogradov
- Department of Psychiatry & Behavioral Science, University of Minnesota Medical School, Minneapolis, MN, USA.
| | - Matthew V Chafee
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Erik Lee
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, MN, USA
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN, USA
| | - Hirofumi Morishita
- Department of Psychiatry, Neuroscience, & Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
6
|
Chen APF, Malgady JM, Chen L, Shi KW, Cheng E, Plotkin JL, Ge S, Xiong Q. Nigrostriatal dopamine pathway regulates auditory discrimination behavior. Nat Commun 2022; 13:5942. [PMID: 36209150 PMCID: PMC9547888 DOI: 10.1038/s41467-022-33747-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
The auditory striatum, the tail portion of dorsal striatum in basal ganglia, is implicated in perceptual decision-making, transforming auditory stimuli to action outcomes. Despite its known connections to diverse neurological conditions, the dopaminergic modulation of sensory striatal neuronal activity and its behavioral influences remain unknown. We demonstrated that the optogenetic inhibition of dopaminergic projections from the substantia nigra pars compacta to the auditory striatum specifically impairs mouse choice performance but not movement in an auditory frequency discrimination task. In vivo dopamine and calcium imaging in freely behaving mice revealed that this dopaminergic projection modulates striatal tone representations, and tone-evoked striatal dopamine release inversely correlated with the evidence strength of tones. Optogenetic inhibition of D1-receptor expressing neurons and pharmacological inhibition of D1 receptors in the auditory striatum dampened choice performance accuracy. Our study uncovers a phasic mechanism within the nigrostriatal system that regulates auditory decisions by modulating ongoing auditory perception. The auditory striatum, the tail portion of dorsal striatum, is implicated in decision-making. This study uncovers a phasic mechanism within the nigrostriatal system that regulates auditory decisions by modulating ongoing auditory perception.
Collapse
Affiliation(s)
- Allen P F Chen
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA.,Medical Scientist Training Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794, USA
| | - Jeffrey M Malgady
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Lu Chen
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Kaiyo W Shi
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Eileen Cheng
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA.,Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Joshua L Plotkin
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA.,Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Shaoyu Ge
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Qiaojie Xiong
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
7
|
Abstract
Within populations, individuals show a variety of behavioral preferences, even in the absence of genetic or environmental variability. Neuromodulators affect these idiosyncratic preferences in a wide range of systems, however, the mechanism(s) by which they do so is unclear. I review the evidence supporting three broad mechanisms by which neuromodulators might affect variability in idiosyncratic behavioral preference: by being a source of variability directly upstream of behavior, by affecting the behavioral output of a circuit in a way that masks or accentuates underlying variability in that circuit, and by driving plasticity in circuits leading to either homeostatic convergence toward a given behavior or divergence from a developmental setpoint. I find evidence for each of these mechanisms and propose future directions to further understand the complex interplay between individual variability and neuromodulators.
Collapse
Affiliation(s)
- Ryan T Maloney
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
8
|
Tian C, Zha D. Sympathetic Nervous System Regulation of Auditory Function. Audiol Neurootol 2021; 27:93-103. [PMID: 34407531 DOI: 10.1159/000517452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 05/26/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The auditory system processes how we hear and understand sounds within the environment. It comprises both peripheral and central structures. Sympathetic nervous system projections are present throughout the auditory system. The function of sympathetic fibers in the cochlea has not been studied extensively due to the limited number of direct projections in the auditory system. Nevertheless, research on adrenergic and noradrenergic regulation of the cochlea and central auditory system is growing. With the rapid development of neuroscience, auditory central regulation is an extant topic of focus in research on hearing. SUMMARY As such, understanding sympathetic nervous system regulation of auditory function is a growing topic of interest. Herein, we review the distribution and putative physiological and pathological roles of sympathetic nervous system projections in hearing. Key Messages: In the peripheral auditory system, the sympathetic nervous system regulates cochlear blood flow, modulates cochlear efferent fibers, affects hair cells, and influences the habenula region. In central auditory pathways, norepinephrine is essential for plasticity in the auditory cortex and affects auditory cortex activity. In pathological states, the sympathetic nervous system is associated with many hearing disorders. The mechanisms and pathways of sympathetic nervous system modulation of auditory function is still valuable for us to research and discuss.
Collapse
Affiliation(s)
- Chaoyong Tian
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dingjun Zha
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
9
|
Chen F, Takemoto M, Nishimura M, Tomioka R, Song WJ. Postnatal development of subfields in the core region of the mouse auditory cortex. Hear Res 2020; 400:108138. [PMID: 33285368 DOI: 10.1016/j.heares.2020.108138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
The core region of the rodent auditory cortex has two subfields: the primary auditory area (A1) and the anterior auditory field (AAF). Although the postnatal development of A1 has been studied in several mammalian species, few studies have been conducted on the postnatal development of AAF. Using a voltage-sensitive-dye-based imaging method, we examined and compared the postnatal development of AAF and A1 in mice from postnatal day 11 (P11) to P40. We focused on the postnatal development of tonotopy, the relative position between A1 and AAF, and the properties of tone-evoked responses in the subfields. Tone-evoked responses in the mouse auditory cortex were first observed at P12, and tonotopy was found in both A1 and AAF at this age. Quantification of tonotopy using the cortical magnification factor (CMF; octave difference per unit cortical distance) revealed a rapid change from P12 to P14 in both A1 and AAF, and a stable level from P14. A similar time course of postnatal development was found for the distance between the 4 kHz site in A1 and AAF, the distance between the 16 kHz site in A1 and AAF, and the angle between the frequency axis of A1 and AAF. The maximum amplitude and rise time of tone-evoked signals in both A1 and AAF showed no significant change from P12 to P40, but the latency of the responses to both the 4 kHz and 16 kHz tones decreased during this period, with a more rapid decrease in the latency to 16 kHz tones in both subfields. The duration of responses evoked by 4 kHz tones in both A1 and AAF showed no significant postnatal change, but the duration of responses to 16 kHz tones decreased exponentially in both subfields. The cortical area activated by 4 kHz tones in AAF was always larger than that in A1 at all ages (P12-P40). Our results demonstrated that A1 and AAF developed in parallel postnatally, showing a rapid maturation of tonotopy, slow maturation of response latency and response duration, and a dorsal-to-ventral order (high-frequency site to low-frequency site) of functional maturation.
Collapse
Affiliation(s)
- Feifan Chen
- Department of Sensory and Cognitive Physiology, Graduate School of Medical Sciences, Kumamoto University, Japan; Program for Leading Graduate Schools HIGO Program, Kumamoto University, Kumamoto, Japan
| | - Makoto Takemoto
- Department of Sensory and Cognitive Physiology, Graduate School of Medical Sciences, Kumamoto University, Japan
| | - Masataka Nishimura
- Department of Sensory and Cognitive Physiology, Graduate School of Medical Sciences, Kumamoto University, Japan
| | - Ryohei Tomioka
- Department of Sensory and Cognitive Physiology, Graduate School of Medical Sciences, Kumamoto University, Japan
| | - Wen-Jie Song
- Department of Sensory and Cognitive Physiology, Graduate School of Medical Sciences, Kumamoto University, Japan; Program for Leading Graduate Schools HIGO Program, Kumamoto University, Kumamoto, Japan; Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| |
Collapse
|
10
|
Hong SZ, Huang S, Severin D, Kirkwood A. Pull-push neuromodulation of cortical plasticity enables rapid bi-directional shifts in ocular dominance. eLife 2020; 9:e54455. [PMID: 32432545 PMCID: PMC7239653 DOI: 10.7554/elife.54455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/01/2020] [Indexed: 02/06/2023] Open
Abstract
Neuromodulatory systems are essential for remodeling glutamatergic connectivity during experience-dependent cortical plasticity. This permissive/enabling function of neuromodulators has been associated with their capacity to facilitate the induction of Hebbian forms of long-term potentiation (LTP) and depression (LTD) by affecting cellular and network excitability. In vitro studies indicate that neuromodulators also affect the expression of Hebbian plasticity in a pull-push manner: receptors coupled to the G-protein Gs promote the expression of LTP at the expense of LTD, and Gq-coupled receptors promote LTD at the expense of LTP. Here we show that pull-push mechanisms can be recruited in vivo by pairing brief monocular stimulation with pharmacological or chemogenetical activation of Gs- or Gq-coupled receptors to respectively enhance or reduce neuronal responses in primary visual cortex. These changes were stable, inducible in adults after the termination of the critical period for ocular dominance plasticity, and can rescue deficits induced by prolonged monocular deprivation.
Collapse
Affiliation(s)
- Su Z Hong
- Mind/Brain Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Shiyong Huang
- Mind/Brain Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Daniel Severin
- Mind/Brain Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Alfredo Kirkwood
- Mind/Brain Institute, Johns Hopkins UniversityBaltimoreUnited States
- Department of Neuroscience, Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
11
|
Persic D, Thomas ME, Pelekanos V, Ryugo DK, Takesian AE, Krumbholz K, Pyott SJ. Regulation of auditory plasticity during critical periods and following hearing loss. Hear Res 2020; 397:107976. [PMID: 32591097 PMCID: PMC8546402 DOI: 10.1016/j.heares.2020.107976] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/15/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
Sensory input has profound effects on neuronal organization and sensory maps in the brain. The mechanisms regulating plasticity of the auditory pathway have been revealed by examining the consequences of altered auditory input during both developmental critical periods—when plasticity facilitates the optimization of neural circuits in concert with the external environment—and in adulthood—when hearing loss is linked to the generation of tinnitus. In this review, we summarize research identifying the molecular, cellular, and circuit-level mechanisms regulating neuronal organization and tonotopic map plasticity during developmental critical periods and in adulthood. These mechanisms are shared in both the juvenile and adult brain and along the length of the auditory pathway, where they serve to regulate disinhibitory networks, synaptic structure and function, as well as structural barriers to plasticity. Regulation of plasticity also involves both neuromodulatory circuits, which link plasticity with learning and attention, as well as ascending and descending auditory circuits, which link the auditory cortex and lower structures. Further work identifying the interplay of molecular and cellular mechanisms associating hearing loss-induced plasticity with tinnitus will continue to advance our understanding of this disorder and lead to new approaches to its treatment. During CPs, brain plasticity is enhanced and sensitive to acoustic experience. Enhanced plasticity can be reinstated in the adult brain following hearing loss. Molecular, cellular, and circuit-level mechanisms regulate CP and adult plasticity. Plasticity resulting from hearing loss may contribute to the emergence of tinnitus. Modifying plasticity in the adult brain may offer new treatments for tinnitus.
Collapse
Affiliation(s)
- Dora Persic
- University of Groningen, University Medical Center Groningen, Groningen, Department of Otorhinolaryngology and Head/Neck Surgery, 9713, GZ, Groningen, the Netherlands
| | - Maryse E Thomas
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear and Department of Otorhinolaryngology and Head/Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Vassilis Pelekanos
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, University Park, Nottingham, UK
| | - David K Ryugo
- Hearing Research, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia; School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia; Department of Otolaryngology, Head, Neck & Skull Base Surgery, St Vincent's Hospital, Sydney, NSW, 2010, Australia
| | - Anne E Takesian
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear and Department of Otorhinolaryngology and Head/Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Katrin Krumbholz
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, University Park, Nottingham, UK
| | - Sonja J Pyott
- University of Groningen, University Medical Center Groningen, Groningen, Department of Otorhinolaryngology and Head/Neck Surgery, 9713, GZ, Groningen, the Netherlands.
| |
Collapse
|
12
|
Cisneros-Franco JM, Voss P, Thomas ME, de Villers-Sidani E. Critical periods of brain development. HANDBOOK OF CLINICAL NEUROLOGY 2020; 173:75-88. [PMID: 32958196 DOI: 10.1016/b978-0-444-64150-2.00009-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Brain plasticity is maximal at specific time windows during early development known as critical periods (CPs), during which sensory experience is necessary to establish optimal cortical representations of the surrounding environment. After CP closure, a range of functional and structural elements prevent passive experience from eliciting significant plastic changes in the brain. The transition from a plastic to a more fixed state is advantageous as it allows for the sequential consolidation and retention of new and more complex perceptual, motor, and cognitive functions. However, the formation of stable neural representations may pose limitations on future revisions to the circuitry. If sensory experience is abnormal or absent during this time, it can have profound effects on sensory representations in adulthood, resulting in quasi-permanent adaptations that can make it nearly impossible to learn certain skills or process certain stimulus properties later on in life. This chapter begins with a brief introduction to experience-dependent plasticity throughout the lifespan (Section Introduction). Next, we define what constitutes a CP (Section What Are Critical Periods?) and review some of the key CPs in the visual and auditory systems (Section Key Critical Periods of Sensory Systems). We then discuss the mechanisms whereby cortical plasticity is regulated both locally and through neuromodulatory systems (Section How Are Critical Periods Regulated?). Finally, we highlight studies showing that CPs can be extended beyond their normal epochs, closed prematurely, or reopened during adult life by merely altering sensory inputs (Section Timing of Critical Periods: Can CP Plasticity Be Extended, Limited, or Reactivated?).
Collapse
Affiliation(s)
- J Miguel Cisneros-Franco
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada; Centre for Research on Brain, Language and Music, McGill University, Montreal, QC, Canada
| | - Patrice Voss
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada; Centre for Research on Brain, Language and Music, McGill University, Montreal, QC, Canada
| | - Maryse E Thomas
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada; Centre for Research on Brain, Language and Music, McGill University, Montreal, QC, Canada
| | - Etienne de Villers-Sidani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada; Centre for Research on Brain, Language and Music, McGill University, Montreal, QC, Canada.
| |
Collapse
|
13
|
Hamel R, Côté K, Matte A, Lepage JF, Bernier PM. Rewards interact with repetition-dependent learning to enhance long-term retention of motor memories. Ann N Y Acad Sci 2019; 1452:34-51. [PMID: 31294872 DOI: 10.1111/nyas.14171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/26/2019] [Accepted: 05/29/2019] [Indexed: 11/28/2022]
Abstract
The combination of behavioral experiences that enhance long-term retention remains largely unknown. Informed by neurophysiological lines of work, this study tested the hypothesis that performance-contingent monetary rewards potentiate repetition-dependent forms of learning, as induced by extensive practice at asymptote, to enhance long-term retention of motor memories. To this end, six groups of 14 participants (n = 84) acquired novel motor behaviors by adapting to a gradual visuomotor rotation while these factors were manipulated. Retention was assessed 24 h later. While all groups similarly acquired the novel motor behaviors, results from the retention session revealed an interaction indicating that rewards enhanced long-term retention, but only when practice was extended to asymptote. Specifically, the interaction indicated that this effect selectively occurred when rewards were intermittently available (i.e., 50%), but not when they were absent (i.e., 0%) or continuously available (i.e., 100%) during acquisition. This suggests that the influence of rewards on extensive practice and long-term retention is nonlinear, as continuous rewards did not further enhance retention as compared with intermittent rewards. One possibility is that rewards' intermittent availability allows to maintain their subjective value during acquisition, which may be key to potentiate long-term retention.
Collapse
Affiliation(s)
- Raphaël Hamel
- Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Département de Kinanthropologie, Faculté des Sciences de l'Activité Physique, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Kathleen Côté
- Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Alexia Matte
- Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jean-François Lepage
- Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Pierre-Michel Bernier
- Département de Kinanthropologie, Faculté des Sciences de l'Activité Physique, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
14
|
Schicknick H, Henschke JU, Budinger E, Ohl FW, Gundelfinger ED, Tischmeyer W. β-adrenergic modulation of discrimination learning and memory in the auditory cortex. Eur J Neurosci 2019; 50:3141-3163. [PMID: 31162753 PMCID: PMC6900137 DOI: 10.1111/ejn.14480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 05/27/2019] [Accepted: 05/31/2019] [Indexed: 01/11/2023]
Abstract
Despite vast literature on catecholaminergic neuromodulation of auditory cortex functioning in general, knowledge about its role for long‐term memory formation is scarce. Our previous pharmacological studies on cortex‐dependent frequency‐modulated tone‐sweep discrimination learning of Mongolian gerbils showed that auditory‐cortical D1/5‐dopamine receptor activity facilitates memory consolidation and anterograde memory formation. Considering overlapping functions of D1/5‐dopamine receptors and β‐adrenoceptors, we hypothesised a role of β‐adrenergic signalling in the auditory cortex for sweep discrimination learning and memory. Supporting this hypothesis, the β1/2‐adrenoceptor antagonist propranolol bilaterally applied to the gerbil auditory cortex after task acquisition prevented the discrimination increment that was normally monitored 1 day later. The increment in the total number of hurdle crossings performed in response to the sweeps per se was normal. Propranolol infusion after the seventh training session suppressed the previously established sweep discrimination. The suppressive effect required antagonist injection in a narrow post‐session time window. When applied to the auditory cortex 1 day before initial conditioning, β1‐adrenoceptor‐antagonising and β1‐adrenoceptor‐stimulating agents retarded and facilitated, respectively, sweep discrimination learning, whereas β2‐selective drugs were ineffective. In contrast, single‐sweep detection learning was normal after propranolol infusion. By immunohistochemistry, β1‐ and β2‐adrenoceptors were identified on the neuropil and somata of pyramidal and non‐pyramidal neurons of the gerbil auditory cortex. The present findings suggest that β‐adrenergic signalling in the auditory cortex has task‐related importance for discrimination learning of complex sounds: as previously shown for D1/5‐dopamine receptor signalling, β‐adrenoceptor activity supports long‐term memory consolidation and reconsolidation; additionally, tonic input through β1‐adrenoceptors may control mechanisms permissive for memory acquisition.
Collapse
Affiliation(s)
- Horst Schicknick
- Special Lab Molecular Biological Techniques, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Julia U Henschke
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Eike Budinger
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Frank W Ohl
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany.,Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Eckart D Gundelfinger
- Center for Behavioral Brain Sciences, Magdeburg, Germany.,Department Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Molecular Neurobiology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Wolfgang Tischmeyer
- Special Lab Molecular Biological Techniques, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
15
|
From membrane receptors to protein synthesis and actin cytoskeleton: Mechanisms underlying long lasting forms of synaptic plasticity. Semin Cell Dev Biol 2019; 95:120-129. [PMID: 30634048 DOI: 10.1016/j.semcdb.2019.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 12/13/2022]
Abstract
Synaptic plasticity, the activity dependent change in synaptic strength, forms the molecular foundation of learning and memory. Synaptic plasticity includes structural changes, with spines changing their size to accomodate insertion and removal of postynaptic receptors, which are correlated with functional changes. Of particular relevance for memory storage are the long lasting forms of synaptic plasticity which are protein synthesis dependent. Due to the importance of spine structural plasticity and protein synthesis, this review focuses on the signaling pathways that connect synaptic stimulation with regulation of protein synthesis and remodeling of the actin cytoskeleton. We also review computational models that implement novel aspects of molecular signaling in synaptic plasticity, such as the role of neuromodulators and spatial microdomains, as well as highlight the need for computational models that connect activation of memory kinases with spine actin dynamics.
Collapse
|
16
|
"Can You Hear Me Now?" AMPA Receptor-Mediated Tonotopy Disruption by Early Life Seizures. Epilepsy Curr 2018; 18:391-393. [PMID: 30568558 DOI: 10.5698/1535-7597.18.6.391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
[Box: see text]
Collapse
|
17
|
Barr HJ, Woolley SC. Developmental auditory exposure shapes responses of catecholaminergic neurons to socially-modulated song. Sci Rep 2018; 8:11717. [PMID: 30082796 PMCID: PMC6079043 DOI: 10.1038/s41598-018-30039-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 07/18/2018] [Indexed: 11/09/2022] Open
Abstract
Developmental sensory experience is critical to the tuning of sensory systems and can shape perceptual abilities and their neural substrates. Neuromodulators, including catecholamines, contribute to sensory plasticity in both older and younger individuals and provide a mechanism for translating sensory experience into changes in brain and behavior. Less well known, however, is whether developmental sensory experience has lasting effects on the neuromodulatory neurons themselves. Here, we used female zebra finches to investigate the degree to which developmental auditory experience can have lasting effects on the density and sensory responsiveness of catecholamine-synthesizing neuron populations. We found that hearing courtship, but not non-courtship, song increased expression of the activity-dependent immediate early gene cFOS in dopamine neurons of the caudal ventral tegmental area (VTA) and this increase was dependent on whether females heard adult song during development. Developmental song exposure also affected the density of dopamine producing neurons in the rostral VTA. In contrast, song-evoked responses in noradrenergic neurons of the Locus Coeruleus were not affected by either developmental song exposure or the social context of the stimulus. These data highlight the lasting effects that developmental auditory experience can have in shaping both the density and sensory responsiveness of dopamine neuron populations.
Collapse
Affiliation(s)
- Helena J Barr
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.,Center for Research on Brain, Language, and Music, McGill University, Montreal, QC, Canada
| | - Sarah C Woolley
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada. .,Center for Research on Brain, Language, and Music, McGill University, Montreal, QC, Canada. .,Department of Biology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
18
|
Moreno A, Gumaste A, Adams GK, Chong KK, Nguyen M, Shepard KN, Liu RC. Familiarity with social sounds alters c-Fos expression in auditory cortex and interacts with estradiol in locus coeruleus. Hear Res 2018; 366:38-49. [PMID: 29983289 PMCID: PMC6470399 DOI: 10.1016/j.heares.2018.06.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 06/21/2018] [Accepted: 06/26/2018] [Indexed: 12/21/2022]
Abstract
When a social sound category initially gains behavioral significance to an animal, plasticity events presumably enhance the ability to recognize that sound category in the future. In the context of learning natural social stimuli, neuromodulators such as norepinephrine and estrogen have been associated with experience-dependent plasticity and processing of newly salient social cues, yet continued plasticity once stimuli are familiar could disrupt the stability of sensorineural representations. Here we employed a maternal mouse model of natural sensory cortical plasticity for infant vocalizations to ask whether the engagement of the noradrenergic locus coeruleus (LC) by the playback of pup-calls is affected by either prior experience with the sounds or estrogen availability, using a well-studied cellular activity and plasticity marker, the immediate early gene c-Fos. We counted call-induced c-Fos immunoreactive (cFos-IR) cells in both LC and physiologically validated fields within the auditory cortex (AC) of estradiol or blank-implanted virgin female mice with either 0 or 5-days prior experience caring for vocalizing pups. Estradiol and pup experience interacted both in the induction of c-Fos-IR in the LC, as well as in behavioral measures of locomotion during playback, consistent with the neuromodulatory center’s activity being an online reflection of both hormonal and experience-dependent influences on arousal. Throughout core AC, as well as in a high frequency sub-region of AC and in secondary AC, a main effect of pup experience was to reduce call-induced c-Fos-IR, irrespective of estradiol availability. This is consistent with the hypothesis that sound familiarity leads to less c-Fos-mediated plasticity, and less disrupted sensory representations of a meaningful call category. Taken together, our data support the view that any coupling between these sensory and neuromodulatory areas is situationally dependent, and their engagement depends differentially on both internal state factors like hormones and external state factors like prior experience.
Collapse
Affiliation(s)
- Amielle Moreno
- Neuroscience Graduate Program, Emory University, 1462 Clifton Road, Atlanta, GA, 30322, USA; Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA.
| | - Ankita Gumaste
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA; Neuroscience and Behavior Biology Program, Emory University, 1462 Clifton Road, Atlanta, GA, 30322, USA.
| | - Geoff K Adams
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA.
| | - Kelly K Chong
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA; Biomedical Engineering Graduate Program, Georgia Institute of Technology, North Ave NW, Atlanta, GA, 30332, USA.
| | - Michael Nguyen
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA; Neuroscience and Behavior Biology Program, Emory University, 1462 Clifton Road, Atlanta, GA, 30322, USA.
| | - Kathryn N Shepard
- Neuroscience Graduate Program, Emory University, 1462 Clifton Road, Atlanta, GA, 30322, USA; Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA.
| | - Robert C Liu
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA; Center for Translational Social Neuroscience, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
19
|
Zorec R, Parpura V, Verkhratsky A. Preventing neurodegeneration by adrenergic astroglial excitation. FEBS J 2018; 285:3645-3656. [PMID: 29630772 DOI: 10.1111/febs.14456] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/17/2018] [Accepted: 03/28/2018] [Indexed: 01/22/2023]
Abstract
Impairment of the main noradrenergic nucleus of the human brain, the locus coeruleus (LC), which has been discovered in 1784, represents one of defining factors of neurodegenerative diseases progression. Projections of LC neurons release noradrenaline/norepinephrine (NA), which stimulates astrocytes, homeostatic neuroglial cells enriched with adrenergic receptors. There is a direct correlation between the reduction in noradrenergic innervations and cognitive decline associated with ageing and neurodegenerative diseases. It is, therefore, hypothesized that the resilience of LC neurons to degeneration influences the neural reserve that in turn determines cognitive decline. Deficits in the noradrenergic innervation of the brain might be reversed or restrained by increasing the activity of existing LC neurons, transplanting noradrenergic neurons, and/or using drugs that mimic the activity of NA on astroglia. Here, these strategies are discussed with the aim to understand how astrocytes integrate neuronal network activity in the brain information processing in health and disease.
Collapse
Affiliation(s)
- Robert Zorec
- Laboratory of Neuroendocrinology and Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Slovenia.,Celica, BIOMEDICAL, Ljubljana, Slovenia
| | - Vladimir Parpura
- Department of Neurobiology, Civitan International Research Center and Center for Glial Biology in Medicine, Evelyn F. McKnight Brain Institute, Atomic Force Microscopy & Nanotechnology Laboratories, University of Alabama, Birmingham, AL, USA
| | - Alexei Verkhratsky
- Laboratory of Neuroendocrinology and Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Slovenia.,Celica, BIOMEDICAL, Ljubljana, Slovenia.,Faculty of Biology, Medicine and Health, The University of Manchester, UK.,Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.,Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain
| |
Collapse
|
20
|
Zhu MY. Noradrenergic Modulation on Dopaminergic Neurons. Neurotox Res 2018; 34:848-859. [DOI: 10.1007/s12640-018-9889-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/05/2018] [Accepted: 03/08/2018] [Indexed: 12/24/2022]
|
21
|
Voss P, Thomas ME, Cisneros-Franco JM, de Villers-Sidani É. Dynamic Brains and the Changing Rules of Neuroplasticity: Implications for Learning and Recovery. Front Psychol 2017; 8:1657. [PMID: 29085312 PMCID: PMC5649212 DOI: 10.3389/fpsyg.2017.01657] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/08/2017] [Indexed: 12/21/2022] Open
Abstract
A growing number of research publications have illustrated the remarkable ability of the brain to reorganize itself in response to various sensory experiences. A traditional view of this plastic nature of the brain is that it is predominantly limited to short epochs during early development. Although examples showing that neuroplasticity exists outside of these finite time-windows have existed for some time, it is only recently that we have started to develop a fuller understanding of the different regulators that modulate and underlie plasticity. In this article, we will provide several lines of evidence indicating that mechanisms of neuroplasticity are extremely variable across individuals and throughout the lifetime. This variability is attributable to several factors including inhibitory network function, neuromodulator systems, age, sex, brain disease, and psychological traits. We will also provide evidence of how neuroplasticity can be manipulated in both the healthy and diseased brain, including recent data in both young and aged rats demonstrating how plasticity within auditory cortex can be manipulated pharmacologically and by varying the quality of sensory inputs. We propose that a better understanding of the individual differences that exist within the various mechanisms that govern experience-dependent neuroplasticity will improve our ability to harness brain plasticity for the development of personalized translational strategies for learning and recovery following brain injury or disease.
Collapse
Affiliation(s)
- Patrice Voss
- *Correspondence: Étienne de Villers-Sidani, Patrice Voss,
| | | | | | - Étienne de Villers-Sidani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, MontrealQC, Canada
| |
Collapse
|
22
|
Hylin MJ, Brenneman MM, Corwin JV. Noradrenergic antagonists mitigate amphetamine-induced recovery. Behav Brain Res 2017; 334:61-71. [PMID: 28756213 DOI: 10.1016/j.bbr.2017.07.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 07/18/2017] [Accepted: 07/25/2017] [Indexed: 11/16/2022]
Abstract
Brain injury, including that due to stroke, leaves individuals with cognitive deficits that can disrupt daily aspect of living. As of now there are few treatments that shown limited amounts of success in improving functional outcome. The use of stimulants such as amphetamine have shown some success in improving outcome following brain injury. While the pharmacological mechanisms for amphetamine are known; the specific processes responsible for improving behavioral outcome following injury remain unknown. Understanding these mechanisms can help to refine the use of amphetamine as a potential treatment or lead to the use of other methods that share the same pharmacological properties. One proposed mechanism is amphetamine's impact upon noradrenaline (NA). In the current, study noradrenergic antagonists were administered prior to amphetamine to pharmacologically block α- and β-adrenergic receptors. The results demonstrated that the blockade of these receptors disrupted amphetamines ability to induce recovery from hemispatial neglect using an established aspiration lesion model. This suggests that amphetamine's ability to ameliorate neglect deficits may be due in part to noradrenaline. These results further support the role of noradrenaline in functional recovery. Finally, the development of polytherapies and combined therapeutics, while promising, may need to consider the possibility that drug interactions can negate the effectiveness of treatment.
Collapse
Affiliation(s)
- M J Hylin
- Neurotrauma and Rehabilitation Laboratory, Department of Psychology, Southern Illinois University, Carbondale, IL, United States.
| | - M M Brenneman
- Department of Psychology, Coastal Carolina University, P.O. Box 261954, Conway, SC, United States
| | - J V Corwin
- Department of Psychology, Northern Illinois University, DeKalb, IL, United States
| |
Collapse
|
23
|
Lawson RP, Mathys C, Rees G. Adults with autism overestimate the volatility of the sensory environment. Nat Neurosci 2017; 20:1293-1299. [PMID: 28758996 PMCID: PMC5578436 DOI: 10.1038/nn.4615] [Citation(s) in RCA: 241] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 07/04/2017] [Indexed: 12/21/2022]
Abstract
Insistence on sameness and intolerance of change are among the diagnostic criteria for autism spectrum disorder (ASD), but little research has addressed how people with ASD represent and respond to environmental change. Here, behavioral and pupillometric measurements indicated that adults with ASD are less surprised than neurotypical adults when their expectations are violated, and decreased surprise is predictive of greater symptom severity. A hierarchical Bayesian model of learning suggested that in ASD, a tendency to overlearn about volatility in the face of environmental change drives a corresponding reduction in learning about probabilistically aberrant events, thus putatively rendering these events less surprising. Participant-specific modeled estimates of surprise about environmental conditions were linked to pupil size in the ASD group, thus suggesting heightened noradrenergic responsivity in line with compromised neural gain. This study offers insights into the behavioral, algorithmic and physiological mechanisms underlying responses to environmental volatility in ASD.
Collapse
Affiliation(s)
- Rebecca P Lawson
- Wellcome Trust Centre for Neuroimaging, University College London, London, UK
- Institute of Cognitive Neuroscience, University College London, London, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Christoph Mathys
- Wellcome Trust Centre for Neuroimaging, University College London, London, UK
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
- Max Planck UCL Centre for Computational Psychiatry and Ageing, University College London, London, UK
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Geraint Rees
- Wellcome Trust Centre for Neuroimaging, University College London, London, UK
- Institute of Cognitive Neuroscience, University College London, London, UK
| |
Collapse
|
24
|
Mikhail C, Vaucher A, Jimenez S, Tafti M. ERK signaling pathway regulates sleep duration through activity-induced gene expression during wakefulness. Sci Signal 2017; 10:10/463/eaai9219. [PMID: 28119463 DOI: 10.1126/scisignal.aai9219] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Wakefulness is accompanied by experience-dependent synaptic plasticity and an increase in activity-regulated gene transcription. Wake-induced genes are certainly markers of neuronal activity and may also directly regulate the duration of and need for sleep. We stimulated murine cortical cultures with the neuromodulatory signals that are known to control wakefulness in the brain and found that norepinephrine alone or a mixture of these neuromodulators induced activity-regulated gene transcription. Pharmacological inhibition of the various signaling pathways involved in the regulation of gene expression indicated that the extracellular signal-regulated kinase (ERK) pathway is the principal one mediating the effects of waking neuromodulators on gene expression. In mice, ERK phosphorylation in the cortex increased and decreased with wakefulness and sleep. Whole-body or cortical neuron-specific deletion of Erk1 or Erk2 significantly increased the duration of wakefulness in mice, and pharmacological inhibition of ERK phosphorylation decreased sleep duration and increased the duration of wakefulness bouts. Thus, this signaling pathway, which is highly conserved from Drosophila to mammals, is a key pathway that links waking experience-induced neuronal gene expression to sleep duration and quality.
Collapse
Affiliation(s)
- Cyril Mikhail
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Angélique Vaucher
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Sonia Jimenez
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Mehdi Tafti
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland. .,Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, CH-1005 Lausanne, Switzerland
| |
Collapse
|
25
|
Contrast Enhancement without Transient Map Expansion for Species-Specific Vocalizations in Core Auditory Cortex during Learning. eNeuro 2016; 3:eN-NWR-0318-16. [PMID: 27957529 PMCID: PMC5128782 DOI: 10.1523/eneuro.0318-16.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/05/2016] [Accepted: 11/07/2016] [Indexed: 11/25/2022] Open
Abstract
Tonotopic map plasticity in the adult auditory cortex (AC) is a well established and oft-cited measure of auditory associative learning in classical conditioning paradigms. However, its necessity as an enduring memory trace has been debated, especially given a recent finding that the areal expansion of core AC tuned to a newly relevant frequency range may arise only transiently to support auditory learning. This has been reinforced by an ethological paradigm showing that map expansion is not observed for ultrasonic vocalizations (USVs) or for ultrasound frequencies in postweaning dams for whom USVs emitted by pups acquire behavioral relevance. However, whether transient expansion occurs during maternal experience is not known, and could help to reveal the generality of cortical map expansion as a correlate for auditory learning. We thus mapped the auditory cortices of maternal mice at postnatal time points surrounding the peak in pup USV emission, but found no evidence of frequency map expansion for the behaviorally relevant high ultrasound range in AC. Instead, regions tuned to low frequencies outside of the ultrasound range show progressively greater suppression of activity in response to the playback of ultrasounds or pup USVs for maternally experienced animals assessed at their pups’ postnatal day 9 (P9) to P10, or postweaning. This provides new evidence for a lateral-band suppression mechanism elicited by behaviorally meaningful USVs, likely enhancing their population-level signal-to-noise ratio. These results demonstrate that tonotopic map enlargement has limits as a construct for conceptualizing how experience leaves neural memory traces within sensory cortex in the context of ethological auditory learning.
Collapse
|
26
|
Schulz AL, Woldeit ML, Gonçalves AI, Saldeitis K, Ohl FW. Selective Increase of Auditory Cortico-Striatal Coherence during Auditory-Cued Go/NoGo Discrimination Learning. Front Behav Neurosci 2016; 9:368. [PMID: 26793085 PMCID: PMC4707278 DOI: 10.3389/fnbeh.2015.00368] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/21/2015] [Indexed: 11/19/2022] Open
Abstract
Goal directed behavior and associated learning processes are tightly linked to neuronal activity in the ventral striatum. Mechanisms that integrate task relevant sensory information into striatal processing during decision making and learning are implicitly assumed in current reinforcement models, yet they are still weakly understood. To identify the functional activation of cortico-striatal subpopulations of connections during auditory discrimination learning, we trained Mongolian gerbils in a two-way active avoidance task in a shuttlebox to discriminate between falling and rising frequency modulated tones with identical spectral properties. We assessed functional coupling by analyzing the field-field coherence between the auditory cortex and the ventral striatum of animals performing the task. During the course of training, we observed a selective increase of functional coupling during Go-stimulus presentations. These results suggest that the auditory cortex functionally interacts with the ventral striatum during auditory learning and that the strengthening of these functional connections is selectively goal-directed.
Collapse
Affiliation(s)
- Andreas L Schulz
- Department Systems Physiology, Leibniz Institute for Neurobiology Magdeburg, Germany
| | - Marie L Woldeit
- Department Systems Physiology, Leibniz Institute for Neurobiology Magdeburg, Germany
| | - Ana I Gonçalves
- Department Systems Physiology, Leibniz Institute for NeurobiologyMagdeburg, Germany; Department Systems Biology, Institute of Biology, Otto-von-Guericke UniversityMagdeburg, Germany
| | - Katja Saldeitis
- Department Systems Physiology, Leibniz Institute for Neurobiology Magdeburg, Germany
| | - Frank W Ohl
- Department Systems Physiology, Leibniz Institute for NeurobiologyMagdeburg, Germany; Department Systems Biology, Institute of Biology, Otto-von-Guericke UniversityMagdeburg, Germany; Center for Behavioral Brain SciencesMagdeburg, Germany
| |
Collapse
|
27
|
Golovin RM, Ward NJ. Neuromodulatory influence of norepinephrine during developmental experience-dependent plasticity. J Neurophysiol 2015; 116:1-4. [PMID: 26655818 DOI: 10.1152/jn.00461.2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 12/03/2015] [Indexed: 11/22/2022] Open
Abstract
Critical periods represent phases of development during which neuronal circuits and their responses can be readily shaped by stimuli. Experience-dependent plasticity that occurs within these critical periods can be influenced in many ways; however, Shepard et al. (J Neurosci 35: 2432-2437, 2015) recently singled out norepinephrine as an essential driver of this plasticity within the auditory cortex. This work provides novel insight into the mechanisms of critical period plasticity and challenges previous conceptions that a functional redundancy exists between noradrenergic and cholinergic influences on cortical plasticity.
Collapse
Affiliation(s)
- Randall M Golovin
- Neuroscience Graduate Program, Vanderbilt University, Nashville, Tennessee; Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee
| | - Nicholas J Ward
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee; Vanderbilt Vision Research Center, Vanderbilt University, Nashville, Tennessee; and Department of Psychology, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
28
|
Norepinephrine Modulates Coding of Complex Vocalizations in the Songbird Auditory Cortex Independent of Local Neuroestrogen Synthesis. J Neurosci 2015; 35:9356-68. [PMID: 26109659 DOI: 10.1523/jneurosci.4445-14.2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The catecholamine norepinephrine plays a significant role in auditory processing. Most studies to date have examined the effects of norepinephrine on the neuronal response to relatively simple stimuli, such as tones and calls. It is less clear how norepinephrine shapes the detection of complex syntactical sounds, as well as the coding properties of sensory neurons. Songbirds provide an opportunity to understand how auditory neurons encode complex, learned vocalizations, and the potential role of norepinephrine in modulating the neuronal computations for acoustic communication. Here, we infused norepinephrine into the zebra finch auditory cortex and performed extracellular recordings to study the modulation of song representations in single neurons. Consistent with its proposed role in enhancing signal detection, norepinephrine decreased spontaneous activity and firing during stimuli, yet it significantly enhanced the auditory signal-to-noise ratio. These effects were all mimicked by clonidine, an α-2 receptor agonist. Moreover, a pattern classifier analysis indicated that norepinephrine enhanced the ability of single neurons to accurately encode complex auditory stimuli. Because neuroestrogens are also known to enhance auditory processing in the songbird brain, we tested the hypothesis that norepinephrine actions depend on local estrogen synthesis. Neither norepinephrine nor adrenergic receptor antagonist infusion into the auditory cortex had detectable effects on local estradiol levels. Moreover, pretreatment with fadrozole, a specific aromatase inhibitor, did not block norepinephrine's neuromodulatory effects. Together, these findings indicate that norepinephrine enhances signal detection and information encoding for complex auditory stimuli by suppressing spontaneous "noise" activity and that these actions are independent of local neuroestrogen synthesis.
Collapse
|
29
|
Hirao K, Eto K, Nakahata Y, Ishibashi H, Nagai T, Nabekura J. Noradrenergic refinement of glutamatergic neuronal circuits in the lateral superior olivary nucleus before hearing onset. J Neurophysiol 2015. [PMID: 26203112 DOI: 10.1152/jn.00813.2014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Neuronal circuit plasticity during development is fundamental for precise network formation. Pioneering studies of the developmental visual cortex indicated that noradrenaline (NA) is crucial for ocular dominance plasticity during the critical period in the visual cortex. Recent research demonstrated tonotopic map formation by NA during the critical period in the auditory system, indicating that NA also contributes to synaptic plasticity in this system. The lateral superior olive (LSO) in the auditory system receives glutamatergic input from the ventral cochlear nucleus (VCN) and undergoes circuit remodeling during postnatal development. LSO is innervated by noradrenergic afferents and is therefore a suitable model to study the function of NA in refinement of neuronal circuits. Chemical lesions of the noradrenergic system and chronic inhibition of α2-adrenoceptors in vivo during postnatal development in mice disrupted functional elimination and strengthening of VCN-LSO afferents. This was potentially mediated by activation of presynaptic α2-adrenoceptors and inhibition of glutamate release because NA presynaptically suppressed excitatory postsynaptic current (EPSC) through α2-adrenoceptors during the first two postnatal weeks in an in vitro study. Furthermore, NA and α2-adrenoceptor agonist induced long-term suppression of EPSCs and decreased glutamate release. These results suggest that NA has a critical role in synaptic refinement of the VCN-LSO glutamatergic pathway through failure of synaptic transmission. Because of the ubiquitous distribution of NA afferents and the extensive expression of α2-adrenoceptors throughout the immature brain, this phenomenon might be widespread in the developing central nervous system.
Collapse
Affiliation(s)
- Kenzo Hirao
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Japan; Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Kei Eto
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Japan
| | - Yoshihisa Nakahata
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Japan
| | - Hitoshi Ishibashi
- Department of Physiology, School of Allied Health Sciences, Kitasato University, Sagamihara, Japan; and
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Junichi Nabekura
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Japan; Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan;
| |
Collapse
|