1
|
Runyon K, Bui T, Mazanek S, Hartle A, Marschalko K, Howe WM. Distinct cholinergic circuits underlie discrete effects of reward on attention. Front Mol Neurosci 2024; 17:1429316. [PMID: 39268248 PMCID: PMC11390659 DOI: 10.3389/fnmol.2024.1429316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/01/2024] [Indexed: 09/15/2024] Open
Abstract
Attention and reward are functions that are critical for the control of behavior, and massive multi-region neural systems have evolved to support the discrete computations associated with each. Previous research has also identified that attention and reward interact, though our understanding of the neural mechanisms that mediate this interplay is incomplete. Here, we review the basic neuroanatomy of attention, reward, and cholinergic systems. We then examine specific contexts in which attention and reward computations interact. Building on this work, we propose two discrete neural circuits whereby acetylcholine, released from cell groups located in different parts of the brain, mediates the impact of stimulus-reward associations as well as motivation on attentional control. We conclude by examining these circuits as a potential shared loci of dysfunction across diseases states associated with deficits in attention and reward.
Collapse
Affiliation(s)
- Kelly Runyon
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Tung Bui
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Sarah Mazanek
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Alec Hartle
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Katie Marschalko
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | | |
Collapse
|
2
|
Xu Y, Lin Y, Yu M, Zhou K. The nucleus accumbens in reward and aversion processing: insights and implications. Front Behav Neurosci 2024; 18:1420028. [PMID: 39184934 PMCID: PMC11341389 DOI: 10.3389/fnbeh.2024.1420028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
The nucleus accumbens (NAc), a central component of the brain's reward circuitry, has been implicated in a wide range of behaviors and emotional states. Emerging evidence, primarily drawing from recent rodent studies, suggests that the function of the NAc in reward and aversion processing is multifaceted. Prolonged stress or drug use induces maladaptive neuronal function in the NAc circuitry, which results in pathological conditions. This review aims to provide comprehensive and up-to-date insights on the role of the NAc in motivated behavior regulation and highlights areas that demand further in-depth analysis. It synthesizes the latest findings on how distinct NAc neuronal populations and pathways contribute to the processing of opposite valences. The review examines how a range of neuromodulators, especially monoamines, influence the NAc's control over various motivational states. Furthermore, it delves into the complex underlying mechanisms of psychiatric disorders such as addiction and depression and evaluates prospective interventions to restore NAc functionality.
Collapse
Affiliation(s)
| | | | | | - Kuikui Zhou
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
3
|
Ingebretson AE, Alonso-Caraballo Y, Razidlo JA, Lemos JC. Corticotropin releasing factor alters the functional diversity of accumbal cholinergic interneurons. J Neurophysiol 2024; 132:403-417. [PMID: 39106208 PMCID: PMC11427051 DOI: 10.1152/jn.00348.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 08/09/2024] Open
Abstract
Cholinergic interneurons (ChIs) provide the main source of acetylcholine in the striatum and have emerged as a critical modulator of behavioral flexibility, motivation, and associative learning. In the dorsal striatum (DS), ChIs display heterogeneous firing patterns. Here, we investigated the spontaneous firing patterns of ChIs in the nucleus accumbens (NAc) shell, a region of the ventral striatum. We identified four distinct ChI firing signatures: regular single-spiking, irregular single-spiking, rhythmic bursting, and a mixed-mode pattern composed of bursting activity and regular single spiking. ChIs from females had lower firing rates compared with males and had both a higher proportion of mixed-mode firing patterns and a lower proportion of regular single-spiking neurons compared with males. We further observed that across the estrous cycle, the diestrus phase was characterized by higher proportions of irregular ChI firing patterns compared with other phases. Using pooled data from males and females, we examined how the stress-associated neuropeptide corticotropin releasing factor (CRF) impacts these firing patterns. ChI firing patterns showed differential sensitivity to CRF. This translated into differential ChI sensitivity to CRF across the estrous cycle. Furthermore, CRF shifted the proportion of ChI firing patterns toward more regular spiking activity over bursting patterns. Finally, we found that repeated stressor exposure altered ChI firing patterns and sensitivity to CRF in the NAc core, but not the NAc shell. These findings highlight the heterogeneous nature of ChI firing patterns, which may have implications for accumbal-dependent motivated behaviors.NEW & NOTEWORTHY Cholinergic interneurons (ChIs) within the dorsal and ventral striatum can exert a major influence on network output and motivated behaviors. However, the firing patterns and neuromodulation of ChIs within the ventral striatum, specifically the nucleus accumbens (NAc) shell, are understudied. Here, we report that NAc shell ChIs have heterogeneous ChI firing patterns that are labile and can be modulated by the stress-linked neuropeptide corticotropin releasing factor (CRF) and by the estrous cycle.
Collapse
Affiliation(s)
- Anna E Ingebretson
- Department of Neuroscience, University of Minnesota-Twin Cities, Minneapolis, Minnesota, United States
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota, United States
| | - Yanaira Alonso-Caraballo
- Department of Neuroscience, University of Minnesota-Twin Cities, Minneapolis, Minnesota, United States
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota, United States
| | - John A Razidlo
- Department of Neuroscience, University of Minnesota-Twin Cities, Minneapolis, Minnesota, United States
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota, United States
| | - Julia C Lemos
- Department of Neuroscience, University of Minnesota-Twin Cities, Minneapolis, Minnesota, United States
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
4
|
Patel JC, Sherpa AD, Melani R, Witkovsky P, Wiseman MR, O'Neill B, Aoki C, Tritsch NX, Rice ME. GABA co-released from striatal dopamine axons dampens phasic dopamine release through autoregulatory GABA A receptors. Cell Rep 2024; 43:113834. [PMID: 38431842 PMCID: PMC11089423 DOI: 10.1016/j.celrep.2024.113834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/29/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
Striatal dopamine axons co-release dopamine and gamma-aminobutyric acid (GABA), using GABA provided by uptake via GABA transporter-1 (GAT1). Functions of GABA co-release are poorly understood. We asked whether co-released GABA autoinhibits dopamine release via axonal GABA type A receptors (GABAARs), complementing established inhibition by dopamine acting at axonal D2 autoreceptors. We show that dopamine axons express α3-GABAAR subunits in mouse striatum. Enhanced dopamine release evoked by single-pulse optical stimulation in striatal slices with GABAAR antagonism confirms that an endogenous GABA tone limits dopamine release. Strikingly, an additional inhibitory component is seen when multiple pulses are used to mimic phasic axonal activity, revealing the role of GABAAR-mediated autoinhibition of dopamine release. This autoregulation is lost in conditional GAT1-knockout mice lacking GABA co-release. Given the faster kinetics of ionotropic GABAARs than G-protein-coupled D2 autoreceptors, our data reveal a mechanism whereby co-released GABA acts as a first responder to dampen phasic-to-tonic dopamine signaling.
Collapse
Affiliation(s)
- Jyoti C Patel
- Department of Neurosurgery, New York University Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| | - Ang D Sherpa
- Department of Neurosurgery, New York University Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA; Center for Neural Science New York University, 4 Washington Place, New York, NY 10003, USA
| | - Riccardo Melani
- NYU Neuroscience Institute, New York University Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Paul Witkovsky
- Department of Neurosurgery, New York University Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Madeline R Wiseman
- Department of Neurosurgery, New York University Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Brian O'Neill
- Department of Neurosurgery, New York University Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Chiye Aoki
- NYU Neuroscience Institute, New York University Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA; Center for Neural Science New York University, 4 Washington Place, New York, NY 10003, USA
| | - Nicolas X Tritsch
- NYU Neuroscience Institute, New York University Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Margaret E Rice
- Department of Neurosurgery, New York University Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA; NYU Neuroscience Institute, New York University Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
5
|
Zell V, Teuns G, Needham AS, Mukherjee S, Roscoe N, Le M, Fourgeaud L, Woodruff G, Bhattacharya A, Marella M, Bonaventure P, Drevets WC, Balana B. Characterization of Selective M 5 Acetylcholine Muscarinic Receptor Modulators on Dopamine Signaling in the Striatum. J Pharmacol Exp Ther 2023; 387:226-234. [PMID: 37679045 DOI: 10.1124/jpet.123.001737] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/04/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
The type-5 muscarinic acetylcholine receptor (mAChR, M5) is almost exclusively expressed in dopamine (DA) neurons of the ventral tegmental area and substantia nigra pars compacta; therefore, they are ideally located to modulate DA signaling and underlying behaviors. However, the role of M5 in shaping DA release is still poorly characterized. In this study, we first quantitatively mapped the expression of M5 in different neurons of the mouse midbrain, then used voltammetry in mouse striatum to evaluate the effect of M5-selective modulators on DA release. The M5 negative allosteric modulator ML375 significantly decreased electrically evoked DA release and blocked the effect of Oxotremorine-M (Oxo-M; nonselective mAChR agonist) on DA release in the presence of an acetylcholine nicotinic receptor blocker. Conversely, the M5 positive allosteric modulator VU 0365114 significantly increased electrically evoked DA release and the Oxo-M effect on DA release. We then assessed M5's impact on mesolimbic circuit function in vivo. Although psychostimulant-induced locomotor activity models in knockout mice have previously been used to characterize the role of M5 in DA transmission, the results of these studies conflict, leading us to select a different in vivo model, namely a cocaine self-administration paradigm. In contrast to a previous study that also used this model, in the current study, administration of ML375 did not decrease cocaine self-administration in rats (using fixed and progressive ratio). These conflicting results illustrate the complexity of M5 modulation and the need to further characterize its involvement in the regulation of dopamine signaling, central to multiple neuropsychiatric diseases. SIGNIFICANCE STATEMENT: This work describes the type-5 muscarinic receptor (M5) pattern of expression within the midbrain as well as its physiological modulation by selective compounds at the axon terminal level in the striatum, where M5 directly shapes dopamine transmission. It offers the first direct readout of mesolimbic dopamine release modulation by M5, highlighting its role in regulating neurocircuits implicated in the pathophysiology of neuropsychiatric disorders such as substance use disorders, major depressive disorder, and schizophrenia.
Collapse
Affiliation(s)
- Vivien Zell
- Janssen Research and Development LLC, La Jolla, California (V.Z., A.S.N., S.M., N.R., M.L., L.F., G.W., A.B., M.M., P.B., W.C.D., B.B.) and Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium (G.T.)
| | - Greetje Teuns
- Janssen Research and Development LLC, La Jolla, California (V.Z., A.S.N., S.M., N.R., M.L., L.F., G.W., A.B., M.M., P.B., W.C.D., B.B.) and Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium (G.T.)
| | - Alexandra Stormy Needham
- Janssen Research and Development LLC, La Jolla, California (V.Z., A.S.N., S.M., N.R., M.L., L.F., G.W., A.B., M.M., P.B., W.C.D., B.B.) and Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium (G.T.)
| | - Sruti Mukherjee
- Janssen Research and Development LLC, La Jolla, California (V.Z., A.S.N., S.M., N.R., M.L., L.F., G.W., A.B., M.M., P.B., W.C.D., B.B.) and Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium (G.T.)
| | - Nathaniel Roscoe
- Janssen Research and Development LLC, La Jolla, California (V.Z., A.S.N., S.M., N.R., M.L., L.F., G.W., A.B., M.M., P.B., W.C.D., B.B.) and Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium (G.T.)
| | - Michelle Le
- Janssen Research and Development LLC, La Jolla, California (V.Z., A.S.N., S.M., N.R., M.L., L.F., G.W., A.B., M.M., P.B., W.C.D., B.B.) and Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium (G.T.)
| | - Lawrence Fourgeaud
- Janssen Research and Development LLC, La Jolla, California (V.Z., A.S.N., S.M., N.R., M.L., L.F., G.W., A.B., M.M., P.B., W.C.D., B.B.) and Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium (G.T.)
| | - Grace Woodruff
- Janssen Research and Development LLC, La Jolla, California (V.Z., A.S.N., S.M., N.R., M.L., L.F., G.W., A.B., M.M., P.B., W.C.D., B.B.) and Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium (G.T.)
| | - Anindya Bhattacharya
- Janssen Research and Development LLC, La Jolla, California (V.Z., A.S.N., S.M., N.R., M.L., L.F., G.W., A.B., M.M., P.B., W.C.D., B.B.) and Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium (G.T.)
| | - Mathieu Marella
- Janssen Research and Development LLC, La Jolla, California (V.Z., A.S.N., S.M., N.R., M.L., L.F., G.W., A.B., M.M., P.B., W.C.D., B.B.) and Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium (G.T.)
| | - Pascal Bonaventure
- Janssen Research and Development LLC, La Jolla, California (V.Z., A.S.N., S.M., N.R., M.L., L.F., G.W., A.B., M.M., P.B., W.C.D., B.B.) and Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium (G.T.)
| | - Wayne C Drevets
- Janssen Research and Development LLC, La Jolla, California (V.Z., A.S.N., S.M., N.R., M.L., L.F., G.W., A.B., M.M., P.B., W.C.D., B.B.) and Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium (G.T.)
| | - Bartosz Balana
- Janssen Research and Development LLC, La Jolla, California (V.Z., A.S.N., S.M., N.R., M.L., L.F., G.W., A.B., M.M., P.B., W.C.D., B.B.) and Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium (G.T.)
| |
Collapse
|
6
|
Chancey JH, Kellendonk C, Javitch JA, Lovinger DM. Dopaminergic D2 receptor modulation of striatal cholinergic interneurons contributes to sequence learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.554807. [PMID: 37693570 PMCID: PMC10491092 DOI: 10.1101/2023.08.28.554807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Learning action sequences is necessary for normal daily activities. Medium spiny neurons (MSNs) in the dorsal striatum (dStr) encode action sequences through changes in firing at the start and/or stop of action sequences or sustained changes in firing throughout the sequence. Acetylcholine (ACh), released from cholinergic interneurons (ChIs), regulates striatal function by modulating MSN and interneuron excitability, dopamine and glutamate release, and synaptic plasticity. Cholinergic neurons in dStr pause their tonic firing during the performance of learned action sequences. Activation of dopamine type-2 receptors (D2Rs) on ChIs is one mechanism of ChI pausing. In this study we show that deleting D2Rs from ChIs by crossing D2-floxed with ChAT-Cre mice (D2Flox-ChATCre), which inhibits dopamine-mediated ChI pausing and leads to deficits in an operant action sequence task and lower breakpoints in a progressive ratio task. These data suggest that D2Flox-ChATCre mice have reduced motivation to work for sucrose reward, but show no generalized motor skill deficits. D2Flox-ChATCre mice perform similarly to controls in a simple reversal learning task, indicating normal behavioral flexibility, a cognitive function associated with ChIs. In vivo electrophysiological recordings show that D2Flox-ChatCre mice have deficits in sequence encoding, with fewer dStr MSNs encoding entire action sequences compared to controls. Thus, ChI D2R deletion appears to impair a neural substrate of action chunking. Virally replacing D2Rs in dStr ChIs in adult mice improves action sequence learning, but not the lower breakpoints, further suggesting that D2Rs on ChIs in the dStr are critical for sequence learning, but not for driving the motivational aspects of the task.
Collapse
Affiliation(s)
- Jessica Hotard Chancey
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, USA, 20852
| | - Christoph Kellendonk
- Departments of Psychiatry and Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA, 10032
| | - Jonathan A. Javitch
- Departments of Psychiatry and Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA, 10032
| | - David M. Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, USA, 20852
| |
Collapse
|
7
|
Singhal SM, Zell V, Faget L, Slosky LM, Barak LS, Caron MG, Pinkerton AB, Hnasko TS. Neurotensin receptor 1-biased ligand attenuates neurotensin-mediated excitation of ventral tegmental area dopamine neurons and dopamine release in the nucleus accumbens. Neuropharmacology 2023; 234:109544. [PMID: 37055008 PMCID: PMC10192038 DOI: 10.1016/j.neuropharm.2023.109544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/29/2023] [Accepted: 04/10/2023] [Indexed: 04/15/2023]
Abstract
Strong expression of the G protein-coupled receptor (GPCR) neurotensin receptor 1 (NTR1) in ventral tegmental area (VTA) dopamine (DA) neurons and terminals makes it an attractive target to modulate DA neuron activity and normalize DA-related pathologies. Recent studies have identified a novel class of NTR1 ligand that shows promising effects in preclinical models of addiction. A lead molecule, SBI-0654553 (SBI-553), can act as a positive allosteric modulator of NTR1 β-arrestin recruitment while simultaneously antagonizing NTR1 Gq protein signaling. Using cell-attached recordings from mouse VTA DA neurons we discovered that, unlike neurotensin (NT), SBI-553 did not independently increase spontaneous firing. Instead, SBI-553 blocked the NT-mediated increase in firing. SBI-553 also antagonized the effects of NT on dopamine D2 auto-receptor signaling, potentially through its inhibitory effects on G-protein signaling. We also measured DA release directly, using fast-scan cyclic voltammetry in the nucleus accumbens and observed antagonist effects of SBI-553 on an NT-induced increase in DA release. Further, in vivo administration of SBI-553 did not notably change basal or cocaine-evoked DA release measured in NAc using fiber photometry. Overall, these results indicate that SBI-553 blunts NT's effects on spontaneous DA neuron firing, D2 auto-receptor function, and DA release, without independently affecting these measures. In the presence of NT, SBI-553 has an inhibitory effect on mesolimbic DA activity, which could contribute to its efficacy in animal models of psychostimulant use.
Collapse
Affiliation(s)
- Sarthak M Singhal
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Vivien Zell
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Lauren Faget
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Lauren M Slosky
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | | | - Marc G Caron
- Departments of Cell Biology, Neurobiology and Medicine, Duke University, Durham, NC, USA
| | - Anthony B Pinkerton
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Thomas S Hnasko
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
8
|
Mohebi A, Collins VL, Berke JD. Accumbens cholinergic interneurons dynamically promote dopamine release and enable motivation. eLife 2023; 12:e85011. [PMID: 37272423 PMCID: PMC10259987 DOI: 10.7554/elife.85011] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 05/30/2023] [Indexed: 06/06/2023] Open
Abstract
Motivation to work for potential rewards is critically dependent on dopamine (DA) in the nucleus accumbens (NAc). DA release from NAc axons can be controlled by at least two distinct mechanisms: (1) action potentials propagating from DA cell bodies in the ventral tegmental area (VTA), and (2) activation of β2* nicotinic receptors by local cholinergic interneurons (CINs). How CIN activity contributes to NAc DA dynamics in behaving animals is not well understood. We monitored DA release in the NAc Core of awake, unrestrained rats using the DA sensor RdLight1, while simultaneously monitoring or manipulating CIN activity at the same location. CIN stimulation rapidly evoked DA release, and in contrast to slice preparations, this DA release showed no indication of short-term depression or receptor desensitization. The sound of unexpected food delivery evoked a brief joint increase in CIN population activity and DA release, with a second joint increase as rats approached the food. In an operant task, we observed fast ramps in CIN activity during approach behaviors, either to start the trial or to collect rewards. These CIN ramps co-occurred with DA release ramps, without corresponding changes in the firing of lateral VTA DA neurons. Finally, we examined the effects of blocking CIN influence over DA release through local NAc infusion of DHβE, a selective antagonist of β2* nicotinic receptors. DHβE dose-dependently interfered with motivated approach decisions, mimicking the effects of a DA antagonist. Our results support a key influence of CINs over motivated behavior via the local regulation of DA release.
Collapse
Affiliation(s)
- Ali Mohebi
- Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - Val L Collins
- Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - Joshua D Berke
- Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
- Department of Psychiatry and Behavioral Sciences, University of California, San FranciscoSan FranciscoUnited States
- Neuroscience Graduate Program, University of California, San FranciscoSan FranciscoUnited States
- Weill Institute for Neurosciences, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
9
|
Sippy T, Tritsch NX. Unraveling the dynamics of dopamine release and its actions on target cells. Trends Neurosci 2023; 46:228-239. [PMID: 36635111 PMCID: PMC10204099 DOI: 10.1016/j.tins.2022.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/22/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023]
Abstract
The neuromodulator dopamine (DA) is essential for regulating learning, motivation, and movement. Despite its importance, however, the mechanisms by which DA influences the activity of target cells to alter behavior remain poorly understood. In this review, we describe recent methodological advances that are helping to overcome challenges that have historically hindered the field. We discuss how the employment of these methods is shedding light on the complex dynamics of extracellular DA in the brain, as well as how DA signaling alters the electrical, biochemical, and population activity of target neurons in vivo. These developments are generating novel hypotheses about the mechanisms through which DA release modifies behavior.
Collapse
Affiliation(s)
- Tanya Sippy
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
| | - Nicolas X Tritsch
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Fresco Institute for Parkinson's and Movement Disorders, New York University Langone Health, New York, NY, USA.
| |
Collapse
|
10
|
Jameson AN, Siemann JK, Melchior J, Calipari ES, McMahon DG, Grueter BA. Photoperiod Impacts Nucleus Accumbens Dopamine Dynamics. eNeuro 2023; 10:ENEURO.0361-22.2023. [PMID: 36781229 PMCID: PMC9937087 DOI: 10.1523/eneuro.0361-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/29/2022] [Accepted: 01/06/2023] [Indexed: 02/15/2023] Open
Abstract
Circadian photoperiod, or day length, changes with the seasons and influences behavior to allow animals to adapt to their environment. Photoperiod is also associated with seasonal rhythms of affective state, as evidenced by seasonality of several neuropsychiatric disorders. Interestingly, seasonality tends to be more prevalent in women for affective disorders such as major depressive disorder and bipolar disorder (BD). However, the underlying neurobiological processes contributing to sex-linked seasonality of affective behaviors are largely unknown. Mesolimbic dopamine input to the nucleus accumbens (NAc) contributes to the regulation of affective state and behaviors. Additionally, sex differences in the mesolimbic dopamine pathway are well established. Therefore, we hypothesize that photoperiod may drive differential modulation of NAc dopamine in males and females. Here, we used fast-scan cyclic voltammetry (FSCV) to explore whether photoperiod can modulate subsecond dopamine signaling dynamics in the NAc core of male and female mice raised in seasonally relevant photoperiods. We found that photoperiod modulates dopamine signaling in the NAc core, and that this effect is sex-specific to females. Both release and uptake of dopamine were enhanced in the NAc core of female mice raised in long, summer-like photoperiods, whereas we did not find photoperiodic effects on NAc core dopamine in males. These findings uncover a potential neural circuit basis for sex-linked seasonality in affective behaviors.
Collapse
Affiliation(s)
- Alexis N Jameson
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN 37232
| | - Justin K Siemann
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232
| | - James Melchior
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232
| | - Erin S Calipari
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | - Douglas G McMahon
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
- Department of Biology, Vanderbilt University, Nashville, TN 37232
| | - Brad A Grueter
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
11
|
Goral RO, Harper KM, Bernstein BJ, Fry SA, Lamb PW, Moy SS, Cushman JD, Yakel JL. Loss of GABA co-transmission from cholinergic neurons impairs behaviors related to hippocampal, striatal, and medial prefrontal cortex functions. Front Behav Neurosci 2022; 16:1067409. [PMID: 36505727 PMCID: PMC9730538 DOI: 10.3389/fnbeh.2022.1067409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction: Altered signaling or function of acetylcholine (ACh) has been reported in various neurological diseases, including Alzheimer's disease, Tourette syndrome, epilepsy among others. Many neurons that release ACh also co-transmit the neurotransmitter gamma-aminobutyrate (GABA) at synapses in the hippocampus, striatum, substantia nigra, and medial prefrontal cortex (mPFC). Although ACh transmission is crucial for higher brain functions such as learning and memory, the role of co-transmitted GABA from ACh neurons in brain function remains unknown. Thus, the overarching goal of this study was to investigate how a systemic loss of GABA co-transmission from ACh neurons affected the behavioral performance of mice. Methods: To do this, we used a conditional knock-out mouse of the vesicular GABA transporter (vGAT) crossed with the ChAT-Cre driver line to selectively ablate GABA co-transmission at ACh synapses. In a comprehensive series of standardized behavioral assays, we compared Cre-negative control mice with Cre-positive vGAT knock-out mice of both sexes. Results: Loss of GABA co-transmission from ACh neurons did not disrupt the animal's sociability, motor skills or sensation. However, in the absence of GABA co-transmission, we found significant alterations in social, spatial and fear memory as well as a reduced reliance on striatum-dependent response strategies in a T-maze. In addition, male conditional knockout (CKO) mice showed increased locomotion. Discussion: Taken together, the loss of GABA co-transmission leads to deficits in higher brain functions and behaviors. Therefore, we propose that ACh/GABA co-transmission modulates neural circuitry involved in the affected behaviors.
Collapse
Affiliation(s)
- R. Oliver Goral
- Neurobiology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States,Center on Compulsive Behaviors, National Institutes of Health, Bethesda, MD, United States
| | - Kathryn M. Harper
- Department of Psychiatry and Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, United States
| | - Briana J. Bernstein
- Neurobiology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States,Department of Health and Human Services, Neurobehavioral Core, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Sydney A. Fry
- Neurobiology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States,Department of Health and Human Services, Neurobehavioral Core, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Patricia W. Lamb
- Neurobiology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Sheryl S. Moy
- Department of Psychiatry and Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, United States
| | - Jesse D. Cushman
- Neurobiology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States,Department of Health and Human Services, Neurobehavioral Core, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Jerrel L. Yakel
- Neurobiology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States,*Correspondence: Jerrel L. Yakel
| |
Collapse
|
12
|
Razidlo JA, Fausner SML, Ingebretson AE, Wang LC, Petersen CL, Mirza S, Swank IN, Alvarez VA, Lemos JC. Chronic Loss of Muscarinic M5 Receptor Function Manifests Disparate Impairments in Exploratory Behavior in Male and Female Mice despite Common Dopamine Regulation. J Neurosci 2022; 42:6917-6930. [PMID: 35896424 PMCID: PMC9463982 DOI: 10.1523/jneurosci.1424-21.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 06/09/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022] Open
Abstract
There are five cloned muscarinic acetylcholine receptors (M1-M5). Of these, the muscarinic type 5 receptor (M5) is the only one localized to dopamine neurons in the ventral tegmental area and substantia nigra. Unlike M1-M4, the M5 receptor has relatively restricted expression in the brain, making it an attractive therapeutic target. Here, we performed an in-depth characterization of M5-dependent potentiation of dopamine transmission in the nucleus accumbens and accompanying exploratory behaviors in male and female mice. We show that M5 receptors potentiate dopamine transmission by acting directly on the terminals within the nucleus accumbens. Using the muscarinic agonist oxotremorine, we revealed a unique concentration-response curve and a sensitivity to repeated forced swim stress or restraint stress exposure. We found that constitutive deletion of M5 receptors reduced exploration of the center of an open field while at the same time impairing normal habituation only in male mice. In addition, M5 deletion reduced exploration of salient stimuli, especially under conditions of high novelty, yet had no effect on hedonia assayed using the sucrose preference test or on stress-coping strategy assayed using the forced swim test. We conclude that M5 receptors are critical for both engaging with the environment and updating behavioral output in response to environment cues, specifically in male mice. A cardinal feature of mood and anxiety disorders is withdrawal from the environment. These data indicate that boosting M5 receptor activity may be a useful therapeutic target for ameliorating these symptoms of depression and anxiety.SIGNIFICANCE STATEMENT The basic physiological and behavioral functions of the muscarinic M5 receptor remain understudied. Furthermore, its presence on dopamine neurons, relatively restricted expression in the brain, and recent crystallization make it an attractive target for therapeutic development. Yet, most preclinical studies of M5 receptor function have primarily focused on substance use disorders in male rodents. Here, we characterized the role of M5 receptors in potentiating dopamine transmission in the nucleus accumbens, finding impaired functioning after stress exposure. Furthermore, we show that M5 receptors can modulate exploratory behavior in a sex-specific manner, without affecting hedonic behavior. These findings further illustrate the therapeutic potential of the M5 receptor, warranting further research in the context of treating mood disorders.
Collapse
Affiliation(s)
- John A Razidlo
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
- Medical Discovery Team on Addiction, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
| | - Skylar M L Fausner
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
- Medical Discovery Team on Addiction, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
| | - Anna E Ingebretson
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
- Medical Discovery Team on Addiction, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
| | - Liuchang C Wang
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
- Medical Discovery Team on Addiction, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
| | - Christopher L Petersen
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
- Medical Discovery Team on Addiction, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
| | - Salahudeen Mirza
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
- Medical Discovery Team on Addiction, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
| | - Isabella N Swank
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
- Medical Discovery Team on Addiction, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
| | - Veronica A Alvarez
- Laboratory on Neurobiology of Compulsive Behaviors, Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892-9411
| | - Julia C Lemos
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
- Medical Discovery Team on Addiction, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
13
|
Burke DA, Alvarez VA. Serotonin receptors contribute to dopamine depression of lateral inhibition in the nucleus accumbens. Cell Rep 2022; 39:110795. [PMID: 35545050 PMCID: PMC9171783 DOI: 10.1016/j.celrep.2022.110795] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/09/2022] [Accepted: 04/15/2022] [Indexed: 11/30/2022] Open
Abstract
Dopamine modulation of nucleus accumbens (NAc) circuitry is central to theories of reward seeking and reinforcement learning. Despite decades of effort, the acute dopamine actions on the NAc microcircuitry remain puzzling. Here, we dissect out the direct actions of dopamine on lateral inhibition between medium spiny neurons (MSNs) in mouse brain slices and find that they are pathway specific. Dopamine potently depresses GABAergic transmission from presynaptic dopamine D2 receptor-expressing MSNs (D2-MSNs), whereas it potentiates transmission from presynaptic dopamine D1 receptor-expressing MSNs (D1-MSNs) onto other D1-MSNs. To our surprise, presynaptic D2 receptors mediate only half of the depression induced by endogenous and exogenous dopamine. Presynaptic serotonin 5-HT1B receptors are responsible for a significant component of dopamine-induced synaptic depression. This study clarifies the mechanistic understanding of dopamine actions in the NAc by showing pathway-specific modulation of lateral inhibition and involvement of D2 and 5-HT1B receptors in dopamine depression of D2-MSN synapses.
Collapse
Affiliation(s)
- Dennis A Burke
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, National Institutes of Health, Bethesda, MD 20892, USA; Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Veronica A Alvarez
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, National Institutes of Health, Bethesda, MD 20892, USA; Intramural Research Program, NIDA, NIH, Baltimore, MD 21224, USA; Center on Compulsive Behaviors, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
14
|
Grinevich VP, Zakirov AN, Berseneva UV, Gerasimova EV, Gainetdinov RR, Budygin EA. Applying a Fast-Scan Cyclic Voltammetry to Explore Dopamine Dynamics in Animal Models of Neuropsychiatric Disorders. Cells 2022; 11:cells11091533. [PMID: 35563838 PMCID: PMC9100021 DOI: 10.3390/cells11091533] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 02/07/2023] Open
Abstract
Progress in the development of technologies for the real-time monitoring of neurotransmitter dynamics has provided researchers with effective tools for the exploration of etiology and molecular mechanisms of neuropsychiatric disorders. One of these powerful tools is fast-scan cyclic voltammetry (FSCV), a technique which has progressively been used in animal models of diverse pathological conditions associated with alterations in dopamine transmission. Indeed, for several decades FSCV studies have provided substantial insights into our understanding of the role of abnormal dopaminergic transmission in pathogenetic mechanisms of drug and alcohol addiction, Parkinson’s disease, schizophrenia, etc. Here we review the applications of FSCV to research neuropsychiatric disorders with particular attention to recent technological advances.
Collapse
Affiliation(s)
- Vladimir P. Grinevich
- Department of Neurobiology, Sirius University, 1 Olympic Ave., Sirius, Sochi 353340, Russia; (V.P.G.); (A.N.Z.); (U.V.B.); (E.V.G.); (R.R.G.)
| | - Amir N. Zakirov
- Department of Neurobiology, Sirius University, 1 Olympic Ave., Sirius, Sochi 353340, Russia; (V.P.G.); (A.N.Z.); (U.V.B.); (E.V.G.); (R.R.G.)
| | - Uliana V. Berseneva
- Department of Neurobiology, Sirius University, 1 Olympic Ave., Sirius, Sochi 353340, Russia; (V.P.G.); (A.N.Z.); (U.V.B.); (E.V.G.); (R.R.G.)
| | - Elena V. Gerasimova
- Department of Neurobiology, Sirius University, 1 Olympic Ave., Sirius, Sochi 353340, Russia; (V.P.G.); (A.N.Z.); (U.V.B.); (E.V.G.); (R.R.G.)
| | - Raul R. Gainetdinov
- Department of Neurobiology, Sirius University, 1 Olympic Ave., Sirius, Sochi 353340, Russia; (V.P.G.); (A.N.Z.); (U.V.B.); (E.V.G.); (R.R.G.)
- Institute of Translational Biomedicine and St. Petersburg State University Hospital, St. Petersburg State University, Universitetskaya Emb. 7-9, St. Petersburg 199034, Russia
| | - Evgeny A. Budygin
- Department of Neurobiology, Sirius University, 1 Olympic Ave., Sirius, Sochi 353340, Russia; (V.P.G.); (A.N.Z.); (U.V.B.); (E.V.G.); (R.R.G.)
- Correspondence:
| |
Collapse
|
15
|
Lovinger DM, Mateo Y, Johnson KA, Engi SA, Antonazzo M, Cheer JF. Local modulation by presynaptic receptors controls neuronal communication and behaviour. Nat Rev Neurosci 2022; 23:191-203. [PMID: 35228740 PMCID: PMC10709822 DOI: 10.1038/s41583-022-00561-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 12/15/2022]
Abstract
Central nervous system neurons communicate via fast synaptic transmission mediated by ligand-gated ion channel (LGIC) receptors and slower neuromodulation mediated by G protein-coupled receptors (GPCRs). These receptors influence many neuronal functions, including presynaptic neurotransmitter release. Presynaptic LGIC and GPCR activation by locally released neurotransmitters influences neuronal communication in ways that modify effects of somatic action potentials. Although much is known about presynaptic receptors and their mechanisms of action, less is known about when and where these receptor actions alter release, especially in vivo. This Review focuses on emerging evidence for important local presynaptic receptor actions and ideas for future studies in this area.
Collapse
Affiliation(s)
- David M Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA.
| | - Yolanda Mateo
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Kari A Johnson
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Sheila A Engi
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mario Antonazzo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joseph F Cheer
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
16
|
Ventral tegmental area GABAergic inhibition of cholinergic interneurons in the ventral nucleus accumbens shell promotes reward reinforcement. Nat Neurosci 2021; 24:1414-1428. [PMID: 34385700 PMCID: PMC8823543 DOI: 10.1038/s41593-021-00898-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/24/2021] [Indexed: 02/07/2023]
Abstract
The long-range GABAergic input from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) is relatively understudied, and therefore its role in reward processing has remained unknown. In the present study, we show, in both male and female mice, that long-range GABAergic projections from the VTA to the ventral NAc shell, but not to the dorsal NAc shell or NAc core, are engaged in reward and reinforcement behavior. We show that this GABAergic projection exclusively synapses on to cholinergic interneurons (CINs) in the ventral NAc shell, thereby serving a specialized function in modulating reinforced reward behavior through the inhibition of ventral NAc shell CINs. These findings highlight the diversity in the structural and functional topography of VTA GABAergic projections, and their neuromodulatory interactions across the dorsoventral gradient of the NAc shell. They also further our understanding of neuronal circuits that are directly implicated in neuropsychiatric conditions such as depression and addiction.
Collapse
|
17
|
Holly EN, Davatolhagh MF, España RA, Fuccillo MV. Striatal low-threshold spiking interneurons locally gate dopamine. Curr Biol 2021; 31:4139-4147.e6. [PMID: 34302742 DOI: 10.1016/j.cub.2021.06.081] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 05/02/2021] [Accepted: 06/25/2021] [Indexed: 11/27/2022]
Abstract
The dorsomedial striatum (DMS) is a central hub supporting goal-directed learning and motor performance. Recent evidence has revealed unexpected roles for local inhibitory GABAergic networks in modulating striatal output and behavior.1 The sparse low-threshold spiking interneuron subtype (LTSI), which exhibits robust reward-circumscribed population activity, is a bidirectional regulator of initial goal-directed learning.2 Striatal dopamine signaling is a central reward-related neuromodulatory system mediating goal-directed action and performance, serving as a teaching signal,3 facilitating synaptic plasticity,4 and invigorating motor behaviors.5 Given the dynamic modulation of LTSIs during goal-directed behavior, we hypothesized that they could provide a novel GABAergic mechanism of local striatal dopaminergic regulation to shape early learning. We provide anatomical evidence for close proximation of LTSI terminals and dopaminergic processes in striatum, suggesting that LTSIs directly control dopaminergic axon activity. Using in vitro fast scan cyclic voltammetry, we demonstrate that LTSIs directly attenuate optogenetically evoked dopamine via GABAB receptor signaling. In vivo, GRABDA dopamine sensor imaging shows that LTSIs strongly modulate striatal dopamine dynamics during operant learning, while pharmacological stabilization of dopamine via intra-striatal aripiprazole microinjection suppresses the effects of LTSI inhibition on learning. Together, these results uncover an unexpected function for LTSIs in gating striatal dopamine to facilitate goal-directed learning.
Collapse
Affiliation(s)
- Elizabeth N Holly
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - M Felicia Davatolhagh
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rodrigo A España
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Marc V Fuccillo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Covey DP, Yocky AG. Endocannabinoid Modulation of Nucleus Accumbens Microcircuitry and Terminal Dopamine Release. Front Synaptic Neurosci 2021; 13:734975. [PMID: 34497503 PMCID: PMC8419321 DOI: 10.3389/fnsyn.2021.734975] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/05/2021] [Indexed: 12/20/2022] Open
Abstract
The nucleus accumbens (NAc) is located in the ventromedial portion of the striatum and is vital to valence-based predictions and motivated action. The neural architecture of the NAc allows for complex interactions between various cell types that filter incoming and outgoing information. Dopamine (DA) input serves a crucial role in modulating NAc function, but the mechanisms that control terminal DA release and its effect on NAc neurons continues to be elucidated. The endocannabinoid (eCB) system has emerged as an important filter of neural circuitry within the NAc that locally shapes terminal DA release through various cell type- and site-specific actions. Here, we will discuss how eCB signaling modulates terminal DA release by shaping the activity patterns of NAc neurons and their afferent inputs. We then discuss recent technological advancements that are capable of dissecting how distinct cell types, their afferent projections, and local neuromodulators influence valence-based actions.
Collapse
Affiliation(s)
- Dan P Covey
- Department of Neuroscience, Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| | - Alyssa G Yocky
- Department of Neuroscience, Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| |
Collapse
|
19
|
Vázquez-León P, Miranda-Páez A, Chávez-Reyes J, Allende G, Barragán-Iglesias P, Marichal-Cancino BA. The Periaqueductal Gray and Its Extended Participation in Drug Addiction Phenomena. Neurosci Bull 2021; 37:1493-1509. [PMID: 34302618 DOI: 10.1007/s12264-021-00756-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 05/11/2021] [Indexed: 12/19/2022] Open
Abstract
The periaqueductal gray (PAG) is a complex mesencephalic structure involved in the integration and execution of active and passive self-protective behaviors against imminent threats, such as immobility or flight from a predator. PAG activity is also associated with the integration of responses against physical discomfort (e.g., anxiety, fear, pain, and disgust) which occurs prior an imminent attack, but also during withdrawal from drugs such as morphine and cocaine. The PAG sends and receives projections to and from other well-documented nuclei linked to the phenomenon of drug addiction including: (i) the ventral tegmental area; (ii) extended amygdala; (iii) medial prefrontal cortex; (iv) pontine nucleus; (v) bed nucleus of the stria terminalis; and (vi) hypothalamus. Preclinical models have suggested that the PAG contributes to the modulation of anxiety, fear, and nociception (all of which may produce physical discomfort) linked with chronic exposure to drugs of abuse. Withdrawal produced by the major pharmacological classes of drugs of abuse is mediated through actions that include participation of the PAG. In support of this, there is evidence of functional, pharmacological, molecular. And/or genetic alterations in the PAG during the impulsive/compulsive intake or withdrawal from a drug. Due to its small size, it is difficult to assess the anatomical participation of the PAG when using classical neuroimaging techniques, so its physiopathology in drug addiction has been underestimated and poorly documented. In this theoretical review, we discuss the involvement of the PAG in drug addiction mainly via its role as an integrator of responses to the physical discomfort associated with drug withdrawal.
Collapse
Affiliation(s)
- Priscila Vázquez-León
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, 20131, Aguascalientes, Ags., Mexico
| | - Abraham Miranda-Páez
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Wilfrido Massieu esq. Manuel Stampa s/n Col. Nueva Industrial Vallejo, 07738, Gustavo A. Madero, Mexico City, Mexico
| | - Jesús Chávez-Reyes
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, 20131, Aguascalientes, Ags., Mexico
| | - Gonzalo Allende
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, 20131, Aguascalientes, Ags., Mexico
| | - Paulino Barragán-Iglesias
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, 20131, Aguascalientes, Ags., Mexico.
| | - Bruno A Marichal-Cancino
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, 20131, Aguascalientes, Ags., Mexico.
| |
Collapse
|
20
|
Liu C, Goel P, Kaeser PS. Spatial and temporal scales of dopamine transmission. Nat Rev Neurosci 2021; 22:345-358. [PMID: 33837376 PMCID: PMC8220193 DOI: 10.1038/s41583-021-00455-7] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2021] [Indexed: 02/02/2023]
Abstract
Dopamine is a prototypical neuromodulator that controls circuit function through G protein-coupled receptor signalling. Neuromodulators are volume transmitters, with release followed by diffusion for widespread receptor activation on many target cells. Yet, we are only beginning to understand the specific organization of dopamine transmission in space and time. Although some roles of dopamine are mediated by slow and diffuse signalling, recent studies suggest that certain dopamine functions necessitate spatiotemporal precision. Here, we review the literature describing dopamine signalling in the striatum, including its release mechanisms and receptor organization. We then propose the domain-overlap model, in which release and receptors are arranged relative to one another in micrometre-scale structures. This architecture is different from both point-to-point synaptic transmission and the widespread organization that is often proposed for neuromodulation. It enables the activation of receptor subsets that are within micrometre-scale domains of release sites during baseline activity and broader receptor activation with domain overlap when firing is synchronized across dopamine neuron populations. This signalling structure, together with the properties of dopamine release, may explain how switches in firing modes support broad and dynamic roles for dopamine and may lead to distinct pathway modulation.
Collapse
Affiliation(s)
- Changliang Liu
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Pragya Goel
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
Mukhin VN, Borovets IR, Sizov VV, Pavlov KI, Klimenko VM. Differential Influence of Amyloid-β on the Kinetics of Dopamine Release in the Dorsal and Ventral Striatum of Rats. Neurotox Res 2021; 39:1285-1292. [PMID: 33991320 DOI: 10.1007/s12640-021-00371-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/22/2021] [Accepted: 05/04/2021] [Indexed: 12/25/2022]
Abstract
Dopaminergic dysfunction is a part of Alzheimer's disease pathology. The brain accumulation of amyloid-β of toxic form is a key link of the pathology, which, according to the literature, is also true for dopaminergic dysfunction. An increase in the amyloid-β level in the brain changes the maximum of the evoked dopamine release in the dorsal and ventral parts of the striatum of the experimental animals. Theoretically, this may be due to the change in the intensity of dopamine release from the nerve terminals or its reuptake. However, it has not been studied. To fill this gap, we examined the amyloid-β induced changes in the kinetics of the evoked dopamine release in the dorsal striatum and the nucleus accumbens core and shell. Amyloid-β solution (fragments 25-35) was injected into the ventricular system of the anesthetized male Wistar rats. Before and after injection, electrically evoked dopamine kinetics was registered with fast-scan cyclic voltammetry. The results had shown that the amount of dopamine release decreases in the dorsal striatum and increases in the nucleus accumbens shell. No changes were found in the intensity of dopamine reuptake.
Collapse
Affiliation(s)
- Valery N Mukhin
- Ivan P. Pavlov Department of Physiology, Federal State Budgetary Scientific Institution Institute of Experimental Medicine, Acad. Pavlov str., 12,, St. Petersburg, 197376, Russia.
| | - Ivan R Borovets
- Ivan P. Pavlov Department of Physiology, Federal State Budgetary Scientific Institution Institute of Experimental Medicine, Acad. Pavlov str., 12,, St. Petersburg, 197376, Russia
| | - Vadim V Sizov
- Ivan P. Pavlov Department of Physiology, Federal State Budgetary Scientific Institution Institute of Experimental Medicine, Acad. Pavlov str., 12,, St. Petersburg, 197376, Russia
| | - Konstantin I Pavlov
- Ivan P. Pavlov Department of Physiology, Federal State Budgetary Scientific Institution Institute of Experimental Medicine, Acad. Pavlov str., 12,, St. Petersburg, 197376, Russia
| | - Victor M Klimenko
- Ivan P. Pavlov Department of Physiology, Federal State Budgetary Scientific Institution Institute of Experimental Medicine, Acad. Pavlov str., 12,, St. Petersburg, 197376, Russia
| |
Collapse
|
22
|
Helseth AR, Hernandez-Martinez R, Hall VL, Oliver ML, Turner BD, Caffall ZF, Rittiner JE, Shipman MK, King CS, Gradinaru V, Gerfen C, Costa-Mattioli M, Calakos N. Cholinergic neurons constitutively engage the ISR for dopamine modulation and skill learning in mice. Science 2021; 372:372/6540/eabe1931. [PMID: 33888613 DOI: 10.1126/science.abe1931] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/22/2020] [Accepted: 03/12/2021] [Indexed: 12/25/2022]
Abstract
The integrated stress response (ISR) maintains proteostasis by modulating protein synthesis and is important in synaptic plasticity, learning, and memory. We developed a reporter, SPOTlight, for brainwide imaging of ISR state with cellular resolution. Unexpectedly, we found a class of neurons in mouse brain, striatal cholinergic interneurons (CINs), in which the ISR was activated at steady state. Genetic and pharmacological manipulations revealed that ISR signaling was necessary in CINs for normal type 2 dopamine receptor (D2R) modulation. Inhibiting the ISR inverted the sign of D2R modulation of CIN firing and evoked dopamine release and altered skill learning. Thus, a noncanonical, steady-state mode of ISR activation is found in CINs, revealing a neuromodulatory role for the ISR in learning.
Collapse
Affiliation(s)
- Ashley R Helseth
- Department of Neurology, Duke University Medical Center, Durham, NC 27715, USA.
| | | | - Victoria L Hall
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27715, USA
| | - Matthew L Oliver
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27715, USA
| | - Brandon D Turner
- Department of Neurology, Duke University Medical Center, Durham, NC 27715, USA
| | - Zachary F Caffall
- Department of Neurology, Duke University Medical Center, Durham, NC 27715, USA
| | - Joseph E Rittiner
- Department of Neurology, Duke University Medical Center, Durham, NC 27715, USA
| | - Miranda K Shipman
- Department of Neurology, Duke University Medical Center, Durham, NC 27715, USA
| | - Connor S King
- Department of Neurology, Duke University Medical Center, Durham, NC 27715, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Charles Gerfen
- Section on Neuroanatomy, National Institute of Mental Health, Bethesda, MD 20892, USA
| | | | - Nicole Calakos
- Department of Neurology, Duke University Medical Center, Durham, NC 27715, USA. .,Department of Neurobiology, Duke University Medical Center, Durham, NC 27715, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC 27715, USA.,Duke Institute for Brain Sciences, Duke University, Durham, NC 27715, USA
| |
Collapse
|
23
|
Foster DJ, Bryant ZK, Conn PJ. Targeting muscarinic receptors to treat schizophrenia. Behav Brain Res 2021; 405:113201. [PMID: 33647377 PMCID: PMC8006961 DOI: 10.1016/j.bbr.2021.113201] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/02/2021] [Accepted: 02/18/2021] [Indexed: 11/23/2022]
Abstract
Schizophrenia is a severe neuropsychiatric disorder characterized by a diverse range of symptoms that can have profound impacts on the lives of patients. Currently available antipsychotics target dopamine receptors, and while they are useful for ameliorating the positive symptoms of the disorder, this approach often does not significantly improve negative and cognitive symptoms. Excitingly, preclinical and clinical research suggests that targeting specific muscarinic acetylcholine receptor subtypes could provide more comprehensive symptomatic relief with the potential to ameliorate numerous symptom domains. Mechanistic studies reveal that M1, M4, and M5 receptor subtypes can modulate the specific brain circuits and physiology that are disrupted in schizophrenia and are thought to underlie positive, negative, and cognitive symptoms. Novel therapeutic strategies for targeting these receptors are now advancing in clinical and preclinical development and expand upon the promise of these new treatment strategies to potentially provide more comprehensive relief than currently available antipsychotics.
Collapse
Affiliation(s)
- Daniel J Foster
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, United States; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, United States
| | - Zoey K Bryant
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, United States; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, United States
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, United States; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, United States.
| |
Collapse
|
24
|
Alonso IP, Pino JA, Kortagere S, Torres GE, España RA. Dopamine transporter function fluctuates across sleep/wake state: potential impact for addiction. Neuropsychopharmacology 2021; 46:699-708. [PMID: 33032296 PMCID: PMC8026992 DOI: 10.1038/s41386-020-00879-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022]
Abstract
The dopamine transporter (DAT) has been implicated in a variety of arousal-related processes including the regulation of motor activity, learning, motivated behavior, psychostimulant abuse, and, more recently, sleep/wake state. We previously demonstrated that DAT uptake regulates fluctuations in extracellular dopamine (DA) in the striatum across the light/dark cycle with DA levels at their highest during the dark phase and lowest during the light phase. Despite this evidence, whether fluctuations in DA uptake across the light/dark cycle are associated with changes in sleep/wake has not been tested. To address this, we employed a combination of sleep/wake recordings, fast scan cyclic voltammetry, and western blotting to examine whether sleep/wake state and/or light/dark phase impact DA terminal neurotransmission in male rats. Further, we assessed whether variations in plasma membrane DAT levels and/or phosphorylation of the threonine 53 site on the DAT accounts for fluctuations in DA neurotransmission. Given the extensive evidence indicating that psychostimulants increase DA through interactions with the DAT, we also examined to what degree the effects of cocaine at inhibiting the DAT vary across sleep/wake state. Results demonstrated a significant association between individual sleep/wake states and DA terminal neurotransmission, with higher DA uptake rate, increased phosphorylation of the DAT, and enhanced cocaine potency observed after periods of sleep. These findings suggest that sleep/wake state influences DA neurotransmission in a manner that is likely to impact a host of DA-dependent processes including a variety of neuropsychiatric disorders.
Collapse
Affiliation(s)
- I. P. Alonso
- grid.166341.70000 0001 2181 3113Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129 USA
| | - J. A. Pino
- grid.440631.40000 0001 2228 7602Departamento de Medicina, Facultad de Medicina, Universidad de Atacama, 1532502 Copiapó, Chile
| | - S. Kortagere
- grid.166341.70000 0001 2181 3113Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129 USA
| | - G. E. Torres
- grid.254250.40000 0001 2264 7145Department of Molecular, Cellular & Biomedical Sciences, CUNY School of Medicine at the City College of New York, New York, NY 10031 USA
| | - R. A. España
- grid.166341.70000 0001 2181 3113Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129 USA
| |
Collapse
|
25
|
Salin A, Lardeux V, Solinas M, Belujon P. Protracted Abstinence From Extended Cocaine Self-Administration Is Associated With Hypodopaminergic Activity in the VTA but Not in the SNc. Int J Neuropsychopharmacol 2020; 24:499-504. [PMID: 33305794 PMCID: PMC8278795 DOI: 10.1093/ijnp/pyaa096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
The chronic relapsing nature of cocaine addiction suggests that chronic cocaine exposure produces persistent neuroadaptations that may be temporally and regionally dynamic in brain areas such as the dopaminergic (DA) system. We have previously shown altered metabolism of DA-target structures, the ventral and dorsal striatum, between early and late abstinence. However, specific changes within the midbrain DA system were not investigated. Here, we investigated potential time- and region-specific changes of activity in the ventral tegmental area (VTA) and the substantia nigra pars compacta (SNc) in rats that had extended or limited access to cocaine and later underwent a period of abstinence. We found that DA activity is decreased only in the VTA in rats with extended access to cocaine, with no changes in SNc DA activity. These changes in VTA DA activity may participate in the negative emotional state and the incubation of drug seeking that occur during abstinence from cocaine.
Collapse
Affiliation(s)
- Adélie Salin
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Virginie Lardeux
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Marcello Solinas
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Pauline Belujon
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France,Correspondence: Pauline Belujon, PhD, Laboratoire de Neurosciences Expérimentales et Cliniques, INSERM U1084, Université de Poitiers, Pôle Biologie Santé, Bâtiment B36,1, rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9, France (; )
| |
Collapse
|
26
|
Yavas E, Young AM. Repeated phencyclidine disrupts nicotinic acetylcholine regulation of dopamine release in nucleus accumbens: Implications for models of schizophrenia. Neurochem Int 2020; 140:104836. [DOI: 10.1016/j.neuint.2020.104836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 01/02/2023]
|
27
|
Roberts BM, Doig NM, Brimblecombe KR, Lopes EF, Siddorn RE, Threlfell S, Connor-Robson N, Bengoa-Vergniory N, Pasternack N, Wade-Martins R, Magill PJ, Cragg SJ. GABA uptake transporters support dopamine release in dorsal striatum with maladaptive downregulation in a parkinsonism model. Nat Commun 2020; 11:4958. [PMID: 33009395 PMCID: PMC7532441 DOI: 10.1038/s41467-020-18247-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/13/2020] [Indexed: 12/31/2022] Open
Abstract
Striatal dopamine (DA) is critical for action and learning. Recent data show that DA release is under tonic inhibition by striatal GABA. Ambient striatal GABA tone on striatal projection neurons can be determined by plasma membrane GABA uptake transporters (GATs) located on astrocytes and neurons. However, whether striatal GATs and astrocytes determine DA output are unknown. We reveal that DA release in mouse dorsolateral striatum, but not nucleus accumbens core, is governed by GAT-1 and GAT-3. These GATs are partly localized to astrocytes, and are enriched in dorsolateral striatum compared to accumbens core. In a mouse model of early parkinsonism, GATs are downregulated, tonic GABAergic inhibition of DA release augmented, and nigrostriatal GABA co-release attenuated. These data define previously unappreciated and important roles for GATs and astrocytes in supporting DA release in striatum, and reveal a maladaptive plasticity in early parkinsonism that impairs DA output in vulnerable striatal regions. GABA transporters expressed in the striatum may affect behaviour. Here the authors investigate the contribution of GABA transporters on astrocytes to the regulation of dopamine release in the striatum, and show decreased expression of GAT-1 and GAT-3 in a mouse model of Parkinsonism.
Collapse
Affiliation(s)
- Bradley M Roberts
- Centre for Integrative Neuroscience, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK. .,Oxford Parkinson's Disease Centre, University of Oxford, Oxford, OX1 3PT, UK.
| | - Natalie M Doig
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3TH, UK
| | - Katherine R Brimblecombe
- Centre for Integrative Neuroscience, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.,Oxford Parkinson's Disease Centre, University of Oxford, Oxford, OX1 3PT, UK
| | - Emanuel F Lopes
- Centre for Integrative Neuroscience, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Ruth E Siddorn
- Centre for Integrative Neuroscience, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Sarah Threlfell
- Centre for Integrative Neuroscience, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.,Oxford Parkinson's Disease Centre, University of Oxford, Oxford, OX1 3PT, UK
| | - Natalie Connor-Robson
- Centre for Integrative Neuroscience, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.,Oxford Parkinson's Disease Centre, University of Oxford, Oxford, OX1 3PT, UK
| | - Nora Bengoa-Vergniory
- Centre for Integrative Neuroscience, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.,Oxford Parkinson's Disease Centre, University of Oxford, Oxford, OX1 3PT, UK
| | - Nicholas Pasternack
- Centre for Integrative Neuroscience, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Richard Wade-Martins
- Centre for Integrative Neuroscience, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.,Oxford Parkinson's Disease Centre, University of Oxford, Oxford, OX1 3PT, UK
| | - Peter J Magill
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, OX1 3PT, UK.,Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3TH, UK
| | - Stephanie J Cragg
- Centre for Integrative Neuroscience, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK. .,Oxford Parkinson's Disease Centre, University of Oxford, Oxford, OX1 3PT, UK.
| |
Collapse
|
28
|
Prefrontal Cortex-Driven Dopamine Signals in the Striatum Show Unique Spatial and Pharmacological Properties. J Neurosci 2020; 40:7510-7522. [PMID: 32859717 DOI: 10.1523/jneurosci.1327-20.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/22/2020] [Accepted: 08/17/2020] [Indexed: 02/08/2023] Open
Abstract
Dopamine (DA) signals in the striatum are critical for a variety of vital processes, including motivation, motor learning, and reinforcement learning. Striatal DA signals can be evoked by direct activation of inputs from midbrain DA neurons (DANs) as well as cortical and thalamic inputs to the striatum. In this study, we show that in vivo optogenetic stimulation of prelimbic (PrL) and infralimbic (IL) cortical afferents to the striatum triggers an increase in extracellular DA concentration, which coincides with elevation of striatal acetylcholine (ACh) levels. This increase is blocked by a nicotinic ACh receptor (nAChR) antagonist. Using single or dual optogenetic stimulation in brain slices from male and female mice, we compared the properties of these PrL/IL-evoked DA signals with those evoked by stimulation from midbrain DAN axonal projections. PrL/IL-evoked DA signals are undistinguishable from DAN evoked DA signals in their amplitudes and electrochemical properties. However, PrL/IL-evoked DA signals are spatially restricted and preferentially recorded in the dorsomedial striatum. PrL/IL-evoked DA signals also differ in their pharmacological properties, requiring activation of glutamate and nicotinic ACh receptors. Thus, both in vivo and in vitro results indicate that cortical evoked DA signals rely on recruitment of cholinergic interneurons, which renders DA signals less able to summate during trains of stimulation and more sensitive to both cholinergic drugs and temperature. In conclusion, cortical and midbrain inputs to the striatum evoke DA signals with unique spatial and pharmacological properties that likely shape their functional roles and behavioral relevance.SIGNIFICANCE STATEMENT Dopamine signals in the striatum play a critical role in basal ganglia function, such as reinforcement and motor learning. Different afferents to the striatum can trigger dopamine signals, but their release properties are not well understood. Further, these input-specific dopamine signals have only been studied in separate animals. Here we show that optogenetic stimulation of cortical glutamatergic afferents to the striatum triggers dopamine signals both in vivo and in vitro These afferents engage cholinergic interneurons, which drive dopamine release from dopamine neuron axons by activation of nicotinic acetylcholine receptors. We also show that cortically evoked dopamine signals have other unique properties, including spatial restriction and sensitivity to temperature changes than dopamine signals evoked by stimulation of midbrain dopamine neuron axons.
Collapse
|
29
|
Buck SA, Torregrossa MM, Logan RW, Freyberg Z. Roles of dopamine and glutamate co-release in the nucleus accumbens in mediating the actions of drugs of abuse. FEBS J 2020; 288:1462-1474. [PMID: 32702182 DOI: 10.1111/febs.15496] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/30/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022]
Abstract
Projections of ventral tegmental area dopamine (DA) neurons to the medial shell of the nucleus accumbens have been increasingly implicated as integral to the behavioral and physiological changes involved in the development of substance use disorders (SUDs). Recently, many of these nucleus accumbens-projecting DA neurons were found to also release the neurotransmitter glutamate. This glutamate co-release from DA neurons is critical in mediating the effect of drugs of abuse on addiction-related behaviors. Potential mechanisms underlying the role(s) of dopamine/glutamate co-release in contributing to SUDs are unclear. Nevertheless, an important clue may relate to glutamate's ability to potentiate loading of DA into synaptic vesicles within terminals in the nucleus accumbens in response to drug-induced elevations in neuronal activity, enabling a more robust release of DA after stimulation. Here, we summarize how drugs of abuse, particularly cocaine, opioids, and alcohol, alter DA release in the nucleus accumbens medial shell, examine the potential role of DA/glutamate co-release in mediating these effects, and discuss future directions for further investigating these mechanisms.
Collapse
Affiliation(s)
- Silas A Buck
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mary M Torregrossa
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan W Logan
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA.,Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Zachary Freyberg
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
30
|
Nolan SO, Zachry JE, Johnson AR, Brady LJ, Siciliano CA, Calipari ES. Direct dopamine terminal regulation by local striatal microcircuitry. J Neurochem 2020; 155:475-493. [PMID: 32356315 DOI: 10.1111/jnc.15034] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023]
Abstract
Regulation of axonal dopamine release by local microcircuitry is at the hub of several biological processes that govern the timing and magnitude of signaling events in reward-related brain regions. An important characteristic of dopamine release from axon terminals in the striatum is that it is rapidly modulated by local regulatory mechanisms. These processes can occur via homosynaptic mechanisms-such as presynaptic dopamine autoreceptors and dopamine transporters - as well heterosynaptic mechanisms such as retrograde signaling from postsynaptic cholinergic and dynorphin systems, among others. Additionally, modulation of dopamine release via diffusible messengers, such as nitric oxide and hydrogen peroxide, allows for various metabolic factors to quickly and efficiently regulate dopamine release and subsequent signaling. Here we review how these mechanisms work in concert to influence the timing and magnitude of striatal dopamine signaling, independent of action potential activity at the level of dopaminergic cell bodies in the midbrain, thereby providing a parallel pathway by which dopamine can be modulated. Understanding the complexities of local regulation of dopamine signaling is required for building comprehensive frameworks of how activity throughout the dopamine system is integrated to drive signaling and control behavior.
Collapse
Affiliation(s)
- Suzanne O Nolan
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Jennifer E Zachry
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Amy R Johnson
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Lillian J Brady
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Cody A Siciliano
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN TN, USA
| | - Erin S Calipari
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN TN, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.,Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
31
|
Tubert C, Murer MG. What’s wrong with the striatal cholinergic interneurons in Parkinson’s disease? Focus on intrinsic excitability. Eur J Neurosci 2020; 53:2100-2116. [DOI: 10.1111/ejn.14742] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/04/2020] [Accepted: 04/05/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Cecilia Tubert
- Instituto de Fisiología y Biofísica “Bernardo Houssay”, (IFIBIO‐Houssay) Grupo de Neurociencia de Sistemas Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires Argentina
| | - Mario Gustavo Murer
- Instituto de Fisiología y Biofísica “Bernardo Houssay”, (IFIBIO‐Houssay) Grupo de Neurociencia de Sistemas Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires Argentina
| |
Collapse
|
32
|
Villavasso S, Shaw C, Skripnikova E, Shah K, Davis JF, Sirohi S. Nutritional Contingency Reduces Alcohol Drinking by Altering Central Neurotransmitter Receptor Gene Expression in Rats. Nutrients 2019; 11:E2731. [PMID: 31717954 PMCID: PMC6893745 DOI: 10.3390/nu11112731] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/25/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022] Open
Abstract
We have previously shown that 6 weeks of intermittent high-fat diet (Int-HFD) pre-exposure significantly reduced alcohol drinking in rats, providing preliminary evidence of the effectiveness of a dietary intervention in reducing alcohol intake. However, the functional framework and underlying neurobiological mechanisms of such dietary intervention are unknown. Here, we examined the impact of Int-HFD pre-exposure duration on alcohol drinking, plasma feeding peptides, and central neurotransmitter receptors gene expression. Male Long Evans rats (n = 6-7/group) received no pre-exposure, 1 or 2 weeks pre-exposure to Int-HFD and alcohol drinking (two-bottle choice) was evaluated. We observed HFD pre-exposure-dependent decrease in alcohol drinking, with a significant decrease observed following 2 weeks of Int-HFD pre-exposure. No significant between-group differences in plasma feeding peptides (i.e., ghrelin, leptin, insulin) were detected. A PCR array revealed that the expression of several neurotransmitter receptors was significantly (p < 0.05 and ≥2-fold) altered in the striatum and ventral tegmental area compared to controls. These data suggest that pre-exposure to a palatable diet is critical to reduce alcohol drinking in rats, possibly through genetic alterations in the brain reward circuitry. Importantly, the present study is a step forward in identifying the critical framework needed to evaluate the therapeutic potential of nutritional contingency in the management of alcoholism.
Collapse
Affiliation(s)
- Starr Villavasso
- Laboratory of Endocrine and Neuropsychiatric Disorders, Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA; (S.V.); (C.S.); (E.S.); (K.S.)
| | - Cemilia Shaw
- Laboratory of Endocrine and Neuropsychiatric Disorders, Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA; (S.V.); (C.S.); (E.S.); (K.S.)
| | - Elena Skripnikova
- Laboratory of Endocrine and Neuropsychiatric Disorders, Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA; (S.V.); (C.S.); (E.S.); (K.S.)
| | - Krishna Shah
- Laboratory of Endocrine and Neuropsychiatric Disorders, Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA; (S.V.); (C.S.); (E.S.); (K.S.)
| | - Jon F. Davis
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA;
| | - Sunil Sirohi
- Laboratory of Endocrine and Neuropsychiatric Disorders, Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA; (S.V.); (C.S.); (E.S.); (K.S.)
| |
Collapse
|
33
|
Dopamine-glutamate neuron projections to the nucleus accumbens medial shell and behavioral switching. Neurochem Int 2019; 129:104482. [PMID: 31170424 DOI: 10.1016/j.neuint.2019.104482] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/14/2019] [Accepted: 05/27/2019] [Indexed: 12/29/2022]
Abstract
Dopamine (DA) neuron projections to the striatum are functionally heterogeneous with diverse behavioral roles. We focus here on DA neuron projections to the nucleus accumbens (NAc) medial Shell, their distinct anatomical and functional connections, and discuss their role in motivated behavior. We first review rodent studies showing that a subpopulation of DA neurons in the medial ventral tegmental area (VTA) project to the NAc medial Shell. Using a combinatorial strategy, we show that the majority of DA neurons projecting to the NAc Shell express vesicular glutamate transporter 2 (VGLUT2) making them capable of glutamate co-transmission (DA-GLU neurons). In the NAc dorsal medial Shell, all of the DA neuron terminals arise from DA-GLU neurons, while in the lateral NAc Shell, DA neuron terminals arise from both DA-GLU neurons and DA-only neurons, without VGLUT2. DA-GLU neurons make excitatory connections to the three major cells types, spiny projection neurons, fast-spiking interneuron and cholinergic interneurons (ChIs). The strongest DA-GLU neuron excitatory connections are to ChIs. Photostimulation of DA-GLU neuron terminals in the slice drives ChIs to burst fire. Finally, we review studies that address specially the behavioral function of this subpopulation of DA neurons in extinction learning and latent inhibition. Taking into account findings from anatomical and functional connectome studies, we propose that DA-GLU neuron connections to ChIs in the medial Shell play a crucial role in switching behavioral responses under circumstances of altered cue-reinforcer contingencies.
Collapse
|
34
|
Silm K, Yang J, Marcott PF, Asensio CS, Eriksen J, Guthrie DA, Newman AH, Ford CP, Edwards RH. Synaptic Vesicle Recycling Pathway Determines Neurotransmitter Content and Release Properties. Neuron 2019; 102:786-800.e5. [PMID: 31003725 PMCID: PMC6541489 DOI: 10.1016/j.neuron.2019.03.031] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 01/28/2019] [Accepted: 03/19/2019] [Indexed: 01/03/2023]
Abstract
In contrast to temporal coding by synaptically acting neurotransmitters such as glutamate, neuromodulators such as monoamines signal changes in firing rate. The two modes of signaling have been thought to reflect differences in release by different cells. We now find that midbrain dopamine neurons release glutamate and dopamine with different properties that reflect storage in different synaptic vesicles. The vesicles differ in release probability, coupling to presynaptic Ca2+ channels and frequency dependence. Although previous work has attributed variation in these properties to differences in location or cytoskeletal association of synaptic vesicles, the release of different transmitters shows that intrinsic differences in vesicle identity drive different modes of release. Indeed, dopamine but not glutamate vesicles depend on the adaptor protein AP-3, revealing an unrecognized linkage between the pathway of synaptic vesicle recycling and the properties of exocytosis. Storage of the two transmitters in different vesicles enables the transmission of distinct signals.
Collapse
Affiliation(s)
- Kätlin Silm
- Departments of Neurology and Physiology, Graduate Programs in Neuroscience and Cell Biology, Kavli Institute for Fundamental Neuroscience, Weill Institute for the Neurosciences, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Jing Yang
- Departments of Neurology and Physiology, Graduate Programs in Neuroscience and Cell Biology, Kavli Institute for Fundamental Neuroscience, Weill Institute for the Neurosciences, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Pamela F Marcott
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Cedric S Asensio
- Departments of Neurology and Physiology, Graduate Programs in Neuroscience and Cell Biology, Kavli Institute for Fundamental Neuroscience, Weill Institute for the Neurosciences, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Jacob Eriksen
- Departments of Neurology and Physiology, Graduate Programs in Neuroscience and Cell Biology, Kavli Institute for Fundamental Neuroscience, Weill Institute for the Neurosciences, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Daryl A Guthrie
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institutes of Drug Abuse - Intramural Research Program, Baltimore, MD 21224, USA
| | - Amy H Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institutes of Drug Abuse - Intramural Research Program, Baltimore, MD 21224, USA
| | - Christopher P Ford
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Robert H Edwards
- Departments of Neurology and Physiology, Graduate Programs in Neuroscience and Cell Biology, Kavli Institute for Fundamental Neuroscience, Weill Institute for the Neurosciences, UCSF School of Medicine, San Francisco, CA 94143, USA.
| |
Collapse
|
35
|
Striatal Cholinergic Interneurons Are a Novel Target of Corticotropin Releasing Factor. J Neurosci 2019; 39:5647-5661. [PMID: 31109960 DOI: 10.1523/jneurosci.0479-19.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/03/2019] [Accepted: 05/11/2019] [Indexed: 12/21/2022] Open
Abstract
Cholinergic interneurons (CINs) are critical regulators of striatal network activity and output. Changes in CIN activity are thought to encode salient changes in the environment and stimulus-response-outcome associations. Here we report that the stress-associated neuropeptide corticotropin releasing factor (CRF) produces a profound and reliable increase in the spontaneous firing of CINs in both dorsal striatum and nucleus accumbens (NAc) through activation of CRF type 1 receptors, production of cAMP and reduction in spike accommodation in male mice. The increase of CIN firing by CRF results in the activation muscarinic acetylcholine receptors type 5, which mediate potentiation of dopamine transmission in the striatum. This study provides critical mechanistic insight into how CRF modulates striatal activity and dopamine transmission in the NAc to likely account for CRF facilitation of appetitive behaviors.SIGNIFICANCE STATEMENT Although the presence of CRF receptors in the dorsal and ventral striatum has been acknowledged, the cellular identity and the functional consequences of receptor activation is unknown. Here we report that striatal cholinergic interneurons express CRF-R1 receptors and are acutely activated by the neuropeptide CRF that is released in response to salient environmental stimuli. Cholinergic interneurons make <1% of the cells in the striatum but are critical regulators of the striatal circuitry and its output. CRF's fast and potent activation of cholinergic interneurons could have far reaching behavioral implications across motivated behaviors controlled by the striatum.
Collapse
|
36
|
Kim T, Capps RA, Hamade KC, Barnett WH, Todorov DI, Latash EM, Markin SN, Rybak IA, Molkov YI. The Functional Role of Striatal Cholinergic Interneurons in Reinforcement Learning From Computational Perspective. Front Neural Circuits 2019; 13:10. [PMID: 30846930 PMCID: PMC6393383 DOI: 10.3389/fncir.2019.00010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/30/2019] [Indexed: 11/13/2022] Open
Abstract
In this study, we explore the functional role of striatal cholinergic interneurons, hereinafter referred to as tonically active neurons (TANs), via computational modeling; specifically, we investigate the mechanistic relationship between TAN activity and dopamine variations and how changes in this relationship affect reinforcement learning in the striatum. TANs pause their tonic firing activity after excitatory stimuli from thalamic and cortical neurons in response to a sensory event or reward information. During the pause striatal dopamine concentration excursions are observed. However, functional interactions between the TAN pause and striatal dopamine release are poorly understood. Here we propose a TAN activity-dopamine relationship model and demonstrate that the TAN pause is likely a time window to gate phasic dopamine release and dopamine variations reciprocally modulate the TAN pause duration. Furthermore, this model is integrated into our previously published model of reward-based motor adaptation to demonstrate how phasic dopamine release is gated by the TAN pause to deliver reward information for reinforcement learning in a timely manner. We also show how TAN-dopamine interactions are affected by striatal dopamine deficiency to produce poor performance of motor adaptation.
Collapse
Affiliation(s)
- Taegyo Kim
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Robert A Capps
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Khaldoun C Hamade
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - William H Barnett
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, United States
| | - Dmitrii I Todorov
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, United States
| | - Elizaveta M Latash
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, United States
| | - Sergey N Markin
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Ilya A Rybak
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Yaroslav I Molkov
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States.,Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
37
|
Gallo EF. Disentangling the diverse roles of dopamine D2 receptors in striatal function and behavior. Neurochem Int 2019; 125:35-46. [PMID: 30716356 DOI: 10.1016/j.neuint.2019.01.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/21/2019] [Accepted: 01/27/2019] [Indexed: 02/07/2023]
Abstract
Dopamine D2 receptors (D2Rs) mediate many of the actions of dopamine in the striatum, ranging from movement to the effortful pursuit of reward. Yet despite significant advances in linking D2Rs to striatal functions with pharmacological and genetic strategies in animals, how dopamine orchestrates its myriad actions on different cell populations -each expressing D2Rs- remains unclear. Furthermore, brain imaging and genetic studies in humans have consistently associated striatal D2R alterations with various neurological and neuropsychiatric disorders, but how and which D2Rs are involved in each case is poorly understood. Therefore, a critical first step is to engage in a refined and systematic investigation of the impact of D2R function on specific striatal cells, circuits, and behaviors. Here, I will review recent efforts, primarily in animal models, aimed at unlocking the complex and heterogeneous roles of D2Rs in striatum.
Collapse
Affiliation(s)
- Eduardo F Gallo
- Department of Biological Sciences, Fordham University, Bronx, NY, USA.
| |
Collapse
|
38
|
Clinical implications and electrochemical biosensing of monoamine neurotransmitters in body fluids, in vitro, in vivo, and ex vivo models. Biosens Bioelectron 2018; 121:137-152. [DOI: 10.1016/j.bios.2018.09.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/25/2018] [Accepted: 09/01/2018] [Indexed: 12/13/2022]
|
39
|
Langlois LD, Dacher M, Nugent FS. Dopamine Receptor Activation Is Required for GABAergic Spike Timing-Dependent Plasticity in Response to Complex Spike Pairing in the Ventral Tegmental Area. Front Synaptic Neurosci 2018; 10:32. [PMID: 30297996 PMCID: PMC6160785 DOI: 10.3389/fnsyn.2018.00032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/30/2018] [Indexed: 01/06/2023] Open
Abstract
One of the most influential synaptic learning rules explored in the past decades is activity dependent spike-timing-dependent plasticity (STDP). In STDP, synapses are either potentiated or depressed based on the order of pre- and postsynaptic neuronal activation within narrow, milliseconds-long, time intervals. STDP is subject to neuromodulation by dopamine (DA), a potent neurotransmitter that significantly impacts synaptic plasticity and reward-related behavioral learning. Previously, we demonstrated that GABAergic synapses onto ventral tegmental area (VTA) DA neurons are able to express STDP (Kodangattil et al., 2013), however it is still unclear whether DA modulates inhibitory STDP in the VTA. Here, we used whole-cell recordings in rat midbrain slices to investigate whether DA D1-like and/or D2-like receptor (D1R/D2R) activation is required for induction of STDP in response to a complex pattern of spiking. We found that VTA but not Substantia nigra pars compact (SNc) DA neurons exhibit long-term depression (LTDGABA) in response to a combination of positive (pre-post) and negative (post-pre) timing of spiking (a complex STDP protocol). Blockade of either D1Rs or D2Rs prevented the induction of LTDGABA while activation of D1Rs did not affect the plasticity in response to this complex STDP protocol in VTA DA neurons.Our data suggest that this DA-dependent GABAergic STDP is selectively expressed at GABAergic synapses onto VTA DA neurons which could be targeted by drugs of abuse to mediate drug-induced modulation of DA signaling within the VTA, as well as in VTA-projection areas, thereby affecting reward-related learning and drug-associated memories.
Collapse
Affiliation(s)
- Ludovic D Langlois
- Department of Pharmacology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Matthieu Dacher
- Department of Pharmacology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Fereshteh S Nugent
- Department of Pharmacology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
40
|
Solari N, Hangya B. Cholinergic modulation of spatial learning, memory and navigation. Eur J Neurosci 2018; 48:2199-2230. [PMID: 30055067 PMCID: PMC6174978 DOI: 10.1111/ejn.14089] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/25/2018] [Accepted: 07/23/2018] [Indexed: 01/02/2023]
Abstract
Spatial learning, including encoding and retrieval of spatial memories as well as holding spatial information in working memory generally serving navigation under a broad range of circumstances, relies on a network of structures. While central to this network are medial temporal lobe structures with a widely appreciated crucial function of the hippocampus, neocortical areas such as the posterior parietal cortex and the retrosplenial cortex also play essential roles. Since the hippocampus receives its main subcortical input from the medial septum of the basal forebrain (BF) cholinergic system, it is not surprising that the potential role of the septo-hippocampal pathway in spatial navigation has been investigated in many studies. Much less is known of the involvement in spatial cognition of the parallel projection system linking the posterior BF with neocortical areas. Here we review the current state of the art of the division of labour within this complex 'navigation system', with special focus on how subcortical cholinergic inputs may regulate various aspects of spatial learning, memory and navigation.
Collapse
Affiliation(s)
- Nicola Solari
- Lendület Laboratory of Systems NeuroscienceDepartment of Cellular and Network NeurobiologyInstitute of Experimental MedicineHungarian Academy of SciencesBudapestHungary
| | - Balázs Hangya
- Lendület Laboratory of Systems NeuroscienceDepartment of Cellular and Network NeurobiologyInstitute of Experimental MedicineHungarian Academy of SciencesBudapestHungary
| |
Collapse
|
41
|
Heterogeneous dopamine signals support distinct features of motivated actions: implications for learning and addiction. ACTA ACUST UNITED AC 2018; 25:416-424. [PMID: 30115763 PMCID: PMC6097772 DOI: 10.1101/lm.047019.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/15/2018] [Indexed: 01/05/2023]
Abstract
Despite decades of research, investigations into effective neural and pharmacological therapies for many drugs of abuse, such as cocaine, have produced no FDA-approved approaches. This difficulty derives from the complexity of substance use disorders, which encompass a variety of behavioral, psychological, and neural circuit-based changes that occur as a result of repeated experience with the drug. Dopamine signaling has been demonstrated to play a key role in several aspects of drug abuse—from mediating its reinforcing properties and drug-seeking to triggering relapse—while also mediating a number of important aspects of normal (nondrug related) motivated behaviors and actions. Real-time recording methods such as in vivo voltammetry, electrophysiology, and calcium imaging demonstrate that the signaling properties of dopamine for motivationally relevant stimuli are highly dynamic and spatiotemporally circumscribed within afferent target regions. In this review, we identify the origins and functional consequences of heterogeneous dopamine release in the limbic system, and how these properties are persistently altered in the drug-experienced brain. We propose that these spatiotemporally parallel dopaminergic signals are simultaneously available to the animal, but that these circuits are impaired following prolonged drug experience by disrupting the location and content of dopamine signals in afferent target regions. These findings are discussed in the context of relapse and pathways to discovering new treatments for addiction disorders.
Collapse
|
42
|
Region-Specific Regulation of Presynaptic Dopamine Homeostasis by D 2 Autoreceptors Shapes the In Vivo Impact of the Neuropsychiatric Disease-Associated DAT Variant Val559. J Neurosci 2018; 38:5302-5312. [PMID: 29739866 DOI: 10.1523/jneurosci.0055-18.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/19/2018] [Accepted: 04/14/2018] [Indexed: 12/21/2022] Open
Abstract
Disruptions of dopamine (DA) signaling contribute to a broad spectrum of neuropsychiatric disorders, including attention-deficit hyperactivity disorder (ADHD), addiction, bipolar disorder, and schizophrenia. Despite evidence that risk for these disorders derives from heritable variation in DA-linked genes, a better understanding is needed of the molecular and circuit context through which gene variation drives distinct disease traits. Previously, we identified the DA transporter (DAT) variant Val559 in subjects with ADHD and established that the mutation supports anomalous DAT-mediated DA efflux (ADE). Here, we demonstrate that region-specific contributions of D2 autoreceptors (D2AR) to presynaptic DA homeostasis dictate the consequences of Val559 expression in adolescent male mice. We show that activation of D2ARs in the WT dorsal striatum (DS), but not ventral striatum (VS), increases DAT phosphorylation and surface trafficking. In contrast, the activity of tyrosine hydroxylase (TH) is D2AR-dependent in both regions. In the DS but not VS of Val559 mice, tonic activation of D2ARs drives a positive feedback loop that promotes surface expression of efflux-prone DATs, raising extracellular DA levels and overwhelming DAT-mediated DA clearance capacity. Whereas D2ARs that regulate DAT are tonically activated in the Val559 DS, D2ARs that regulate TH become desensitized, allowing maintenance of cytosolic DA needed to sustain ADE. Together with prior findings, our results argue for distinct D2AR pools that regulate DA synthesis versus DA release and inactivation and offer a clear example of how the penetrance of gene variation can be limited to a subset of expression sites based on differences in intersecting regulatory networks.SIGNIFICANCE STATEMENT Altered dopamine (DA) signaling has been linked to multiple neuropsychiatric disorders. In an effort to understand and model disease-associated DAergic disturbances, we previously screened the DA transporter (DAT) in subjects with attention-deficit hyperactivity disorder (ADHD) and identified multiple, functionally impactful, coding variants. One of these variants, Val559, supports anomalous DA efflux (ADE) and in transgenic mice leads to changes in locomotor patterns, psychostimulant sensitivity, and impulsivity. Here, we show that the penetrance of Val559 ADE is dictated by region-specific differences in how presynaptic D2-type autoreceptors (D2ARs) constrain DA signaling, biasing phenotypic effects to dorsal striatal projections. The Val559 model illustrates how the impact of genetic variation underlying neuropsychiatric disorders can be shaped by the differential engagement of synaptic regulatory mechanisms.
Collapse
|
43
|
Marcott PF, Gong S, Donthamsetti P, Grinnell SG, Nelson MN, Newman AH, Birnbaumer L, Martemyanov KA, Javitch JA, Ford CP. Regional Heterogeneity of D2-Receptor Signaling in the Dorsal Striatum and Nucleus Accumbens. Neuron 2018; 98:575-587.e4. [PMID: 29656874 PMCID: PMC6048973 DOI: 10.1016/j.neuron.2018.03.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 02/20/2018] [Accepted: 03/21/2018] [Indexed: 12/24/2022]
Abstract
Dopamine input to the dorsal and ventral striatum originates from separate populations of midbrain neurons. Despite differences in afferent inputs and behavioral output, little is known about how dopamine release is encoded by dopamine receptors on medium spiny neurons (MSNs) across striatal subregions. Here we examined the activation of D2 receptors following the synaptic release of dopamine in the dorsal striatum (DStr) and nucleus accumbens (NAc) shell. We found that D2 receptor-mediated synaptic currents were slower in the NAc and this difference occurred at the level of D2-receptor signaling. As a result of preferential coupling to Gαo, we also found that D2 receptors in MSNs demonstrated higher sensitivity for dopamine in the NAc. The higher sensitivity in the NAc was eliminated following cocaine exposure. These results identify differences in the sensitivity and timing of D2-receptor signaling across the striatum that influence how nigrostriatal and mesolimbic signals are encoded across these circuits.
Collapse
Affiliation(s)
- Pamela F Marcott
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Sheng Gong
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | - Steven G Grinnell
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Melissa N Nelson
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Amy H Newman
- National Institute of Drug Abuse - Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Durham, NC 27709, USA; Institute of Biomedical Research (BIOMED), Catholic University of Argentina, Buenos Aires C1107AAZ, Argentina
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Jonathan A Javitch
- Department of Pharmacology, Columbia University, New York, NY 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Christopher P Ford
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
44
|
Olivo G, Latini F, Wiemerslage L, Larsson EM, Schiöth HB. Disruption of Accumbens and Thalamic White Matter Connectivity Revealed by Diffusion Tensor Tractography in Young Men with Genetic Risk for Obesity. Front Hum Neurosci 2018. [PMID: 29520227 PMCID: PMC5826967 DOI: 10.3389/fnhum.2018.00075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: Neurovascular coupling is associated with white matter (WM) structural integrity, and it is regulated by specific subtypes of dopaminergic receptors. An altered activity of such receptors, highly expressed in reward-related regions, has been reported in carriers of obesity-risk alleles of the fat mass and obesity associated (FTO) gene. Among the reward-related regions, the thalamus and the nucleus accumbens are particularly vulnerable to blood pressure dysregulation due to their peculiar anatomo-vascular characteristics, and have been consistently reported to be altered in early-stage obesity. We have thus hypothesized that a disruption in thalamus and nucleus accumbens WM microstructure, possibly on neurovascular basis, could potentially be a predisposing factor underlying the enhanced risk for obesity in the risk-allele carriers. Methods: We have tested WM integrity in 21 male participants genotyped on the FTO risk single nucleotide polymorphisms (SNP) rs9939609, through a deterministic tractography analysis. Only homozygous participants (9 AA, 12 TT) were included. 11 tracts were selected and categorized as following according to our hypothesis: “risk tracts”, “obesity-associated tracts”, and a control tract (forcpes major). We investigated whether an association existed between genotype, body mass index (BMI) and WM microstructural integrity in the “risk-tracts” (anterior thalamic radiation and accumbofrontal fasciculus) compared to other tracts. Moreover, we explored whether WM diffusivity could be related to specific personality traits in terms of punishment and reward sensitivity, as measure by the BIS/BAS questionnaire. Results: An effect of the genotype and an interaction effect of genotype and BMI were detected on the fractional anisotropy (FA) of the “risk tracts”. Correlations between WM diffusivity parameters and measures of punishment and reward sensitivity were also detected in many WM tracts of both networks. Conclusions: A disruption of the structural connectivity from the nucleus accumbens and the thalamus might occur early in carriers of the FTO AA risk-allele, and possibly act as a predisposing factor to the development of obesity.
Collapse
Affiliation(s)
- Gaia Olivo
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Francesco Latini
- Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Lyle Wiemerslage
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Elna-Marie Larsson
- Neuroradiology, Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
45
|
Burke DA, Rotstein HG, Alvarez VA. Striatal Local Circuitry: A New Framework for Lateral Inhibition. Neuron 2017; 96:267-284. [PMID: 29024654 DOI: 10.1016/j.neuron.2017.09.019] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/09/2017] [Accepted: 09/12/2017] [Indexed: 12/01/2022]
Abstract
This Perspective will examine the organization of intrastriatal circuitry, review recent findings in this area, and discuss how the pattern of connectivity between striatal neurons might give rise to the behaviorally observed synergism between the direct/indirect pathway neurons. The emphasis of this Perspective is on the underappreciated role of lateral inhibition between striatal projection cells in controlling neuronal firing and shaping the output of this circuit. We review some classic studies in combination with more recent anatomical and functional findings to lay out a framework for an updated model of the intrastriatal lateral inhibition, where we explore its contribution to the formation of functional units of processing and the integration and filtering of inputs to generate motor patterns and learned behaviors.
Collapse
Affiliation(s)
- Dennis A Burke
- Laboratory on Neurobiology of Compulsive Behaviors, Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA; Department of Neuroscience, Brown University, Providence, Providence, RI 02912, USA
| | - Horacio G Rotstein
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, NJ 07102, USA; Institute for Brain and Neuroscience Research, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Veronica A Alvarez
- Laboratory on Neurobiology of Compulsive Behaviors, Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA; Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD 21224, USA.
| |
Collapse
|