1
|
Zhang X, Chen Z, Xiong Y, Zhou Q, Zhu LQ, Liu D. The emerging role of nitric oxide in the synaptic dysfunction of vascular dementia. Neural Regen Res 2025; 20:402-415. [PMID: 38819044 PMCID: PMC11317957 DOI: 10.4103/nrr.nrr-d-23-01353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/23/2023] [Accepted: 11/30/2023] [Indexed: 06/01/2024] Open
Abstract
With an increase in global aging, the number of people affected by cerebrovascular diseases is also increasing, and the incidence of vascular dementia-closely related to cerebrovascular risk-is increasing at an epidemic rate. However, few therapeutic options exist that can markedly improve the cognitive impairment and prognosis of vascular dementia patients. Similarly in Alzheimer's disease and other neurological disorders, synaptic dysfunction is recognized as the main reason for cognitive decline. Nitric oxide is one of the ubiquitous gaseous cellular messengers involved in multiple physiological and pathological processes of the central nervous system. Recently, nitric oxide has been implicated in regulating synaptic plasticity and plays an important role in the pathogenesis of vascular dementia. This review introduces in detail the emerging role of nitric oxide in physiological and pathological states of vascular dementia and summarizes the diverse effects of nitric oxide on different aspects of synaptic dysfunction, neuroinflammation, oxidative stress, and blood-brain barrier dysfunction that underlie the progress of vascular dementia. Additionally, we propose that targeting the nitric oxide-sGC-cGMP pathway using certain specific approaches may provide a novel therapeutic strategy for vascular dementia.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Department of Pathology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi Province, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi Province, China
- Center for Cognitive Science and Transdisciplinary Studies, Jiujiang University, Jiangxi Province, China
| | - Zhiying Chen
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi Province, China
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi Province, China
| | - Yinyi Xiong
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi Province, China
- Department of Rehabilitation, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi Province, China
| | - Qin Zhou
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi Province, China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Dan Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Sharma B, Koren DT, Ghosh S. Nitric oxide modulates NMDA receptor through a negative feedback mechanism and regulates the dynamical behavior of neuronal postsynaptic components. Biophys Chem 2023; 303:107114. [PMID: 37832215 DOI: 10.1016/j.bpc.2023.107114] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023]
Abstract
Nitric oxide (NO) is known to be an important regulator of neurological processes in the central nervous system which acts directly on the presynaptic neuron and enhances the release of neurotransmitters like glutamate into the synaptic cleft. Calcium influx activates a cascade of biochemical reactions to influence the production of nitric oxide in the postsynaptic neuron. This has been modeled in the present work as a system of ordinary differential equations, to explore the dynamics of the interacting components and predict the dynamical behavior of the postsynaptic neuron. It has been hypothesized that nitric oxide modulates the NMDA receptor via a feedback mechanism and regulates the dynamic behavior of postsynaptic components. Results obtained by numerical analyses indicate that the biochemical system is stimulus-dependent and shows oscillations of calcium and other components within a limited range of concentration. Some of the parameters such as stimulus strength, extracellular calcium concentration, and rate of nitric oxide feedback are crucial for the dynamics of the components in the postsynaptic neuron.
Collapse
Affiliation(s)
- Bhanu Sharma
- Department of Biophysics, University of Delhi South Campus, New Delhi 110021, India
| | | | - Subhendu Ghosh
- Department of Biophysics, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
3
|
Buchholz MO, Gastone Guilabert A, Ehret B, Schuhknecht GFP. How synaptic strength, short-term plasticity, and input synchrony contribute to neuronal spike output. PLoS Comput Biol 2023; 19:e1011046. [PMID: 37068099 PMCID: PMC10153727 DOI: 10.1371/journal.pcbi.1011046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 05/02/2023] [Accepted: 03/24/2023] [Indexed: 04/18/2023] Open
Abstract
Neurons integrate from thousands of synapses whose strengths span an order of magnitude. Intriguingly, in mouse neocortex, the few 'strong' synapses are formed between similarly tuned cells, suggesting they determine spiking output. This raises the question of how other computational primitives, including 'background' activity from the many 'weak' synapses, short-term plasticity, and temporal factors contribute to spiking. We used paired recordings and extracellular stimulation experiments to map excitatory postsynaptic potential (EPSP) amplitudes and paired-pulse ratios of synaptic connections formed between pyramidal neurons in layer 2/3 (L2/3) of barrel cortex. While net short-term plasticity was weak, strong synaptic connections were exclusively depressing. Importantly, we found no evidence for clustering of synaptic properties on individual neurons. Instead, EPSPs and paired-pulse ratios of connections converging onto the same cells spanned the full range observed across L2/3, which critically constrains theoretical models of cortical filtering. To investigate how different computational primitives of synaptic information processing interact to shape spiking, we developed a computational model of a pyramidal neuron in the excitatory L2/3 circuitry, which was constrained by our experiments and published in vivo data. We found that strong synapses were substantially depressed during ongoing activation and their ability to evoke correlated spiking primarily depended on their high temporal synchrony and high firing rates observed in vivo. However, despite this depression, their larger EPSP amplitudes strongly amplified information transfer and responsiveness. Thus, our results contribute to a nuanced framework of how cortical neurons exploit synergies between temporal coding, synaptic properties, and noise to transform synaptic inputs into spikes.
Collapse
Affiliation(s)
- Moritz O Buchholz
- Institute of Neuroinformatics, University of Zürich and ETH Zürich Zürich, Switzerland
| | | | - Benjamin Ehret
- Institute of Neuroinformatics, University of Zürich and ETH Zürich Zürich, Switzerland
| | - Gregor F P Schuhknecht
- Institute of Neuroinformatics, University of Zürich and ETH Zürich Zürich, Switzerland
- Department of Molecular and Cellular Biology, Harvard University Cambridge, Massachusetts, United States of America
| |
Collapse
|
4
|
Intracellular Accumulation of α-Synuclein Aggregates Promotes S-Nitrosylation of MAP1A Leading to Decreased NMDAR-Evoked Calcium Influx and Loss of Mature Synaptic Spines. J Neurosci 2022; 42:9473-9487. [PMID: 36414406 PMCID: PMC9794373 DOI: 10.1523/jneurosci.0074-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 10/11/2022] [Accepted: 11/06/2022] [Indexed: 11/24/2022] Open
Abstract
Cortical synucleinopathies, including dementia with Lewy bodies and Parkinson's disease dementia, collectively known as Lewy body dementia, are characterized by the aberrant aggregation of misfolded α-synuclein (α-syn) protein into large inclusions in cortical tissue, leading to impairments in proteostasis and synaptic connectivity and eventually resulting in neurodegeneration. Here, we show that male and female rat cortical neurons exposed to exogenous α-syn preformed fibrils accumulate large, detergent-insoluble, PS129-labeled deposits at synaptic terminals. Live-cell imaging of calcium dynamics coupled with assessment of network activity reveals that aberrant intracellular accumulation of α-syn inhibits synaptic response to glutamate through NMDARs, although deficits manifest slowly over a 7 d period. Impairments in NMDAR activity temporally correlated with increased nitric oxide synthesis and S-nitrosylation of the dendritic scaffold protein, microtubule-associated protein 1A. Inhibition of nitric oxide synthesis via the nitric oxide synthase inhibitor l-NG-nitroarginine methyl ester blocked microtubule-associated protein 1A S-nitrosylation and normalized NMDAR-dependent inward calcium transients and overall network activity. Collectively, these data suggest that loss of synaptic function in Lewy body dementia may result from synucleinopathy-evoked nitrosative stress and subsequent NMDAR dysfunction.SIGNIFICANCE STATEMENT This work shows the importance of the redox state of microtubule-associated protein 1A in the maintenance of synaptic function through regulation of NMDAR. We show that α-syn preformed fibrils promote nitric oxide synthesis, which triggers S-nitrosylation of microtubule-associated protein 1A, leading to impairment of NMDAR-dependent glutamate responses. This offers insight into the mechanism of synaptic dysfunction in Lewy body dementia.
Collapse
|
5
|
Rajendra A, Bondonno NP, Rainey-Smith SR, Gardener SL, Hodgson JM, Bondonno CP. Potential role of dietary nitrate in relation to cardiovascular and cerebrovascular health, cognition, cognitive decline and dementia: a review. Food Funct 2022; 13:12572-12589. [PMID: 36377891 DOI: 10.1039/d2fo02427f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
There is currently no effective treatment for dementia, of which Alzheimer's disease (AD) is the most common form. It is, therefore, imperative to focus on evidence-based preventive strategies to combat this extremely debilitating chronic disease. Nitric oxide (NO) is a key signalling molecule in the cardiovascular, cerebrovascular, and central nervous systems. Vegetables rich in nitrate, such as spinach and beetroot, are an important source of NO, with beneficial effects on validated markers of cardiovascular health and an association with a lower risk of cardiovascular disease. Given the link between cardiovascular disease risk factors and dementia, together with the important role of NO in vascular health and cognition, it is important to determine whether dietary nitrate could also improve cognitive function, markers of brain health, and lower risk of dementia. This review presents an overview of NO's role in the cardiovascular, cerebrovascular, and central nervous systems; an overview of the available evidence that nitrate, through effects on NO, improves cardiovascular health; and evaluates the current evidence regarding dietary nitrate's potential role in cerebrovascular health, cognitive function, and brain health assessed via biomarkers.
Collapse
Affiliation(s)
- Anjana Rajendra
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia.
| | - Nicola P Bondonno
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia. .,Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Stephanie R Rainey-Smith
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.,Australian Alzheimer's Research Foundation, Perth, Western Australia, Australia.,Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Lifestyle Approaches Towards Cognitive Health Research Group, Murdoch University, Murdoch, Western Australia, Australia.,School of Psychological Science, University of Western Australia, Perth, Western Australia, Australia
| | - Samantha L Gardener
- Australian Alzheimer's Research Foundation, Perth, Western Australia, Australia.,Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Lifestyle Approaches Towards Cognitive Health Research Group, Murdoch University, Murdoch, Western Australia, Australia
| | - Jonathan M Hodgson
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia. .,Medical School, The University of Western Australia, Royal Perth Hospital Research Foundation, Perth, Western Australia, Australia
| | - Catherine P Bondonno
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia. .,Medical School, The University of Western Australia, Royal Perth Hospital Research Foundation, Perth, Western Australia, Australia
| |
Collapse
|
6
|
Noriega-Prieto JA, Maglio LE, Ibáñez-Santana S, de Sevilla DF. Endocannabinoid and Nitric Oxide-Dependent IGF-I-Mediated Synaptic Plasticity at Mice Barrel Cortex. Cells 2022; 11:cells11101641. [PMID: 35626678 PMCID: PMC9140009 DOI: 10.3390/cells11101641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/22/2022] [Accepted: 05/12/2022] [Indexed: 11/28/2022] Open
Abstract
Insulin-like growth factor-I (IGF-I) signaling plays a key role in learning and memory. IGF-I increases the spiking and induces synaptic plasticity in the mice barrel cortex (Noriega-Prieto et al., 2021), favoring the induction of the long-term potentiation (LTP) by Spike Timing-Dependent Protocols (STDP) (Noriega-Prieto et al., 2021). Here, we studied whether these IGF-I effects depend on endocannabinoids (eCBs) and nitric oxide (NO). We recorded both excitatory postsynaptic currents (EPSCs) and inhibitory postsynaptic currents (IPSCs) evoked by stimulation of the basal dendrites of layer II/III pyramidal neurons of the Barrel Cortex and analyzed the effect of IGF-I in the presence of a CB1R antagonist, AM251, and inhibitor of the NO synthesis, L-NAME, to prevent the eCBs and the NO-mediated signaling. Interestingly, L-NAME abolished any modulatory effect of the IGF-I-induced excitatory and inhibitory transmission changes, suggesting the essential role of NO. Surprisingly, the inhibition of CB1Rs did not only block the potentiation of EPSCs but reversed to a depression, highlighting the remarkable functions of the eCB system. In conclusion, eCBs and NO play a vital role in deciding the sign of the effects induced by IGF-I in the neocortex, suggesting a neuromodulatory interplay among IGF-I, NO, and eCBs.
Collapse
Affiliation(s)
- José Antonio Noriega-Prieto
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (J.A.N.-P.); (L.E.M.); (S.I.-S.)
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Laura Eva Maglio
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (J.A.N.-P.); (L.E.M.); (S.I.-S.)
| | - Sara Ibáñez-Santana
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (J.A.N.-P.); (L.E.M.); (S.I.-S.)
| | - David Fernández de Sevilla
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (J.A.N.-P.); (L.E.M.); (S.I.-S.)
- Correspondence:
| |
Collapse
|
7
|
Gugustea R, Jia Z. Genetic manipulations of AMPA glutamate receptors in hippocampal synaptic plasticity. Neuropharmacology 2021; 194:108630. [PMID: 34089730 DOI: 10.1016/j.neuropharm.2021.108630] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/06/2021] [Accepted: 05/18/2021] [Indexed: 01/17/2023]
Abstract
Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are the principal mediators of fast excitatory synaptic transmission and they are required for various forms of synaptic plasticity, including long-term potentiation (LTP) and depression (LTD), which are key mechanisms of learning and memory. AMPARs are tetrameric complexes assembled from four subunits (GluA1-4), however, the lack of subunit-specific pharmacological tools has made the assessment of individual subunits difficult. The application of genetic techniques, particularly gene targeting, allows for precise manipulation and dissection of each subunit in the regulation of neuronal function and behaviour. In this review, we summarize studies using various mouse models with genetically altered AMPARs and focus on their roles in basal synaptic transmission, LTP, and LTD at the hippocampal CA1 synapse. These studies provide strong evidence that there are multiple forms of LTP and LTD at this synapse which can be induced by various induction protocols, and they are differentially regulated by different AMPAR subunits and domains. We conclude that it is necessary to delineate the mechanism of each of these forms of plasticity and their contribution to memory and brain disorders.
Collapse
Affiliation(s)
- Radu Gugustea
- The Hospital for Sick Children, Neurosciences and Mental Health Program, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zhengping Jia
- The Hospital for Sick Children, Neurosciences and Mental Health Program, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
8
|
Tauffenberger A, Magistretti PJ. Reactive Oxygen Species: Beyond Their Reactive Behavior. Neurochem Res 2021; 46:77-87. [PMID: 33439432 PMCID: PMC7829243 DOI: 10.1007/s11064-020-03208-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 11/02/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022]
Abstract
Cellular homeostasis plays a critical role in how an organism will develop and age. Disruption of this fragile equilibrium is often associated with health degradation and ultimately, death. Reactive oxygen species (ROS) have been closely associated with health decline and neurological disorders, such as Alzheimer's disease or Parkinson's disease. ROS were first identified as by-products of the cellular activity, mainly mitochondrial respiration, and their high reactivity is linked to a disruption of macromolecules such as proteins, lipids and DNA. More recent research suggests more complex function of ROS, reaching far beyond the cellular dysfunction. ROS are active actors in most of the signaling cascades involved in cell development, proliferation and survival, constituting important second messengers. In the brain, their impact on neurons and astrocytes has been associated with synaptic plasticity and neuron survival. This review provides an overview of ROS function in cell signaling in the context of aging and degeneration in the brain and guarding the fragile balance between health and disease.
Collapse
Affiliation(s)
- Arnaud Tauffenberger
- King Abdullah University of Science and Technology, Thuwal, 23955, Kingdom of Saudi Arabia.
| | - Pierre J Magistretti
- King Abdullah University of Science and Technology, Thuwal, 23955, Kingdom of Saudi Arabia.
| |
Collapse
|
9
|
Nagahama K, Sakoori K, Watanabe T, Kishi Y, Kawaji K, Koebis M, Nakao K, Gotoh Y, Aiba A, Uesaka N, Kano M. Setd1a Insufficiency in Mice Attenuates Excitatory Synaptic Function and Recapitulates Schizophrenia-Related Behavioral Abnormalities. Cell Rep 2020; 32:108126. [PMID: 32937141 DOI: 10.1016/j.celrep.2020.108126] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/17/2020] [Accepted: 08/19/2020] [Indexed: 12/26/2022] Open
Abstract
SETD1A encodes a histone methyltransferase whose de novo mutations are identified in schizophrenia (SCZ) patients and confer a large increase in disease risk. Here, we generate Setd1a mutant mice carrying the frameshift mutation that closely mimics a loss-of-function variant of SCZ. Our Setd1a (+/-) mice display various behavioral abnormalities relevant to features of SCZ, impaired excitatory synaptic transmission in layer 2/3 (L2/3) pyramidal neurons of the medial prefrontal cortex (mPFC), and altered expression of diverse genes related to neurodevelopmental disorders and synaptic functions in the mPFC. RNAi-mediated Setd1a knockdown (KD) specifically in L2/3 pyramidal neurons of the mPFC only recapitulates impaired sociality among multiple behavioral abnormalities of Setd1a (+/-) mice. Optogenetics-assisted selective stimulation of presynaptic neurons combined with Setd1a KD reveals that Setd1a at postsynaptic site is essential for excitatory synaptic transmission. Our findings suggest that reduced SETD1A may attenuate excitatory synaptic function and contribute to the pathophysiology of SCZ.
Collapse
Affiliation(s)
- Kenichiro Nagahama
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kazuto Sakoori
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takaki Watanabe
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yusuke Kishi
- Laboratory of Molecular Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Keita Kawaji
- Laboratory of Molecular Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Michinori Koebis
- Laboratory of Animal Resources, Center for Disease Biology and Integrated Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kazuki Nakao
- Laboratory of Animal Resources, Center for Disease Biology and Integrated Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yukiko Gotoh
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo 113-0033, Japan; Laboratory of Molecular Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Atsu Aiba
- Laboratory of Animal Resources, Center for Disease Biology and Integrated Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Naofumi Uesaka
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo 113-0033, Japan; Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
10
|
Campelo T, Augusto E, Chenouard N, de Miranda A, Kouskoff V, Camus C, Choquet D, Gambino F. AMPAR-Dependent Synaptic Plasticity Initiates Cortical Remapping and Adaptive Behaviors during Sensory Experience. Cell Rep 2020; 32:108097. [PMID: 32877679 PMCID: PMC7487777 DOI: 10.1016/j.celrep.2020.108097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/30/2020] [Accepted: 08/11/2020] [Indexed: 11/28/2022] Open
Abstract
Cortical plasticity improves behaviors and helps recover lost functions after injury. However, the underlying synaptic mechanisms remain unclear. In mice, we show that trimming all but one whisker enhances sensory responses from the spared whisker in the barrel cortex and occludes whisker-mediated synaptic potentiation (w-Pot) in vivo. In addition, whisker-dependent behaviors that are initially impaired by single-whisker experience (SWE) rapidly recover when associated cortical regions remap. Cross-linking the surface GluA2 subunit of AMPA receptors (AMPARs) suppresses the expression of w-Pot, presumably by blocking AMPAR surface diffusion, in mice with all whiskers intact, indicating that synaptic potentiation in vivo requires AMPAR trafficking. We use this approach to demonstrate that w-Pot is required for SWE-mediated strengthening of synaptic inputs and initiates the recovery of previously learned skills during the early phases of SWE. Taken together, our data reveal that w-Pot mediates cortical remapping and behavioral improvement upon partial sensory deafferentation.
Collapse
Affiliation(s)
- Tiago Campelo
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France
| | - Elisabete Augusto
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France
| | - Nicolas Chenouard
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France
| | - Aron de Miranda
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France
| | - Vladimir Kouskoff
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France
| | - Come Camus
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France
| | - Daniel Choquet
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France; University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4, 33000 Bordeaux, France.
| | - Frédéric Gambino
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France.
| |
Collapse
|
11
|
Ivanova VO, Balaban PM, Bal NV. Modulation of AMPA Receptors by Nitric Oxide in Nerve Cells. Int J Mol Sci 2020; 21:ijms21030981. [PMID: 32024149 PMCID: PMC7038066 DOI: 10.3390/ijms21030981] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 12/16/2022] Open
Abstract
Nitric oxide (NO) is a gaseous molecule with a large number of functions in living tissue. In the brain, NO participates in numerous intracellular mechanisms, including synaptic plasticity and cell homeostasis. NO elicits synaptic changes both through various multi-chain cascades and through direct nitrosylation of targeted proteins. Along with the N-methyl-d-aspartate (NMDA) glutamate receptors, one of the key components in synaptic functioning are α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors—the main target for long-term modifications of synaptic effectivity. AMPA receptors have been shown to participate in most of the functions important for neuronal activity, including memory formation. Interactions of NO and AMPA receptors were observed in important phenomena, such as glutamatergic excitotoxicity in retinal cells, synaptic plasticity, and neuropathologies. This review focuses on existing findings that concern pathways by which NO interacts with AMPA receptors, influences properties of different subunits of AMPA receptors, and regulates the receptors’ surface expression.
Collapse
|
12
|
Hollas MA, Ben Aissa M, Lee SH, Gordon-Blake JM, Thatcher GRJ. Pharmacological manipulation of cGMP and NO/cGMP in CNS drug discovery. Nitric Oxide 2019; 82:59-74. [PMID: 30394348 PMCID: PMC7645969 DOI: 10.1016/j.niox.2018.10.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/14/2018] [Accepted: 10/25/2018] [Indexed: 12/21/2022]
Abstract
The development of small molecule modulators of NO/cGMP signaling for use in the CNS has lagged far behind the use of such clinical agents in the periphery, despite the central role played by NO/cGMP in learning and memory, and the substantial evidence that this signaling pathway is perturbed in neurodegenerative disorders, including Alzheimer's disease. The NO-chimeras, NMZ and Nitrosynapsin, have yielded beneficial and disease-modifying responses in multiple preclinical animal models, acting on GABAA and NMDA receptors, respectively, providing additional mechanisms of action relevant to synaptic and neuronal dysfunction. Several inhibitors of cGMP-specific phosphodiesterases (PDE) have replicated some of the actions of these NO-chimeras in the CNS. There is no evidence that nitrate tolerance is a phenomenon relevant to the CNS actions of NO-chimeras, and studies on nitroglycerin in the periphery continue to challenge the dogma of nitrate tolerance mechanisms. Hybrid nitrates have shown much promise in the periphery and CNS, but to date only one treatment has received FDA approval, for glaucoma. The potential for allosteric modulation of soluble guanylate cyclase (sGC) in brain disorders has not yet been fully explored nor exploited; whereas multiple applications of PDE inhibitors have been explored and many have stalled in clinical trials.
Collapse
Affiliation(s)
- Michael A Hollas
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Manel Ben Aissa
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Sue H Lee
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Jesse M Gordon-Blake
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Gregory R J Thatcher
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA.
| |
Collapse
|
13
|
Puncta of Neuronal Nitric Oxide Synthase (nNOS) Mediate NMDA Receptor Signaling in the Auditory Midbrain. J Neurosci 2018; 39:876-887. [PMID: 30530507 DOI: 10.1523/jneurosci.1918-18.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/01/2018] [Accepted: 11/26/2018] [Indexed: 12/22/2022] Open
Abstract
Nitric oxide (NO) is a neurotransmitter synthesized in the brain by neuronal nitric oxide synthase (nNOS). Using immunohistochemistry and confocal imaging in the inferior colliculus (IC, auditory midbrain) of the guinea pig (Cavia porcellus, male and female), we show that nNOS occurs in two distinct cellular distributions. We confirm that, in the cortices of the IC, a subset of neurons show cytoplasmic labeling for nNOS, whereas in the central nucleus (ICc), such neurons are not present. However, we demonstrate that all neurons in the ICc do in fact express nNOS in the form of discrete puncta found at the cell membrane. Our multi-labeling studies reveal that nNOS puncta form multiprotein complexes with NMDA receptors, soluble guanylyl cyclase (sGC), and PSD95. These complexes are found apposed to glutamatergic terminals, which is indicative of synaptic function. Interestingly, these glutamatergic terminals express both vesicular glutamate transporters 1 and 2 denoting a specific source of brainstem inputs. With in vivo electrophysiological recordings of multiunit activity in the ICc, we found that local application of NMDA enhances sound-driven activity in a concentration-dependent and reversible fashion. This response is abolished by blockade of nNOS or sGC, indicating that the NMDA effect is mediated solely via the NO and cGMP signaling pathway. This discovery of a ubiquitous, but highly localized, expression of nNOS throughout the ICc and demonstration of the dramatic influence of the NMDA activated NO pathway on sound-driven neuronal activity imply a key role for NO signaling in auditory processing.SIGNIFICANCE STATEMENT We show that neuronal nitric oxide synthase (nNOS), the enzyme that synthesizes nitric oxide (NO), occurs as puncta in apparently all neurons in the central nucleus of the inferior colliculus (ICc) in the auditory midbrain. Punctate nNOS appears at glutamatergic synapses in a complex with glutamate NMDA receptors (NMDA-Rs), soluble guanylyl cyclase (sGC, the NO receptor), and PSD95 (a protein that anchors receptors and enzymes at the postsynaptic density). We show that NMDA-R modulation of sound-driven activity in the ICc is solely mediated by activation of nNOS and sGC. The presence of nNOS throughout this sensory nucleus argues for a major role of NO in hearing. Furthermore, this punctate form of nNOS expression may exist and have gone unnoticed in other brain regions.
Collapse
|
14
|
Foncelle A, Mendes A, Jędrzejewska-Szmek J, Valtcheva S, Berry H, Blackwell KT, Venance L. Modulation of Spike-Timing Dependent Plasticity: Towards the Inclusion of a Third Factor in Computational Models. Front Comput Neurosci 2018; 12:49. [PMID: 30018546 PMCID: PMC6037788 DOI: 10.3389/fncom.2018.00049] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/06/2018] [Indexed: 11/13/2022] Open
Abstract
In spike-timing dependent plasticity (STDP) change in synaptic strength depends on the timing of pre- vs. postsynaptic spiking activity. Since STDP is in compliance with Hebb's postulate, it is considered one of the major mechanisms of memory storage and recall. STDP comprises a system of two coincidence detectors with N-methyl-D-aspartate receptor (NMDAR) activation often posited as one of the main components. Numerous studies have unveiled a third component of this coincidence detection system, namely neuromodulation and glia activity shaping STDP. Even though dopaminergic control of STDP has most often been reported, acetylcholine, noradrenaline, nitric oxide (NO), brain-derived neurotrophic factor (BDNF) or gamma-aminobutyric acid (GABA) also has been shown to effectively modulate STDP. Furthermore, it has been demonstrated that astrocytes, via the release or uptake of glutamate, gate STDP expression. At the most fundamental level, the timing properties of STDP are expected to depend on the spatiotemporal dynamics of the underlying signaling pathways. However in most cases, due to technical limitations experiments grant only indirect access to these pathways. Computational models carefully constrained by experiments, allow for a better qualitative understanding of the molecular basis of STDP and its regulation by neuromodulators. Recently, computational models of calcium dynamics and signaling pathway molecules have started to explore STDP emergence in ex and in vivo-like conditions. These models are expected to reproduce better at least part of the complex modulation of STDP as an emergent property of the underlying molecular pathways. Elucidation of the mechanisms underlying STDP modulation and its consequences on network dynamics is of critical importance and will allow better understanding of the major mechanisms of memory storage and recall both in health and disease.
Collapse
Affiliation(s)
- Alexandre Foncelle
- INRIA, Villeurbanne, France
- LIRIS UMR 5205 CNRS-INSA, University of Lyon, Villeurbanne, France
| | - Alexandre Mendes
- Dynamic and Pathophysiology of Neuronal Networks, Center for Interdisciplinary Research in Biology (CIRB), College de France, INSERM U1050, CNRS UMR7241, Labex Memolife, Paris, France
- University Pierre et Marie Curie, ED 158, Paris, France
| | | | - Silvana Valtcheva
- Dynamic and Pathophysiology of Neuronal Networks, Center for Interdisciplinary Research in Biology (CIRB), College de France, INSERM U1050, CNRS UMR7241, Labex Memolife, Paris, France
- University Pierre et Marie Curie, ED 158, Paris, France
| | - Hugues Berry
- INRIA, Villeurbanne, France
- LIRIS UMR 5205 CNRS-INSA, University of Lyon, Villeurbanne, France
| | - Kim T. Blackwell
- The Krasnow Institute for Advanced Studies, George Mason University, Fairfax, VA, United States
| | - Laurent Venance
- Dynamic and Pathophysiology of Neuronal Networks, Center for Interdisciplinary Research in Biology (CIRB), College de France, INSERM U1050, CNRS UMR7241, Labex Memolife, Paris, France
- University Pierre et Marie Curie, ED 158, Paris, France
| |
Collapse
|
15
|
Tropea D, Hardingham N, Millar K, Fox K. Mechanisms underlying the role of DISC1 in synaptic plasticity. J Physiol 2018; 596:2747-2771. [PMID: 30008190 PMCID: PMC6046077 DOI: 10.1113/jp274330] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/02/2018] [Indexed: 12/11/2022] Open
Abstract
Disrupted in schizophrenia 1 (DISC1) is an important hub protein, forming multimeric complexes by self-association and interacting with a large number of synaptic and cytoskeletal molecules. The synaptic location of DISC1 in the adult brain suggests a role in synaptic plasticity, and indeed, a number of studies have discovered synaptic plasticity impairments in a variety of different DISC1 mutants. This review explores the possibility that DISC1 is an important molecule for organizing proteins involved in synaptic plasticity and examines why mutations in DISC1 impair plasticity. It concentrates on DISC1's role in interacting with synaptic proteins, controlling dendritic structure and cellular trafficking of mRNA, synaptic vesicles and mitochondria. N-terminal directed mutations appear to impair synaptic plasticity through interactions with phosphodiesterase 4B (PDE4B) and hence protein kinase A (PKA)/GluA1 and PKA/cAMP response element-binding protein (CREB) signalling pathways, and affect spine structure through interactions with kalirin 7 (Kal-7) and Rac1. C-terminal directed mutations also impair plasticity possibly through altered interactions with lissencephaly protein 1 (LIS1) and nuclear distribution protein nudE-like 1 (NDEL1), thereby affecting developmental processes such as dendritic structure and spine maturation. Many of the same molecules involved in DISC1's cytoskeletal interactions are also involved in intracellular trafficking, raising the possibility that impairments in intracellular trafficking affect cytoskeletal development and vice versa. While the multiplicity of DISC1 protein interactions makes it difficult to pinpoint a single causal signalling pathway, we suggest that the immediate-term effects of N-terminal influences on GluA1, Rac1 and CREB, coupled with the developmental effects of C-terminal influences on trafficking and the cytoskeleton make up the two main branches of DISC1's effect on synaptic plasticity and dendritic spine stability.
Collapse
Affiliation(s)
- Daniela Tropea
- Neurospychiatric GeneticsTrinity Center for Health Sciences and Trinity College Institute of Neuroscience (TCIN)Trinity College DublinDublinIreland
| | - Neil Hardingham
- School of BiosciencesMuseum AvenueCardiff UniversityCardiffUK
| | - Kirsty Millar
- Centre for Genomic & Experimental MedicineMRC Institute of Genetics & Molecular MedicineWestern General HospitalUniversity of EdinburghCrewe RoadEdinburghUK
| | - Kevin Fox
- School of BiosciencesMuseum AvenueCardiff UniversityCardiffUK
| |
Collapse
|
16
|
Dachtler J, Fox K. Do cortical plasticity mechanisms differ between males and females? J Neurosci Res 2017; 95:518-526. [PMID: 27870449 PMCID: PMC5111614 DOI: 10.1002/jnr.23850] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/20/2016] [Accepted: 07/06/2016] [Indexed: 12/24/2022]
Abstract
The difference between male and female behavior and male and female susceptibility to a number of neuropsychiatric conditions is not controversial. From a biological perspective, one might expect to see at least some of these differences underpinned by identifiable physical differences in the brain. This Mini‐Review focuses on evidence that plasticity mechanisms differ between males and females and ask at what scale of organization the differences might exist, at the systems level, the circuits level, or the synaptic level. Emerging evidence suggests that plasticity differences may extend to the scale of synaptic mechanisms. In particular, the CaMKK, NOS1 and estrogen receptor pathways show sexual dimorphisms with implications for plasticity in the hippocampus and cerebral cortex. © 2016 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- James Dachtler
- Department of Psychology, Durham University, Durham, United Kingdom
| | - Kevin Fox
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
17
|
Glazewski S, Greenhill S, Fox K. Time-course and mechanisms of homeostatic plasticity in layers 2/3 and 5 of the barrel cortex. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160150. [PMID: 28093546 PMCID: PMC5247584 DOI: 10.1098/rstb.2016.0150] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2016] [Indexed: 11/12/2022] Open
Abstract
Recent studies have shown that ocular dominance plasticity in layer 2/3 of the visual cortex exhibits a form of homeostatic plasticity that is related to synaptic scaling and depends on TNFα. In this study, we tested whether a similar form of plasticity was present in layer 2/3 of the barrel cortex and, therefore, whether the mechanism was likely to be a general property of cortical neurons. We found that whisker deprivation could induce homeostatic plasticity in layer 2/3 of barrel cortex, but not in a mouse strain lacking synaptic scaling. The time-course of homeostatic plasticity in layer 2/3 was similar to that of L5 regular spiking (RS) neurons (L5RS), but slower than that of L5 intrinsic bursting (IB) neurons (L5IB). In layer 5, the strength of evoked whisker responses and ex vivo miniature excitatory post-synaptic currents (mEPSCs) amplitudes showed an identical time-course for homeostatic plasticity, implying that plasticity at excitatory synapses contacting layer 5 neurons is sufficient to explain the changes in evoked responses. Spontaneous firing rate also showed homeostatic behaviour for L5IB cells, but was absent for L5RS cells over the time-course studied. Spontaneous firing rate homeostasis was found to be independent of evoked response homeostasis suggesting that the two depend on different mechanisms.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity'.
Collapse
Affiliation(s)
| | - Stuart Greenhill
- School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
| | - Kevin Fox
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| |
Collapse
|
18
|
Zhou M, Greenhill S, Huang S, Silva TK, Sano Y, Wu S, Cai Y, Nagaoka Y, Sehgal M, Cai DJ, Lee YS, Fox K, Silva AJ. CCR5 is a suppressor for cortical plasticity and hippocampal learning and memory. eLife 2016; 5. [PMID: 27996938 PMCID: PMC5213777 DOI: 10.7554/elife.20985] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/19/2016] [Indexed: 11/13/2022] Open
Abstract
Although the role of CCR5 in immunity and in HIV infection has been studied widely, its role in neuronal plasticity, learning and memory is not understood. Here, we report that decreasing the function of CCR5 increases MAPK/CREB signaling, long-term potentiation (LTP), and hippocampus-dependent memory in mice, while neuronal CCR5 overexpression caused memory deficits. Decreasing CCR5 function in mouse barrel cortex also resulted in enhanced spike timing dependent plasticity and consequently, dramatically accelerated experience-dependent plasticity. These results suggest that CCR5 is a powerful suppressor for plasticity and memory, and CCR5 over-activation by viral proteins may contribute to HIV-associated cognitive deficits. Consistent with this hypothesis, the HIV V3 peptide caused LTP, signaling and memory deficits that were prevented by Ccr5 knockout or knockdown. Overall, our results demonstrate that CCR5 plays an important role in neuroplasticity, learning and memory, and indicate that CCR5 has a role in the cognitive deficits caused by HIV.
Collapse
Affiliation(s)
- Miou Zhou
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, United States
| | - Stuart Greenhill
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom.,School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Shan Huang
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, United States
| | - Tawnie K Silva
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, United States
| | - Yoshitake Sano
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, United States.,Department of Applied Biological Science, Tokyo University of Science, Chiba, Japan
| | - Shumin Wu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, United States
| | - Ying Cai
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, United States
| | - Yoshiko Nagaoka
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, United States
| | - Megha Sehgal
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, United States
| | - Denise J Cai
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, United States
| | - Yong-Seok Lee
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, United States.,Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kevin Fox
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Alcino J Silva
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, United States
| |
Collapse
|
19
|
Age-dependent changes in the glutamate-nitric oxide pathway in the hippocampus of the triple transgenic model of Alzheimer's disease: implications for neurometabolic regulation. Neurobiol Aging 2016; 46:84-95. [PMID: 27460153 DOI: 10.1016/j.neurobiolaging.2016.06.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 06/16/2016] [Accepted: 06/21/2016] [Indexed: 12/26/2022]
Abstract
Age-dependent changes in nitric oxide ((•)NO) concentration dynamics may play a significant role in both decaying synaptic and metabolic functions in Alzheimer's disease (AD). This neuromodulator acts presynaptically to increase vesicle release and glutamatergic transmission and also regulates mitochondrial function. Under conditions of altered intracellular redox environment, (•)NO may react and produce reactive species such as peroxynitrite. Using the triple transgenic mouse model of AD (3xTgAD), we investigated age-dependent changes in the glutamate-(•)NO axis in the hippocampus. Direct measurement of (•)NO concentration dynamics revealed a significant increase in N-methyl-D-aspartate type receptor-evoked peak (•)NO in the 3xTgAD model at an early age. Aging produced a decrease in peak (•)NO accompanied by significant decrease in production and decay rates in the transgenic model. Evaluation of energy metabolism revealed age-dependent decrease in basal oxygen consumption rate, a general decrease in mitochondrial oxidative phosphorylation parameters, and loss in mitochondrial sparing capacity in both genotypes. Finally, we observed age-dependent increase in 3-nitrotyrosine residues in the hippocampus, consistent with a putative shift in (•)NO bioactivity toward oxidative chemistry associated with neurotoxicity.
Collapse
|
20
|
Zhang P, Fu WY, Fu AKY, Ip NY. S-nitrosylation-dependent proteasomal degradation restrains Cdk5 activity to regulate hippocampal synaptic strength. Nat Commun 2015; 6:8665. [PMID: 26503494 PMCID: PMC4639907 DOI: 10.1038/ncomms9665] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 09/17/2015] [Indexed: 12/19/2022] Open
Abstract
Precise regulation of synaptic strength requires coordinated activity and functions of synaptic proteins, which is controlled by a variety of post-translational modification. Here we report that S-nitrosylation of p35, the activator of cyclin-dependent kinase 5 (Cdk5), by nitric oxide (NO) is important for the regulation of excitatory synaptic strength. While blockade of NO signalling results in structural and functional synaptic deficits as indicated by reduced mature dendritic spine density and surface expression of glutamate receptor subunits, phosphorylation of numerous synaptic substrates of Cdk5 and its activity are aberrantly upregulated following reduced NO production. The results show that the NO-induced reduction in Cdk5 activity is mediated by S-nitrosylation of p35, resulting in its ubiquitination and degradation by the E3 ligase PJA2. Silencing p35 protein in hippocampal neurons partially rescues the NO blockade-induced synaptic deficits. These findings collectively demonstrate that p35 S-nitrosylation by NO signalling is critical for regulating hippocampal synaptic strength. Phosphorylation of synaptic substrates by Cdk5 plays an essential role in synapse development. Here Zhang et al. reveal that S-nitrosylation of the activator of Cdk5, p35, by nitric oxide results in its degradation and reduced Cdk5 activity, leading to alterations in synaptic strength.
Collapse
Affiliation(s)
- Peng Zhang
- Divison of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China.,Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China.,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Wing-Yu Fu
- Divison of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China.,Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China.,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Amy K Y Fu
- Divison of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China.,Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China.,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Nancy Y Ip
- Divison of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China.,Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China.,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
21
|
Costa RP, Froemke RC, Sjöström PJ, van Rossum MCW. Unified pre- and postsynaptic long-term plasticity enables reliable and flexible learning. eLife 2015; 4:e09457. [PMID: 26308579 PMCID: PMC4584257 DOI: 10.7554/elife.09457] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/25/2015] [Indexed: 12/26/2022] Open
Abstract
Although it is well known that long-term synaptic plasticity can be expressed both pre- and postsynaptically, the functional consequences of this arrangement have remained elusive. We show that spike-timing-dependent plasticity with both pre- and postsynaptic expression develops receptive fields with reduced variability and improved discriminability compared to postsynaptic plasticity alone. These long-term modifications in receptive field statistics match recent sensory perception experiments. Moreover, learning with this form of plasticity leaves a hidden postsynaptic memory trace that enables fast relearning of previously stored information, providing a cellular substrate for memory savings. Our results reveal essential roles for presynaptic plasticity that are missed when only postsynaptic expression of long-term plasticity is considered, and suggest an experience-dependent distribution of pre- and postsynaptic strength changes.
Collapse
Affiliation(s)
- Rui Ponte Costa
- Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
- Neuroinformatics Doctoral Training Centre, School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
- The Research Institute of the McGill University Health Centre, Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, United Kingdom
| | - Robert C Froemke
- Skirball Institute for Biomolecular Medicine, Departments of Otolaryngology, Neuroscience and Physiology, New York University School of Medicine, New York, United States
- Center for Neural Science, New York University, New York, United States
| | - P Jesper Sjöström
- The Research Institute of the McGill University Health Centre, Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Mark CW van Rossum
- Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
22
|
Greenhill SD, Juczewski K, de Haan AM, Seaton G, Fox K, Hardingham NR. NEURODEVELOPMENT. Adult cortical plasticity depends on an early postnatal critical period. Science 2015; 349:424-7. [PMID: 26206934 DOI: 10.1126/science.aaa8481] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Development of the cerebral cortex is influenced by sensory experience during distinct phases of postnatal development known as critical periods. Disruption of experience during a critical period produces neurons that lack specificity for particular stimulus features, such as location in the somatosensory system. Synaptic plasticity is the agent by which sensory experience affects cortical development. Here, we describe, in mice, a developmental critical period that affects plasticity itself. Transient neonatal disruption of signaling via the C-terminal domain of "disrupted in schizophrenia 1" (DISC1)—a molecule implicated in psychiatric disorders—resulted in a lack of long-term potentiation (LTP) (persistent strengthening of synapses) and experience-dependent potentiation in adulthood. Long-term depression (LTD) (selective weakening of specific sets of synapses) and reversal of LTD were present, although impaired, in adolescence and absent in adulthood. These changes may form the basis for the cognitive deficits associated with mutations in DISC1 and the delayed onset of a range of psychiatric symptoms in late adolescence.
Collapse
Affiliation(s)
| | - Konrad Juczewski
- National Institute on Alcohol Abuse and Alcoholism, NIH, Rockville, MD 20852, USA
| | | | - Gillian Seaton
- School of Biosciences, Cardiff University, Cardiff, CF23 3AX, UK
| | - Kevin Fox
- School of Biosciences, Cardiff University, Cardiff, CF23 3AX, UK
| | | |
Collapse
|
23
|
Bing YH, Wu MC, Chu CP, Qiu DL. Facial stimulation induces long-term depression at cerebellar molecular layer interneuron-Purkinje cell synapses in vivo in mice. Front Cell Neurosci 2015; 9:214. [PMID: 26106296 PMCID: PMC4460530 DOI: 10.3389/fncel.2015.00214] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/20/2015] [Indexed: 12/03/2022] Open
Abstract
Cerebellar long-term synaptic plasticity has been proposed to provide a cellular mechanism for motor learning. Numerous studies have demonstrated the induction and mechanisms of synaptic plasticity at parallel fiber–Purkinje cell (PF–PC), parallel fiber–molecular layer interneurons (PF–MLI) and mossy fiber–granule cell (MF–GC) synapses, but no study has investigated sensory stimulation-evoked synaptic plasticity at MLI–PC synapses in the cerebellar cortex of living animals. We studied the expression and mechanism of MLI–PC GABAergic synaptic plasticity induced by a train of facial stimulation in urethane-anesthetized mice by cell-attached recordings and pharmacological methods. We found that 1 Hz, but not a 2 Hz or 4 Hz, facial stimulation induced a long-term depression (LTD) of GABAergic transmission at MLI–PC synapses, which was accompanied with a decrease in the stimulation-evoked pause of spike firing in PCs, but did not induce a significant change in the properties of the sensory-evoked spike events of MLIs. The MLI–PC GABAergic LTD could be prevented by blocking cannabinoid type 1 (CB1) receptors, and could be pharmacologically induced by a CB1 receptor agonist. Additionally, 1 Hz facial stimulation delivered in the presence of a metabotropic glutamate receptor 1 (mGluR1) antagonist, JNJ16259685, still induced the MLI–PC GABAergic LTD, whereas blocking N-methyl-D-aspartate (NMDA) receptors during 1 Hz facial stimulation abolished the expression of MLI–PC GABAergic LTD. These results indicate that sensory stimulation can induce an endocannabinoid (eCB)-dependent LTD of GABAergic transmission at MLI–PC synapses via activation of NMDA receptors in cerebellar cortical Crus II in vivo in mice. Our results suggest that the sensory stimulation-evoked MLI–PC GABAergic synaptic plasticity may play a critical role in motor learning in animals.
Collapse
Affiliation(s)
- Yan-Hua Bing
- Cellular Function Research Center, Yanbian University Yanji, Jilin Province, China ; Department of Physiology and Pathophysiology, College of Medicine, Yanbian University Yanji, Jilin Province, China
| | - Mao-Cheng Wu
- Cellular Function Research Center, Yanbian University Yanji, Jilin Province, China ; Department of Osteology, Affiliated Hospital of Yanbian University Yanji, Jilin Province, China
| | - Chun-Ping Chu
- Cellular Function Research Center, Yanbian University Yanji, Jilin Province, China
| | - De-Lai Qiu
- Cellular Function Research Center, Yanbian University Yanji, Jilin Province, China ; Department of Physiology and Pathophysiology, College of Medicine, Yanbian University Yanji, Jilin Province, China
| |
Collapse
|
24
|
Bradley SA, Steinert JR. Characterisation and comparison of temporal release profiles of nitric oxide generating donors. J Neurosci Methods 2015; 245:116-24. [PMID: 25749567 PMCID: PMC4401449 DOI: 10.1016/j.jneumeth.2015.02.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/19/2015] [Accepted: 02/20/2015] [Indexed: 01/11/2023]
Abstract
Nitric oxide release profiles were characterised for commonly used donors. Released NO differs greatly between donors and depends on storage conditions. High release donors (NOC-5, PAPA NONOate) decay quickly. SNP and GSNO show greater stability releasing consistent lower NO levels. This comprehensive characterisation provides knowledge to define NO concentrations released in vitro.
Background Nitric oxide (NO) is a vital signalling molecule in a variety of tissues including the neuronal, vascular and reproductive system. However, its high diffusibility and inactivation make characterisation of nitrergic signalling difficult. The use of NO donors is essential to characterise downstream signalling pathways but knowledge of donor release capacities is lacking, thus making comparisons of donor responses difficult. New method This study characterises NO profiles of commonly used NO donors. Donors were stored under defined conditions and temporal release profiles detected to allow determination of released NO concentrations. Results Using NO-sensitive microsensors we assessed release profiles of NO donors following different storage times and conditions. We found that donors such as NOC-5 and PAPA-NONOate decayed substantially within days, whereas SNP and GSNO showed greater stability releasing consistent levels of NO over days. In all donors tested, the amount of released NO differs between frozen and unfrozen stocks. Comparison with existing method(s) Fluorescent and amperometric approaches to measure NO concentrations yield a wide range of levels. However, due to a lack of characterisation of the release profiles, inconsistent effects on NO signalling have been widely documented. Our systematic assessment of release profiles of a range of NO donors therefore provides new essential data allowing for improved and defined investigations of nitrergic signalling. Conclusions This is the first systematic comparison of temporal release profiles of different NO donors allowing researchers to compare conditions across different studies and the use of defined NO levels by choosing specific donors and concentrations.
Collapse
Affiliation(s)
- Sophie A Bradley
- MRC Toxicology Unit, Hodgkin Building, University of Leicester, Leicester LE1 9HN, UK
| | - Joern R Steinert
- MRC Toxicology Unit, Hodgkin Building, University of Leicester, Leicester LE1 9HN, UK.
| |
Collapse
|
25
|
Ledo A, Lourenço CF, Caetano M, Barbosa RM, Laranjinha J. Age-associated changes of nitric oxide concentration dynamics in the central nervous system of Fisher 344 rats. Cell Mol Neurobiol 2015; 35:33-44. [PMID: 25274046 DOI: 10.1007/s10571-014-0115-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 09/17/2014] [Indexed: 01/25/2023]
Abstract
The increase in life expectancy is accompanied by an increased risk of developing neurodegenerative disorders and age is the most relevant risk factor for the appearance of cognitive decline. While decreased neuronal count has been proposed to be a major contributing factor to the appearance of age-associated cognitive decline, it appears to be insufficient to fully account for the decay in mental function in aged individuals. Nitric oxide ((•)NO) is a ubiquitous signaling molecule in the mammalian central nervous system. Closely linked to the activation of glutamatergic transmission in several structures of the brain, neuron-derived (•)NO can act as a neuromodulator in synaptic plasticity but has also been linked to neuronal toxicity and degenerative processes. Many studies have proposed that changes in the glutamate-(•)NO signaling pathway may be implicated in age-dependent cognitive decline and that the exact effect of such changes may be region specific. Due to its peculiar physical-chemical properties, namely hydrophobicity, small size, and rapid diffusion properties, the rate and pattern of (•)NO concentration changes are critical determinants for the understanding of its bioactivity in the brain. Here we show a detailed study of how (•)NO concentration dynamics change in the different regions of the brain of Fisher 344 rats (F344) during aging. Using microelectrodes inserted into the living brain of anesthetized F344 rats, we show here that glutamate-induced (•)NO concentration dynamics decrease in the hippocampus, striatum, and cerebral cortex as animals age. performance in behavior testing of short-term and spatial memory, suggesting that the impairment in the glutamate:nNOS pathway represents a functional critical event in cognitive decline during aging.
Collapse
Affiliation(s)
- Ana Ledo
- Center for Neuroscience and Cell Biology, Coimbra, Portugal
| | | | | | | | | |
Collapse
|
26
|
Borgquist A, Meza C, Wagner EJ. Role of neuronal nitric oxide synthase in the estrogenic attenuation of cannabinoid-induced changes in energy homeostasis. J Neurophysiol 2014; 113:904-14. [PMID: 25392169 DOI: 10.1152/jn.00615.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Since estradiol attenuates cannabinoid-induced increases in energy intake, energy expenditure, and transmission at proopiomelanocortin (POMC) synapses in the hypothalamic arcuate nucleus (ARC), we tested the hypothesis that neuronal nitric oxide synthase (nNOS) plays an integral role. To this end, whole animal experiments were carried out in gonadectomized female guinea pigs. Estradiol benzoate (EB; 10 μg sc) decreased incremental food intake as well as O2 consumption, CO2 production, and metabolic heat production as early as 2 h postadministration. This was associated with increased phosphorylation of nNOS (pnNOS), as evidenced by an elevated ratio of pnNOS to nNOS in the ARC. Administration of the cannabinoid receptor agonist WIN 55,212-2 (3 μg icv) into the third ventricle evoked hyperphagia as early as 1 h postadministration, which was blocked by EB and restored by the nonselective NOS inhibitor N-nitro-L-arginine methyl ester hydrochloride (L-NAME; 100 μg icv) when the latter was combined with the steroid. Whole cell patch-clamp recordings showed that 17β-estradiol (E2; 100 nM) rapidly diminished cannabinoid-induced decreases in miniature excitatory postsynaptic current frequency, which was mimicked by pretreatment with the NOS substrate L-arginine (30 μM) and abrogated by L-NAME (300 μM). Furthermore, E2 antagonized endocannabinoid-mediated depolarization-induced suppression of excitation, which was nullified by the nNOS-selective inhibitor N5-[imino(propylamino)methyl]-L-ornithine hydrochloride (10 μM). These effects occurred in a sizable number of identified POMC neurons. Taken together, the estradiol-induced decrease in energy intake is mediated by a decrease in cannabinoid sensitivity within the ARC feeding circuitry through the activation of nNOS. These findings provide compelling evidence for the need to develop rational, gender-specific therapies to help treat metabolic disorders such as cachexia and obesity.
Collapse
Affiliation(s)
- Amanda Borgquist
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, California
| | - Cecilia Meza
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, California
| | - Edward J Wagner
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, California
| |
Collapse
|
27
|
Kolarow R, Kuhlmann CRW, Munsch T, Zehendner C, Brigadski T, Luhmann HJ, Lessmann V. BDNF-induced nitric oxide signals in cultured rat hippocampal neurons: time course, mechanism of generation, and effect on neurotrophin secretion. Front Cell Neurosci 2014; 8:323. [PMID: 25426021 PMCID: PMC4224130 DOI: 10.3389/fncel.2014.00323] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 09/26/2014] [Indexed: 11/13/2022] Open
Abstract
BDNF and nitric oxide signaling both contribute to plasticity at glutamatergic synapses. However, the role of combined signaling of both pathways at the same synapse is largely unknown. Using NO imaging with diaminofluoresceine in cultured hippocampal neurons we analyzed the time course of neurotrophin-induced NO signals. Application of exogenous BDNF, NT-4, and NT-3 (but not NGF) induced NO signals in the soma and in proximal dendrites of hippocampal neurons that were sensitive to NO synthase activity, TrkB signaling, and intracellular calcium elevation. The effect of NO signaling on neurotrophin secretion was analyzed in BDNF-GFP, and NT-3-GFP transfected hippocampal neurons. Exogenous application of the NO donor sodium-nitroprusside markedly inhibited neurotrophin secretion. However, endogenously generated NO in response to depolarization and neurotrophin stimulation, both did not result in a negative feedback on neurotrophin secretion. These results suggest that a negative feedback of NO signaling on synaptic secretion of neurotrophins operates only at high intracellular levels of nitric oxide that are under physiological conditions not reached by depolarization or BDNF signaling.
Collapse
Affiliation(s)
- Richard Kolarow
- Medical Faculty, Institute of Physiology, Otto-von-Guericke-University Magdeburg, Germany ; University Medical Center, Institute of Physiology, Johannes Gutenberg-University Mainz Mainz, Germany
| | - Christoph R W Kuhlmann
- University Medical Center, Institute of Physiology, Johannes Gutenberg-University Mainz Mainz, Germany
| | - Thomas Munsch
- Medical Faculty, Institute of Physiology, Otto-von-Guericke-University Magdeburg, Germany
| | - Christoph Zehendner
- University Medical Center, Institute of Physiology, Johannes Gutenberg-University Mainz Mainz, Germany
| | - Tanja Brigadski
- Medical Faculty, Institute of Physiology, Otto-von-Guericke-University Magdeburg, Germany ; University Medical Center, Institute of Physiology, Johannes Gutenberg-University Mainz Mainz, Germany
| | - Heiko J Luhmann
- University Medical Center, Institute of Physiology, Johannes Gutenberg-University Mainz Mainz, Germany
| | - Volkmar Lessmann
- Medical Faculty, Institute of Physiology, Otto-von-Guericke-University Magdeburg, Germany ; University Medical Center, Institute of Physiology, Johannes Gutenberg-University Mainz Mainz, Germany
| |
Collapse
|
28
|
Mukherjee P, Cinelli MA, Kang S, Silverman RB. Development of nitric oxide synthase inhibitors for neurodegeneration and neuropathic pain. Chem Soc Rev 2014; 43:6814-38. [PMID: 24549364 PMCID: PMC4138306 DOI: 10.1039/c3cs60467e] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule in the human body, playing a crucial role in cell and neuronal communication, regulation of blood pressure, and in immune activation. However, overproduction of NO by the neuronal isoform of nitric oxide synthase (nNOS) is one of the fundamental causes underlying neurodegenerative disorders and neuropathic pain. Therefore, developing small molecules for selective inhibition of nNOS over related isoforms (eNOS and iNOS) is therapeutically desirable. The aims of this review focus on the regulation and dysregulation of NO signaling, the role of NO in neurodegeneration and pain, the structure and mechanism of nNOS, and the use of this information to design selective inhibitors of this enzyme. Structure-based drug design, the bioavailability and pharmacokinetics of these inhibitors, and extensive target validation through animal studies are addressed.
Collapse
Affiliation(s)
- Paramita Mukherjee
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | | | | | | |
Collapse
|
29
|
Lourenço J, Pacioni S, Rebola N, van Woerden GM, Marinelli S, DiGregorio D, Bacci A. Non-associative potentiation of perisomatic inhibition alters the temporal coding of neocortical layer 5 pyramidal neurons. PLoS Biol 2014; 12:e1001903. [PMID: 25003184 PMCID: PMC4086817 DOI: 10.1371/journal.pbio.1001903] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 05/30/2014] [Indexed: 11/19/2022] Open
Abstract
In the neocortex, the coexistence of temporally locked excitation and inhibition governs complex network activity underlying cognitive functions, and is believed to be altered in several brain diseases. Here we show that this equilibrium can be unlocked by increased activity of layer 5 pyramidal neurons of the mouse neocortex. Somatic depolarization or short bursts of action potentials of layer 5 pyramidal neurons induced a selective long-term potentiation of GABAergic synapses (LTPi) without affecting glutamatergic inputs. Remarkably, LTPi was selective for perisomatic inhibition from parvalbumin basket cells, leaving dendritic inhibition intact. It relied on retrograde signaling of nitric oxide, which persistently altered presynaptic GABA release and diffused to inhibitory synapses impinging on adjacent pyramidal neurons. LTPi reduced the time window of synaptic summation and increased the temporal precision of spike generation. Thus, increases in single cortical pyramidal neuron activity can induce an interneuron-selective GABAergic plasticity effectively altering the computation of temporally coded information.
Collapse
Affiliation(s)
- Joana Lourenço
- European Brain Research Institute, Rome, Italy
- Sorbonne Universités UPMC Univ. Paris 06, UMR S 1127, Paris, France
- Inserm U 1127, Paris, France
- CNRS UMR 7225, Paris, France
- ICM- Institut du Cerveau et de la Moelle épinière, Paris, France
- * E-mail: (J.L.); (A.B.)
| | | | - Nelson Rebola
- CNRS UMR 3571, Paris, France
- Institut Pasteur, Unit of Dynamic Neuronal Imaging, Paris, France
| | - Geeske M. van Woerden
- European Brain Research Institute, Rome, Italy
- Sorbonne Universités UPMC Univ. Paris 06, UMR S 1127, Paris, France
- Inserm U 1127, Paris, France
- CNRS UMR 7225, Paris, France
- ICM- Institut du Cerveau et de la Moelle épinière, Paris, France
| | | | - David DiGregorio
- CNRS UMR 3571, Paris, France
- Institut Pasteur, Unit of Dynamic Neuronal Imaging, Paris, France
| | - Alberto Bacci
- European Brain Research Institute, Rome, Italy
- Sorbonne Universités UPMC Univ. Paris 06, UMR S 1127, Paris, France
- Inserm U 1127, Paris, France
- CNRS UMR 7225, Paris, France
- ICM- Institut du Cerveau et de la Moelle épinière, Paris, France
- * E-mail: (J.L.); (A.B.)
| |
Collapse
|
30
|
Coomber B, Berger JI, Kowalkowski VL, Shackleton TM, Palmer AR, Wallace MN. Neural changes accompanying tinnitus following unilateral acoustic trauma in the guinea pig. Eur J Neurosci 2014; 40:2427-41. [PMID: 24702651 PMCID: PMC4215599 DOI: 10.1111/ejn.12580] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/03/2014] [Indexed: 12/31/2022]
Abstract
Animal models of tinnitus allow us to study the relationship between changes in neural activity and the tinnitus percept. Here, guinea pigs were subjected to unilateral noise trauma and tested behaviourally for tinnitus 8 weeks later. By comparing animals with tinnitus with those without, all of which were noise-exposed, we were able to identify changes unique to the tinnitus group. Three physiological markers known to change following noise exposure were examined: spontaneous firing rates (SFRs) and burst firing in the inferior colliculus (IC), evoked auditory brainstem responses (ABRs), and the number of neurons in the cochlear nucleus containing nitric oxide synthase (NOS). We obtained behavioural evidence of tinnitus in 12 of 16 (75%) animals. Both SFRs and incidences of burst firing were elevated in the IC of all noise-exposed animals, but there were no differences between tinnitus and no-tinnitus animals. There were significant decreases in ipsilateral ABR latencies in tinnitus animals, contrary to what might be expected with a small hearing loss. Furthermore, there was an ipsilateral-contralateral asymmetry in NOS staining in the ventral cochlear nucleus (VCN) that was only apparent in tinnitus animals. Tinnitus animals had a significantly greater number of NOS-containing neurons on the noise-exposed side, whereas no-tinnitus animals did not. These data suggest that measuring NOS in the VCN and recording ABRs supplement behavioural methods for confirming tinnitus in animals, and that nitric oxide is involved in plastic neural changes associated with tinnitus.
Collapse
Affiliation(s)
- Ben Coomber
- MRC Institute of Hearing Research, University Park, Nottingham, NG7 2RD, UK
| | | | | | | | | | | |
Collapse
|
31
|
Chu CP, Zhao GY, Jin R, Zhao SN, Sun L, Qiu DL. Properties of 4 Hz stimulation-induced parallel fiber-Purkinje cell presynaptic long-term plasticity in mouse cerebellar cortex in vivo. Eur J Neurosci 2014; 39:1624-31. [PMID: 24666426 DOI: 10.1111/ejn.12559] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 02/12/2014] [Accepted: 02/14/2014] [Indexed: 12/29/2022]
Abstract
Cerebellar parallel fiber-Purkinje cell (PF-PC) long-term synaptic plasticity is important for the formation and stability of cerebellar neuronal circuits, and provides substrates for motor learning and memory. We previously reported both presynaptic long-term potentiation (LTP) and long-term depression (LTD) in cerebellar PF-PC synapses in vitro. However, the expression and mechanisms of cerebellar PF-PC synaptic plasticity in the cerebellar cortex in vivo are poorly understood. In the present study, we studied the properties of 4 Hz stimulation-induced PF-PC presynaptic long-term plasticity using in vivo the whole-cell patch-clamp recording technique and pharmacological methods in urethane-anesthetised mice. Our results demonstrated that 4 Hz PF stimulation induced presynaptic LTD of PF-PC synaptic transmission in the intact cerebellar cortex in living mice. The PF-PC presynaptic LTD was attenuated by either the N-methyl-D-aspartate receptor antagonist, D-aminophosphonovaleric acid, or the group 1 metabotropic glutamate receptor antagonist, JNJ16259685, and was abolished by combined D-aminophosphonovaleric acid and JNJ16259685, but enhanced by inhibition of nitric oxide synthase. Blockade of cannabinoid type 1 receptor activity abolished the PF-PC LTD and revealed a presynaptic PF-PC LTP. These data indicate that both endocannabinoids and nitric oxide synthase are involved in the 4 Hz stimulation-induced PF-PC presynaptic plasticity, but the endocannabinoid-dependent PF-PC presynaptic LTD masked the nitric oxide-mediated PF-PC presynaptic LTP in the cerebellar cortex in urethane-anesthetised mice.
Collapse
Affiliation(s)
- Chun-Ping Chu
- Cellular Function Research Center, College of Medicine, Yanbian University, Yanji, Jilin Province, China
| | | | | | | | | | | |
Collapse
|
32
|
Nicholson E, Kullmann DM. Long-term potentiation in hippocampal oriens interneurons: postsynaptic induction, presynaptic expression and evaluation of candidate retrograde factors. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130133. [PMID: 24298136 PMCID: PMC3843866 DOI: 10.1098/rstb.2013.0133] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Several types of hippocampal interneurons exhibit a form of long-term potentiation (LTP) that depends on Ca2+-permeable AMPA receptors and group I metabotropic glutamate receptors. Several sources of evidence point to a presynaptic locus of LTP maintenance. The retrograde factor that triggers the expression of LTP remains unidentified. Here, we show that trains of action potentials in putative oriens-lacunosum-moleculare interneurons of the mouse CA1 region can induce long-lasting potentiation of stimulus-evoked excitatory postsynaptic currents that mimics LTP elicited by high-frequency afferent stimulation. We further report that blockers of nitric oxide production or TRPV1 receptors failed to prevent LTP induction. The present results add to the evidence that retrograde signalling underlies N-methyl-d-aspartate (NMDA) receptor-independent LTP in oriens interneurons, mediated by an unidentified factor.
Collapse
Affiliation(s)
- Elizabeth Nicholson
- UCL Institute of Neurology, University College London, , Queen Square, London WC1N 3BG, UK
| | | |
Collapse
|
33
|
Abstract
The thalamus integrates and transmits sensory information to the neocortex. The activity of thalamocortical relay (TC) cells is modulated by specific inhibitory circuits. Although this inhibition plays a crucial role in regulating thalamic activity, little is known about long-term changes in synaptic strength at these inhibitory synapses. Therefore, we studied long-term plasticity of inhibitory inputs to TC cells in the posterior medial nucleus of the thalamus by combining patch-clamp recordings with two-photon fluorescence microscopy in rat brain slices. We found that specific activity patterns in the postsynaptic TC cell induced inhibitory long-term potentiation (iLTP). This iLTP was non-Hebbian because it did not depend on the timing between presynaptic and postsynaptic activity, but it could be induced by postsynaptic burst activity alone. iLTP required postsynaptic dendritic Ca(2+) influx evoked by low-threshold Ca(2+) spikes. In contrast, tonic postsynaptic spiking from a depolarized membrane potential (-50 mV), which suppressed these low-threshold Ca(2+) spikes, induced no plasticity. The postsynaptic dendritic Ca(2+) increase triggered the synthesis of nitric oxide that retrogradely activated presynaptic guanylyl cyclase, resulting in the presynaptic expression of iLTP. The dependence of iLTP on the membrane potential and therefore on the postsynaptic discharge mode suggests that this form of iLTP might occur during sleep, when TC cells discharge in bursts. Therefore, iLTP might be involved in sleep state-dependent modulation of thalamic information processing and thalamic oscillations.
Collapse
|
34
|
Hardingham N, Dachtler J, Fox K. The role of nitric oxide in pre-synaptic plasticity and homeostasis. Front Cell Neurosci 2013; 7:190. [PMID: 24198758 PMCID: PMC3813972 DOI: 10.3389/fncel.2013.00190] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/05/2013] [Indexed: 11/13/2022] Open
Abstract
Since the observation that nitric oxide (NO) can act as an intercellular messenger in the brain, the past 25 years have witnessed the steady accumulation of evidence that it acts pre-synaptically at both glutamatergic and GABAergic synapses to alter release-probability in synaptic plasticity. NO does so by acting on the synaptic machinery involved in transmitter release and, in a coordinated fashion, on vesicular recycling mechanisms. In this review, we examine the body of evidence for NO acting as a retrograde factor at synapses, and the evidence from in vivo and in vitro studies that specifically establish NOS1 (neuronal nitric oxide synthase) as the important isoform of NO synthase in this process. The NOS1 isoform is found at two very different locations and at two different spatial scales both in the cortex and hippocampus. On the one hand it is located diffusely in the cytoplasm of a small population of GABAergic neurons and on the other hand the alpha isoform is located discretely at the post-synaptic density (PSD) in spines of pyramidal cells. The present evidence is that the number of NOS1 molecules that exist at the PSD are so low that a spine can only give rise to modest concentrations of NO and therefore only exert a very local action. The NO receptor guanylate cyclase is located both pre- and post-synaptically and this suggests a role for NO in the coordination of local pre- and post-synaptic function during plasticity at individual synapses. Recent evidence shows that NOS1 is also located post-synaptic to GABAergic synapses and plays a pre-synaptic role in GABAergic plasticity as well as glutamatergic plasticity. Studies on the function of NO in plasticity at the cellular level are corroborated by evidence that NO is also involved in experience-dependent plasticity in the cerebral cortex.
Collapse
Affiliation(s)
| | | | - Kevin Fox
- School of Biosciences, Cardiff UniversityCardiff, UK
| |
Collapse
|
35
|
Ranson A, Sengpiel F, Fox K. The role of GluA1 in ocular dominance plasticity in the mouse visual cortex. J Neurosci 2013; 33:15220-5. [PMID: 24048851 PMCID: PMC6618404 DOI: 10.1523/jneurosci.2078-13.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/13/2013] [Accepted: 08/14/2013] [Indexed: 11/21/2022] Open
Abstract
Ocular dominance plasticity is a widely studied model of experience-dependent cortical plasticity. It has been shown that potentiation of open eye responses resulting from monocular deprivation relies on a homeostatic response to loss of input from the closed eye, but the mechanisms by which this occurs are not fully understood. The role of GluA1 in the homeostatic component of ocular dominance (OD) plasticity has not so far been tested. In this study, we tested the idea that the GluA1 subunit of the AMPA receptor is necessary for open eye potentiation. We found that open eye potentiation did not occur in GluA1 knock-out (GluA1(-/-)) mice but did occur in wild-type littermates when monocular deprivation was imposed during the critical period. We also found that depression of the closed eye response that normally occurs in the monocular as well as binocular zone is delayed, but only in the monocular zone in GluA1(-/-) mice and only in a background strain we have previously shown lacks synaptic scaling (C57BL/6OlaHsd). In adult mice, we found that OD plasticity and facilitation of OD plasticity by prior monocular experience were both present in GluA1(-/-) mice, suggesting that the GluA1-dependent mechanisms only operate during the critical period.
Collapse
Affiliation(s)
- Adam Ranson
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | - Frank Sengpiel
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | - Kevin Fox
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| |
Collapse
|
36
|
Moreno A, Jego P, de la Cruz F, Canals S. Neurophysiological, metabolic and cellular compartments that drive neurovascular coupling and neuroimaging signals. FRONTIERS IN NEUROENERGETICS 2013; 5:3. [PMID: 23543907 PMCID: PMC3610078 DOI: 10.3389/fnene.2013.00003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 03/13/2013] [Indexed: 11/22/2022]
Abstract
Complete understanding of the mechanisms that coordinate work and energy supply of the brain, the so called neurovascular coupling, is fundamental to interpreting brain energetics and their influence on neuronal coding strategies, but also to interpreting signals obtained from brain imaging techniques such as functional magnetic resonance imaging. Interactions between neuronal activity and cerebral blood flow regulation are largely compartmentalized. First, there exists a functional compartmentalization in which glutamatergic peri-synaptic activity and its electrophysiological events occur in close proximity to vascular responses. Second, the metabolic processes that fuel peri-synaptic activity are partially segregated between glycolytic and oxidative compartments. Finally, there is cellular segregation between astrocytic and neuronal compartments, which has potentially important implications on neurovascular coupling. Experimental data is progressively showing a tight interaction between the products of energy consumption and neurotransmission-driven signaling molecules that regulate blood flow. Here, we review some of these issues in light of recent findings with special attention to the neuron-glia interplay on the generation of neuroimaging signals.
Collapse
Affiliation(s)
- Andrea Moreno
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel HernándezSan Juan de Alicante, Spain
| | - Pierrick Jego
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel HernándezSan Juan de Alicante, Spain
| | - Feliberto de la Cruz
- Centro de Estudios Avanzados de Cuba, Ministerio de Ciencia Tecnología y Medio AmbienteHabana, Cuba
| | - Santiago Canals
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel HernándezSan Juan de Alicante, Spain
| |
Collapse
|
37
|
Dachtler J, Hardingham NR, Fox K. The role of nitric oxide synthase in cortical plasticity is sex specific. J Neurosci 2012; 32:14994-9. [PMID: 23100421 PMCID: PMC3514831 DOI: 10.1523/jneurosci.3189-12.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/13/2012] [Accepted: 08/27/2012] [Indexed: 12/17/2022] Open
Abstract
Nitric oxide synthase-1 (NOS1) is involved in several forms of plasticity including hippocampal-dependent learning and memory, experience-dependent plasticity in the barrel cortex, and long-term potentiation (LTP) in the hippocampus and neocortex. NOS1 also contributes to ischemic damage during stroke and has a stronger deleterious effect in males than females. We therefore investigated whether the role of NOS1 in plasticity might also be sex specific. We tested LTP in the layer IV-II/III pathway between barrel columns and experience-dependent plasticity in the barrel cortex of αNOS1 knock-out mice and their wild-type littermates. We found that LTP was absent in male αNOS1 knock-out mice but not in females and that the residual LTP in females was not NO dependent. We also found that experience-dependent potentiation due to single whisker experience was significantly reduced in male αNOS1 knockouts but was unaffected in females. The αNOS1 knockout had a small effect on the development of the barrels, which were reduced in size by 20% compared with wild types, but this effect was not sex specific. We therefore conclude that neocortical plasticity mechanisms differ between males and females at the synaptic level, either in their basic plasticity induction pathways or in their ability to compensate for loss of αNOS1.
Collapse
Affiliation(s)
- James Dachtler
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | - Neil R. Hardingham
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | - Kevin Fox
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| |
Collapse
|
38
|
Jaglin XH, Hjerling-Leffler J, Fishell G, Batista-Brito R. The origin of neocortical nitric oxide synthase-expressing inhibitory neurons. Front Neural Circuits 2012; 6:44. [PMID: 22787442 PMCID: PMC3391688 DOI: 10.3389/fncir.2012.00044] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/20/2012] [Indexed: 01/08/2023] Open
Abstract
Inhibitory neurons are critical for regulating effective transfer of sensory information and network stability. The precision of inhibitory function likely derives from the existence of a variety of interneuron subtypes. Their specification is largely dependent on the locale of origin of interneuron progenitors. Neocortical and hippocampal inhibitory neurons originate the subpallium, namely in the medial and caudal ganglionic eminences (MGE and CGE), and in the preoptic area (POA). In the hippocampus, neuronal nitric oxide synthase (nNOS)-expressing cells constitute a numerically large GABAergic interneuron population. On the contrary, nNOS-expressing inhibitory neurons constitute the smallest of the known neocortical GABAergic neuronal subtypes. The origins of most neocortical GABAergic neuron subtypes have been thoroughly investigated, however, very little is known about the origin of, or the genetic programs underlying the development of nNOS neurons. Here, we show that the vast majority of neocortical nNOS-expressing neurons arise from the MGE rather than the CGE. Regarding their molecular signature, virtually all neocortical nNOS neurons co-express the neuropeptides somatostatin (SST) and neuropeptide Y (NPY), and about half of them express the calcium-binding protein calretinin (CR). nNOS neurons thus constitute a small cohort of the MGE-derived SST-expressing population of cortical inhibitory neurons. Finally, we show that conditional removal of the transcription factor Sox6 in MGE-derived GABAergic cortical neurons results in an absence of SST and CR expression, as well as reduced expression of nNOS in neocortical nNOS neurons. Based on their respective abundance, origin and molecular signature, our results suggest that neocortical and hippocampal nNOS GABAergic neurons likely subserve different functions and have very different physiological relevance in these two cortical structures.
Collapse
Affiliation(s)
- Xavier H Jaglin
- NYU Neuroscience Institute, New York University Langone Medical Center New York, NY, USA
| | | | | | | |
Collapse
|
39
|
Selcher JC, Xu W, Hanson JE, Malenka RC, Madison DV. Glutamate receptor subunit GluA1 is necessary for long-term potentiation and synapse unsilencing, but not long-term depression in mouse hippocampus. Brain Res 2011; 1435:8-14. [PMID: 22197030 DOI: 10.1016/j.brainres.2011.11.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 11/10/2011] [Accepted: 11/11/2011] [Indexed: 12/01/2022]
Abstract
Receptor subunit composition is believed to play a major role in the synaptic trafficking of AMPA receptors (AMPARs), and thus in activity-dependent synaptic plasticity. To isolate a physiological role of GluA1-containing AMPARs in area CA3 of the hippocampus, pair recordings were performed in organotypic hippocampal slices taken from genetically modified mice lacking the GluA1 subunit. We report here that long-term potentiation (LTP) is impaired not only at active but also at silent synapses when the GluA1 subunit is absent. The GluA1 knockout mice also exhibited reduced AMPAR-mediated evoked currents between pairs of CA3 pyramidal neurons under baseline conditions suggesting a significant role for GluA1-containing AMPARs in regulating basal synaptic transmission. In two independent measures, however, long-term depression (LTD) was unaffected in tissue from these mice. These data provide a further demonstration of the fundamental role that GluA1-containing AMPARs play in activity-dependent increases in synaptic strength but do not support a GluA1-dependent mechanism for reductions in synaptic strength.
Collapse
Affiliation(s)
- Joel C Selcher
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
40
|
Steinert JR, Robinson SW, Tong H, Haustein MD, Kopp-Scheinpflug C, Forsythe ID. Nitric oxide is an activity-dependent regulator of target neuron intrinsic excitability. Neuron 2011; 71:291-305. [PMID: 21791288 PMCID: PMC3245892 DOI: 10.1016/j.neuron.2011.05.037] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2011] [Indexed: 02/07/2023]
Abstract
Activity-dependent changes in synaptic strength are well established as mediating long-term plasticity underlying learning and memory, but modulation of target neuron excitability could complement changes in synaptic strength and regulate network activity. It is thought that homeostatic mechanisms match intrinsic excitability to the incoming synaptic drive, but evidence for involvement of voltage-gated conductances is sparse. Here, we show that glutamatergic synaptic activity modulates target neuron excitability and switches the basis of action potential repolarization from Kv3 to Kv2 potassium channel dominance, thereby adjusting neuronal signaling between low and high activity states, respectively. This nitric oxide-mediated signaling dramatically increases Kv2 currents in both the auditory brain stem and hippocampus (>3-fold) transforming synaptic integration and information transmission but with only modest changes in action potential waveform. We conclude that nitric oxide is a homeostatic regulator, tuning neuronal excitability to the recent history of excitatory synaptic inputs over intervals of minutes to hours.
Collapse
Affiliation(s)
- Joern R Steinert
- Neurotoxicity at the Synaptic Interface, MRC Toxicology Unit, Hodgkin Building, University of Leicester, Leicester LE1 9HN, UK
| | | | | | | | | | | |
Collapse
|
41
|
Verhoog MB, Mansvelder HD. Presynaptic ionotropic receptors controlling and modulating the rules for spike timing-dependent plasticity. Neural Plast 2011; 2011:870763. [PMID: 21941664 PMCID: PMC3173883 DOI: 10.1155/2011/870763] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 07/15/2011] [Indexed: 11/18/2022] Open
Abstract
Throughout life, activity-dependent changes in neuronal connection strength enable the brain to refine neural circuits and learn based on experience. In line with predictions made by Hebb, synapse strength can be modified depending on the millisecond timing of action potential firing (STDP). The sign of synaptic plasticity depends on the spike order of presynaptic and postsynaptic neurons. Ionotropic neurotransmitter receptors, such as NMDA receptors and nicotinic acetylcholine receptors, are intimately involved in setting the rules for synaptic strengthening and weakening. In addition, timing rules for STDP within synapses are not fixed. They can be altered by activation of ionotropic receptors located at, or close to, synapses. Here, we will highlight studies that uncovered how network actions control and modulate timing rules for STDP by activating presynaptic ionotropic receptors. Furthermore, we will discuss how interaction between different types of ionotropic receptors may create "timing" windows during which particular timing rules lead to synaptic changes.
Collapse
Affiliation(s)
- Matthijs B. Verhoog
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, VU University Amsterdam, Room C-440, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Huibert D. Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, VU University Amsterdam, Room C-440, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
42
|
Lee HK, Kirkwood A. AMPA receptor regulation during synaptic plasticity in hippocampus and neocortex. Semin Cell Dev Biol 2011; 22:514-20. [PMID: 21856433 DOI: 10.1016/j.semcdb.2011.06.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 06/16/2011] [Accepted: 06/21/2011] [Indexed: 11/16/2022]
Abstract
Discovery of long-term potentiation (LTP) in the dentate gyrus of the rabbit hippocampus by Bliss and Lømo opened up a whole new field to study activity-dependent long-term synaptic modifications in the brain. Since then hippocampal synapses have been a key model system to study the mechanisms of different forms of synaptic plasticity. At least for the postsynaptic forms of LTP and long-term depression (LTD), regulation of AMPA receptors (AMPARs) has emerged as a key mechanism. While many of the synaptic plasticity mechanisms uncovered in at the hippocampal synapses apply to synapses across diverse brain regions, there are differences in the mechanisms that often reveal the specific functional requirements of the brain area under study. Here we will review AMPAR regulation underlying synaptic plasticity in hippocampus and neocortex. The main focus of this review will be placed on postsynaptic forms of synaptic plasticity that impinge on the regulation of AMPARs using hippocampal CA1 and primary sensory cortices as examples. And through the comparison, we will highlight the key similarities and functional differences between the two synapses.
Collapse
Affiliation(s)
- Hey-Kyoung Lee
- Department of Biology, University of Maryland, College Park, MD 20742, United States.
| | | |
Collapse
|
43
|
Dachtler J, Hardingham NR, Glazewski S, Wright NF, Blain EJ, Fox K. Experience-dependent plasticity acts via GluR1 and a novel neuronal nitric oxide synthase-dependent synaptic mechanism in adult cortex. J Neurosci 2011; 31:11220-30. [PMID: 21813683 PMCID: PMC3508401 DOI: 10.1523/jneurosci.1590-11.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 04/21/2011] [Accepted: 06/08/2011] [Indexed: 01/20/2023] Open
Abstract
Synaptic plasticity directs development of the nervous system and is thought to underlie memory storage in adult animals. A great deal of our current understanding of the role of AMPA receptors in synaptic plasticity comes from studies on developing cortex and cell cultures. In the present study, we instead focus on plasticity in mature neurons in the neocortex of adult animals. We find that the glutamate receptor 1 (GluR1) subunit of the AMPA receptor is involved in experience-dependent plasticity in adult cortex in vivo and that it acts in addition to neuronal nitric oxide synthase (αNOS1), an enzyme that produces the rapid synaptic signaling molecule nitric oxide (NO). Potentiation of the spared whisker response, following single whisker experience, is ∼33% less in GluR1-null mutants than in wild types. We found that the remaining plasticity depended on αNOS1. Potentiation was reduced by >42% in the single αNOS1-null mutants and completely abolished in GluR1/αNOS1 double-knock-out mice. However, potentiation in GluR1/NOS3 double knock-outs occurred at similar levels to that seen in GluR1 single knock-outs. Synaptic plasticity in the layer IV to II/III pathway in vitro mirrored the results in vivo, in that LTP was present in GluR1/NOS3 double-knock-out mice but not in the GluR1/αNOS1 animals. While basal levels of NO in cortical slices depended on both αNOS1 and NOS3, NMDA receptor-dependent NO release only depended on αNOS1 and not on NOS3. These findings demonstrate that αNOS1 acts in concert with GluR1 to produce experience-dependent plasticity in the neocortex.
Collapse
Affiliation(s)
- James Dachtler
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | - Neil R. Hardingham
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | - Stanislaw Glazewski
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | - Nicholas F. Wright
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | - Emma J. Blain
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | - Kevin Fox
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| |
Collapse
|
44
|
Hardingham NR, Gould T, Fox K. Anatomical and sensory experiential determinants of synaptic plasticity in layer 2/3 pyramidal neurons of mouse barrel cortex. J Comp Neurol 2011; 519:2090-124. [PMID: 21452214 DOI: 10.1002/cne.22583] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A minority of layer 2/3 (L2/3) pyramidal neurons exhibit spike-timing-dependent long-term potentiation (LTP) in normally reared adolescent mice. To determine whether particular subtypes of L2/3 neurons have a greater capacity for LTP than others, we correlated the morphological and electrophysiological properties of L2/3 neurons with their ability to undergo LTP by using a spike-timing-dependent protocol applied via layer 4 inputs from the neighboring barrel column. No correlation was found between the incidence of LTP and the cell's electrophysiological properties, nor with their laminar or columnar location. However, in cortex of normal, undeprived mice, neurons that exhibited LTP had dendrites that extended farther horizontally than those that showed no plasticity, and this horizontal spread was due to off-axis apical dendrites. From a sample of reconstructed neurons, two-thirds of neurons' dendritic arborizations reached into at least one adjacent barrel column. We also tested whether this relationship persisted following a short period of whisker deprivation. The probability of inducing LTP increased from 33% in cortex of undeprived mice to 53% following 7 days of whisker deprivation, and the incidence of LTD with the same protocol decreased from 49% to 9%. In deprived cortex, neurons exhibiting LTP did not extend any farther horizontally than those that showed no plasticity. Whisker deprivation did not affect horizontal spread of dendrites nor dendritic structure in general but did produced an increase in spine density, both on basal and on apical dendrites, suggesting a possible substrate for the increased levels of LTP observed in deprived cortex.
Collapse
Affiliation(s)
- Neil R Hardingham
- Cardiff School of Bioscience, Cardiff University, Cardiff CF10 3AX, UK.
| | | | | |
Collapse
|
45
|
Dachtler J, Fox KD, Good MA. Gender specific requirement of GluR1 receptors in contextual conditioning but not spatial learning. Neurobiol Learn Mem 2011; 96:461-7. [PMID: 21810476 DOI: 10.1016/j.nlm.2011.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 07/12/2011] [Accepted: 07/15/2011] [Indexed: 12/13/2022]
Abstract
The GluR1 subunit of the AMPA receptor is required for hippocampal-dependent memory formation, emotional learning and synaptic plasticity. Recent work has shown that GluR1-independent synaptic plasticity is mediated by nitric oxide. Nitric oxide activity is influenced by estrogen. It is unknown whether this gender-dependent effect conveys a gender dimorphic requirement of GluR1 for learning. This hypothesis was tested in two behavioral paradigms. In Experiment 1, the retention of contextual fear conditioning was impaired in male but not female GluR1 knockout mice. In Experiment 2, GluR1 knockout mice made significantly more arm entry errors during acquisition of a radial-arm watermaze task. This deficit was independent of gender. These results indicate that some forms of learning are gender dimorphic in GluR1 knockout mice. The results are discussed with reference to task and gender-specific interactions between GluR1 receptor intracellular signalling pathways.
Collapse
Affiliation(s)
- James Dachtler
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF103AX, UK.
| | | | | |
Collapse
|
46
|
Lessmann V, Stroh-Kaffei S, Steinbrecher V, Edelmann E, Brigadski T, Kilb W, Luhmann HJ. The expression mechanism of the residual LTP in the CA1 region of BDNF k.o. mice is insensitive to NO synthase inhibition. Brain Res 2011; 1391:14-23. [PMID: 21458431 DOI: 10.1016/j.brainres.2011.03.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 03/23/2011] [Accepted: 03/24/2011] [Indexed: 01/22/2023]
Abstract
BDNF and nitric oxide signaling both contribute to long-term potentiation (LTP) at glutamatergic synapses, but to date, few studies analyzed the interaction of both signaling cascades in the same synaptic pathway. Here we addressed the question whether the residual LTP in the CA1 region of hippocampal slices from heterozygous BDNF knockout mice (BDNF⁺/⁻) is dependent on nitric oxide (NO) signaling. Extracellular recording of synaptic field potentials elicited by presynaptic Schaffer collateral stimulation was performed in the CA1 region of hippocampal slices of 4- to 6-week-old mice, and LTP was induced by a theta burst stimulation protocol. Application of the nitric oxide inhibitor L-NAME (200 μM) strongly inhibited LTP by 70% in wildtype animals. This inhibition of LTP was not a consequence of altered basal synaptic properties. In CA1 of BDNF⁺/⁻ mice, stimulated with the same theta burst protocol, LTP was reduced by 50% as compared to wildtype animals. This impairment in the expression of LTP in BDNF⁺/⁻ mice did not result from an increased synaptic fatigue. The residual LTP in BDNF⁺/⁻ was not further reduced by preincubation of slices with L-NAME. These results suggest that BDNF and NO share overlapping intracellular signaling cascades to mediate LTP in CA1, and part of their signaling cascades are most likely arranged consecutively in the signaling pathway mediating LTP.
Collapse
Affiliation(s)
- Volkmar Lessmann
- Institute of Physiology and Pathophysiology, University Medical Center Mainz, Johannes Gutenberg-University, Mainz, Germany.
| | | | | | | | | | | | | |
Collapse
|
47
|
Amitai Y. Physiologic role for "inducible" nitric oxide synthase: a new form of astrocytic-neuronal interface. Glia 2011; 58:1775-81. [PMID: 20737473 DOI: 10.1002/glia.21057] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Nitric oxide (NO) has been long recognized as an atypical neuronal messenger affecting excitatory synaptic transmission, but its cellular source has remained unresolved as the neuronal isoform of NO synthase (nNOS) in many brain regions is expressed only by small subsets of inhibitory neurons. It is generally believed that the glial NO-producing isoform (iNOS) is not expressed in the normal brain, but rather it undergoes a transcription-mediated up-regulation following an immunological challenge. Therefore, the involvement of iNOS in modulating normal neuronal functions has been largely ignored. Here I review evidence to the contrary: I summarize data pointing to the existence of a functioning iNOS in normal undisturbed mammalian brains, and experimental results tracing this expression to astrocytes. Finally, I review recent findings asserting that iNOS-dependent NO modulates synaptic release from presynaptic terminals. Based on these data, I propose that astrocytes express basal levels of iNOS. Flanking synaptic elements, astrocytes are perfectly positioned to release NO and affect synaptic transmission.
Collapse
Affiliation(s)
- Yael Amitai
- Department of Physiology and Neurobiology, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel.
| |
Collapse
|
48
|
Steinert JR, Chernova T, Forsythe ID. Nitric oxide signaling in brain function, dysfunction, and dementia. Neuroscientist 2011; 16:435-52. [PMID: 20817920 DOI: 10.1177/1073858410366481] [Citation(s) in RCA: 320] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nitric oxide (NO) is an important signaling molecule that is widely used in the nervous system. With recognition of its roles in synaptic plasticity (long-term potentiation, LTP; long-term depression, LTD) and elucidation of calcium-dependent, NMDAR-mediated activation of neuronal nitric oxide synthase (nNOS), numerous molecular and pharmacological tools have been used to explore the physiology and pathological consequences for nitrergic signaling. In this review, the authors summarize the current understanding of this subtle signaling pathway, discuss the evidence for nitrergic modulation of ion channels and homeostatic modulation of intrinsic excitability, and speculate about the pathological consequences of spillover between different nitrergic compartments in contributing to aberrant signaling in neurodegenerative disorders. Accumulating evidence points to various ion channels and particularly voltage-gated potassium channels as signaling targets, whereby NO mediates activity-dependent control of intrinsic neuronal excitability; such changes could underlie broader mechanisms of synaptic plasticity across neuronal networks. In addition, the inability to constrain NO diffusion suggests that spillover from endothelium (eNOS) and/or immune compartments (iNOS) into the nervous system provides potential pathological sources of NO and where control failure in these other systems could have broader neurological implications. Abnormal NO signaling could therefore contribute to a variety of neurodegenerative pathologies such as stroke/excitotoxicity, Alzheimer's disease, multiple sclerosis, and Parkinson's disease.
Collapse
Affiliation(s)
- Joern R Steinert
- Neurotoxicity at the Synaptic Interface, MRC Toxicology Unit, University of Leicester, Leicester, UK
| | | | | |
Collapse
|
49
|
Zhang Z, Sun QQ. The balance between excitation and inhibition and functional sensory processing in the somatosensory cortex. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 97:305-33. [PMID: 21708316 DOI: 10.1016/b978-0-12-385198-7.00012-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The balance between excitation and inhibition (E/I balance) is tightly regulated in adult cortices to maintain proper nervous system function. Disturbed E/I balance is associated with numerous neuropsychological disorders, such as autism, epilepsy and schizophrenia. The present review will discuss aspects of Hebbian and homeostatic mechanisms regulating excitatory and inhibitory balance related to sensory processing in somatosensory cortex of rodents. Additionally, changes in the E/I balance during sensory manipulation will be discussed.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| | | |
Collapse
|
50
|
Currás-Collazo MC. Nitric oxide signaling as a common target of organohalogens and other neuroendocrine disruptors. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2011; 14:495-536. [PMID: 21790323 DOI: 10.1080/10937404.2011.578564] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Organohalogen compounds such as polychlorinated biphenyls (PCB) and polybrominated diphenyl ethers (PBDE) are global environmental pollutants and highly persistent, bioaccumulative chemicals that produce adverse effects in humans and wildlife. Because of the widespread use of these organohalogens in household items and consumer products, indoor contamination is a significant source of human exposure, especially for children. One significant concern with regard to health effects associated with exposure to organohalogens is endocrine disruption. Toxicological studies on organohalogen pollutants primarily focused on sex steroid and thyroid hormone actions, and findings have largely shaped the way one envisions their disruptive effects occurring. Organohalogens exert additional effects on other systems including other complex endocrine systems that may be disregulated at various levels of organization. Over the last 20 years evidence has mounted in favor of a critical role of nitric oxide (NO) in numerous functions ranging from neuroendocrine functions to learning and memory. With its participation in multiple systems and action at several levels of integration, NO signaling has a pervasive influence on nervous and endocrine functions. Like blockers of NO synthesis, PCBs and PBDEs produce multifaceted effects on physiological systems. Based on this unique set of converging information it is proposed that organohalogen actions occur, in part, by hijacking processes associated with this ubiquitous bioactive molecule. The current review examines the emerging evidence for NO involvement in selected organohalogen actions and includes recent progress from our laboratory that adds to our current understanding of the actions of organohalogens within hypothalamic neuroendocrine circuits. The thyroid, vasopressin, and reproductive systems as well as processes associated with long-term potentiation were selected as sample targets of organohalogens that rely on regulation by NO. Information is provided about other toxicants with demonstrated interference of NO signaling. Our focus on the convergence between NO system and organohalogen toxicity offers a novel approach to understanding endocrine and neuroendocrine disruption that is particularly problematic for developing organisms. This new working model is proposed as a way to encourage future study in elucidating common mechanisms of action that are selected with a better operational understanding of the systems affected.
Collapse
Affiliation(s)
- Margarita C Currás-Collazo
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, California 92521, USA.
| |
Collapse
|