1
|
Kunnath AJ, Gifford RH, Wallace MT. Cholinergic modulation of sensory perception and plasticity. Neurosci Biobehav Rev 2023; 152:105323. [PMID: 37467908 PMCID: PMC10424559 DOI: 10.1016/j.neubiorev.2023.105323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
Sensory systems are highly plastic, but the mechanisms of sensory plasticity remain unclear. People with vision or hearing loss demonstrate significant neural network reorganization that promotes adaptive changes in other sensory modalities as well as in their ability to combine information across the different senses (i.e., multisensory integration. Furthermore, sensory network remodeling is necessary for sensory restoration after a period of sensory deprivation. Acetylcholine is a powerful regulator of sensory plasticity, and studies suggest that cholinergic medications may improve visual and auditory abilities by facilitating sensory network plasticity. There are currently no approved therapeutics for sensory loss that target neuroplasticity. This review explores the systems-level effects of cholinergic signaling on human visual and auditory perception, with a focus on functional performance, sensory disorders, and neural activity. Understanding the role of acetylcholine in sensory plasticity will be essential for developing targeted treatments for sensory restoration.
Collapse
Affiliation(s)
- Ansley J Kunnath
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA; Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - René H Gifford
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mark T Wallace
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Psychology, Vanderbilt University, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
2
|
Hassani S, Neumann A, Russell J, Jones C, Womelsdorf T. M 1-selective muscarinic allosteric modulation enhances cognitive flexibility and effective salience in nonhuman primates. Proc Natl Acad Sci U S A 2023; 120:e2216792120. [PMID: 37104474 PMCID: PMC10161096 DOI: 10.1073/pnas.2216792120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 03/21/2023] [Indexed: 04/28/2023] Open
Abstract
Acetylcholine (ACh) in cortical neural circuits mediates how selective attention is sustained in the presence of distractors and how flexible cognition adjusts to changing task demands. The cognitive domains of attention and cognitive flexibility might be differentially supported by the M1 muscarinic acetylcholine receptor (mAChR) subtype. Understanding how M1 mAChR mechanisms support these cognitive subdomains is of highest importance for advancing novel drug treatments for conditions with altered attention and reduced cognitive control including Alzheimer's disease or schizophrenia. Here, we tested this question by assessing how the subtype-selective M1 mAChR positive allosteric modulator (PAM) VU0453595 affects visual search and flexible reward learning in nonhuman primates. We found that allosteric potentiation of M1 mAChRs enhanced flexible learning performance by improving extradimensional set shifting, reducing latent inhibition from previously experienced distractors and reducing response perseveration in the absence of adverse side effects. These procognitive effects occurred in the absence of apparent changes of attentional performance during visual search. In contrast, nonselective ACh modulation using the acetylcholinesterase inhibitor (AChEI) donepezil improved attention during visual search at doses that did not alter cognitive flexibility and that already triggered gastrointestinal cholinergic side effects. These findings illustrate that M1 mAChR positive allosteric modulation enhances cognitive flexibility without affecting attentional filtering of distraction, consistent with M1 activity boosting the effective salience of relevant over irrelevant objects specifically during learning. These results suggest that M1 PAMs are versatile compounds for enhancing cognitive flexibility in disorders spanning schizophrenia and Alzheimer's diseases.
Collapse
Affiliation(s)
- Seyed A. Hassani
- Department of Psychology, Vanderbilt University, Nashville, TN37240
| | - Adam Neumann
- Department of Psychology, Vanderbilt University, Nashville, TN37240
| | - Jason Russell
- Department of Pharmacology, Vanderbilt University, Nashville, TN37240
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN37240
| | - Carrie K. Jones
- Department of Pharmacology, Vanderbilt University, Nashville, TN37240
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN37240
| | - Thilo Womelsdorf
- Department of Psychology, Vanderbilt University, Nashville, TN37240
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN37240
| |
Collapse
|
3
|
Cammarata C, De Rosa ED. Interaction of cholinergic disruption and age on cognitive flexibility in rats. Exp Brain Res 2022; 240:2989-2997. [PMID: 36198843 PMCID: PMC9587929 DOI: 10.1007/s00221-022-06472-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/25/2022] [Indexed: 01/24/2023]
Abstract
Healthy aging is associated with a functional reduction of the basal forebrain (BF) system that supplies the neurochemical acetylcholine (ACh) to the cortex, and concomitant challenges to cognition. It remains unclear how aging and ACh loss interact to shape cognition in the aging brain. We used a proactive interference (PI) odor discrimination task, shown to depend on the BF in young adults, wherein rats acquired new associations that conflicted with past learning or associations that did not conflict. This manipulation allowed independent assessment of encoding alone vs. encoding in the face of interference. Adult (9.8 ± 1.3 months) or aged male Long-Evans rats (20.7 ± 0.5 months) completed the PI task with systemic administration of a muscarinic cholinergic antagonist, scopolamine, or a pharmacological control. Aged rats were less able to resolve PI than adult rats. Moreover, while scopolamine reduced efficient PI resolution in adult rats, this cholinergic antagonism had no additional effect on aged rat performance, counter to our expectation that scopolamine would further increase perseveration in the aged group. Scopolamine did not impair encoding of non-interfering associations regardless of age. These data suggest that natural aging changes the effect of cholinergic pharmacology on encoding efficiency when past learning interferes.
Collapse
Affiliation(s)
- Celine Cammarata
- Department of Psychology, Cornell University, Ithaca, NY 14853 USA ,Human Neuroscience Institute, Cornell University, Ithaca, NY 14853 USA ,Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710 USA
| | - Eve D. De Rosa
- Department of Psychology, Cornell University, Ithaca, NY 14853 USA ,Human Neuroscience Institute, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
4
|
Martinez JL, Zammit MD, West NR, Christian BT, Bhattacharyya A. Basal Forebrain Cholinergic Neurons: Linking Down Syndrome and Alzheimer's Disease. Front Aging Neurosci 2021; 13:703876. [PMID: 34322015 PMCID: PMC8311593 DOI: 10.3389/fnagi.2021.703876] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/17/2021] [Indexed: 12/31/2022] Open
Abstract
Down syndrome (DS, trisomy 21) is characterized by intellectual impairment at birth and Alzheimer's disease (AD) pathology in middle age. As individuals with DS age, their cognitive functions decline as they develop AD pathology. The susceptibility to degeneration of a subset of neurons, known as basal forebrain cholinergic neurons (BFCNs), in DS and AD is a critical link between cognitive impairment and neurodegeneration in both disorders. BFCNs are the primary source of cholinergic innervation to the cerebral cortex and hippocampus, as well as the amygdala. They play a critical role in the processing of information related to cognitive function and are directly engaged in regulating circuits of attention and memory throughout the lifespan. Given the importance of BFCNs in attention and memory, it is not surprising that these neurons contribute to dysfunctional neuronal circuitry in DS and are vulnerable in adults with DS and AD, where their degeneration leads to memory loss and disturbance in language. BFCNs are thus a relevant cell target for therapeutics for both DS and AD but, despite some success, efforts in this area have waned. There are gaps in our knowledge of BFCN vulnerability that preclude our ability to effectively design interventions. Here, we review the role of BFCN function and degeneration in AD and DS and identify under-studied aspects of BFCN biology. The current gaps in BFCN relevant imaging studies, therapeutics, and human models limit our insight into the mechanistic vulnerability of BFCNs in individuals with DS and AD.
Collapse
Affiliation(s)
- Jose L. Martinez
- Cellular and Molecular Biology Graduate Program, University of Wisconsin, Madison, WI, United States
- Waisman Center, University of Wisconsin, Madison, WI, United States
| | - Matthew D. Zammit
- Waisman Center, University of Wisconsin, Madison, WI, United States
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Nicole R. West
- Cellular and Molecular Biology Graduate Program, University of Wisconsin, Madison, WI, United States
- Waisman Center, University of Wisconsin, Madison, WI, United States
| | - Bradley T. Christian
- Waisman Center, University of Wisconsin, Madison, WI, United States
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
- Department of Psychiatry, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin, Madison, WI, United States
- Department of Cellular and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
5
|
Chen Q, Wu S, Li X, Sun Y, Chen W, Lu J, Zhang W, Liu J, Qing Z, Nedelska Z, Hort J, Zhang X, Zhang B. Basal Forebrain Atrophy Is Associated With Allocentric Navigation Deficits in Subjective Cognitive Decline. Front Aging Neurosci 2021; 13:596025. [PMID: 33658916 PMCID: PMC7917187 DOI: 10.3389/fnagi.2021.596025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/27/2021] [Indexed: 01/21/2023] Open
Abstract
Individuals with subjective cognitive decline (SCD) are at higher risk of incipient Alzheimer's disease (AD). Spatial navigation (SN) impairments in AD dementia and mild cognitive impairment patients have been well-documented; however, studies investigating SN deficits in SCD subjects are still lacking. This study aimed to explore whether basal forebrain (BF) and entorhinal cortex (EC) atrophy contribute to spatial disorientation in the SCD stage. In total, 31 SCD subjects and 24 normal controls were enrolled and administered cognitive scales, a 2-dimensional computerized SN test, and structural magnetic resonance imaging (MRI) scanning. We computed the differences in navigation distance errors and volumes of BF subfields, EC, and hippocampus between the SCD and control groups. The correlations between MRI volumetry and navigation distance errors were also calculated. Compared with the controls, the SCD subjects performed worse in both egocentric and allocentric navigation. The SCD group showed volume reductions in the whole BF (p < 0.05, uncorrected) and the Ch4p subfield (p < 0.05, Bonferroni corrected), but comparable EC and hippocampal volumes with the controls. In the SCD cohort, the allocentric errors were negatively correlated with total BF (r = −0.625, p < 0.001), Ch4p (r = −0.625, p < 0.001), total EC (r = −0.423, p = 0.031), and left EC volumes (r = −0.442, p = 0.024), adjusting for age, gender, years of education, total intracranial volume, and hippocampal volume. This study demonstrates that SN deficits and BF atrophy may be promising indicators for the early detection of incipient AD patients. The reduced BF volume, especially in the Ch4p subfield, may serve as a structural basis for allocentric disorientation in SCD subjects independent of hippocampal atrophy. Our findings may have further implications for the preclinical diagnosis and intervention for potential AD patients.
Collapse
Affiliation(s)
- Qian Chen
- Department of Radiology, Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Sichu Wu
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xin Li
- Department of Radiology, Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Yi Sun
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wenqian Chen
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jiaming Lu
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wen Zhang
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jiani Liu
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhao Qing
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Institute of Brain Science, Nanjing University, Nanjing, China
| | - Zuzana Nedelska
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Jakub Hort
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Xin Zhang
- Department of Radiology, Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China.,Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Bing Zhang
- Department of Radiology, Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China.,Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Institute of Brain Science, Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Fernández-Cabello S, Kronbichler M, Van Dijk KRA, Goodman JA, Spreng RN, Schmitz TW. Basal forebrain volume reliably predicts the cortical spread of Alzheimer's degeneration. Brain 2020; 143:993-1009. [PMID: 32203580 PMCID: PMC7092749 DOI: 10.1093/brain/awaa012] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/21/2019] [Accepted: 12/04/2019] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease neurodegeneration is thought to spread across anatomically and functionally connected brain regions. However, the precise sequence of spread remains ambiguous. The prevailing model used to guide in vivo human neuroimaging and non-human animal research assumes that Alzheimer's degeneration starts in the entorhinal cortices, before spreading to the temporoparietal cortex. Challenging this model, we previously provided evidence that in vivo markers of neurodegeneration within the nucleus basalis of Meynert (NbM), a subregion of the basal forebrain heavily populated by cortically projecting cholinergic neurons, precedes and predicts entorhinal degeneration. There have been few systematic attempts at directly comparing staging models using in vivo longitudinal biomarker data, and none to our knowledge testing if comparative evidence generalizes across independent samples. Here we addressed the sequence of pathological staging in Alzheimer's disease using two independent samples of the Alzheimer's Disease Neuroimaging Initiative (n1 = 284; n2 = 553) with harmonized CSF assays of amyloid-β and hyperphosphorylated tau (pTau), and longitudinal structural MRI data over 2 years. We derived measures of grey matter degeneration in a priori NbM and the entorhinal cortical regions of interest. To examine the spreading of degeneration, we used a predictive modelling strategy that tests whether baseline grey matter volume in a seed region accounts for longitudinal change in a target region. We demonstrated that predictive spread favoured the NbM→entorhinal over the entorhinal→NbM model. This evidence generalized across the independent samples. We also showed that CSF concentrations of pTau/amyloid-β moderated the observed predictive relationship, consistent with evidence in rodent models of an underlying trans-synaptic mechanism of pathophysiological spread. The moderating effect of CSF was robust to additional factors, including clinical diagnosis. We then applied our predictive modelling strategy to an exploratory whole-brain voxel-wise analysis to examine the spatial specificity of the NbM→entorhinal model. We found that smaller baseline NbM volumes predicted greater degeneration in localized regions of the entorhinal and perirhinal cortices. By contrast, smaller baseline entorhinal volumes predicted degeneration in the medial temporal cortex, recapitulating a prior influential staging model. Our findings suggest that degeneration of the basal forebrain cholinergic projection system is a robust and reliable upstream event of entorhinal and neocortical degeneration, calling into question a prevailing view of Alzheimer's disease pathogenesis.
Collapse
Affiliation(s)
- Sara Fernández-Cabello
- Department of Psychology, University of Salzburg, Salzburg, Austria
- Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Martin Kronbichler
- Department of Psychology, University of Salzburg, Salzburg, Austria
- Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
- Neuroscience Institute, Christian-Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria
| | - Koene R A Van Dijk
- Clinical and Translational Imaging, Early Clinical Development, Pfizer Inc, Cambridge, MA, USA
| | - James A Goodman
- Clinical and Translational Imaging, Early Clinical Development, Pfizer Inc, Cambridge, MA, USA
| | - R Nathan Spreng
- Laboratory of Brain and Cognition, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Departments of Psychiatry and Psychology, McGill University, Montreal, QC, Canada
- Douglas Mental Health University Institute, Verdun, QC, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada
| | - Taylor W Schmitz
- Brain and Mind Institute, Western University, London, ON, Canada
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | | |
Collapse
|
7
|
Abstract
The central cholinergic system is one of the most important modulator neurotransmitter system implicated in diverse behavioral processes. Activation of the basal forebrain cortical cholinergic input system represents a critical step in cortical information processing. This chapter explores recent developments illustrating cortical cholinergic transmission mediate defined cognitive operations, which is contrary to the traditional view that acetylcholine acts as a slowly acting neuromodulator that influences arousal cortex-wide. Specifically, we review the evidence that phasic cholinergic signaling in the prefrontal cortex is a causal mediator of signal detection. In addition, studies that support the neuromodulatory role of cholinergic inputs in top-down attentional control are summarized. Finally, we review new findings that reveal sex differences and hormonal regulation of the cholinergic-attention system.
Collapse
Affiliation(s)
- Vinay Parikh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, USA.
| | - Debra A Bangasser
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, USA
| |
Collapse
|
8
|
Complex visual analysis of ecologically relevant signals in Siamese fighting fish. Anim Cogn 2019; 23:41-53. [DOI: 10.1007/s10071-019-01313-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 09/03/2019] [Accepted: 09/24/2019] [Indexed: 12/27/2022]
|
9
|
Sarter M, Lustig C. Cholinergic double duty: cue detection and attentional control. Curr Opin Psychol 2019; 29:102-107. [PMID: 30711909 DOI: 10.1016/j.copsyc.2018.12.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/26/2018] [Accepted: 12/31/2018] [Indexed: 02/08/2023]
Abstract
Cholinergic signaling in the cortex involves fast or transient signaling as well as a relatively slower neuromodulatory component. These two components of cholinergic activity mediate separate yet interacting aspects of cue detection and attentional control. The transient component appears to support the activation of cue-associated task or response sets, whereas the slower modulatory component stabilizes task-set and context representations, therefore potentially facilitating top-down control. Evidence from humans expressing genetic variants of the choline transporter as well as from patients with degenerating cholinergic systems supports the hypothesis that attentional control capacities depend on levels of cholinergic neuromodulation. Deficits in cholinergic-attentional control impact diverse cognitive functions, including timing, working memory, and complex movement control.
Collapse
Affiliation(s)
- Martin Sarter
- Department of Psychology and Neuroscience Program, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Cindy Lustig
- Department of Psychology and Neuroscience Program, University of Michigan, Ann Arbor, MI 48109, United States
| |
Collapse
|
10
|
Segregation of the human basal forebrain using resting state functional MRI. Neuroimage 2018; 173:287-297. [DOI: 10.1016/j.neuroimage.2018.02.042] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/19/2018] [Accepted: 02/21/2018] [Indexed: 12/11/2022] Open
|
11
|
Ljubojevic V, Luu P, Gill PR, Beckett LA, Takehara-Nishiuchi K, De Rosa E. Cholinergic Modulation of Frontoparietal Cortical Network Dynamics Supporting Supramodal Attention. J Neurosci 2018; 38:3988-4005. [PMID: 29572433 PMCID: PMC6705925 DOI: 10.1523/jneurosci.2350-17.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 02/24/2018] [Accepted: 03/13/2018] [Indexed: 12/29/2022] Open
Abstract
A critical function of attention is to support a state of readiness to enhance stimulus detection, independent of stimulus modality. The nucleus basalis magnocellularis (NBM) is the major source of the neurochemical acetylcholine (ACh) for frontoparietal cortical networks thought to support attention. We examined a potential supramodal role of ACh in a frontoparietal cortical attentional network supporting target detection. We recorded local field potentials (LFPs) in the prelimbic frontal cortex (PFC) and the posterior parietal cortex (PPC) to assess whether ACh contributed to a state of readiness to alert rats to an impending presentation of visual or olfactory targets in one of five locations. Twenty male Long-Evans rats underwent training and then lesions of the NBM using the selective cholinergic immunotoxin 192 IgG-saporin (0.3 μg/μl; ACh-NBM-lesion) to reduce cholinergic afferentation of the cortical mantle. Postsurgery, ACh-NBM-lesioned rats had less correct responses and more omissions than sham-lesioned rats, which changed parametrically as we increased the attentional demands of the task with decreased target duration. This parametric deficit was found equally for both sensory targets. Accurate detection of visual and olfactory targets was associated specifically with increased LFP coherence, in the beta range, between the PFC and PPC, and with increased beta power in the PPC before the target's appearance in sham-lesioned rats. Readiness-associated changes in brain activity and visual and olfactory target detection were attenuated in the ACh-NBM-lesioned group. Accordingly, ACh may support supramodal attention via modulating activity in a frontoparietal cortical network, orchestrating a state of readiness to enhance target detection.SIGNIFICANCE STATEMENT We examined whether the neurochemical acetylcholine (ACh) contributes to a state of readiness for target detection, by engaging frontoparietal cortical attentional networks independent of modality. We show that ACh supported alerting attention to an impending presentation of either visual or olfactory targets. Using local field potentials, enhanced stimulus detection was associated with an anticipatory increase in power in the beta oscillation range before the target's appearance within the posterior parietal cortex (PPC) as well as increased synchrony, also in beta, between the prefrontal cortex and PPC. These readiness-associated changes in brain activity and behavior were attenuated in rats with reduced cortical ACh. Thus, ACh may act, in a supramodal manner, to prepare frontoparietal cortical attentional networks for target detection.
Collapse
Affiliation(s)
| | - Paul Luu
- Department of Pharmacology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | - Lee-Anne Beckett
- Department of Psychology, University of Toronto, Toronto, Ontario M5S 3G3, Canada, and
| | | | - Eve De Rosa
- Department of Human Development and Human Neuroscience Institute, Cornell University, Ithaca, New York 14853
| |
Collapse
|
12
|
Grossberg S. Acetylcholine Neuromodulation in Normal and Abnormal Learning and Memory: Vigilance Control in Waking, Sleep, Autism, Amnesia and Alzheimer's Disease. Front Neural Circuits 2017; 11:82. [PMID: 29163063 PMCID: PMC5673653 DOI: 10.3389/fncir.2017.00082] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/12/2017] [Indexed: 01/30/2023] Open
Abstract
Adaptive Resonance Theory, or ART, is a neural model that explains how normal and abnormal brains may learn to categorize and recognize objects and events in a changing world, and how these learned categories may be remembered for a long time. This article uses ART to propose and unify the explanation of diverse data about normal and abnormal modulation of learning and memory by acetylcholine (ACh). In ART, vigilance control determines whether learned categories will be general and abstract, or specific and concrete. ART models how vigilance may be regulated by ACh release in layer 5 neocortical cells by influencing after-hyperpolarization (AHP) currents. This phasic ACh release is mediated by cells in the nucleus basalis (NB) of Meynert that are activated by unexpected events. The article additionally discusses data about ACh-mediated tonic control of vigilance. ART proposes that there are often dynamic breakdowns of tonic control in mental disorders such as autism, where vigilance remains high, and medial temporal amnesia, where vigilance remains low. Tonic control also occurs during sleep-wake cycles. Properties of Up and Down states during slow wave sleep arise in ACh-modulated laminar cortical ART circuits that carry out processes in awake individuals of contrast normalization, attentional modulation, decision-making, activity-dependent habituation, and mismatch-mediated reset. These slow wave sleep circuits interact with circuits that control circadian rhythms and memory consolidation. Tonic control properties also clarify how Alzheimer's disease symptoms follow from a massive structural degeneration that includes undermining vigilance control by ACh in cortical layers 3 and 5. Sleep disruptions before and during Alzheimer's disease, and how they contribute to a vicious cycle of plaque formation in layers 3 and 5, are also clarified from this perspective.
Collapse
Affiliation(s)
- Stephen Grossberg
- Center for Adaptive Systems, Graduate Program in Cognitive and Neural Systems, Departments of Mathematics & Statistics, Psychological & Brain Sciences and Biomedical Engineering, Boston University, Boston, MA, United States
| |
Collapse
|
13
|
Pitchers KK, Phillips KB, Jones JL, Robinson TE, Sarter M. Diverse Roads to Relapse: A Discriminative Cue Signaling Cocaine Availability Is More Effective in Renewing Cocaine Seeking in Goal Trackers Than Sign Trackers and Depends on Basal Forebrain Cholinergic Activity. J Neurosci 2017; 37:7198-7208. [PMID: 28659281 PMCID: PMC5546399 DOI: 10.1523/jneurosci.0990-17.2017] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/10/2017] [Accepted: 06/16/2017] [Indexed: 12/21/2022] Open
Abstract
Stimuli associated with taking drugs are notorious instigators of relapse. There is, however, considerable variation in the motivational properties of such stimuli, both as a function of the individual and the nature of the stimulus. The behavior of some individuals (sign trackers, STs) is especially influenced by cues paired with reward delivery, perhaps because they are prone to process information via dopamine-dependent, cue-driven, incentive salience systems. Other individuals (goal trackers, GTs) are better able to incorporate higher-order contextual information, perhaps because of better executive/attentional control over behavior, which requires frontal cortical cholinergic activity. We hypothesized, therefore, that a cue that "sets the occasion" for drug taking (a discriminative stimulus, DS) would reinstate cocaine seeking more readily in GTs than STs and that this would require intact cholinergic neurotransmission. To test this, male STs and GTs were trained to self-administer cocaine using an intermittent access schedule with periods of cocaine availability and unavailability signaled by a DS+ and a DS-, respectively. Thereafter, half of the rats received an immunotoxic lesion that destroyed 40-50% of basal forebrain cholinergic neurons and later, after extinction training, were tested for the ability of noncontingent presentations of the DS+ to reinstate cocaine seeking behavior. The DS+ was much more effective in reinstating cocaine seeking in GTs than STs and this effect was abolished by cholinergic losses despite the fact that all rats continued to orient to the DS+ We conclude that vulnerability to relapse involves interactions between individual cognitive-motivational biases and the form of the drug cue encountered.SIGNIFICANCE STATEMENT The most predictable outcome of a diagnosis of addiction is a high chance for relapse. When addicts encounter cues previously associated with drug, their attention may be unduly attracted to such cues and these cues can evoke motivational states that instigate and maintain drug-seeking behavior. Although sign-tracking rats were previously demonstrated to exhibit greater relapse vulnerability to Pavlovian drug cues paired with drug delivery, here, we demonstrate that their counterparts, the goal trackers, are more vulnerable if the drug cue acts to signal drug availability and that the forebrain cholinergic system mediates such vulnerability. Given the importance of contextual cues for triggering relapse and the human cognitive-cholinergic capacity for the processing of such cues, goal trackers model essential aspects of relapse vulnerability.
Collapse
Affiliation(s)
- Kyle K Pitchers
- Department of Psychology and Neuroscience Program, University of Michigan, Ann Arbor, Michigan 48109
| | - Kyra B Phillips
- Department of Psychology and Neuroscience Program, University of Michigan, Ann Arbor, Michigan 48109
| | - Jonte L Jones
- Department of Psychology and Neuroscience Program, University of Michigan, Ann Arbor, Michigan 48109
| | - Terry E Robinson
- Department of Psychology and Neuroscience Program, University of Michigan, Ann Arbor, Michigan 48109
| | - Martin Sarter
- Department of Psychology and Neuroscience Program, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
14
|
Affiliation(s)
- Daniel R. Kowal
- Department of Statistical Science, Cornell University, Ithaca, NY
| | | | - David Ruppert
- Department of Statistical Science, Cornell University, Ithaca, NY
- School of Operations Research and Information Engineering, Cornell University, Ithaca, NY
| |
Collapse
|
15
|
Grossberg S, Palma J, Versace M. Resonant Cholinergic Dynamics in Cognitive and Motor Decision-Making: Attention, Category Learning, and Choice in Neocortex, Superior Colliculus, and Optic Tectum. Front Neurosci 2016; 9:501. [PMID: 26834535 PMCID: PMC4718999 DOI: 10.3389/fnins.2015.00501] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/18/2015] [Indexed: 12/20/2022] Open
Abstract
Freely behaving organisms need to rapidly calibrate their perceptual, cognitive, and motor decisions based on continuously changing environmental conditions. These plastic changes include sharpening or broadening of cognitive and motor attention and learning to match the behavioral demands that are imposed by changing environmental statistics. This article proposes that a shared circuit design for such flexible decision-making is used in specific cognitive and motor circuits, and that both types of circuits use acetylcholine to modulate choice selectivity. Such task-sensitive control is proposed to control thalamocortical choice of the critical features that are cognitively attended and that are incorporated through learning into prototypes of visual recognition categories. A cholinergically-modulated process of vigilance control determines if a recognition category and its attended features are abstract (low vigilance) or concrete (high vigilance). Homologous neural mechanisms of cholinergic modulation are proposed to focus attention and learn a multimodal map within the deeper layers of superior colliculus. This map enables visual, auditory, and planned movement commands to compete for attention, leading to selection of a winning position that controls where the next saccadic eye movement will go. Such map learning may be viewed as a kind of attentive motor category learning. The article hereby explicates a link between attention, learning, and cholinergic modulation during decision making within both cognitive and motor systems. Homologs between the mammalian superior colliculus and the avian optic tectum lead to predictions about how multimodal map learning may occur in the mammalian and avian brain and how such learning may be modulated by acetycholine.
Collapse
Affiliation(s)
- Stephen Grossberg
- Graduate Program in Cognitive and Neural Systems, Boston UniversityBoston, MA, USA
- Center for Adaptive Systems, Boston UniversityBoston, MA, USA
- Departments of Mathematics, Psychology, and Biomedical Engineering, Boston UniversityBoston, MA, USA
- Center for Computational Neuroscience and Neural Technology, Boston UniversityBoston, MA, USA
| | - Jesse Palma
- Center for Computational Neuroscience and Neural Technology, Boston UniversityBoston, MA, USA
| | - Massimiliano Versace
- Graduate Program in Cognitive and Neural Systems, Boston UniversityBoston, MA, USA
- Center for Computational Neuroscience and Neural Technology, Boston UniversityBoston, MA, USA
| |
Collapse
|
16
|
Abstract
The cortical cholinergic input system has been described as a neuromodulator system that influences broadly defined behavioral and brain states. The discovery of phasic, trial-based increases in extracellular choline (transients), resulting from the hydrolysis of newly released acetylcholine (ACh), in the cortex of animals reporting the presence of cues suggests that ACh may have a more specialized role in cognitive processes. Here we expressed channelrhodopsin or halorhodopsin in basal forebrain cholinergic neurons of mice with optic fibers directed into this region and prefrontal cortex. Cholinergic transients, evoked in accordance with photostimulation parameters determined in vivo, were generated in mice performing a task necessitating the reporting of cue and noncue events. Generating cholinergic transients in conjunction with cues enhanced cue detection rates. Moreover, generating transients in noncued trials, where cholinergic transients normally are not observed, increased the number of invalid claims for cues. Enhancing hits and generating false alarms both scaled with stimulation intensity. Suppression of endogenous cholinergic activity during cued trials reduced hit rates. Cholinergic transients may be essential for synchronizing cortical neuronal output driven by salient cues and executing cue-guided responses.
Collapse
|
17
|
Kerbler GM, Nedelska Z, Fripp J, Laczó J, Vyhnalek M, Lisý J, Hamlin AS, Rose S, Hort J, Coulson EJ. Basal Forebrain Atrophy Contributes to Allocentric Navigation Impairment in Alzheimer's Disease Patients. Front Aging Neurosci 2015; 7:185. [PMID: 26441643 PMCID: PMC4585346 DOI: 10.3389/fnagi.2015.00185] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/14/2015] [Indexed: 01/28/2023] Open
Abstract
The basal forebrain degenerates in Alzheimer’s disease (AD) and this process is believed to contribute to the cognitive decline observed in AD patients. Impairment in spatial navigation is an early feature of the disease but whether basal forebrain dysfunction in AD is responsible for the impaired navigation skills of AD patients is not known. Our objective was to investigate the relationship between basal forebrain volume and performance in real space as well as computer-based navigation paradigms in an elderly cohort comprising cognitively normal controls, subjects with amnestic mild cognitive impairment and those with AD. We also tested whether basal forebrain volume could predict the participants’ ability to perform allocentric- vs. egocentric-based navigation tasks. The basal forebrain volume was calculated from 1.5 T magnetic resonance imaging (MRI) scans, and navigation skills were assessed using the human analog of the Morris water maze employing allocentric, egocentric, and mixed allo/egocentric real space as well as computerized tests. When considering the entire sample, we found that basal forebrain volume correlated with spatial accuracy in allocentric (cued) and mixed allo/egocentric navigation tasks but not the egocentric (uncued) task, demonstrating an important role of the basal forebrain in mediating cue-based spatial navigation capacity. Regression analysis revealed that, although hippocampal volume reflected navigation performance across the entire sample, basal forebrain volume contributed to mixed allo/egocentric navigation performance in the AD group, whereas hippocampal volume did not. This suggests that atrophy of the basal forebrain contributes to aspects of navigation impairment in AD that are independent of hippocampal atrophy.
Collapse
Affiliation(s)
- Georg M Kerbler
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland , Brisbane, QLD , Australia
| | - Zuzana Nedelska
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital , Prague , Czech Republic ; International Clinical Research Center, St. Anne's University Hospital Brno , Brno , Czech Republic
| | - Jurgen Fripp
- Computational Informatics, Commonwealth Scientific and Industrial Research Organisation , Brisbane, QLD , Australia
| | - Jan Laczó
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital , Prague , Czech Republic ; International Clinical Research Center, St. Anne's University Hospital Brno , Brno , Czech Republic
| | - Martin Vyhnalek
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital , Prague , Czech Republic ; International Clinical Research Center, St. Anne's University Hospital Brno , Brno , Czech Republic
| | - Jiří Lisý
- Department of Radiology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital , Prague , Czech Republic
| | - Adam S Hamlin
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland , Brisbane, QLD , Australia
| | - Stephen Rose
- Computational Informatics, Commonwealth Scientific and Industrial Research Organisation , Brisbane, QLD , Australia
| | - Jakub Hort
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital , Prague , Czech Republic ; International Clinical Research Center, St. Anne's University Hospital Brno , Brno , Czech Republic
| | - Elizabeth J Coulson
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland , Brisbane, QLD , Australia
| |
Collapse
|
18
|
Jacklin DL, Kelly P, Bianchi C, MacDonald T, Traquair H, Winters BD. Evidence for a specific role for muscarinic receptors in crossmodal object recognition in rats. Neurobiol Learn Mem 2015; 118:125-32. [DOI: 10.1016/j.nlm.2014.11.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 11/06/2014] [Accepted: 11/24/2014] [Indexed: 11/24/2022]
|
19
|
Abstract
Cholinergic mechanisms have long been considered a promising target for enhancing cognitive functions. Two distinct yet interacting components of cholinergic activity have been proposed to mediate specific cognitive functions. Transient spikes in cholinergic activity mediate the detection of cues in situations involving attentional mode shifts. More slowly changing cholinergic neuromodulation of cortical circuitry regulates task compliance specifically in response to performance challenges. Increases in cholinergic neuromodulation enhances the generation of cholinergic transients via stimulation of α4β2* nicotinic acetylcholine receptors. Stimulation of these receptors stabilizes attentional performance and increases cue detection rates. Adjunctive treatment with agonists or modulators at these receptors is predicted to benefit unstable attentional performance and low cue detection rates that are common to several brain disorders.
Collapse
|
20
|
The neural bases of crossmodal object recognition in non-human primates and rodents: a review. Behav Brain Res 2014; 285:118-30. [PMID: 25286314 DOI: 10.1016/j.bbr.2014.09.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 12/13/2022]
Abstract
The ability to integrate information from different sensory modalities to form unique multisensory object representations is a highly adaptive cognitive function. Surprisingly, non-human animal studies of the neural substrates of this form of multisensory integration have been somewhat sparse until very recently, and this may be due in part to a relative paucity of viable testing methods. Here we review the historical development and use of various "crossmodal" cognition tasks for non-human primates and rodents, focusing on tests of "crossmodal object recognition", the ability to recognize an object across sensory modalities. Such procedures have great potential to elucidate the cognitive and neural bases of object representation as it pertains to perception and memory. Indeed, these studies have revealed roles in crossmodal cognition for various brain regions (e.g., prefrontal and temporal cortices) and neurochemical systems (e.g., acetylcholine). A recent increase in behavioral and physiological studies of crossmodal cognition in rodents augurs well for the future of this research area, which should provide essential information about the basic mechanisms of object representation in the brain, in addition to fostering a better understanding of the causes of, and potential treatments for, cognitive deficits in human diseases characterized by atypical multisensory integration.
Collapse
|
21
|
Rosa Salva O, Sovrano VA, Vallortigara G. What can fish brains tell us about visual perception? Front Neural Circuits 2014; 8:119. [PMID: 25324728 PMCID: PMC4179623 DOI: 10.3389/fncir.2014.00119] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/09/2014] [Indexed: 12/26/2022] Open
Abstract
Fish are a complex taxonomic group, whose diversity and distance from other vertebrates well suits the comparative investigation of brain and behavior: in fish species we observe substantial differences with respect to the telencephalic organization of other vertebrates and an astonishing variety in the development and complexity of pallial structures. We will concentrate on the contribution of research on fish behavioral biology for the understanding of the evolution of the visual system. We shall review evidence concerning perceptual effects that reflect fundamental principles of the visual system functioning, highlighting the similarities and differences between distant fish groups and with other vertebrates. We will focus on perceptual effects reflecting some of the main tasks that the visual system must attain. In particular, we will deal with subjective contours and optical illusions, invariance effects, second order motion and biological motion and, finally, perceptual binding of object properties in a unified higher level representation.
Collapse
Affiliation(s)
- Orsola Rosa Salva
- Center for Mind/Brain Sciences, University of TrentoRovereto, Trento, Italy
| | - Valeria Anna Sovrano
- Center for Mind/Brain Sciences, University of TrentoRovereto, Trento, Italy
- Dipartimento di Psicologia e Scienze Cognitive, University of TrentoRovereto, Trento, Italy
| | - Giorgio Vallortigara
- Center for Mind/Brain Sciences, University of TrentoRovereto, Trento, Italy
- Dipartimento di Psicologia e Scienze Cognitive, University of TrentoRovereto, Trento, Italy
| |
Collapse
|
22
|
Where attention falls: Increased risk of falls from the converging impact of cortical cholinergic and midbrain dopamine loss on striatal function. Exp Neurol 2014; 257:120-9. [PMID: 24805070 DOI: 10.1016/j.expneurol.2014.04.032] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 04/25/2014] [Accepted: 04/29/2014] [Indexed: 12/13/2022]
Abstract
Falls are a major source of hospitalization, long-term institutionalization, and death in older adults and patients with Parkinson's disease (PD). Limited attentional resources are a major risk factor for falls. In this review, we specify cognitive-behavioral mechanisms that produce falls and map these mechanisms onto a model of multi-system degeneration. Results from PET studies in PD fallers and findings from a recently developed animal model support the hypothesis that falls result from interactions between loss of basal forebrain cholinergic projections to the cortex and striatal dopamine loss. Striatal dopamine loss produces inefficient, low-vigor gait, posture control, and movement. Cortical cholinergic deafferentation impairs a wide range of attentional processes, including monitoring of gait, posture and complex movements. Cholinergic cell loss reveals the full impact of striatal dopamine loss on motor performance, reflecting loss of compensatory attentional supervision of movement. Dysregulation of dorsomedial striatal circuitry is an essential, albeit not exclusive, mediator of falls in this dual-system model. Because cholinergic neuromodulatory activity influences cortical circuitry primarily via stimulation of α4β2* nicotinic acetylcholine receptors, and because agonists at these receptors are known to benefit attentional processes in animals and humans, treating PD fallers with such agonists, as an adjunct to dopaminergic treatment, is predicted to reduce falls. Falls are an informative behavioral endpoint to study attentional-motor integration by striatal circuitry.
Collapse
|
23
|
Abstract
Cholinergic neurotransmission has been shown to play an important role in modulating attentional processing of visual stimuli. However, it is not yet clear whether the neurochemical acetylcholine (ACh) is necessary exclusively for visual attention, or if it also contributes to attentional functions through some modality-independent (supramodal) mechanism. To answer this question, we examined the effects of reduced cortical cholinergic afferentation on both a traditional visual and a novel olfactory five-choice serial reaction time task (5-CSRTT), the benchmark rodent test of sustained attention in rats. Following the successful acquisition of both modalities of the task, the rats underwent either a cholinergic immunotoxic- or sham-lesion surgery of the nucleus basalis magnocellularis (NBM), the basal forebrain nuclei that provide the majority of neocortical ACh. Reduced cholinergic afferentation to the neocortex was induced by bilaterally infusing the cholinergic immunotoxin 192 IgG-saporin into the NBM. After surgery, ACh-NBM-lesioned rats performed comparably to sham-lesioned rats under the conditions of low attentional demand, but displayed behavioral decrements relative to the sham-lesioned rats when the attentional demands of the task were increased. Moreover, this decrement in attentional functioning correlated significantly with the number of choline acetyltransferase-immunoreactive cells in the NBM. Importantly, the nature of this behavioral decrement was identical in the visual and olfactory 5-CSRTTs. Together, these data suggest the presence of a supramodal attentional modulatory cortical network whose activity is dependent on cholinergic innervation from the NBM.
Collapse
|
24
|
Sarter M, Lustig C, Howe WM, Gritton H, Berry AS. Deterministic functions of cortical acetylcholine. Eur J Neurosci 2014; 39:1912-20. [PMID: 24593677 DOI: 10.1111/ejn.12515] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/11/2014] [Accepted: 01/14/2014] [Indexed: 12/13/2022]
Abstract
Traditional descriptions of the basal forebrain cholinergic projection system to the cortex have focused on neuromodulatory influences, that is, mechanisms that modulate cortical information processing but are not necessary for mediating discrete behavioral responses and cognitive operations. This review summarises and conceptualises the evidence in support of more deterministic contributions of cholinergic projections to cortical information processing. Through presynaptic receptors expressed on cholinergic terminals, thalamocortical and corticocortical projections can evoke brief cholinergic release events. These acetylcholine (ACh) release events occur on a fast, sub-second to seconds-long time scale ('transients'). In rats performing a task requiring the detection of cues as well as the report of non-cue events cholinergic transients mediate the detection of cues specifically in trials that involve a shift from a state of monitoring for cues to cue-directed responding. Accordingly, ill-timed cholinergic transients, generated using optogenetic methods, force false detections in trials without cues. We propose that the evidence is consistent with the hypothesis that cholinergic transients reduce detection uncertainty in such trials. Furthermore, the evidence on the functions of the neuromodulatory component of cholinergic neurotransmission suggests that higher levels of neuromodulation favor staying-on-task over alternative action. In other terms, higher cholinergic neuromodulation reduces opportunity costs. Evidence indicating a similar integration of other ascending projection systems, including noradrenergic and serotonergic systems, into cortical circuitry remains sparse, largely because of the limited information about local presynaptic regulation and the limitations of current techniques in measuring fast and transient neurotransmitter release events in these systems.
Collapse
Affiliation(s)
- Martin Sarter
- Department of Psychology and Neuroscience Program, University of Michigan, 4030 East Hall, 530 Church Street, Ann Arbor, MI, 48109-1043, USA
| | | | | | | | | |
Collapse
|
25
|
Modeling fall propensity in Parkinson's disease: deficits in the attentional control of complex movements in rats with cortical-cholinergic and striatal-dopaminergic deafferentation. J Neurosci 2013; 33:16522-39. [PMID: 24133257 DOI: 10.1523/jneurosci.2545-13.2013] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cognitive symptoms, complex movement deficits, and increased propensity for falls are interrelated and levodopa-unresponsive symptoms in patients with Parkinson's disease (PD). We developed a test system for the assessment of fall propensity in rats and tested the hypothesis that interactions between loss of cortical cholinergic and striatal dopaminergic afferents increase fall propensity. Rats were trained to traverse stationary and rotating rods, placed horizontally or at inclines, and while exposed to distractors. Rats also performed an operant Sustained Attention Task (SAT). Partial cortical cholinergic and/or caudate dopaminergic deafferentation were produced by bilateral infusions of 192 IgG-saporin (SAP) into the basal forebrain and/or 6-hydroxydopamine (6-OHDA) into the caudate nucleus, respectively, modeling the lesions seen in early PD. Rats with dual cholinergic-dopaminergic lesions (DL) fell more frequently than SAP or 6-OHDA rats. Falls in DL rats were associated with incomplete rebalancing after slips and low traversal speed. Ladder rung walking and pasta handling performance did not indicate sensorimotor deficits. SAT performance was impaired in DL and SAP rats; however, SAT performance and falls were correlated only in DL rats. Furthermore, in DL rats, but not in rats with only dopaminergic lesions, the placement and size of dopaminergic lesion correlated significantly with fall rates. The results support the hypothesis that after dual cholinergic-dopaminergic lesions, attentional resources can no longer be recruited to compensate for diminished striatal control of complex movement, thereby "unmasking" impaired striatal control of complex movements and yielding falls.
Collapse
|
26
|
ChAT-ChR2-EYFP mice have enhanced motor endurance but show deficits in attention and several additional cognitive domains. J Neurosci 2013; 33:10427-38. [PMID: 23785154 DOI: 10.1523/jneurosci.0395-13.2013] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Acetylcholine (ACh) is an important neuromodulator in the nervous system implicated in many forms of cognitive and motor processing. Recent studies have used bacterial artificial chromosome (BAC) transgenic mice expressing channelrhodopsin-2 (ChR2) protein under the control of the choline acetyltransferase (ChAT) promoter (ChAT-ChR2-EYFP) to dissect cholinergic circuit connectivity and function using optogenetic approaches. We report that a mouse line used for this purpose also carries several copies of the vesicular acetylcholine transporter gene (VAChT), which leads to overexpression of functional VAChT and consequently increased cholinergic tone. We demonstrate that these mice have marked improvement in motor endurance. However, they also present severe cognitive deficits, including attention deficits and dysfunction in working memory and spatial memory. These results suggest that increased VAChT expression may disrupt critical steps in information processing. Our studies demonstrate that ChAT-ChR2-EYFP mice show altered cholinergic tone that fundamentally differentiates them from wild-type mice.
Collapse
|
27
|
Adaptive Resonance Theory: How a brain learns to consciously attend, learn, and recognize a changing world. Neural Netw 2013; 37:1-47. [PMID: 23149242 DOI: 10.1016/j.neunet.2012.09.017] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 08/24/2012] [Accepted: 09/24/2012] [Indexed: 11/17/2022]
|
28
|
Tsui CKY, Dringenberg HC. Role of cholinergic-muscarinic receptors in visual discrimination performance of rats: importance of stimulus load. Behav Brain Res 2012; 238:23-9. [PMID: 23078949 DOI: 10.1016/j.bbr.2012.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 10/01/2012] [Accepted: 10/06/2012] [Indexed: 11/15/2022]
Abstract
Central cholinergic transmission has long been implicated in various cognitive processes, including memory acquisition, consolidation, and attentional processes. Here, we examined the role of muscarinic receptors in visual discrimination performance under conditions of altered visual information availability. Adult rats were trained to discriminate two visual cues (indicating the presence and absence of a hidden escape platform, respectively) in a water maze-based, trapezoidal-shaped apparatus. Following task acquisition, testing continued with two types of trials: regular trials (RTs; both visual cues present, identical to training conditions) and probe trials (PTs; only one of the two cues present). In Experiment 1, removal of one visual cue on PTs impaired discrimination performance. Moreover, scopolamine administration (0.125-1.0 mg/kg, i.p.) tended to further suppress performance in a dose-dependent manner on PTs, while discriminations on RTs were left intact. In Experiment 2, these results were confirmed and extended by showing that PT (one visual cue) performance could improve with training in undrugged, but not in scopolamine-treated rats. Together, these experiments reveal that visual discrimination performance of rats benefits from the concurrent availability of two visual cues that provide complimentary and consistent information. Furthermore, muscarinic receptors are particularly important under conditions of reduced visual information availability, as well as in the adoption of new behavioral strategies, such as switching from two-cue to single-cue guided navigation.
Collapse
Affiliation(s)
- Claudia K Y Tsui
- Department of Psychology, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | | |
Collapse
|
29
|
Reid JM, Jacklin DL, Winters BD. Crossmodal object recognition in rats with and without multimodal object pre-exposure: no effect of hippocampal lesions. Neurobiol Learn Mem 2012; 98:311-9. [PMID: 22975081 DOI: 10.1016/j.nlm.2012.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 08/30/2012] [Accepted: 09/01/2012] [Indexed: 10/27/2022]
Abstract
The neural mechanisms and brain circuitry involved in the formation, storage, and utilization of multisensory object representations are poorly understood. We have recently introduced a crossmodal object recognition (CMOR) task that enables the study of such questions in rats. Our previous research has indicated that the perirhinal and posterior parietal cortices functionally interact to mediate spontaneous (tactile-to-visual) CMOR performance in rats; however, it remains to be seen whether other brain regions, particularly those receiving polymodal sensory inputs, contribute to this cognitive function. In the current study, we assessed the potential contribution of one such polymodal region, the hippocampus (HPC), to crossmodal object recognition memory. Rats with bilateral excitotoxic HPC lesions were tested in two versions of crossmodal object recognition: (1) the original CMOR task, which requires rats to compare between a stored tactile object representation and visually-presented objects to discriminate the novel and familiar stimuli; and (2) a novel 'multimodal pre-exposure' version of the CMOR task (PE/CMOR), in which simultaneous exploration of the tactile and visual sensory features of an object 24 h prior to the sample phase enhances CMOR performance across longer retention delays. Hippocampus-lesioned rats performed normally on both crossmodal object recognition tasks, but were impaired on a radial arm maze test of spatial memory, demonstrating the functional effectiveness of the lesions. These results strongly suggest that the HPC, despite its polymodal anatomical connections, is not critically involved in tactile-to-visual crossmodal object recognition memory.
Collapse
Affiliation(s)
- James M Reid
- Department of Psychology and Neuroscience Program, University of Guelph, ON, Canada
| | | | | |
Collapse
|
30
|
Early visuospatial deficits predict the occurrence of visual hallucinations in autopsy-confirmed dementia with Lewy bodies. Am J Geriatr Psychiatry 2012; 20:773-81. [PMID: 21997600 PMCID: PMC3260388 DOI: 10.1097/jgp.0b013e31823033bc] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The current study explored the value of visuospatial findings for predicting the occurrence of visual hallucinations (VH) in a sample of patients with dementia with Lewy bodies (DLB) compared with patients with Alzheimer disease (AD). PARTICIPANTS/MEASUREMENTS: Retrospective analysis of 55 autopsy-confirmed DLB and 55 demographically similar, autopsy-confirmed AD cases determined whether severe initial visuospatial deficits on the WISC-R Block Design subtest predicted the development of VH. Visuospatial deficits were considered severe if Block Design z scores were 2.5 or more standard deviations below the mean of a well-characterized normal control group (severe visuospatial deficits [severe-VIS]; DLB: n = 35, AD: n = 26) and otherwise were considered mild (mild visuospatial deficits [mild-VIS]; DLB: n = 20, AD: n = 29). RESULTS Forty percent of the severe-VIS DLB group had baseline VH compared with 0% of mild-VIS DLB patients. Only 8% of the severe-VIS and 3% mild-VIS AD patients had baseline VH. During the follow-up period (mean = 5.0 years), an additional 61% of the severe-VIS but only 11% of the mild-VIS DLB patients developed VH. In that period, 38% of the severe-VIS and 20% of the mild-VIS AD patients developed VH. After considering initial MMSE score and rate of decline, logistic regression analyses found that performance on Block Design significantly predicted the presence of VH in the DLB group but not the AD group. CONCLUSIONS The presence of early, severe deficits on neuropsychological tests of visuospatial skill increases the likelihood that patients with suspected DLB will develop the prototypical DLB syndrome. The presence of such deficits may identify those DLB patients whose syndrome is driven by α-synuclein pathology rather than AD pathology and may inform treatment plans as well as future research.
Collapse
|
31
|
|
32
|
Palma J, Grossberg S, Versace M. Persistence and storage of activity patterns in spiking recurrent cortical networks: modulation of sigmoid signals by after-hyperpolarization currents and acetylcholine. Front Comput Neurosci 2012; 6:42. [PMID: 22754524 PMCID: PMC3386521 DOI: 10.3389/fncom.2012.00042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 06/11/2012] [Indexed: 11/13/2022] Open
Abstract
Many cortical networks contain recurrent architectures that transform input patterns before storing them in short-term memory (STM). Theorems in the 1970's showed how feedback signal functions in rate-based recurrent on-center off-surround networks control this process. A sigmoid signal function induces a quenching threshold below which inputs are suppressed as noise and above which they are contrast-enhanced before pattern storage. This article describes how changes in feedback signaling, neuromodulation, and recurrent connectivity may alter pattern processing in recurrent on-center off-surround networks of spiking neurons. In spiking neurons, fast, medium, and slow after-hyperpolarization (AHP) currents control sigmoid signal threshold and slope. Modulation of AHP currents by acetylcholine (ACh) can change sigmoid shape and, with it, network dynamics. For example, decreasing signal function threshold and increasing slope can lengthen the persistence of a partially contrast-enhanced pattern, increase the number of active cells stored in STM, or, if connectivity is distance-dependent, cause cell activities to cluster. These results clarify how cholinergic modulation by the basal forebrain may alter the vigilance of category learning circuits, and thus their sensitivity to predictive mismatches, thereby controlling whether learned categories code concrete or abstract features, as predicted by Adaptive Resonance Theory. The analysis includes global, distance-dependent, and interneuron-mediated circuits. With an appropriate degree of recurrent excitation and inhibition, spiking networks maintain a partially contrast-enhanced pattern for 800 ms or longer after stimuli offset, then resolve to no stored pattern, or to winner-take-all (WTA) stored patterns with one or multiple winners. Strengthening inhibition prolongs a partially contrast-enhanced pattern by slowing the transition to stability, while strengthening excitation causes more winners when the network stabilizes.
Collapse
Affiliation(s)
| | - Stephen Grossberg
- Graduate Program in Cognitive and Neural Systems, Center for Adaptive Systems, Center of Excellence for Learning in Education, Science, and Technology, Center for Computational Neuroscience and Neural Technology, Boston University, BostonMA, USA
| | | |
Collapse
|
33
|
Botly LCP, De Rosa E. Impaired visual search in rats reveals cholinergic contributions to feature binding in visuospatial attention. Cereb Cortex 2011; 22:2441-53. [PMID: 22095213 DOI: 10.1093/cercor/bhr331] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The visual search task established the feature integration theory of attention in humans and measures visuospatial attentional contributions to feature binding. We recently demonstrated that the neuromodulator acetylcholine (ACh), from the nucleus basalis magnocellularis (NBM), supports the attentional processes required for feature binding using a rat digging-based task. Additional research has demonstrated cholinergic contributions from the NBM to visuospatial attention in rats. Here, we combined these lines of evidence and employed visual search in rats to examine whether cortical cholinergic input supports visuospatial attention specifically for feature binding. We trained 18 male Long-Evans rats to perform visual search using touch screen-equipped operant chambers. Sessions comprised Feature Search (no feature binding required) and Conjunctive Search (feature binding required) trials using multiple stimulus set sizes. Following acquisition of visual search, 8 rats received bilateral NBM lesions using 192 IgG-saporin to selectively reduce cholinergic afferentation of the neocortex, which we hypothesized would selectively disrupt the visuospatial attentional processes needed for efficient conjunctive visual search. As expected, relative to sham-lesioned rats, ACh-NBM-lesioned rats took significantly longer to locate the target stimulus on Conjunctive Search, but not Feature Search trials, thus demonstrating that cholinergic contributions to visuospatial attention are important for feature binding in rats.
Collapse
Affiliation(s)
- Leigh C P Botly
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada M5S 3G3.
| | | |
Collapse
|
34
|
Enhanced control of attention by stimulating mesolimbic-corticopetal cholinergic circuitry. J Neurosci 2011; 31:9760-71. [PMID: 21715641 DOI: 10.1523/jneurosci.1902-11.2011] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sustaining and recovering attentional performance requires interactions between the brain's motivation and attention systems. The first experiment demonstrated that in rats performing a sustained attention task (SAT), presentation of a distractor (dSAT) augmented performance-associated increases in cholinergic neurotransmission in prefrontal cortex. Because stimulation of NMDA receptors in the shell of the nucleus accumbens activates PFC cholinergic neurotransmission, a second experiment demonstrated that bilateral infusions of NMDA into the NAc shell, but not core, improved dSAT performance to levels observed in the absence of a distractor. A third experiment demonstrated that removal of prefrontal or posterior parietal cholinergic inputs, by intracortical infusions of the cholinotoxin 192 IgG-saporin, attenuated the beneficial effects of NMDA on dSAT performance. Mesolimbic activation of cholinergic projections to the cortex benefits the cognitive control of attentional performance by enhancing the detection of cues and the filtering of distractors.
Collapse
|
35
|
Palma J, Versace M, Grossberg S. After-hyperpolarization currents and acetylcholine control sigmoid transfer functions in a spiking cortical model. J Comput Neurosci 2011; 32:253-80. [PMID: 21779754 DOI: 10.1007/s10827-011-0354-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 06/09/2011] [Accepted: 07/06/2011] [Indexed: 10/18/2022]
Abstract
Recurrent networks are ubiquitous in the brain, where they enable a diverse set of transformations during perception, cognition, emotion, and action. It has been known since the 1970's how, in rate-based recurrent on-center off-surround networks, the choice of feedback signal function can control the transformation of input patterns into activity patterns that are stored in short term memory. A sigmoid signal function may, in particular, control a quenching threshold below which inputs are suppressed as noise and above which they may be contrast enhanced before the resulting activity pattern is stored. The threshold and slope of the sigmoid signal function determine the degree of noise suppression and of contrast enhancement. This article analyses how sigmoid signal functions and their shape may be determined in biophysically realistic spiking neurons. Combinations of fast, medium, and slow after-hyperpolarization (AHP) currents, and their modulation by acetylcholine (ACh), can control sigmoid signal threshold and slope. Instead of a simple gain in excitability that was previously attributed to ACh, cholinergic modulation may cause translation of the sigmoid threshold. This property clarifies how activation of ACh by basal forebrain circuits, notably the nucleus basalis of Meynert, may alter the vigilance of category learning circuits, and thus their sensitivity to predictive mismatches, thereby controlling whether learned categories code concrete or abstract information, as predicted by Adaptive Resonance Theory.
Collapse
Affiliation(s)
- Jesse Palma
- Center for Adaptive Systems, Department of Cognitive and Neural Systems, and Center of Excellence for Learning in Education, Science, and Technology, Boston University, Boston, MA 02215, USA
| | | | | |
Collapse
|
36
|
Cholinergic modulation of cognition: insights from human pharmacological functional neuroimaging. Prog Neurobiol 2011; 94:360-88. [PMID: 21708219 PMCID: PMC3382716 DOI: 10.1016/j.pneurobio.2011.06.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 06/02/2011] [Accepted: 06/07/2011] [Indexed: 11/22/2022]
Abstract
Evidence from lesion and cortical-slice studies implicate the neocortical cholinergic system in the modulation of sensory, attentional and memory processing. In this review we consider findings from sixty-three healthy human cholinergic functional neuroimaging studies that probe interactions of cholinergic drugs with brain activation profiles, and relate these to contemporary neurobiological models. Consistent patterns that emerge are: (1) the direction of cholinergic modulation of sensory cortex activations depends upon top-down influences; (2) cholinergic hyperstimulation reduces top-down selective modulation of sensory cortices; (3) cholinergic hyperstimulation interacts with task-specific frontoparietal activations according to one of several patterns, including: suppression of parietal-mediated reorienting; decreasing ‘effort’-associated activations in prefrontal regions; and deactivation of a ‘resting-state network’ in medial cortex, with reciprocal recruitment of dorsolateral frontoparietal regions during performance-challenging conditions; (4) encoding-related activations in both neocortical and hippocampal regions are disrupted by cholinergic blockade, or enhanced with cholinergic stimulation, while the opposite profile is observed during retrieval; (5) many examples exist of an ‘inverted-U shaped’ pattern of cholinergic influences by which the direction of functional neural activation (and performance) depends upon both task (e.g. relative difficulty) and subject (e.g. age) factors. Overall, human cholinergic functional neuroimaging studies both corroborate and extend physiological accounts of cholinergic function arising from other experimental contexts, while providing mechanistic insights into cholinergic-acting drugs and their potential clinical applications.
Collapse
|
37
|
Abstract
As indicated by the profound cognitive impairments caused by cholinergic receptor antagonists, cholinergic neurotransmission has a vital role in cognitive function, specifically attention and memory encoding. Abnormally regulated cholinergic neurotransmission has been hypothesized to contribute to the cognitive symptoms of neuropsychiatric disorders. Loss of cholinergic neurons enhances the severity of the symptoms of dementia. Cholinergic receptor agonists and acetylcholinesterase inhibitors have been investigated for the treatment of cognitive dysfunction. Evidence from experiments using new techniques for measuring rapid changes in cholinergic neurotransmission provides a novel perspective on the cholinergic regulation of cognitive processes. This evidence indicates that changes in cholinergic modulation on a timescale of seconds is triggered by sensory input cues and serves to facilitate cue detection and attentional performance. Furthermore, the evidence indicates cholinergic induction of evoked intrinsic, persistent spiking mechanisms for active maintenance of sensory input, and planned responses. Models have been developed to describe the neuronal mechanisms underlying the transient modulation of cortical target circuits by cholinergic activity. These models postulate specific locations and roles of nicotinic and muscarinic acetylcholine receptors and that cholinergic neurotransmission is controlled in part by (cortical) target circuits. The available evidence and these models point to new principles governing the development of the next generation of cholinergic treatments for cognitive disorders.
Collapse
|
38
|
Localization of pre- and postsynaptic cholinergic markers in rodent forebrain: a brief history and comparison of rat and mouse. Behav Brain Res 2010; 221:356-66. [PMID: 21129407 DOI: 10.1016/j.bbr.2010.11.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 11/23/2010] [Indexed: 11/23/2022]
Abstract
Rat and mouse models are widely used for studies in cognition and pathophysiology, among others. Here, we sought to determine to what extent these two model species differ for cholinergic and cholinoceptive features. For this purpose, we focused on cholinergic innervation patterns based on choline acetyltransferase (ChAT) immunostaining, and the expression of muscarinic acetylcholine receptors (mAChRs) detected immunocytochemically. In this brief review we first place cholinergic and cholinoceptive markers in a historic perspective, and then provide an overview of recent publications on cholinergic studies and techniques to provide a literature survey of current research. Next, we compare mouse (C57Bl/J6) and rat (Wistar) cholinergic and cholinoceptive systems simultaneously stained, respectively, for ChAT (analyzed qualitatively) and mAChRs (analyzed qualitatively and quantitatively). In general, the topographic cholinergic innervation patterns of both rodent species are highly comparable, with only considerable (but region specific) differences in number of detectable cholinergic interneurons, which are more numerous in rat. In contrast, immunolabeling for mAChRs, detected by the monoclonal antibody M35, differs markedly in the forebrain between the two species. In mouse brain, basal levels of activated and/or internalized mAChRs (as a consequence of cholinergic neurotransmission) are significantly higher. This suggests a higher cholinergic tone in mouse than rat, and hence the animal model of choice may have consequences for cholinergic drug testing experiments.
Collapse
|
39
|
Winters BD, Reid JM. A distributed cortical representation underlies crossmodal object recognition in rats. J Neurosci 2010; 30:6253-61. [PMID: 20445051 PMCID: PMC6632708 DOI: 10.1523/jneurosci.6073-09.2010] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 02/25/2010] [Accepted: 03/26/2010] [Indexed: 11/21/2022] Open
Abstract
The mechanisms by which the brain integrates the unimodal sensory features of an object into a comprehensive multimodal object representation are poorly understood. We have recently developed a procedure for assessing crossmodal object recognition (CMOR) and object feature binding in rats using a modification of the spontaneous object recognition (SOR) paradigm. Here we show for the first time that rats are capable of spontaneous crossmodal object recognition when they are asked to recognize a visually presented object having previously only explored the tactile features of that object. Moreover, rats with bilateral perirhinal cortex (PRh) lesions were impaired on the CMOR task and a visual-only, but not a tactile-only, version of SOR. Conversely, rats with bilateral posterior parietal cortex (PPC) lesions were impaired on the CMOR and tactile-only tasks but not the visual-only task. Finally, crossmodal object recognition ability was severely and selectively impaired in rats with unilateral lesions made to PRh and PPC in opposite hemispheres. Thus, spontaneous tactile-to-visual crossmodal object recognition in rats relies on an object representation that requires functional interaction between PRh and PPC, which appear to mediate the visual and tactile information-processing demands of the task, respectively. These results imply that, at least under certain conditions, the separate sensory features of an object are represented in a distributed manner in the cortex. The novel paradigm introduced here should be a valuable tool for further study of the neurobiological bases of crossmodal cognition and object feature binding.
Collapse
Affiliation(s)
- Boyer D Winters
- Department of Psychology, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | | |
Collapse
|