1
|
Ushio K, Nakanishi K, Yoshino A, Takamura M, Akiyama Y, Shimada N, Hirata K, Ishikawa M, Nakamae A, Mikami Y, Okamoto Y, Adachi N. Changed resting-state connectivity of anterior insular cortex affects subjective pain reduction after knee arthroplasty: A longitudinal study. Brain Res Bull 2024; 217:111073. [PMID: 39284503 DOI: 10.1016/j.brainresbull.2024.111073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/17/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
The mechanism of chronic knee osteoarthritis (OA) pain and postoperative pain due to knee arthroplasty has not been elucidated. This could be involved neuroplasticity in brain connectivity. To clarify the mechanism of chronic knee OA pain and postoperative pain, we examined the relationship between resting-state functional connectivity (rs-FC) and clinical measurements in knee OA before and after knee arthroplasty, focusing on rs-FCs with the anterior insular cortex (aIC) as the key region. Fifteen patients with knee OA underwent resting-state functional magnetic resonance imaging and clinical measurements shortly before and 6 months after knee arthroplasty, and 15 age- and sex-matched control patients underwent an identical protocol. Seed-to-voxel analysis was performed to compare the clinical measurements and changed rs-FCs, using the aIC as a seed region, between the preoperative and postoperative patients, as well as between the operative and control patients. In preoperative patients, rs-FCs of the aIC to the OFC, frontal pole, subcallosal area, and medial frontal cortex increased compared with those of the control patients. The strength of rs-FC between the left aIC and right OFC decreased before and after knee arthroplasty. The decrease in rs-FC between the left aIC and right OFC was associated with decreased subjective pain score. Our study showed a correlation between longitudinally changed rs-FC and clinical measurement before and after knee arthroplasty. Rs-FC between the aIC and OFC have the potential to elucidate the mechanisms of knee OA pain and postoperative pain due to knee arthroplasty.
Collapse
Affiliation(s)
- Kai Ushio
- Department of Rehabilitation, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima-shi, Hiroshima 734-8551, Japan; Sports Medical Center, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima-shi, Hiroshima 734-8551, Japan
| | - Kazuyoshi Nakanishi
- Department of Orthopedic Surgery, Nihon University School of Medicine, Nihon University, 30-1, Ooyaguchikami-cho, Itabashi-ku, Tokyo 173-8610, Japan.
| | - Atsuo Yoshino
- Department of Psychiatry and Neurosciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima-shi, Hiroshima 734-8551, Japan; Brain, Mind and KANSEI Sciences Research Center, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima-shi, Hiroshima 734-8551, Japan
| | - Masahiro Takamura
- Brain, Mind and KANSEI Sciences Research Center, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima-shi, Hiroshima 734-8551, Japan; Department of Neurology, Shimane University, 89-1, Enya-cho, Izumo-shi, Shimane 693-8501, Japan
| | - Yuji Akiyama
- Department of Clinical Radiology, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima-shi, Hiroshima 734-8551, Japan
| | - Noboru Shimada
- Department of Rehabilitation, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima-shi, Hiroshima 734-8551, Japan
| | - Kazuhiko Hirata
- Department of Rehabilitation, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima-shi, Hiroshima 734-8551, Japan; Sports Medical Center, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima-shi, Hiroshima 734-8551, Japan
| | - Masakazu Ishikawa
- Department of Orthopedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima-shi, Hiroshima 734-8551, Japan; Department of Orthopedic Surgery, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Atsuo Nakamae
- Department of Orthopedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima-shi, Hiroshima 734-8551, Japan
| | - Yukio Mikami
- Department of Rehabilitation, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima-shi, Hiroshima 734-8551, Japan; Sports Medical Center, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima-shi, Hiroshima 734-8551, Japan
| | - Yasumasa Okamoto
- Department of Psychiatry and Neurosciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima-shi, Hiroshima 734-8551, Japan; Brain, Mind and KANSEI Sciences Research Center, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima-shi, Hiroshima 734-8551, Japan
| | - Nobuo Adachi
- Sports Medical Center, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima-shi, Hiroshima 734-8551, Japan; Department of Orthopedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima-shi, Hiroshima 734-8551, Japan
| |
Collapse
|
2
|
Coll MP, Walden Z, Bourgoin PA, Taylor V, Rainville P, Robert M, Nguyen DK, Jolicoeur P, Roy M. Pain reflects the informational value of nociceptive inputs. Pain 2024; 165:e115-e125. [PMID: 38713801 DOI: 10.1097/j.pain.0000000000003254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/13/2024] [Indexed: 05/09/2024]
Abstract
ABSTRACT Pain perception and its modulation are fundamental to human learning and adaptive behavior. This study investigated the hypothesis that pain perception is tied to pain's learning function. Thirty-one participants performed a threat conditioning task where certain cues were associated with a possibility of receiving a painful electric shock. The cues that signaled potential pain or safety were regularly changed, requiring participants to continually establish new associations. Using computational models, we quantified participants' pain expectations and prediction errors throughout the task and assessed their relationship with pain perception and electrophysiological responses. Our findings suggest that subjective pain perception increases with prediction error, that is, when pain was unexpected. Prediction errors were also related to physiological nociceptive responses, including the amplitude of nociceptive flexion reflex and electroencephalography markers of cortical nociceptive processing (N1-P2-evoked potential and gamma-band power). In addition, higher pain expectations were related to increased late event-related potential responses and alpha/beta decreases in amplitude during cue presentation. These results further strengthen the idea of a crucial link between pain and learning and suggest that understanding the influence of learning mechanisms in pain modulation could help us understand when and why pain perception is modulated in health and disease.
Collapse
Affiliation(s)
- Michel-Pierre Coll
- École de Psychologie, Université Laval, Québec, QC, Canada
- Centre interdisciplinaire de recherche en réadaptation et intégration sociale (CIRRIS), Québec, QC, Canada
| | - Zoey Walden
- Department of Psychology, McGill University, 2001 McGill College, Montréal, QC, Canada
| | | | - Veronique Taylor
- Department of Epidemiology, Brown University, Providence, RI, United States
| | - Pierre Rainville
- Research Center of the Institut Universitaire de Gériatrie de Montréal, Université de Montréal, Montréal, QC, Canada
- Department of Stomatology, Université de Montréal, Montréal, QC, Canada
| | - Manon Robert
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC, Canada
| | - Dang Khoa Nguyen
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC, Canada
| | - Pierre Jolicoeur
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
| | - Mathieu Roy
- Department of Psychology, McGill University, 2001 McGill College, Montréal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| |
Collapse
|
3
|
Pavy F, Zaman J, Van den Noortgate W, Scarpa A, von Leupoldt A, Torta DM. The effect of unpredictability on the perception of pain: a systematic review and meta-analysis. Pain 2024; 165:1702-1718. [PMID: 38422488 DOI: 10.1097/j.pain.0000000000003199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/11/2024] [Indexed: 03/02/2024]
Abstract
ABSTRACT Despite being widely assumed, the worsening impact of unpredictability on pain perception remains unclear because of conflicting empirical evidence, and a lack of systematic integration of past research findings. To fill this gap, we conducted a systematic review and meta-analysis focusing on the effect of unpredictability on pain perception. We also conducted meta-regression analyses to examine the moderating effect of several moderators associated with pain and unpredictability: stimulus duration, calibrated stimulus pain intensity, pain intensity expectation, controllability, anticipation delay, state and trait negative affectivity, sex/gender and age of the participants, type of unpredictability (intensity, onset, duration, location), and method of pain induction (thermal, electrical, mechanical pressure, mechanical distention). We included 73 experimental studies with adult volunteers manipulating the (un)predictability of painful stimuli and measuring perceived pain intensity and pain unpleasantness in predictable and unpredictable contexts. Because there are insufficient studies with patients, we focused on healthy volunteers. Our results did not reveal any effect of unpredictability on pain perception. However, several significant moderators were found, ie, targeted stimulus pain intensity, expected pain intensity, and state negative affectivity. Trait negative affectivity and uncontrollability showed no significant effect, presumably because of the low number of included studies. Thus, further investigation is necessary to clearly determine their role in unpredictable pain perception.
Collapse
Affiliation(s)
- Fabien Pavy
- Research Group Health Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Belgium
| | - Jonas Zaman
- Research Group Health Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Belgium
- Centre for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, KU Leuven, Belgium
- School of Social Sciences, Hasselt University, Hasselt, Belgium
| | - Wim Van den Noortgate
- Methodology of Educational Sciences, Faculty of Psychology and Educational Sciences, & Itec, an Imec Research Group, KU Leuven, Belgium
| | - Aurelia Scarpa
- Research Group Health Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Belgium
| | - Andreas von Leupoldt
- Research Group Health Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Belgium
| | - Diana M Torta
- Research Group Health Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Belgium
| |
Collapse
|
4
|
Kim JC, Hellrung L, Grueschow M, Nebe S, Nagy Z, Tobler PN. Neural Representation of Valenced and Generic Probability and Uncertainty. J Neurosci 2024; 44:e0195242024. [PMID: 38866483 PMCID: PMC11270512 DOI: 10.1523/jneurosci.0195-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
Representing the probability and uncertainty of outcomes facilitates adaptive behavior by allowing organisms to prepare in advance and devote attention to relevant events. Probability and uncertainty are often studied only for valenced (appetitive or aversive) outcomes, raising the question of whether the identified neural machinery also processes the probability and uncertainty of motivationally neutral outcomes. Here, we aimed to dissociate valenced from valence-independent (i.e., generic) probability (p; maximum at p = 1) and uncertainty (maximum at p = 0.5) signals using human neuroimaging. In a Pavlovian task (n = 41; 19 females), different cues predicted appetitive, aversive, or neutral liquids with different probabilities (p = 0, p = 0.5, p = 1). Cue-elicited motor responses accelerated, and pupil sizes increased primarily for cues that predicted valenced liquids with higher probability. For neutral liquids, uncertainty rather than probability tended to accelerate cue-induced responding and decrease pupil size. At the neural level, generic uncertainty signals were limited to the occipital cortex, while generic probability also activated the anterior ventromedial prefrontal cortex. These generic probability and uncertainty signals contrasted with cue-induced responses that only encoded the probability and uncertainty of valenced liquids in medial prefrontal, insular, and occipital cortices. Our findings show a behavioral and neural dissociation of generic and valenced signals. Thus, some parts of the brain keep track of motivational charge while others do not, highlighting the need and usefulness of characterizing the exact nature of learned representations.
Collapse
Affiliation(s)
- Jae-Chang Kim
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, 8006 Zurich, Switzerland
| | - Lydia Hellrung
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, 8006 Zurich, Switzerland
| | - Marcus Grueschow
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, 8006 Zurich, Switzerland
| | - Stephan Nebe
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, 8006 Zurich, Switzerland
| | - Zoltan Nagy
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, 8006 Zurich, Switzerland
| | - Philippe N Tobler
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, 8006 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Swiss Federal Institute of Technology Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
5
|
Pavy F, Zaman J, Von Leupoldt A, Torta DM. Expectations underlie the effects of unpredictable pain: a behavioral and electroencephalogram study. Pain 2024; 165:596-607. [PMID: 37703404 DOI: 10.1097/j.pain.0000000000003046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/20/2023] [Indexed: 09/15/2023]
Abstract
ABSTRACT Previous studies on the potential effects of unpredictability on pain perception and its neural correlates yielded divergent results. This study examined whether this may be explained by differences in acquired expectations. We presented 41 healthy volunteers with laser heat stimuli of different intensities. The stimuli were preceded either by predictable low, medium, or high cues or by unpredictable low-medium, medium-high, or low-high cues. We recorded self-reports of pain intensity and unpleasantness and laser-evoked potentials (LEPs). Furthermore, we investigated whether dynamic expectations that evolved throughout the experiment based on past trials were better predictors of pain ratings than fixed (nonevolving) expectations. Our results replicate previous findings that unpredictable pain is higher than predictable pain for low-intensity stimuli but lower for high-intensity stimuli. Moreover, we observed higher ratings for the medium-high unpredictable condition than the medium-low unpredictable condition, in line with an effect of expectation. We found significant interactions (N1, N2) for the LEP components between intensity and unpredictability. However, the few significant differences in LEP peak amplitudes between cue conditions did not survive correction for multiple testing. In line with predictive coding perspectives, pain ratings were best predicted by dynamic expectations. Surprisingly, expectations of reduced precision (increased variance) were associated with lower pain ratings. Our findings provide strong evidence that (dynamic) expectations contribute to the opposing effects of unpredictability on pain perception; therefore, we highlight the importance of controlling for them in pain unpredictability manipulations. We also suggest to conceptualize pain expectations more often as dynamic constructs incorporating previous experiences.
Collapse
Affiliation(s)
- Fabien Pavy
- Research Group Health Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Belgium
| | - Jonas Zaman
- Research Group Health Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Belgium
- Centre for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, KU Leuven, Belgium
- School of Social Sciences, University of Hasselt, Hasselt, Belgium
| | - Andreas Von Leupoldt
- Research Group Health Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Belgium
| | - Diana M Torta
- Research Group Health Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Belgium
| |
Collapse
|
6
|
Wang Y, Zhao R, Zhu D, Fu X, Sun F, Cai Y, Ma J, Guo X, Zhang J, Xue Y. Voxel- and tensor-based morphometry with machine learning techniques identifying characteristic brain impairment in patients with cervical spondylotic myelopathy. Front Neurol 2024; 15:1267349. [PMID: 38419699 PMCID: PMC10899699 DOI: 10.3389/fneur.2024.1267349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
Aim The diagnosis of cervical spondylotic myelopathy (CSM) relies on several methods, including x-rays, computed tomography, and magnetic resonance imaging (MRI). Although MRI is the most useful diagnostic tool, strategies to improve the precise and independent diagnosis of CSM using novel MRI imaging techniques are urgently needed. This study aimed to explore potential brain biomarkers to improve the precise diagnosis of CSM through the combination of voxel-based morphometry (VBM) and tensor-based morphometry (TBM) with machine learning techniques. Methods In this retrospective study, 57 patients with CSM and 57 healthy controls (HCs) were enrolled. The structural changes in the gray matter volume and white matter volume were determined by VBM. Gray and white matter deformations were measured by TBM. The support vector machine (SVM) was used for the classification of CSM patients from HCs based on the structural features of VBM and TBM. Results CSM patients exhibited characteristic structural abnormalities in the sensorimotor, visual, cognitive, and subcortical regions, as well as in the anterior corona radiata and the corpus callosum [P < 0.05, false discovery rate (FDR) corrected]. A multivariate pattern classification analysis revealed that VBM and TBM could successfully identify CSM patients and HCs [classification accuracy: 81.58%, area under the curve (AUC): 0.85; P < 0.005, Bonferroni corrected] through characteristic gray matter and white matter impairments. Conclusion CSM may cause widespread and remote impairments in brain structures. This study provided a valuable reference for developing novel diagnostic strategies to identify CSM.
Collapse
Affiliation(s)
- Yang Wang
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Rui Zhao
- Department of Orthopedics Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Dan Zhu
- Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
- Department of Radiology, Tianjin Medical University General Hospital Airport Hospital, Tianjin, China
| | - Xiuwei Fu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Fengyu Sun
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuezeng Cai
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Juanwei Ma
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Xing Guo
- Department of Orthopedics Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Zhang
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuan Xue
- Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
7
|
Zhang X, Xie M, Li W, Xu Z, Wang Z, Jiang W, Wu Y, Liu N. Abnormalities of structural covariance of insular subregions in drug-naïve OCD patients. Cereb Cortex 2024; 34:bhad469. [PMID: 38102948 DOI: 10.1093/cercor/bhad469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
The insula plays a significant role in the neural mechanisms of obsessive-compulsive disorder. Previous studies have identified functional and structural abnormalities in insula in obsessive-compulsive disorder patients. The predictive coding model in the context of interoception can explain the psychological and neuropathological manifestations observed in obsessive-compulsive disorder. The model is based on the degree of laminar differentiation of cerebral cortex. The interindividual differences in a local measure of brain structure often covary with interindividual differences in other brain regions. We investigated the anatomical network involving the insula in a drug-naïve obsessive-compulsive disorder sample. We recruited 58 obsessive-compulsive disorder patients and 84 matched health controls. The cortical thickness covariance maps between groups were compared at each vertex. We also evaluated the modulation of Yale-Brown Obsessive-Compulsive Scale scores and obsessive-compulsive disorder duration on thickness covariance. Our findings indicated that the thickness covariance seeded from granular and dysgranular insula are different compared with controls. The duration and severity of obsessive-compulsive disorder can modulate the thickness covariance of granular and dysgranular insula with posterior cingulate cortex and rostral anterior cingulate cortex. Our results revealed aberrant insular structural characteristics and cortical thickness covariance in obsessive-compulsive disorder patients, contributing to a better understanding of the involvement of insula in the pathological mechanisms underlying obsessive-compulsive disorder.
Collapse
Affiliation(s)
- Xuedi Zhang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Minyao Xie
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wangyue Li
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Zhihan Xu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Zhongqi Wang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wenjing Jiang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yu Wu
- School of Psychology, Nanjing Normal University, Nanjing 210023, China
| | - Na Liu
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
8
|
Filipescu C, Landré E, Turak B, Devaux B, Chassoux F. Towards a better identification of ictal semiology patterns in insular epilepsies: A stereo-EEG study. Clin Neurophysiol 2023; 155:32-43. [PMID: 37683325 DOI: 10.1016/j.clinph.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/26/2023] [Accepted: 08/12/2023] [Indexed: 09/10/2023]
Abstract
OBJECTIVE To describe pure insular ictal semiology and patterns of extra-insular spread demonstrated by stereoelectroencephalography (SEEG) according to a classification based on the insular cytoarchitecture. METHODS We investigated the ictal semiology in 17 patients undergoing SEEG for insular epilepsy. The insular cortex was divided into three regions roughly overlapping with the agranular, dysgranular and granular regions. Ictal semiology was described accordingly: anterior insula (AI, short anterior and middle gyri), middle insula (MI, short posterior and long anterior gyri) and posterior insula (PI, long posterior gyrus). RESULTS Awareness impairment occurred secondarily to extra-insular ictal spread. Subjective manifestations were constant. AI seizures (n = 3) presented with autonomic (increased heart rate [HR], respiratory changes), oropharyngeal (mainly throat sensations), emotional (fear, anguish) semiology and the "hand-to-throat" sign followed by frontal-like semiology. MI seizures (n = 8) presented with mainly non-painful paresthesia, some autonomic (respiratory, increased HR), oropharyngeal or thermic symptoms and early motor features with spread to the opercular cortex. PI seizures (n = 6) were characterized by somatosensory semiology, mainly paresthesia potentially painful, and cephalic sensations. CONCLUSIONS Cytoarchitectonic-based classification and the corresponding ictal features support the antero-posterior grading of insular seizures and highlight specific ictal symptoms. SIGNIFICANCE This refinement of insular semiology can help optimize the planning of SEEG for presumed insular epilepsy.
Collapse
Affiliation(s)
- Cristina Filipescu
- Surgical Epileptology Unit, Neurosurgery Department, GHU Paris Psychiatry and Neurosciences, Sainte-Anne Hospital, France; Neurophysiology and Epileptology Department, GHU Paris Psychiatry and Neurosciences, Sainte-Anne Hospital, France.
| | - Elisabeth Landré
- Surgical Epileptology Unit, Neurosurgery Department, GHU Paris Psychiatry and Neurosciences, Sainte-Anne Hospital, France.
| | - Baris Turak
- Surgical Epileptology Unit, Neurosurgery Department, GHU Paris Psychiatry and Neurosciences, Sainte-Anne Hospital, France.
| | - Bertrand Devaux
- Surgical Epileptology Unit, Neurosurgery Department, GHU Paris Psychiatry and Neurosciences, Sainte-Anne Hospital, France; Paris-Cité University, Paris, France.
| | - Francine Chassoux
- Surgical Epileptology Unit, Neurosurgery Department, GHU Paris Psychiatry and Neurosciences, Sainte-Anne Hospital, France.
| |
Collapse
|
9
|
Sandström A, Ellerbrock I, Tour J, Kadetoff D, Jensen K, Kosek E. Dysfunctional Activation of the Dorsolateral Prefrontal Cortex During Pain Anticipation Is Associated With Altered Subsequent Pain Experience in Fibromyalgia Patients. THE JOURNAL OF PAIN 2023; 24:1731-1743. [PMID: 37354157 DOI: 10.1016/j.jpain.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/05/2023] [Accepted: 05/08/2023] [Indexed: 06/26/2023]
Abstract
The ability to accurately predict pain is an adaptive feature in healthy individuals. However, in chronic pain, this mechanism may be selectively impaired and can lead to increased anxiety and excessive avoidance behavior. Recently, we reported the first data demonstrating brain activation in fibromyalgia (FM) patients during conditioned pain responses, in which FM patients revealed a tendency to form new pain-related associations rather than extinguishing irrelevant ones. The aim of the present study was to extend our previous analysis, to elucidate potential neural divergences between subjects with FM (n = 65) and healthy controls (HCs) (n = 33) during anticipatory information (ie, prior to painful stimulus onset). Using functional magnetic resonance imaging (fMRI), the current analyses include 1) a congruently cued paradigm of low and high pain predictive cues, followed by 2) an incongruently cued paradigm where low and high pain predictive cues were followed by an identical mid-intensity painful pressure. During incongruently cued high-pain associations, FM exhibited reduced left dorsolateral prefrontal cortex (dlPFC) activation compared to HCs, which was followed by an altered subsequent pain experience in FM, as patients continued to rate the following painful stimuli as high, even though the pressure had been lowered. During congruently cued low pain anticipation, FM exhibited decreased right dlPFC activation compared to HCs, as well as decreased brain connectivity between brain regions implicated in cognitive modulation of pain (dlPFC) and nociceptive processing (primary somatosensory cortex/postcentral gyrus [S1] and supplementary motor area [SMA]/midcingulate cortex [MCC]). These results may reflect an important feature of validating low pain expectations in HCs and help elucidate behavioral reports of impaired safety processing in FM patients. PERSPECTIVE: FM exhibited a stronger conditioned pain response for high-pain associations, which was associated with reduced dlPFC activation during the incongruent trial. During (congruent and incongruent) low pain associations, FM dlPFC brain activation remained indifferent. Imbalances in threat and safety pain perception may be an important target for psychotherapeutic interventions.
Collapse
Affiliation(s)
- Angelica Sandström
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden.
| | - Isabel Ellerbrock
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Jeanette Tour
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden; Department of Oncology and Surgery, Blekinge Hospital, Karlskrona, Sweden
| | - Diana Kadetoff
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Stockholm Spine Center, Löwenströmska Hospital, Upplands Väsby, Sweden
| | - Karin Jensen
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Eva Kosek
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden; Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Abstract
Ecstatic epilepsy is a rare form of focal epilepsy, so named because the seizures' first symptoms consist of an ecstatic/mystical experience, including feelings of increased self-awareness, mental clarity, and "unity with everything that exists," accompanied by a sense of bliss and physical well-being. In this perspective article, we first describe the phenomenology of ecstatic seizures, address their historical context, and describe the primary brain structure involved in the genesis of these peculiar epileptic seizures, the anterior insula. In the second part of the article, we move onto the possible neurocognitive underpinnings of ecstatic seizures. We first remind the reader of the insula's role in interoceptive processing and consciously experienced feelings, contextualized by the theory of predictive coding. This leads us to hypothesize that temporary disruptions to activity in the anterior insula could interrupt the generation of interoceptive prediction errors, and cause one to experience the absence of uncertainty, and thereby, a sense of bliss. The absence of interoceptive prediction errors would in fact mimic perfect prediction of the body's physiological state. This sudden clarity of bodily perception could explain the ecstatic quality of the experience, as the interoceptive system forms the basis for unified conscious experience. Our alternative hypothesis is that the anterior insula plays an overarching role in the processing of surprise and that the dysfunction caused by the epileptic discharge could interrupt any surprise exceeding expectations, resulting in a sense of complete control and oneness with the environment.
Collapse
|
11
|
Forkmann K, Wiech K, Schmidt K, Schmid-Köhler J, Bingel U. Neural underpinnings of preferential pain learning and the modulatory role of fear. Cereb Cortex 2023; 33:9664-9676. [PMID: 37408110 DOI: 10.1093/cercor/bhad236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/07/2023] Open
Abstract
Due to its unique biological relevance, pain-related learning might differ from learning from other aversive experiences. This functional magnetic resonance imaging study compared neural mechanisms underlying the acquisition and extinction of different threats in healthy humans. We investigated whether cue-pain associations are acquired faster and extinguished slower than cue associations with an equally unpleasant tone. Additionally, we studied the modulatory role of stimulus-related fear. Therefore, we used a differential conditioning paradigm, in which somatic heat pain stimuli and unpleasantness-matched auditory stimuli served as US. Our results show stronger acquisition learning for pain- than tone-predicting cues, which was augmented in participants with relatively higher levels of fear of pain. These behavioral findings were paralleled by activation of brain regions implicated in threat processing (insula, amygdala) and personal significance (ventromedial prefrontal cortex). By contrast, extinction learning seemed to be less dependent on the threat value of the US, both on the behavioral and neural levels. Amygdala activity, however, scaled with pain-related fear during extinction learning. Our findings on faster and stronger (i.e. "preferential") pain learning and the role of fear of pain are consistent with the biological relevance of pain and may be relevant to the development or maintenance of chronic pain.
Collapse
Affiliation(s)
- Katarina Forkmann
- Department of Neurology, Center for Translational Neuro- and Behavioural Sciences, University Hospital Essen, University Duisburg Essen, Hufelandstraße 55, Essen 45147, Germany
| | - Katja Wiech
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, United Kingdom
| | - Katharina Schmidt
- Department of Neurology, Center for Translational Neuro- and Behavioural Sciences, University Hospital Essen, University Duisburg Essen, Hufelandstraße 55, Essen 45147, Germany
| | - Julia Schmid-Köhler
- Department of Neurology, Center for Translational Neuro- and Behavioural Sciences, University Hospital Essen, University Duisburg Essen, Hufelandstraße 55, Essen 45147, Germany
| | - Ulrike Bingel
- Department of Neurology, Center for Translational Neuro- and Behavioural Sciences, University Hospital Essen, University Duisburg Essen, Hufelandstraße 55, Essen 45147, Germany
| |
Collapse
|
12
|
Frank CC, Seaman KL. Aging, uncertainty, and decision making-A review. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023; 23:773-787. [PMID: 36670294 DOI: 10.3758/s13415-023-01064-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/08/2023] [Indexed: 01/21/2023]
Abstract
There is a great deal of uncertainty in the world. One common source of uncertainty results from incomplete or missing information about probabilistic outcomes (i.e., outcomes that may occur), which influences how people make decisions. The impact of this type of uncertainty may particularly pronounced for older adults, who, as the primary leaders around the world, make highly impactful decisions with lasting outcomes. This review examines the ways in which uncertainty about probabilistic outcomes is perceived, handled, and represented in the aging brain, with an emphasis on how uncertainty may specifically affect decision making in later life. We describe the role of uncertainty in decision making and aging from four perspectives, including 1) theoretical, 2) self-report, 3) behavioral, and 4) neuroscientific. We report evidence of any age-related differences in uncertainty among these contexts and describe how these changes may affect decision making. We then integrate the findings across the distinct perspectives, followed by a discussion of important future directions for research on aging and uncertainty, including prospection, domain-specificity in risk-taking behaviors, and choice overload.
Collapse
Affiliation(s)
- Colleen C Frank
- Center for Vital Longevity, The University of Texas at Dallas, Dallas, TX, USA.
| | - Kendra L Seaman
- Center for Vital Longevity, The University of Texas at Dallas, Dallas, TX, USA
- School of Brain and Behavioral Sciences, The University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
13
|
Büchel C. The role of expectations, control and reward in the development of pain persistence based on a unified model. eLife 2023; 12:81795. [PMID: 36972108 PMCID: PMC10042542 DOI: 10.7554/elife.81795] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Chronic, or persistent pain affects more than 10% of adults in the general population. This makes it one of the major physical and mental health care problems. Although pain is an important acute warning signal that allows the organism to take action before tissue damage occurs, it can become persistent and its role as a warning signal thereby inadequate. Although per definition, pain can only be labeled as persistent after 3 months, the trajectory from acute to persistent pain is likely to be determined very early and might even start at the time of injury. The biopsychosocial model has revolutionized our understanding of chronic pain and paved the way for psychological treatments for persistent pain, which routinely outperform other forms of treatment. This suggests that psychological processes could also be important in shaping the very early trajectory from acute to persistent pain and that targeting these processes could prevent the development of persistent pain. In this review, we develop an integrative model and suggest novel interventions during early pain trajectories, based on predictions from this model.
Collapse
Affiliation(s)
- Christian Büchel
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
14
|
Labrakakis C. The Role of the Insular Cortex in Pain. Int J Mol Sci 2023; 24:ijms24065736. [PMID: 36982807 PMCID: PMC10056254 DOI: 10.3390/ijms24065736] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
The transition from normal to chronic pain is believed to involve alterations in several brain areas that participate in the perception of pain. These plastic changes are then responsible for aberrant pain perception and comorbidities. The insular cortex is consistently found activated in pain studies of normal and chronic pain patients. Functional changes in the insula contribute to chronic pain; however, the complex mechanisms by which the insula is involved in pain perception under normal and pathological conditions are still not clear. In this review, an overview of the insular function is provided and findings on its role in pain from human studies are summarized. Recent progress on the role of the insula in pain from preclinical experimental models is reviewed, and the connectivity of the insula with other brain regions is examined to shed new light on the neuronal mechanisms of the insular cortex’s contribution to normal and pathological pain sensation. This review underlines the need for further studies on the mechanisms underlying the involvement of the insula in the chronicity of pain and the expression of comorbid disorders.
Collapse
Affiliation(s)
- Charalampos Labrakakis
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece;
- Institute of Biosciences, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| |
Collapse
|
15
|
Cabeen RP, Toga AW, Allman JM. Mapping frontoinsular cortex from diffusion microstructure. Cereb Cortex 2023; 33:2715-2733. [PMID: 35753692 PMCID: PMC10016069 DOI: 10.1093/cercor/bhac237] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 11/13/2022] Open
Abstract
We developed a novel method for mapping the location, surface area, thickness, and volume of frontoinsular cortex (FI) using structural and diffusion magnetic resonance imaging. FI lies in the ventral part of anterior insular cortex and is characterized by its distinctive population von Economo neurons (VENs). Functional neuroimaging studies have revealed its involvement in affective processing, and histopathology has implicated VEN loss in behavioral-variant frontotemporal dementia and chronic alcoholism; however, structural neuroimaging of FI has been relatively limited. We delineated FI by jointly modeling cortical surface geometry and its coincident diffusion microstructure parameters. We found that neurite orientation dispersion in cortical gray matter can be used to map FI in specific individuals, and the derived measures reflect a range of behavioral factors in young adults from the Human Connectome Project (N=1052). FI volume was larger in the left hemisphere than the right (31%), and the percentage volume of FI was larger in women than men (15.3%). FI volume was associated with measures of decision-making (delay discounting, substance abuse), emotion (negative intrusive thinking and perception of hostility), and social behavior (theory of mind and working memory for faces). The common denominator is that larger FI size is related to greater self-control and social awareness.
Collapse
Affiliation(s)
- Ryan P Cabeen
- Laboratory of Neuro Imaging, USC Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, United States
| | - Arthur W Toga
- Laboratory of Neuro Imaging, USC Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, United States
| | - John M Allman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| |
Collapse
|
16
|
Chen ZS. Hierarchical predictive coding in distributed pain circuits. Front Neural Circuits 2023; 17:1073537. [PMID: 36937818 PMCID: PMC10020379 DOI: 10.3389/fncir.2023.1073537] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/07/2023] [Indexed: 03/06/2023] Open
Abstract
Predictive coding is a computational theory on describing how the brain perceives and acts, which has been widely adopted in sensory processing and motor control. Nociceptive and pain processing involves a large and distributed network of circuits. However, it is still unknown whether this distributed network is completely decentralized or requires networkwide coordination. Multiple lines of evidence from human and animal studies have suggested that the cingulate cortex and insula cortex (cingulate-insula network) are two major hubs in mediating information from sensory afferents and spinothalamic inputs, whereas subregions of cingulate and insula cortices have distinct projections and functional roles. In this mini-review, we propose an updated hierarchical predictive coding framework for pain perception and discuss its related computational, algorithmic, and implementation issues. We suggest active inference as a generalized predictive coding algorithm, and hierarchically organized traveling waves of independent neural oscillations as a plausible brain mechanism to integrate bottom-up and top-down information across distributed pain circuits.
Collapse
Affiliation(s)
- Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, United States
- Interdisciplinary Pain Research Program, NYU Langone Health, New York, NY, United States
| |
Collapse
|
17
|
Prilutski Y, Livneh Y. Physiological Needs: Sensations and Predictions in the Insular Cortex. Physiology (Bethesda) 2023; 38:0. [PMID: 36040864 DOI: 10.1152/physiol.00019.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Physiological needs create powerful motivations (e.g., thirst and hunger). Studies in humans and animal models have implicated the insular cortex in the neural regulation of physiological needs and need-driven behavior. We review prominent mechanistic models of how the insular cortex might achieve this regulation and present a conceptual and analytical framework for testing these models in healthy and pathological conditions.
Collapse
Affiliation(s)
- Yael Prilutski
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yoav Livneh
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
18
|
Strube A, Horing B, Rose M, Büchel C. Agency affects pain inference through prior shift as opposed to likelihood precision modulation in a Bayesian pain model. Neuron 2023; 111:1136-1151.e7. [PMID: 36731468 PMCID: PMC10109109 DOI: 10.1016/j.neuron.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/14/2022] [Accepted: 01/05/2023] [Indexed: 02/04/2023]
Abstract
Agency and expectations play a crucial role in pain perception and treatment. In the Bayesian pain model, somatosensation (likelihood) and expectations (prior) are weighted by their precision and integrated to form a pain percept (posterior). Combining pain treatment with stimulus-related expectations allows the mechanistic assessment of whether agency enters this model as a shift of the prior or a relaxation of the likelihood precision. In two experiments, heat pain was sham treated either externally or by the subject, while a predictive cue was utilized to create high or low treatment expectations. Both experiments revealed additive effects and greater pain relief under self-treatment and high treatment expectations. Formal model comparisons favored a prior shift rather than a modulation of likelihood precision. Electroencephalography revealed a theta-to-alpha effect, temporally associated with expectations, which was correlated with trial-by-trial pain ratings, further supporting a prior shift through which agency exerts its influence in the Bayesian pain model.
Collapse
Affiliation(s)
- Andreas Strube
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Björn Horing
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Michael Rose
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christian Büchel
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
19
|
Abstract
Pain is driven by sensation and emotion, and in turn, it motivates decisions and actions. To fully appreciate the multidimensional nature of pain, we formulate the study of pain within a closed-loop framework of sensory-motor prediction. In this closed-loop cycle, prediction plays an important role, as the interaction between prediction and actual sensory experience shapes pain perception and subsequently, action. In this Perspective, we describe the roles of two prominent computational theories-Bayesian inference and reinforcement learning-in modeling adaptive pain behaviors. We show that prediction serves as a common theme between these two theories, and that each of these theories can explain unique aspects of the pain perception-action cycle. We discuss how these computational theories and models can improve our mechanistic understandings of pain-centered processes such as anticipation, attention, placebo hypoalgesia, and pain chronification.
Collapse
Affiliation(s)
- Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
- Interdisciplinary Pain Research Program, NYU Langone Health, New York, NY 10016, USA
| | - Jing Wang
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
- Interdisciplinary Pain Research Program, NYU Langone Health, New York, NY 10016, USA
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
20
|
Kunkel A, Bingel U. [Placebo effects in analgesia : Influence of expectations on the efficacy and tolerability of analgesic treatment]. Schmerz 2023; 37:59-71. [PMID: 36637498 PMCID: PMC9889476 DOI: 10.1007/s00482-022-00685-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2022] [Indexed: 01/14/2023]
Abstract
Expectations of patients influence the perception and neuronal processing of acute and chronic pain and modulate the effectiveness of analgesic treatment. The expectation of treatment is not only the most important determinant of placebo analgesia. Expectations of treatment also influence the efficacy and tolerability of "active" pharmacological and non-pharmacological treatment of pain. Recent insights into the psychological and neurobiological mechanisms underlying the clinically relevant effects of treatment expectations enable and call for the systematic integration and modulation of treatment expectations into analgesic treatment concepts. Such a strategy promises to optimize analgesic treatment and to prevent or reduce the burden of unwanted side effects and the misuse of analgesics, particularly of opioids. This review highlights the current concepts, recent achievements and also challenges and key open research questions.
Collapse
Affiliation(s)
- Angelika Kunkel
- Klinik für Neurologie, Zentrum für translationale Neuro- und Verhaltenswissenschaften, Universitätsklinikum Essen, Hufelandstr. 55, 45147, Essen, Deutschland.
| | - Ulrike Bingel
- Klinik für Neurologie, Zentrum für translationale Neuro- und Verhaltenswissenschaften, Universitätsklinikum Essen, Hufelandstr. 55, 45147, Essen, Deutschland
| |
Collapse
|
21
|
Zhang JL, Zhou N, Song KR, Zou BW, Xu LX, Fu Y, Geng XM, Wang ZL, Li X, Potenza MN, Nan Y, Zhang JT. Neural activations to loss anticipation mediates the association between difficulties in emotion regulation and screen media activities among early adolescent youth: A moderating role for depression. Dev Cogn Neurosci 2022; 58:101186. [PMID: 36516611 PMCID: PMC9764194 DOI: 10.1016/j.dcn.2022.101186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Screen media activities (SMAs; e.g., watching videos, playing videogames) have become increasingly prevalent among youth as ways to alleviate or escape from negative emotional states. However, neural mechanisms underlying these processes in youth are incompletely understood. METHOD Seventy-nine youth aged 11-15 years completed a monetary incentive delay task during fMRI scanning. Neural correlates of reward/loss processing and their associations with SMAs were explored. Next, brain activations during reward/loss processing in regions implicated in the processing of emotions were examined as potential mediating factors between difficulties in emotion regulation (DER) and engagement in SMAs. Finally, a moderated mediation model tested the effects of depressive symptoms in such relationships. RESULT The emotional components associated with SMAs in reward/loss processing included activations in the left anterior insula (AI) and right dorsolateral prefrontal cortex (DLPFC) during anticipation of working to avoid losses. Activations in both the AI and DLPFC mediated the relationship between DER and SMAs. Moreover, depressive symptoms moderated the relationship between AI activation in response to loss anticipation and SMAs. CONCLUSION The current findings suggest that DER link to SMAs through loss-related brain activations implicated in the processing of emotions and motivational avoidance, particularly in youth with greater levels of depressive symptoms. The findings suggest the importance of enhancing emotion-regulation tendencies/abilities in youth and, in particular, their regulatory responses to negative emotional situations in order to guide moderate engagement in SMAs.
Collapse
Affiliation(s)
- Jia-Lin Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Nan Zhou
- Faculty of Education, University of Macau, Macau, China
| | - Kun-Ru Song
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Bo-Wen Zou
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Lin-Xuan Xu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yu Fu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xiao-Min Geng
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Zi-Liang Wang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xin Li
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Marc N Potenza
- Department of Psychiatry and Child Study Center, Yale University School of Medicine, New Haven, CT, USA; Connecticut Council on Problem Gambling, Wethersfield, CT, USA; Connecticut Mental Health Center, New Haven, CT, USA; Department of Neuroscience and Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Yun Nan
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| | - Jin-Tao Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| |
Collapse
|
22
|
Ferrari A, Richter D, de Lange FP. Updating Contextual Sensory Expectations for Adaptive Behavior. J Neurosci 2022; 42:8855-8869. [PMID: 36280262 PMCID: PMC9698749 DOI: 10.1523/jneurosci.1107-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/09/2022] [Accepted: 09/18/2022] [Indexed: 12/29/2022] Open
Abstract
The brain has the extraordinary capacity to construct predictive models of the environment by internalizing statistical regularities in the sensory inputs. The resulting sensory expectations shape how we perceive and react to the world; at the neural level, this relates to decreased neural responses to expected than unexpected stimuli ("expectation suppression"). Crucially, expectations may need revision as context changes. However, existing research has often neglected this issue. Further, it is unclear whether contextual revisions apply selectively to expectations relevant to the task at hand, hence serving adaptive behavior. The present fMRI study examined how contextual visual expectations spread throughout the cortical hierarchy as we update our beliefs. We created a volatile environment: two alternating contexts contained different sequences of object images, thereby producing context-dependent expectations that needed revision when the context changed. Human participants of both sexes attended a training session before scanning to learn the contextual sequences. The fMRI experiment then tested for the emergence of contextual expectation suppression in two separate tasks, respectively, with task-relevant and task-irrelevant expectations. Effects of contextual expectation emerged progressively across the cortical hierarchy as participants attuned themselves to the context: expectation suppression appeared first in the insula, inferior frontal gyrus, and posterior parietal cortex, followed by the ventral visual stream, up to early visual cortex. This applied selectively to task-relevant expectations. Together, the present results suggest that an insular and frontoparietal executive control network may guide the flexible deployment of contextual sensory expectations for adaptive behavior in our complex and dynamic world.SIGNIFICANCE STATEMENT The world is structured by statistical regularities, which we use to predict the future. This is often accompanied by suppressed neural responses to expected compared with unexpected events ("expectation suppression"). Crucially, the world is also highly volatile and context-dependent: expected events may become unexpected when the context changes, thus raising the crucial need for belief updating. However, this issue has generally been neglected. By setting up a volatile environment, we show that expectation suppression emerges first in executive control regions, followed by relevant sensory areas, only when observers use their expectations to optimize behavior. This provides surprising yet clear evidence on how the brain controls the updating of sensory expectations for adaptive behavior in our ever-changing world.
Collapse
Affiliation(s)
- Ambra Ferrari
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, 6525 EN, The Netherlands
| | - David Richter
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, 6525 EN, The Netherlands
| | - Floris P de Lange
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, 6525 EN, The Netherlands
| |
Collapse
|
23
|
Mancini F, Zhang S, Seymour B. Computational and neural mechanisms of statistical pain learning. Nat Commun 2022; 13:6613. [PMID: 36329014 PMCID: PMC9633765 DOI: 10.1038/s41467-022-34283-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Pain invariably changes over time. These fluctuations contain statistical regularities which, in theory, could be learned by the brain to generate expectations and control responses. We demonstrate that humans learn to extract these regularities and explicitly predict the likelihood of forthcoming pain intensities in a manner consistent with optimal Bayesian inference with dynamic update of beliefs. Healthy participants received probabilistic, volatile sequences of low and high-intensity electrical stimuli to the hand during brain fMRI. The inferred frequency of pain correlated with activity in sensorimotor cortical regions and dorsal striatum, whereas the uncertainty of these inferences was encoded in the right superior parietal cortex. Unexpected changes in stimulus frequencies drove the update of internal models by engaging premotor, prefrontal and posterior parietal regions. This study extends our understanding of sensory processing of pain to include the generation of Bayesian internal models of the temporal statistics of pain.
Collapse
Affiliation(s)
- Flavia Mancini
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, UK.
| | - Suyi Zhang
- Wellcome Centre for Integrative Neuroimaging, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Ben Seymour
- Wellcome Centre for Integrative Neuroimaging, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
- Center for Information and Neural Networks (CiNet), 1-4 Yamadaoka, Suita City, Osaka, 565-0871, Japan
| |
Collapse
|
24
|
Atlas LY, Dildine TC, Palacios-Barrios EE, Yu Q, Reynolds RC, Banker LA, Grant SS, Pine DS. Instructions and experiential learning have similar impacts on pain and pain-related brain responses but produce dissociations in value-based reversal learning. eLife 2022; 11:e73353. [PMID: 36317867 PMCID: PMC9681218 DOI: 10.7554/elife.73353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/25/2022] [Indexed: 11/22/2022] Open
Abstract
Recent data suggest that interactions between systems involved in higher order knowledge and associative learning drive responses during value-based learning. However, it is unknown how these systems impact subjective responses, such as pain. We tested how instructions and reversal learning influence pain and pain-evoked brain activation. Healthy volunteers (n=40) were either instructed about contingencies between cues and aversive outcomes or learned through experience in a paradigm where contingencies reversed three times. We measured predictive cue effects on pain and heat-evoked brain responses using functional magnetic resonance imaging. Predictive cues dynamically modulated pain perception as contingencies changed, regardless of whether participants received contingency instructions. Heat-evoked responses in the insula, anterior cingulate, and other regions updated as contingencies changed, and responses in the prefrontal cortex mediated dynamic cue effects on pain, whereas responses in the brainstem's rostroventral medulla (RVM) were shaped by initial contingencies throughout the task. Quantitative modeling revealed that expected value was shaped purely by instructions in the Instructed Group, whereas expected value updated dynamically in the Uninstructed Group as a function of error-based learning. These differences were accompanied by dissociations in the neural correlates of value-based learning in the rostral anterior cingulate, thalamus, and posterior insula, among other regions. These results show how predictions dynamically impact subjective pain. Moreover, imaging data delineate three types of networks involved in pain generation and value-based learning: those that respond to initial contingencies, those that update dynamically during feedback-driven learning as contingencies change, and those that are sensitive to instruction. Together, these findings provide multiple points of entry for therapies designs to impact pain.
Collapse
Affiliation(s)
- Lauren Y Atlas
- National Center for Complementary and Integrative Health, National Institutes of HealthBethesdaUnited States
- National Institute on Drug Abuse, National Institutes of HealthBaltimoreUnited States
- National Institute of Mental Health, National Institutes of HealthBethesdaUnited States
| | - Troy C Dildine
- National Center for Complementary and Integrative Health, National Institutes of HealthBethesdaUnited States
- Department of Clinical Neuroscience, Karolinska InstitutetSolnaSweden
| | | | - Qingbao Yu
- National Center for Complementary and Integrative Health, National Institutes of HealthBethesdaUnited States
| | - Richard C Reynolds
- National Institute of Mental Health, National Institutes of HealthBethesdaUnited States
| | - Lauren A Banker
- National Center for Complementary and Integrative Health, National Institutes of HealthBethesdaUnited States
| | - Shara S Grant
- National Center for Complementary and Integrative Health, National Institutes of HealthBethesdaUnited States
| | - Daniel S Pine
- National Institute of Mental Health, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
25
|
Ojala KE, Tzovara A, Poser BA, Lutti A, Bach DR. Asymmetric representation of aversive prediction errors in Pavlovian threat conditioning. Neuroimage 2022; 263:119579. [PMID: 35995374 DOI: 10.1016/j.neuroimage.2022.119579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022] Open
Abstract
Survival in biological environments requires learning associations between predictive sensory cues and threatening outcomes. Such aversive learning may be implemented through reinforcement learning algorithms that are driven by the signed difference between expected and encountered outcomes, termed prediction errors (PEs). While PE-based learning is well established for reward learning, the role of putative PE signals in aversive learning is less clear. Here, we used functional magnetic resonance imaging in humans (21 healthy men and women) to investigate the neural representation of PEs during maintenance of learned aversive associations. Four visual cues, each with a different probability (0, 33, 66, 100%) of being followed by an aversive outcome (electric shock), were repeatedly presented to participants. We found that neural activity at omission (US-) but not occurrence of the aversive outcome (US+) encoded PEs in the medial prefrontal cortex. More expected omission of aversive outcome was associated with lower neural activity. No neural signals fulfilled axiomatic criteria, which specify necessary and sufficient components of PE signals, for signed PE representation in a whole-brain search or in a-priori regions of interest. Our results might suggest that, different from reward learning, aversive learning does not involve signed PE signals that are represented within the same brain region for all conditions.
Collapse
Affiliation(s)
- Karita E Ojala
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, Zurich 8032, Switzerland; Neuroscience Centre Zurich, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland.
| | - Athina Tzovara
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, Zurich 8032, Switzerland; Neuroscience Centre Zurich, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland; Institute of Computer Science, University of Bern, Neubrückstrasse 10, Bern 3012, Switzerland
| | - Benedikt A Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55 EV 6299, Maastricht, the Netherlands
| | - Antoine Lutti
- Laboratory for Research in Neuroimaging, Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne, Chemin de Mont-Paisible 16, Lausanne 1011, Switzerland
| | - Dominik R Bach
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, Zurich 8032, Switzerland; Neuroscience Centre Zurich, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland; Wellcome Centre for Human Neuroimaging and Max-Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, 10-12 Russell Square, London WC1B 5EH, United Kingdom.
| |
Collapse
|
26
|
Cho YT, Moujaes F, Schleifer CH, Starc M, Ji JL, Santamauro N, Adkinson B, Kolobaric A, Flynn M, Krystal JH, Murray JD, Repovs G, Anticevic A. Reward and loss incentives improve spatial working memory by shaping trial-by-trial posterior frontoparietal signals. Neuroimage 2022; 254:119139. [PMID: 35346841 PMCID: PMC9264479 DOI: 10.1016/j.neuroimage.2022.119139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 10/29/2022] Open
Abstract
Integrating motivational signals with cognition is critical for goal-directed activities. The mechanisms that link neural changes with motivated working memory continue to be understood. Here, we tested how externally cued and non-cued (internally represented) reward and loss impact spatial working memory precision and neural circuits in human subjects using fMRI. We translated the classic delayed-response spatial working memory paradigm from non-human primate studies to take advantage of a continuous numeric measure of working memory precision, and the wealth of translational neuroscience yielded by these studies. Our results demonstrated that both cued and non-cued reward and loss improved spatial working memory precision. Visual association regions of the posterior prefrontal and parietal cortices, specifically the precentral sulcus (PCS) and intraparietal sulcus (IPS), had increased BOLD signal during incentivized spatial working memory. A subset of these regions had trial-by-trial increases in BOLD signal that were associated with better working memory precision, suggesting that these regions may be critical for linking neural signals with motivated working memory. In contrast, regions straddling executive networks, including areas in the dorsolateral prefrontal cortex, anterior parietal cortex and cerebellum displayed decreased BOLD signal during incentivized working memory. While reward and loss similarly impacted working memory processes, they dissociated during feedback when money won or avoided in loss was given based on working memory performance. During feedback, the trial-by-trial amount and valence of reward/loss received was dissociated amongst regions such as the ventral striatum, habenula and periaqueductal gray. Overall, this work suggests motivated spatial working memory is supported by complex sensory processes, and that the IPS and PCS in the posterior frontoparietal cortices may be key regions for integrating motivational signals with spatial working memory precision.
Collapse
Affiliation(s)
- Youngsun T Cho
- Yale University, Department of Psychiatry, 300 George Street, Suite 901, New Haven, CT, 06511, USA; Yale University, Child Study Center, 230 South Frontage Road, New Haven, CT, 06519, USA; Connecticut Mental Health Center, Clinical Neuroscience Research Unit, 34 Park Street, 3rd floor, New Haven, CT, 06519, USA; Yale University, Interdepartmental Neuroscience Program, Yale University Neuroscience Program, P.O. Box 208074, New Haven, CT, 06520, USA.
| | - Flora Moujaes
- Yale University, Department of Psychiatry, 300 George Street, Suite 901, New Haven, CT, 06511, USA
| | - Charles H Schleifer
- Yale University, Department of Psychiatry, 300 George Street, Suite 901, New Haven, CT, 06511, USA
| | | | - Jie Lisa Ji
- Yale University, Department of Psychiatry, 300 George Street, Suite 901, New Haven, CT, 06511, USA
| | - Nicole Santamauro
- Yale University, Department of Psychiatry, 300 George Street, Suite 901, New Haven, CT, 06511, USA
| | - Brendan Adkinson
- Yale University, Department of Psychiatry, 300 George Street, Suite 901, New Haven, CT, 06511, USA
| | - Antonija Kolobaric
- Yale University, Department of Psychiatry, 300 George Street, Suite 901, New Haven, CT, 06511, USA
| | - Morgan Flynn
- Yale University, Department of Psychiatry, 300 George Street, Suite 901, New Haven, CT, 06511, USA
| | - John H Krystal
- Yale University, Department of Psychiatry, 300 George Street, Suite 901, New Haven, CT, 06511, USA; Yale University, NIAAA Center for Translational Neuroscience of Alcoholism, 34 Park Street, 3rd floor, New Haven, CT 06519 USA
| | - John D Murray
- Yale University, Department of Psychiatry, 300 George Street, Suite 901, New Haven, CT, 06511, USA; Yale University, Interdepartmental Neuroscience Program, Yale University Neuroscience Program, P.O. Box 208074, New Haven, CT, 06520, USA; Yale University, Department of Physics, 217 Prospect Street, New Haven, CT, 06511, USA
| | - Grega Repovs
- University of Ljubljana, Department of Psychology
| | - Alan Anticevic
- Yale University, Department of Psychiatry, 300 George Street, Suite 901, New Haven, CT, 06511, USA; Connecticut Mental Health Center, Clinical Neuroscience Research Unit, 34 Park Street, 3rd floor, New Haven, CT, 06519, USA; Yale University, Interdepartmental Neuroscience Program, Yale University Neuroscience Program, P.O. Box 208074, New Haven, CT, 06520, USA; University of Zagreb, University Psychiatric Hospital Vrapce; Yale University, Department of Psychology, Box 208205, New Haven, CT, 06520-8205, USA; Yale University, NIAAA Center for Translational Neuroscience of Alcoholism, 34 Park Street, 3rd floor, New Haven, CT 06519 USA.
| |
Collapse
|
27
|
Haufler D, Liran O, Buchanan RJ, Pare D. Human anterior insula signals salience and deviations from expectations via bursts of beta oscillations. J Neurophysiol 2022; 128:160-180. [PMID: 35704705 DOI: 10.1152/jn.00106.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Functional imaging studies indicate that the insula encodes the salience of stimuli and deviations from expectations, signals that can mobilize cognitive resources and facilitate learning. However, there is no information about the physiological underpinnings of these phenomena beyond changing BOLD signals. To shed light on this question, we analyzed intracerebral local field potentials (LFPs) in five epileptic patients of both genders performing a virtual reality task that featured varying odds of monetary rewards and losses. Upon outcome disclosure, the anterior (but not the posterior) insula generated bursts of beta oscillations whose amplitudes were lower for neutral than positive and negative outcomes, consistent with a salience signal. Moreover, beta burst power was higher when outcomes deviated from expectations, whether the outcome was better or worse than expected, indicating that the insula provides an unsigned prediction error signal. Last, in relation to insular beta bursts, many higher-order cortical areas exhibited robust changes in LFP activity that ranged from spectrally non-specific or differentiated increases in gamma power to bursts of beta activity that closely resembled the insular beta bursts themselves. Critically, the activity of these other cortical regions was more closely tied in time to insular bursts than task events, suggesting that they are associated with particularly significant cognitive phenomena. Overall, our findings suggest that the insula signals salience and prediction errors via amplitude modulations of beta bursts, which coincide with the near simultaneous recruitment of vast cortical territories.
Collapse
Affiliation(s)
- Darrell Haufler
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, United States
| | - Omer Liran
- Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Robert J Buchanan
- Departments of Neurosurgery, Neurology, and Psychiatry, Dell Medical School at The University Texas at Austin, Austin, TX, United States.,Seton Brain and Spine Institute, Austin, TX, United States
| | - Denis Pare
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, United States
| |
Collapse
|
28
|
Chae Y, Park HJ, Lee IS. Pain modalities in the body and brain: Current knowledge and future perspectives. Neurosci Biobehav Rev 2022; 139:104744. [PMID: 35716877 DOI: 10.1016/j.neubiorev.2022.104744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/29/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022]
Abstract
Development and validation of pain biomarkers has become a major issue in pain research. Recent advances in multimodal data acquisition have allowed researchers to gather multivariate and multilevel whole-body measurements in patients with pain conditions, and data analysis techniques such as machine learning have led to novel findings in neural biomarkers for pain. Most studies have focused on the development of a biomarker to predict the severity of pain with high precision and high specificity, however, a similar approach to discriminate different modalities of pain is lacking. Identification of more accurate and specific pain biomarkers will require an in-depth understanding of the modality specificity of pain. In this review, we summarize early and recent findings on the modality specificity of pain in the brain, with a focus on distinct neural activity patterns between chronic clinical and acute experimental pain, direct, social, and vicarious pain, and somatic and visceral pain. We also suggest future directions to improve our current strategy of pain management using our knowledge of modality-specific aspects of pain.
Collapse
Affiliation(s)
- Younbyoung Chae
- College of Korean Medicine, Kyung Hee University, Seoul, the Republic of Korea; Acupuncture & Meridian Science Research Center, Kyung Hee University, Seoul, the Republic of Korea
| | - Hi-Joon Park
- College of Korean Medicine, Kyung Hee University, Seoul, the Republic of Korea; Acupuncture & Meridian Science Research Center, Kyung Hee University, Seoul, the Republic of Korea
| | - In-Seon Lee
- College of Korean Medicine, Kyung Hee University, Seoul, the Republic of Korea; Acupuncture & Meridian Science Research Center, Kyung Hee University, Seoul, the Republic of Korea.
| |
Collapse
|
29
|
Fermin ASR, Friston K, Yamawaki S. An insula hierarchical network architecture for active interoceptive inference. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220226. [PMID: 35774133 PMCID: PMC9240682 DOI: 10.1098/rsos.220226] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/09/2022] [Indexed: 05/05/2023]
Abstract
In the brain, the insular cortex receives a vast amount of interoceptive information, ascending through deep brain structures, from multiple visceral organs. The unique hierarchical and modular architecture of the insula suggests specialization for processing interoceptive afferents. Yet, the biological significance of the insula's neuroanatomical architecture, in relation to deep brain structures, remains obscure. In this opinion piece, we propose the Insula Hierarchical Modular Adaptive Interoception Control (IMAC) model to suggest that insula modules (granular, dysgranular and agranular), forming parallel networks with the prefrontal cortex and striatum, are specialized to form higher order interoceptive representations. These interoceptive representations are recruited in a context-dependent manner to support habitual, model-based and exploratory control of visceral organs and physiological processes. We discuss how insula interoceptive representations may give rise to conscious feelings that best explain lower order deep brain interoceptive representations, and how the insula may serve to defend the body and mind against pathological depression.
Collapse
Affiliation(s)
- Alan S. R. Fermin
- Center for Brain, Mind and Kansei Sciences Research, Hiroshima University, Hiroshima, Japan
| | - Karl Friston
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, England
| | - Shigeto Yamawaki
- Center for Brain, Mind and Kansei Sciences Research, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
30
|
Bingel U, Wiech K, Ritter C, Wanigasekera V, Mhuircheartaigh R, Lee MC, Ploner M, Tracey I. Hippocampus mediates nocebo impairment of opioid analgesia through changes in functional connectivity. Eur J Neurosci 2022; 56:3967-3978. [PMID: 35537867 DOI: 10.1111/ejn.15687] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/12/2022] [Accepted: 05/04/2022] [Indexed: 11/26/2022]
Abstract
The neural mechanisms underlying placebo analgesia have attracted considerable attention over the recent years. In contrast, little is known about the neural underpinnings of a nocebo-induced increase in pain. We previously showed that nocebo-induced hyperalgesia is accompanied by increased activity in the hippocampus that scaled with the perceived level of anxiety. As a key node of the neural circuitry of perceived threat and fear, the hippocampus has recently been proposed to coordinate defensive behaviour in a context-dependent manner. Such a role requires close interactions with other regions involved in the detection of and responses to threat. Here, we investigated the functional connectivity of the hippocampus during nocebo-induced hyperalgesia. Our results show an increase in functional connectivity between hippocampus and brain regions implicated in the processing of sensory-discriminative aspects of pain (posterior insula and primary somatosensory/motor cortex) as well as the periaqueductal gray (PAG). This nocebo-induced increase in connectivity scaled with an individual's increase in anxiety. Moreover, hippocampus connectivity with the amygdala was negatively correlated with the pain intensity reported during nocebo hyperalgesia relative to the placebo condition. Our findings suggest that the hippocampus links nocebo-induced anxiety to a heightened responsiveness to nociceptive input through changes in its crosstalk with pain-modulatory brain areas.
Collapse
Affiliation(s)
- Ulrike Bingel
- Department of Neurology, Center of Translational Neuro- and Behavioural Sciences, Hufelandstraße 55, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Katja Wiech
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Christoph Ritter
- Department of Neurology, Center of Translational Neuro- and Behavioural Sciences, Hufelandstraße 55, University Medicine Essen, University Duisburg-Essen, Essen, Germany.,Brain Imaging Facility, Interdisciplinary Center for Clinical Research, RWTH Aachen University, Aachen, Germany
| | - Vishvarani Wanigasekera
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Roisin Mhuircheartaigh
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK.,Mater Misericordiae University Hospital, Eccles St., University College Dublin, Dublin, Ireland
| | - Michael C Lee
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK.,Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Markus Ploner
- Technical University of Munich, School of Medicine, Department of Neurology, Munich, Germany
| | - Irene Tracey
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| |
Collapse
|
31
|
Horing B, Büchel C. The human insula processes both modality-independent and pain-selective learning signals. PLoS Biol 2022; 20:e3001540. [PMID: 35522696 PMCID: PMC9116652 DOI: 10.1371/journal.pbio.3001540] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 05/18/2022] [Accepted: 04/15/2022] [Indexed: 12/02/2022] Open
Abstract
Prediction errors (PEs) are generated when there are differences between an expected and an actual event or sensory input. The insula is a key brain region involved in pain processing, and studies have shown that the insula encodes the magnitude of an unexpected outcome (unsigned PEs). In addition to signaling this general magnitude information, PEs can give specific information on the direction of this deviation-i.e., whether an event is better or worse than expected. It is unclear whether the unsigned PE responses in the insula are selective for pain or reflective of a more general processing of aversive events irrespective of modality. It is also unknown whether the insula can process signed PEs at all. Understanding these specific mechanisms has implications for understanding how pain is processed in the brain in both health and in chronic pain conditions. In this study, 47 participants learned associations between 2 conditioned stimuli (CS) with 4 unconditioned stimuli (US; painful heat or loud sound, of one low and one high intensity each) while undergoing functional magnetic resonance imaging (fMRI) and skin conductance response (SCR) measurements. We demonstrate that activation in the anterior insula correlated with unsigned intensity PEs, irrespective of modality, indicating an unspecific aversive surprise signal. Conversely, signed intensity PE signals were modality specific, with signed PEs following pain but not sound located in the dorsal posterior insula, an area implicated in pain intensity processing. Previous studies have identified abnormal insula function and abnormal learning as potential causes of pain chronification. Our findings link these results and suggest that a misrepresentation of learning relevant PEs in the insular cortex may serve as an underlying factor in chronic pain.
Collapse
Affiliation(s)
- Björn Horing
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Büchel
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
32
|
Distinct networks of periaqueductal gray columns in pain and threat processing. Neuroimage 2022; 250:118936. [PMID: 35093518 DOI: 10.1016/j.neuroimage.2022.118936] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 12/02/2021] [Accepted: 01/24/2022] [Indexed: 01/21/2023] Open
Abstract
Noxious events that can cause physical damage to the body are perceived as threats. In the brainstem, the periaqueductal gray (PAG) ensures survival by generating an appropriate response to these threats. Hence, the experience of pain is coupled with threat signaling and interfaces in the dl/l and vlPAG columns. In this study, we triangulate the functional circuits of the dl/l and vlPAG by using static and time-varying functional connectivity (FC) in multiple fMRI scans in healthy participants (n=37, 21 female). The dl/l and vlPAG were activated during cue, heat, and rating periods when the cue signaled a high threat of experiencing heat pain and the incoming intensity of heat pain was low; responses were significantly lower after low threat cues. The two regions responded similarly to the cued conditions but showed prominent distinctions in the extent of FC with other brain regions. Thus, both static and time-varying FC showed significant differences in the functional circuits of dl/l and vlPAG in rest and task scans. The dl/lPAG consistently synchronized with the salience network, suggesting a role in threat detection, while the vlPAG exhibited more widespread synchronization and frequently connected with memory/language and sensory regions. Hence, these two PAG regions process heat pain when stronger pain is expected or when it is uncertain, and preferentially synchronize with distinct brain circuits in a reproducible manner. The dl/lPAG seems more directly involved in salience detection, while the vlPAG seems engaged in contextualizing threats.
Collapse
|
33
|
Temporal–spectral signaling of sensory information and expectations in the cerebral processing of pain. Proc Natl Acad Sci U S A 2022; 119:2116616119. [PMID: 34983852 PMCID: PMC8740684 DOI: 10.1073/pnas.2116616119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 01/14/2023] Open
Abstract
Pain is not only shaped by sensory information but also by an individual’s expectations. Here, we investigated how commonly analyzed electroencephalography (EEG) responses to pain signal sensory information, expectations, and discrepancies thereof (prediction errors) in the processing of pain. Bayesian analysis confirmed that pain perception was shaped by objective sensory information and expectations. In contrast, EEG responses at different latencies (including the N1, N2, and P2 components) and frequencies (including alpha, beta, and gamma oscillations) were shaped by sensory information but not by expectations. Thus, EEG responses to pain are more involved in signaling sensory information than in signaling expectations or prediction errors. Expectation effects are obviously mediated by other brain mechanisms than the effects of sensory information on pain. The perception of pain is shaped by somatosensory information about threat. However, pain is also influenced by an individual’s expectations. Such expectations can result in clinically relevant modulations and abnormalities of pain. In the brain, sensory information, expectations (predictions), and discrepancies thereof (prediction errors) are signaled by an extended network of brain areas which generate evoked potentials and oscillatory responses at different latencies and frequencies. However, a comprehensive picture of how evoked and oscillatory brain responses signal sensory information, predictions, and prediction errors in the processing of pain is lacking so far. Here, we therefore applied brief painful stimuli to 48 healthy human participants and independently modulated sensory information (stimulus intensity) and expectations of pain intensity while measuring brain activity using electroencephalography (EEG). Pain ratings confirmed that pain intensity was shaped by both sensory information and expectations. In contrast, Bayesian analyses revealed that stimulus-induced EEG responses at different latencies (the N1, N2, and P2 components) and frequencies (alpha, beta, and gamma oscillations) were shaped by sensory information but not by expectations. Expectations, however, shaped alpha and beta oscillations before the painful stimuli. These findings indicate that commonly analyzed EEG responses to painful stimuli are more involved in signaling sensory information than in signaling expectations or mismatches of sensory information and expectations. Moreover, they indicate that the effects of expectations on pain are served by brain mechanisms which differ from those conveying effects of sensory information on pain.
Collapse
|
34
|
Inter-individual differences in pain anticipation and pain perception in migraine: Neural correlates of migraine frequency and cortisol-to-dehydroepiandrosterone sulfate (DHEA-S) ratio. PLoS One 2021; 16:e0261570. [PMID: 34929017 PMCID: PMC8687546 DOI: 10.1371/journal.pone.0261570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/05/2021] [Indexed: 01/03/2023] Open
Abstract
Previous studies targeting inter-individual differences in pain processing in migraine mainly focused on the perception of pain. Our main aim was to disentangle pain anticipation and perception using a classical fear conditioning task, and investigate how migraine frequency and pre-scan cortisol-to-dehydroepiandrosterone sulfate (DHEA-S) ratio as an index of neurobiological stress response would relate to neural activation in these two phases. Functional Magnetic Resonance Imaging (fMRI) data of 23 participants (18 females; mean age: 27.61± 5.36) with episodic migraine without aura were analysed. We found that migraine frequency was significantly associated with pain anticipation in brain regions comprising the midcingulate and caudate, whereas pre-scan cortisol-to DHEA-S ratio was related to pain perception in the pre-supplementary motor area (pre-SMA). Both results suggest exaggerated preparatory responses to pain or more general to stressors, which may contribute to the allostatic load caused by stressors and migraine attacks on the brain.
Collapse
|
35
|
Strube A, Rose M, Fazeli S, Büchel C. Alpha-to-beta- and gamma-band activity reflect predictive coding in affective visual processing. Sci Rep 2021; 11:23492. [PMID: 34873255 PMCID: PMC8648824 DOI: 10.1038/s41598-021-02939-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/22/2021] [Indexed: 12/15/2022] Open
Abstract
Processing of negative affective pictures typically leads to desynchronization of alpha-to-beta frequencies (ERD) and synchronization of gamma frequencies (ERS). Given that in predictive coding higher frequencies have been associated with prediction errors, while lower frequencies have been linked to expectations, we tested the hypothesis that alpha-to-beta ERD and gamma ERS induced by aversive pictures are associated with expectations and prediction errors, respectively. We recorded EEG while volunteers were involved in a probabilistically cued affective picture task using three different negative valences to produce expectations and prediction errors. Our data show that alpha-to-beta band activity after stimulus presentation was related to the expected valence of the stimulus as predicted by a cue. The absolute mismatch of the expected and actual valence, which denotes an absolute prediction error was related to increases in alpha, beta and gamma band activity. This demonstrates that top-down predictions and bottom-up prediction errors are represented in typical spectral patterns associated with affective picture processing. This study provides direct experimental evidence that negative affective picture processing can be described by neuronal predictive coding computations.
Collapse
Affiliation(s)
- Andreas Strube
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| | - Michael Rose
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Sepideh Fazeli
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Christian Büchel
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| |
Collapse
|
36
|
Kalbe F, Schwabe L. Prediction Errors for Aversive Events Shape Long-Term Memory Formation through a Distinct Neural Mechanism. Cereb Cortex 2021; 32:3081-3097. [PMID: 34849622 DOI: 10.1093/cercor/bhab402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/09/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Prediction errors (PEs) have been known for decades to guide associative learning, but their role in episodic memory formation has been discovered only recently. To identify the neural mechanisms underlying the impact of aversive PEs on long-term memory formation, we used functional magnetic resonance imaging, while participants saw a series of unique stimuli and estimated the probability that an aversive shock would follow. Our behavioral data showed that negative PEs (i.e., omission of an expected outcome) were associated with superior recognition of the predictive stimuli, whereas positive PEs (i.e., presentation of an unexpected outcome) impaired subsequent memory. While medial temporal lobe (MTL) activity during stimulus encoding was overall associated with enhanced memory, memory-enhancing effects of negative PEs were linked to even decreased MTL activation. Additional large-scale network analyses showed PE-related increases in crosstalk between the "salience network" and a frontoparietal network commonly implicated in memory formation for expectancy-congruent events. These effects could not be explained by mere changes in physiological arousal or the prediction itself. Our results suggest that the superior memory for events associated with negative aversive PEs is driven by a potentially distinct neural mechanism that might serve to set these memories apart from those with expected outcomes.
Collapse
Affiliation(s)
- Felix Kalbe
- Department of Cognitive Psychology, Institute of Psychology, Universität Hamburg, Hamburg 20146, Germany
| | - Lars Schwabe
- Department of Cognitive Psychology, Institute of Psychology, Universität Hamburg, Hamburg 20146, Germany
| |
Collapse
|
37
|
Resting-state functional heterogeneity of the right insula contributes to pain sensitivity. Sci Rep 2021; 11:22945. [PMID: 34824347 PMCID: PMC8617295 DOI: 10.1038/s41598-021-02474-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/05/2021] [Indexed: 11/28/2022] Open
Abstract
Previous studies have described the structure and function of the insular cortex in terms of spatially continuous gradients. Here we assess how spatial features of insular resting state functional organization correspond to individual pain sensitivity. From a previous multicenter study, we included 107 healthy participants, who underwent resting state functional MRI scans, T1-weighted scans and quantitative sensory testing on the left forearm. Thermal and mechanical pain thresholds were determined. Connectopic mapping, a technique using non-linear representations of functional organization was employed to describe functional connectivity gradients in both insulae. Partial coefficients of determination were calculated between trend surface model parameters summarizing spatial features of gradients, modal and modality-independent pain sensitivity. The dominant connectopy captured the previously reported posteroanterior shift in connectivity profiles. Spatial features of dominant connectopies in the right insula explained significant amounts of variance in thermal (R2 = 0.076; p < 0.001 and R2 = 0.031; p < 0.029) and composite pain sensitivity (R2 = 0.072; p < 0.002). The left insular gradient was not significantly associated with pain thresholds. Our results highlight the functional relevance of gradient-like insular organization in pain processing. Considering individual variations in insular connectopy might contribute to understanding neural mechanisms behind pain and improve objective brain-based characterization of individual pain sensitivity.
Collapse
|
38
|
Zhang T, Hou Q, Bai T, Ji G, Lv H, Xie W, Jin S, Yang J, Qiu B, Tian Y, Wang K. Functional and structural alterations in the pain-related circuit in major depressive disorder induced by electroconvulsive therapy. J Neurosci Res 2021; 100:477-489. [PMID: 34825381 DOI: 10.1002/jnr.24979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/08/2021] [Accepted: 09/25/2021] [Indexed: 12/12/2022]
Abstract
Approximately two-thirds of major depressive disorder (MDD) patients have pain, which exacerbates the severity of depression. Electroconvulsive therapy (ECT) is an efficacious treatment that can alleviate depressive symptoms; however, treatment for pain and the underlying neural substrate is elusive. We enrolled 34 patients with MDD and 33 matched healthy controls to complete clinical assessments and neuroimaging scans. MDD patients underwent second assessments and scans after ECT. We defined a pain-related network with a published meta-analysis and calculated topological patterns to reveal topologic alterations induced by ECT. Using the amplitude of low-frequency fluctuations (ALFFs), we probed local function aberrations of pain-related circuits in MDD patients. Subsequently, we applied gray matter volume (GMV) to reveal structural alterations of ECT relieving pain. The relationships between functional and structural aberrations and pain were determined. ECT significantly alleviated pain. The neural mechanism based on pain-related circuits indicated that ECT weakened the circuit function (ALFF: left amygdala and right supplementary motor area), while augmenting the structure (GMV: bilateral amygdala/insula/hippocampus and anterior cingulate cortex). The topologic patterns became less efficient after ECT. Correlation analysis between the change in pain and GMV had negative results in bilateral amygdala/insula/hippocampus. Similarity, there was a positive correlation between a change in ALFF in the left amygdala and improved clinical symptoms. ECT improved pain by decreasing brain local function and global network patterns, while increasing structure in pain-related circuits. Functional and structural alterations were associated with improvement in pain.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Qiangqiang Hou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Tongjian Bai
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Gongjun Ji
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Huaming Lv
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Wen Xie
- Anhui Mental Health Center, Hefei, China
| | | | - Jinying Yang
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, China
| | - Bensheng Qiu
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, China
| | - Yanghua Tian
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China.,Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China.,Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China.,School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
39
|
Livneh Y, Andermann ML. Cellular activity in insular cortex across seconds to hours: Sensations and predictions of bodily states. Neuron 2021; 109:3576-3593. [PMID: 34582784 PMCID: PMC8602715 DOI: 10.1016/j.neuron.2021.08.036] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/17/2021] [Accepted: 08/26/2021] [Indexed: 02/09/2023]
Abstract
Our wellness relies on continuous interactions between our brain and body: different organs relay their current state to the brain and are regulated, in turn, by descending visceromotor commands from our brain and by actions such as eating, drinking, thermotaxis, and predator escape. Human neuroimaging and theoretical studies suggest a key role for predictive processing by insular cortex in guiding these efforts to maintain bodily homeostasis. Here, we review recent studies recording and manipulating cellular activity in rodent insular cortex at timescales from seconds to hours. We argue that consideration of these findings in the context of predictive processing of future bodily states may reconcile several apparent discrepancies and offer a unifying, heuristic model for guiding future work.
Collapse
Affiliation(s)
- Yoav Livneh
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Mark L Andermann
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
40
|
Atlas LY. A social affective neuroscience lens on placebo analgesia. Trends Cogn Sci 2021; 25:992-1005. [PMID: 34538720 PMCID: PMC8516707 DOI: 10.1016/j.tics.2021.07.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/26/2022]
Abstract
Pain is a fundamental experience that promotes survival. In humans, pain stands at the intersection of multiple health crises: chronic pain, the opioid epidemic, and health disparities. The study of placebo analgesia highlights how social, cognitive, and affective processes can directly shape pain, and identifies potential paths for mitigating these crises. This review examines recent progress in the study of placebo analgesia through affective science. It focuses on how placebo effects are shaped by expectations, affect, and the social context surrounding treatment, and discusses neurobiological mechanisms of placebo, highlighting unanswered questions and implications for health. Collaborations between clinicians and social and affective scientists can address outstanding questions and leverage placebo to reduce pain and improve human health.
Collapse
Affiliation(s)
- Lauren Y Atlas
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA; National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA; National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
41
|
Better living through understanding the insula: Why subregions can make all the difference. Neuropharmacology 2021; 198:108765. [PMID: 34461066 DOI: 10.1016/j.neuropharm.2021.108765] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/19/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
Insula function is considered critical for many motivated behaviors, with proposed functions ranging from attention, behavioral control, emotional regulation, goal-directed and aversion-resistant responding. Further, the insula is implicated in many neuropsychiatric conditions including substance abuse. More recently, multiple insula subregions have been distinguished based on anatomy, connectivity, and functional contributions. Generally, posterior insula is thought to encode more somatosensory inputs, which integrate with limbic/emotional information in middle insula, that in turn integrate with cognitive processes in anterior insula. Together, these regions provide rapid interoceptive information about the current or predicted situation, facilitating autonomic recruitment and quick, flexible action. Here, we seek to create a robust foundation from which to understand potential subregion differences, and provide direction for future studies. We address subregion differences across humans and rodents, so that the latter's mechanistic interventions can best mesh with clinical relevance of human conditions. We first consider the insula's suggested roles in humans, then compare subregional studies, and finally describe rodent work. One primary goal is to encourage precision in describing insula subregions, since imprecision (e.g. including both posterior and anterior studies when describing insula work) does a disservice to a larger understanding of insula contributions. Additionally, we note that specific task details can greatly impact recruitment of various subregions, requiring care and nuance in design and interpretation of studies. Nonetheless, the central ethological importance of the insula makes continued research to uncover mechanistic, mood, and behavioral contributions of paramount importance and interest. This article is part of the special Issue on 'Neurocircuitry Modulating Drug and Alcohol Abuse'.
Collapse
|
42
|
Treutler M, Sörös P. Functional MRI of Native and Non-native Speech Sound Production in Sequential German-English Bilinguals. Front Hum Neurosci 2021; 15:683277. [PMID: 34349632 PMCID: PMC8326338 DOI: 10.3389/fnhum.2021.683277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Bilingualism and multilingualism are highly prevalent. Non-invasive brain imaging has been used to study the neural correlates of native and non-native speech and language production, mainly on the lexical and syntactic level. Here, we acquired continuous fast event-related FMRI during visually cued overt production of exclusively German and English vowels and syllables. We analyzed data from 13 university students, native speakers of German and sequential English bilinguals. The production of non-native English sounds was associated with increased activity of the left primary sensorimotor cortex, bilateral cerebellar hemispheres (lobule VI), left inferior frontal gyrus, and left anterior insula compared to native German sounds. The contrast German > English sounds was not statistically significant. Our results emphasize that the production of non-native speech requires additional neural resources already on a basic phonological level in sequential bilinguals.
Collapse
Affiliation(s)
- Miriam Treutler
- European Medical School Oldenburg-Groningen, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Peter Sörös
- Department of Neurology, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
43
|
Kolodny O, Moyal R, Edelman S. A possible evolutionary function of phenomenal conscious experience of pain. Neurosci Conscious 2021; 2021:niab012. [PMID: 34141452 PMCID: PMC8206511 DOI: 10.1093/nc/niab012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 12/11/2022] Open
Abstract
Evolutionary accounts of feelings, and in particular of negative affect and of pain, assume that creatures that feel and care about the outcomes of their behavior outperform those that do not in terms of their evolutionary fitness. Such accounts, however, can only work if feelings can be shown to contribute to fitness-influencing outcomes. Simply assuming that a learner that feels and cares about outcomes is more strongly motivated than one that does is not enough, if only because motivation can be tied directly to outcomes by incorporating an appropriate reward function, without leaving any apparent role to feelings (as it is done in state-of-the-art engineered systems based on reinforcement learning). Here, we propose a possible mechanism whereby pain contributes to fitness: an actor-critic functional architecture for reinforcement learning, in which pain reflects the costs imposed on actors in their bidding for control, so as to promote honest signaling and ultimately help the system optimize learning and future behavior.
Collapse
Affiliation(s)
- Oren Kolodny
- Department of Ecology, Evolution, and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem 9190401, Israel
| | - Roy Moyal
- Department of Psychology, Uris Hall, Ithaca, NY 14853, USA
| | - Shimon Edelman
- Department of Psychology, Uris Hall, Ithaca, NY 14853, USA
| |
Collapse
|
44
|
Koenen LR, Pawlik RJ, Icenhour A, Petrakova L, Forkmann K, Theysohn N, Engler H, Elsenbruch S. Associative learning and extinction of conditioned threat predictors across sensory modalities. Commun Biol 2021; 4:553. [PMID: 33976383 PMCID: PMC8113515 DOI: 10.1038/s42003-021-02008-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 03/18/2021] [Indexed: 12/19/2022] Open
Abstract
The formation and persistence of negative pain-related expectations by classical conditioning remain incompletely understood. We elucidated behavioural and neural correlates involved in the acquisition and extinction of negative expectations towards different threats across sensory modalities. In two complementary functional magnetic resonance imaging studies in healthy humans, differential conditioning paradigms combined interoceptive visceral pain with somatic pain (study 1) and aversive tone (study 2) as exteroceptive threats. Conditioned responses to interoceptive threat predictors were enhanced in both studies, consistently involving the insula and cingulate cortex. Interoceptive threats had a greater impact on extinction efficacy, resulting in disruption of ongoing extinction (study 1), and selective resurgence of interoceptive CS-US associations after complete extinction (study 2). In the face of multiple threats, we preferentially learn, store, and remember interoceptive danger signals. As key mediators of nocebo effects, conditioned responses may be particularly relevant to clinical conditions involving disturbed interoception and chronic visceral pain.
Collapse
Affiliation(s)
- Laura R Koenen
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Robert J Pawlik
- Department of Medical Psychology and Medical Sociology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Adriane Icenhour
- Translational Pain Research Unit, Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Liubov Petrakova
- Department of Medical Psychology and Medical Sociology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Katarina Forkmann
- Translational Pain Research Unit, Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Nina Theysohn
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Harald Engler
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sigrid Elsenbruch
- Department of Medical Psychology and Medical Sociology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany.
- Translational Pain Research Unit, Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
45
|
Tolomeo S, Yaple ZA, Yu R. Neural representation of prediction error signals in substance users. Addict Biol 2021; 26:e12976. [PMID: 33236447 DOI: 10.1111/adb.12976] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/15/2020] [Accepted: 09/24/2020] [Indexed: 12/29/2022]
Abstract
Abnormal decision making can result in detrimental outcomes of clinical importance, and decision making is strongly linked to neural prediction error signalling. Activation likelihood estimation (ALE) meta-analyses were used to examine the neural correlates of prediction error signals of individuals taking different types of substances and healthy controls with contrast and conjunction analyses. Twenty-eight studies were included in the meta-analysis, representing 424 substance users' individuals and 834 healthy control individuals. Robust brain activity associated with prediction error signals in substance users was found for the bilateral striatum and insula. Healthy control subjects also activated bilateral striatum, midbrain, right insula and right medial-inferior frontal gyrus. Compared with healthy controls, substance users showed blunted activity in the bilateral putamen, right medial-inferior frontal gyrus and insula. The current meta-analysis of cross-sectional findings investigated neural prediction error signals in substance users. PE abnormalities in substance users might be related to poor decision making. In conclusion, the present study helps identify the pathophysiological underpinnings of maladaptive decision making in substance users.
Collapse
Affiliation(s)
| | - Zachary A. Yaple
- Department of Psychology National University of Singapore Singapore
| | - Rongjun Yu
- Department of Psychology National University of Singapore Singapore
- NUS Graduate School for Integrative Sciences and Engineering National University of Singapore Singapore
| |
Collapse
|
46
|
Iordanova MD, Yau JOY, McDannald MA, Corbit LH. Neural substrates of appetitive and aversive prediction error. Neurosci Biobehav Rev 2021; 123:337-351. [PMID: 33453307 PMCID: PMC7933120 DOI: 10.1016/j.neubiorev.2020.10.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/24/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022]
Abstract
Prediction error, defined by the discrepancy between real and expected outcomes, lies at the core of associative learning. Behavioural investigations have provided evidence that prediction error up- and down-regulates associative relationships, and allocates attention to stimuli to enable learning. These behavioural advances have recently been followed by investigations into the neurobiological substrates of prediction error. In the present paper, we review neuroscience data obtained using causal and recording neural methods from a variety of key behavioural designs. We explore the neurobiology of both appetitive (reward) and aversive (fear) prediction error with a focus on the mesolimbic dopamine system, the amygdala, ventrolateral periaqueductal gray, hippocampus, cortex and locus coeruleus noradrenaline. New questions and avenues for research are considered.
Collapse
Affiliation(s)
- Mihaela D Iordanova
- Department of Psychology/Centre for Studies in Behavioral Neurobiology, Concordia University, 7141 Sherbrooke St, Montreal, QC, H4B 1R6, Canada.
| | - Joanna Oi-Yue Yau
- School of Psychology, The University of New South Wales, UNSW Sydney, NSW, 2052, Australia.
| | - Michael A McDannald
- Department of Psychology & Neuroscience, Boston College, 140 Commonwealth Avenue, 514 McGuinn Hall, Chestnut Hill, MA, 02467, USA.
| | - Laura H Corbit
- Departments of Psychology and Cell and Systems Biology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada.
| |
Collapse
|
47
|
Strube A, Rose M, Fazeli S, Büchel C. The temporal and spectral characteristics of expectations and prediction errors in pain and thermoception. eLife 2021; 10:62809. [PMID: 33594976 PMCID: PMC7924946 DOI: 10.7554/elife.62809] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
In the context of a generative model, such as predictive coding, pain and heat perception can be construed as the integration of expectation and input with their difference denoted as a prediction error. In a previous neuroimaging study (Geuter et al., 2017) we observed an important role of the insula in such a model but could not establish its temporal aspects. Here, we employed electroencephalography to investigate neural representations of predictions and prediction errors in heat and pain processing. Our data show that alpha-to-beta activity was associated with stimulus intensity expectation, followed by a negative modulation of gamma band activity by absolute prediction errors. This is in contrast to prediction errors in visual and auditory perception, which are associated with increased gamma band activity, but is in agreement with observations in working memory and word matching, which show gamma band activity for correct, rather than violated, predictions.
Collapse
Affiliation(s)
- Andreas Strube
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Rose
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sepideh Fazeli
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Büchel
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
48
|
Suarez-Roca H, Mamoun N, Sigurdson MI, Maixner W. Baroreceptor Modulation of the Cardiovascular System, Pain, Consciousness, and Cognition. Compr Physiol 2021; 11:1373-1423. [PMID: 33577130 DOI: 10.1002/cphy.c190038] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Baroreceptors are mechanosensitive elements of the peripheral nervous system that maintain cardiovascular homeostasis by coordinating the responses to external and internal environmental stressors. While it is well known that carotid and cardiopulmonary baroreceptors modulate sympathetic vasomotor and parasympathetic cardiac neural autonomic drive, to avoid excessive fluctuations in vascular tone and maintain intravascular volume, there is increasing recognition that baroreceptors also modulate a wide range of non-cardiovascular physiological responses via projections from the nucleus of the solitary tract to regions of the central nervous system, including the spinal cord. These projections regulate pain perception, sleep, consciousness, and cognition. In this article, we summarize the physiology of baroreceptor pathways and responses to baroreceptor activation with an emphasis on the mechanisms influencing cardiovascular function, pain perception, consciousness, and cognition. Understanding baroreceptor-mediated effects on cardiac and extra-cardiac autonomic activities will further our understanding of the pathophysiology of multiple common clinical conditions, such as chronic pain, disorders of consciousness (e.g., abnormalities in sleep-wake), and cognitive impairment, which may result in the identification and implementation of novel treatment modalities. © 2021 American Physiological Society. Compr Physiol 11:1373-1423, 2021.
Collapse
Affiliation(s)
- Heberto Suarez-Roca
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University, Durham, North Carolina, USA
| | - Negmeldeen Mamoun
- Department of Anesthesiology, Division of Cardiothoracic Anesthesia and Critical Care Medicine, Duke University, Durham, North Carolina, USA
| | - Martin I Sigurdson
- Department of Anesthesiology and Critical Care Medicine, Landspitali, University Hospital, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - William Maixner
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University, Durham, North Carolina, USA
| |
Collapse
|
49
|
Rütgen M, Wirth EM, Riečanský I, Hummer A, Windischberger C, Petrovic P, Silani G, Lamm C. Beyond Sharing Unpleasant Affect-Evidence for Pain-Specific Opioidergic Modulation of Empathy for Pain. Cereb Cortex 2021; 31:2773-2786. [PMID: 33454739 PMCID: PMC8107785 DOI: 10.1093/cercor/bhaa385] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
It is not known how specific the neural mechanisms underpinning empathy for different domains are. In the present study, we set out to test whether shared neural representations between first-hand pain and empathy for pain are pain-specific or extend to empathy for unpleasant affective touch as well. Using functional magnetic resonance imaging and psychopharmacological experiments, we investigated if placebo analgesia reduces first-hand and empathic experiences of affective touch, and compared them with the effects on pain. Placebo analgesia also affected the first-hand and empathic experience of unpleasant touch, implicating domain-general effects. However, and in contrast to pain and pain empathy, administering an opioid antagonist did not block these effects. Moreover, placebo analgesia reduced neural activity related to both modalities in the bilateral insular cortex, while it specifically modulated activity in the anterior midcingulate cortex for pain and pain empathy. These findings provide causal evidence that one of the major neurochemical systems for pain regulation is involved in pain empathy, and crucially substantiates the role of shared representations in empathy.
Collapse
Affiliation(s)
- Markus Rütgen
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, 1010 Vienna, Austria
| | - Eva-Maria Wirth
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, 1010 Vienna, Austria
| | - Igor Riečanský
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, 1010 Vienna, Austria.,Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, 813 71 Bratislava, Slovakia
| | - Allan Hummer
- MR Center of Excellence, Medical University of Vienna, 1090 Vienna, Austria.,Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Christian Windischberger
- MR Center of Excellence, Medical University of Vienna, 1090 Vienna, Austria.,Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Predrag Petrovic
- Department of Clinical Neuroscience, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Giorgia Silani
- Department of Clinical and Health Psychology, Faculty of Psychology, University of Vienna, 1010 Vienna, Austria
| | - Claus Lamm
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, 1010 Vienna, Austria
| |
Collapse
|
50
|
Ushio K, Nakanishi K, Mikami Y, Yoshino A, Takamura M, Hirata K, Akiyama Y, Kimura H, Okamoto Y, Adachi N. Altered Resting-State Connectivity with Pain-Related Expectation Regions in Female Patients with Severe Knee Osteoarthritis. J Pain Res 2020; 13:3227-3234. [PMID: 33299346 PMCID: PMC7719440 DOI: 10.2147/jpr.s268529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/16/2020] [Indexed: 12/27/2022] Open
Abstract
Purpose Expectation affects pain experience in humans. Numerous studies have reported that pre-stimulus activity in the anterior insular cortex (aIC), together with prefrontal and limbic regions, integrated pain intensity and expectations. However, it is unclear whether the resting-state functional connectivity (rs-FC) between the aIC and other brain regions affects chronic pain. The purpose of this study was to examine the rs-FC between the aIC and the whole brain regions in female patients with severe knee osteoarthritis (OA). Patients and Methods Nineteen female patients with chronic severe knee OA and 15 matched controls underwent resting-state functional magnetic resonance imaging. We compared the rs-FC from the aIC seed region between the two groups. A disease-specific measurement of knee OA was performed. Results The aIC showed stronger rs-FC with the right orbitofrontal cortex (OFC), subcallosal area, and bilateral frontal pole compared with controls. The strength of rs-FC between the left aIC and the right OFC was positively correlated with the knee OA pain score (r = 0.49, p = 0.03). The strength of rs-FC between the right aIC and right OFC was positively correlated with the knee OA total score (r = 0.48, p = 0.036) and pain score (r = 0.46, p = 0.049). The OFC, subcallosal area, and frontal pole, together with the aIC, were activated during anticipation of pain stimulus. These areas have been reported as representative pain-related expectation regions. Conclusion This was the first study to show the stronger rs-FCs between the aIC and other pain-related expectation regions in female patients with severe knee OA. Female sex and preoperative pain intensity are risk factors of persistent postoperative pain after total knee arthroplasty. It is suggested that the functional relationship between pain-related expectation regions affects the formation of severe knee OA and persistent postoperative pain following total knee arthroplasty.
Collapse
Affiliation(s)
- Kai Ushio
- Department of Rehabilitation, Hiroshima University Hospital, Hiroshima, Japan.,Sports Medical Center, Hiroshima University Hospital, Hiroshima, Japan
| | - Kazuyoshi Nakanishi
- Department of Orthopedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Department of Orthopedic Surgery, Nihon University School of Medicine, Nihon University, Tokyo, Japan
| | - Yukio Mikami
- Department of Rehabilitation, Hiroshima University Hospital, Hiroshima, Japan.,Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| | - Atsuo Yoshino
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
| | - Masahiro Takamura
- Brain, Mind and KANSEI Sciences Research Center, Hiroshima University, Hiroshima, Japan
| | - Kazuhiko Hirata
- Sports Medical Center, Hiroshima University Hospital, Hiroshima, Japan
| | - Yuji Akiyama
- Department of Clinical Radiology, Hiroshima University Hospital, Hiroshima, Japan
| | - Hiroaki Kimura
- Department of Rehabilitation, Hiroshima University Hospital, Hiroshima, Japan.,Sports Medical Center, Hiroshima University Hospital, Hiroshima, Japan
| | - Yasumasa Okamoto
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
| | - Nobuo Adachi
- Sports Medical Center, Hiroshima University Hospital, Hiroshima, Japan.,Department of Orthopedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|