1
|
Teferi M, Gura H, Patel M, Casalvera A, Lynch KG, Makhoul W, Deng ZD, Oathes DJ, Sheline YI, Balderston NL. Intermittent theta-burst stimulation to the right dorsolateral prefrontal cortex may increase potentiated startle in healthy individuals. Neuropsychopharmacology 2024; 49:1619-1629. [PMID: 38740902 PMCID: PMC11319663 DOI: 10.1038/s41386-024-01871-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) treatment protocols targeting the right dlPFC have been effective in reducing anxiety symptoms comorbid with depression. However, the mechanism behind these effects is unclear. Further, it is unclear whether these results generalize to non-depressed individuals. We conducted a series of studies aimed at understanding the link between anxiety potentiated startle and the right dlPFC, following a previous study suggesting that continuous theta burst stimulation (cTBS) to the right dlPFC can make people more anxious. Based on these results we hypothesized that intermittent TBS (iTBS), which is thought to have opposing effects on plasticity, may reduce anxiety when targeted at the same right dlPFC region. In this double-blinded, cross-over design, 28 healthy subjects underwent 12 study visits over a 4-week period. During each of their 2 stimulation weeks, they received four 600 pulse iTBS sessions (2/day), with a post-stimulation testing session occurring 24 h following the final iTBS session. One week they received active stimulation, one week they received sham. Stimulation weeks were separated by a 1-week washout period and the order of active/sham delivery was counterbalanced across subjects. During the testing session, we induced anxiety using the threat of unpredictable shock and measured anxiety potentiated startle. Contrary to our initial hypothesis, subjects showed increased startle reactivity following active compared to sham stimulation. These results replicate work from our two previous trials suggesting that TMS to the right dlPFC increases anxiety potentiated startle, independent of both the pattern of stimulation and the timing of the post stimulation measure. Although these results confirm a mechanistic link between right dlPFC excitability and startle, capitalizing upon this link for the benefit of patients will require future exploration.
Collapse
Affiliation(s)
- Marta Teferi
- Center for Neuromodulation in Depression and Stress Department of Psychiatry University of Pennsylvania, Philadelphia, PA, USA
| | - Hannah Gura
- Center for Neuromodulation in Depression and Stress Department of Psychiatry University of Pennsylvania, Philadelphia, PA, USA
- Neuroscience Graduate Group Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, USA
| | - Milan Patel
- Center for Neuromodulation in Depression and Stress Department of Psychiatry University of Pennsylvania, Philadelphia, PA, USA
| | - Abigail Casalvera
- Center for Neuromodulation in Depression and Stress Department of Psychiatry University of Pennsylvania, Philadelphia, PA, USA
| | - Kevin G Lynch
- Department of Psychiatry University of Pennsylvania, Philadelphia, PA, USA
| | - Walid Makhoul
- Center for Neuromodulation in Depression and Stress Department of Psychiatry University of Pennsylvania, Philadelphia, PA, USA
| | - Zhi-De Deng
- Noninvasive Neuromodulation Unit Experimental Therapeutics and Pathophysiology Branch National Institute of Mental Health National Institutes of Health Bethesda, Bethesda, MD, USA
| | - Desmond J Oathes
- Center for Neuromodulation in Depression and Stress Department of Psychiatry University of Pennsylvania, Philadelphia, PA, USA
- Center for Brain Imaging and Stimulation Department of Psychiatry University of Pennsylvania, Philadelphia, PA, USA
- Penn Brain Science, Translation, Innovation, and Modulation Center University of Pennsylvania, Philadelphia, PA, USA
| | - Yvette I Sheline
- Center for Neuromodulation in Depression and Stress Department of Psychiatry University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas L Balderston
- Center for Neuromodulation in Depression and Stress Department of Psychiatry University of Pennsylvania, Philadelphia, PA, USA.
- Center for Brain Imaging and Stimulation Department of Psychiatry University of Pennsylvania, Philadelphia, PA, USA.
- Penn Brain Science, Translation, Innovation, and Modulation Center University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Casalvera A, Goodwin M, Lynch KG, Teferi M, Patel M, Grillon C, Ernst M, Balderston NL. Threat of shock increases distractor susceptibility during the short-term maintenance of visual information. Soc Cogn Affect Neurosci 2024; 19:nsae036. [PMID: 38809714 PMCID: PMC11173208 DOI: 10.1093/scan/nsae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/18/2024] [Accepted: 05/29/2024] [Indexed: 05/31/2024] Open
Abstract
Elevated arousal in anxiety is thought to affect attention control. To test this, we designed a visual short-term memory (VSTM) task to examine distractor suppression during periods of threat and no-threat. We hypothesized that threat would impair performance when subjects had to filter out large numbers of distractors. The VSTM task required subjects to attend to one array of squares while ignoring a separate array. The number of target and distractor squares varied systematically, with high (four squares) and low (two squares) target and distractor conditions. This study comprised two separate experiments. Experiment 1 used startle responses and white noise as to directly measure threat-induced anxiety. Experiment 2 used BOLD to measure brain responses. For Experiment 1, subjects showed significantly larger startle responses during threat compared to safe period, supporting the validity of the threat manipulation. For Experiment 2, we found that accuracy was affected by threat, such that the distractor load negatively impacted accuracy only in the threat condition. We also found threat-related differences in parietal cortex activity. Overall, these findings suggest that threat affects distractor susceptibility, impairing filtering of distracting information. This effect is possibly mediated by hyperarousal of parietal cortex during threat.
Collapse
Affiliation(s)
- Abigail Casalvera
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Madeline Goodwin
- Section on the Neurobiology of Fear and Anxiety, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Kevin G Lynch
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Marta Teferi
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Milan Patel
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Christian Grillon
- Section on the Neurobiology of Fear and Anxiety, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Monique Ernst
- Section on the Neurobiology of Fear and Anxiety, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas L Balderston
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Liu X, Jiao G, Zhou F, Kendrick KM, Yao D, Gong Q, Xiang S, Jia T, Zhang XY, Zhang J, Feng J, Becker B. A neural signature for the subjective experience of threat anticipation under uncertainty. Nat Commun 2024; 15:1544. [PMID: 38378947 PMCID: PMC10879105 DOI: 10.1038/s41467-024-45433-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
Uncertainty about potential future threats and the associated anxious anticipation represents a key feature of anxiety. However, the neural systems that underlie the subjective experience of threat anticipation under uncertainty remain unclear. Combining an uncertainty-variation threat anticipation paradigm that allows precise modulation of the level of momentary anxious arousal during functional magnetic resonance imaging (fMRI) with multivariate predictive modeling, we train a brain model that accurately predicts subjective anxious arousal intensity during anticipation and test it across 9 samples (total n = 572, both gender). Using publicly available datasets, we demonstrate that the whole-brain signature specifically predicts anxious anticipation and is not sensitive in predicting pain, general anticipation or unspecific emotional and autonomic arousal. The signature is also functionally and spatially distinguishable from representations of subjective fear or negative affect. We develop a sensitive, generalizable, and specific neuroimaging marker for the subjective experience of uncertain threat anticipation that can facilitate model development.
Collapse
Affiliation(s)
- Xiqin Liu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Guojuan Jiao
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Feng Zhou
- Faculty of Psychology, Southwest University, Chongqing, China
- MOE Key Laboratory of Cognition and Personality, Chongqing, China
| | - Keith M Kendrick
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Dezhong Yao
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| | - Shitong Xiang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, (Fudan University), Ministry of Education, Shanghai, China
| | - Tianye Jia
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, (Fudan University), Ministry of Education, Shanghai, China
- The Centre for Population Neuroscience and Stratified Medicine (PONS), ISTBI, Fudan University, Shanghai, China
- SGDP Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Xiao-Yong Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, (Fudan University), Ministry of Education, Shanghai, China
| | - Jie Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, (Fudan University), Ministry of Education, Shanghai, China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Benjamin Becker
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China.
- Department of Psychology, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
4
|
Zhang H, Yang J, Ni J, De Dreu CKW, Ma Y. Leader-follower behavioural coordination and neural synchronization during intergroup conflict. Nat Hum Behav 2023; 7:2169-2181. [PMID: 37500783 DOI: 10.1038/s41562-023-01663-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023]
Abstract
Leaders can launch hostile attacks on out-groups and organize in-group defence. Whether groups settle the conflict in their favour depends, however, on whether followers align with leader's initiatives. Yet how leader and followers coordinate during intergroup conflict remains unknown. Participants in small groups elected a leader and made costly contributions to intergroup conflict while dorsolateral prefrontal cortex (DLPFC) activity was simultaneously measured. Leaders were more sacrificial and their contribution influenced group survival to a greater extent during in-group defence than during out-group attacks. Leaders also had increased DLPFC activity when defending in-group, which predicted their comparatively strong contribution to conflict; followers reciprocated their leader's initiatives the more their DLPFC activity synchronized with that of their leader. When launching attacks, however, leaders and followers aligned poorly at behavioural and neural levels, which explained why out-group attacks often failed. Our results provide a neurobehavioural account of leader-follower coordination during intergroup conflict and reveal leader-follower behavioural/neural alignment as pivotal for groups settling conflicts in their favour.
Collapse
Affiliation(s)
- Hejing Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Jiaxin Yang
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Jun Ni
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Carsten K W De Dreu
- Social, Economic, and Organizational Psychology, Leiden University, Leiden, the Netherlands
- Leiden Institute for Brain and Cognition, Leiden University, Leiden, the Netherlands
- Center for Research in Experimental Economics and Political Decision Making, Amsterdam School of Economics, University of Amsterdam, Amsterdam, the Netherlands
| | - Yina Ma
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
5
|
Roesmann K, Toelle J, Leehr EJ, Wessing I, Böhnlein J, Seeger F, Schwarzmeier H, Siminski N, Herrmann MJ, Dannlowski U, Lueken U, Klucken T, Straube T, Junghöfer M. Neural correlates of fear conditioning are associated with treatment-outcomes to behavioral exposure in spider phobia - Evidence from magnetoencephalography. Neuroimage Clin 2022; 35:103046. [PMID: 35609411 PMCID: PMC9125677 DOI: 10.1016/j.nicl.2022.103046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 12/02/2022]
Abstract
Magnetoencephalographic effects of fear conditioning predict exposure outcomes. No associations between fear ratings of conditioned stimuli and exposure outcomes. Prefrontal correlates of safety processing and/or fear inhibition are treatment-relevant. Individual neural differences might be a promising predictor of exposure success.
Background Models of anxiety disorders and the rationale of exposure therapy (ET) are grounded on classical fear conditioning. Yet, it is unclear whether lower fear ratings of conditioned safety versus threat cues and corresponding neural markers of safety-learning and/or fear inhibition assessed before treatment would predict better outcomes of behavioral exposure. Methods Sixty-six patients with spider phobia completed pre-treatment clinical and experimental fear conditioning assessments, one session of virtual reality ET, a post-treatment clinical assessment, and a 6-month follow-up assessment. Tilted Gabor gratings served as conditioned stimuli (CS) that were either paired (CS+) or remained unpaired (CS-) with an aversive phobia-related and phobia-unrelated unconditioned stimulus (UCS). CS+/CS- differences in fear ratings and magnetoencephalographic event-related fields (ERFs) were related to percentual symptom reductions from pre- to post-treatment, as assessed via spider phobia questionnaire (SPQ), behavioral avoidance test (BAT), and remission status at 6-month follow-up. Results We observed no associations between pre-treatment CS+/CS- differences in fear ratings and any treatment outcome. CS+/CS- differences in source estimations of ERFs revealed that higher CS- activity in bilateral dorsolateral prefrontal cortex (dlPFC) was related with SPQ- and BAT-reductions. Associations between CS+/CS- differences and treatment outcomes were also observed in left ventromedial prefrontal cortex (vmPFC) regions, which additionally revealed associations with the follow-up remission status. Conclusions Results provide initial evidence that neural pre-treatment CS+/CS- differences may hold predictive information regarding outcomes of behavioral exposure. Our findings highlight a key role of neural responses to safety cues with potentially inhibitory effects on affect-generating structures during fear conditioning.
Collapse
Affiliation(s)
- Kati Roesmann
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Germany; Institute for Clinical Psychology and Psychotherapy, University of Siegen, Germany.
| | - Julius Toelle
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Germany
| | | | - Ida Wessing
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Germany; Department of Child and Adolescent Psychiatry, University of Münster, Germany
| | - Joscha Böhnlein
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Fabian Seeger
- Center for Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Germany; Department of General Psychiatry, University of Heidelberg, Germany
| | - Hanna Schwarzmeier
- Center for Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Germany
| | - Niklas Siminski
- Center for Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Germany
| | - Martin J Herrmann
- Center for Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Ulrike Lueken
- Center for Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Germany; Department of Psychology, Humboldt-Universität zu Berlin, Germany
| | - Tim Klucken
- Institute for Clinical Psychology and Psychotherapy, University of Siegen, Germany
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Germany
| | - Markus Junghöfer
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Germany
| |
Collapse
|
6
|
Vargas TG, Damme KSF, Mittal VA. Differentiating distinct and converging neural correlates of types of systemic environmental exposures. Hum Brain Mapp 2022; 43:2232-2248. [PMID: 35064714 PMCID: PMC8996350 DOI: 10.1002/hbm.25783] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/13/2021] [Accepted: 12/28/2021] [Indexed: 11/12/2022] Open
Abstract
Systemic environmental disadvantage relates to a host of health and functional outcomes. Specific structural factors have seldom been linked to neural structure, however, clouding understanding of putative mechanisms. Examining relations during childhood/preadolescence, a dynamic period of neurodevelopment, could aid bridge this gap. A total of 10,213 youth were recruited from the Adolescent Brain and Cognitive Development study. Self-report and objective measures (Census and Federal bureau of investigation metrics extracted using geocoding) of environmental exposures were used, including stimulation indexing lack of safety and high attentional demands, discrepancy indexing social exclusion/lack of belonging, and deprivation indexing lack of environmental enrichment. Environmental measures were related to cortical thickness, surface area, and subcortical volume regions, controlling for other environmental exposures and accounting for other brain regions. Self-report (|β| = .04-.09) and objective (|β| = .02-.06) environmental domains related to area/thickness in overlapping (e.g., insula, caudal anterior cingulate), and unique regions (e.g., for discrepancy, rostral anterior and isthmus cingulate, implicated in socioemotional functions; for stimulation, precuneus, critical for cue reactivity and integration of environmental cues; and for deprivation, superior frontal, integral to executive functioning). For stimulation and discrepancy exposures, self-report and objective measures showed similarities in correlate regions, while deprivation exposures evidenced distinct correlates for self-report and objective measures. Results represent a necessary step toward broader work aimed at establishing mechanisms and correlates of structural disadvantage, highlighting the relevance of going beyond aggregate models by considering types of environmental factors, and the need to incorporate both subjective and objective measurements in these efforts.
Collapse
Affiliation(s)
- Teresa G. Vargas
- Department of PsychologyNorthwestern UniversityEvanstonIllinoisUSA
| | | | - Vijay A. Mittal
- Department of PsychologyNorthwestern UniversityEvanstonIllinoisUSA
- Department of PsychiatryNorthwestern UniversityEvanstonIllinoisUSA
- Department of Medical Social SciencesNorthwestern UniversityEvanstonIllinoisUSA
- Institute for Innovations in Developmental SciencesNorthwestern UniversityEvanstonIllinoisUSA
- Institute for Policy ResearchNorthwestern UniversityEvanstonIllinoisUSA
| |
Collapse
|
7
|
Teferi M, Makhoul W, Deng ZD, Oathes DJ, Sheline Y, Balderston NL. Continuous Theta Burst Stimulation to the Right Dorsolateral Prefrontal Cortex may increase Potentiated Startle in healthy individuals. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022. [PMID: 37519467 PMCID: PMC10382694 DOI: 10.1016/j.bpsgos.2022.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background Convergent neuroimaging and neuromodulation studies implicate the right dorsolateral prefrontal cortex (dlPFC) as a key region involved in anxiety-cognition interactions. However, neuroimaging data are correlational, and neuromodulation studies often lack appropriate methodological controls. Accordingly, this work was designed to explore the role of right prefrontal cognitive control mechanisms in the expression/regulation of anxiety using continuous theta-burst transcranial magnetic stimulation (cTBS) and threat of unpredictable shock. Based on prior neuromodulation studies, we hypothesized that the right dlPFC contributed to anxiety expression, and that cTBS should downregulate this expression. Methods We measured potentiated startle and performance on the Sternberg working memory paradigm in 28 healthy participants before and after 4 sessions (600 pulses/session) of active or sham cTBS. Stimulation was individualized to the right dlPFC site of maximal working memory-related activity and optimized using electric-field modeling. Results Compared with sham cTBS, active cTBS, which is thought to induce long-term depression-like synaptic changes, increased startle during threat of shock, but the effect was similar for predictable and unpredictable threat. As a measure of target (dis)engagement, we also showed that active but not sham cTBS decreased accuracy on the Sternberg task. Conclusions Counter to our initial hypothesis, cTBS to the right dlPFC made individuals more anxious, rather than less anxious. Although preliminary, these results are unlikely to be due to transient effects of the stimulation, because anxiety was measured 24 hours after cTBS. In addition, these results are unlikely to be due to off-target effects, because target disengagement was evident from the Sternberg performance data.
Collapse
|
8
|
Keding TJ, Heyn SA, Russell JD, Zhu X, Cisler J, McLaughlin KA, Herringa RJ. Differential Patterns of Delayed Emotion Circuit Maturation in Abused Girls With and Without Internalizing Psychopathology. Am J Psychiatry 2021; 178:1026-1036. [PMID: 34407623 PMCID: PMC8570983 DOI: 10.1176/appi.ajp.2021.20081192] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Childhood abuse represents one of the most potent risk factors for developing psychopathology, especially in females. Evidence suggests that exposure to early-life adversity may be related to advanced maturation of emotion processing neural circuits. However, it remains unknown whether abuse is related to early circuit maturation and whether maturation patterns depend on the presence of psychopathology. METHODS A multisite sample of 234 girls (ages 8-18 years) completed clinical assessment, maltreatment histories, and high-resolution T1-weighted structural MRI. Girls were stratified by abuse history and internalizing disorder diagnosis into typically developing (no abuse/no diagnosis), resilient (abuse/no diagnosis), and susceptible (abuse/current diagnosis) groups. Machine learning models of normative brain development were aggregated in a stacked generalization framework trained to predict chronological age using gray matter volume in whole-brain, emotion, and language circuit parcellations. Brain age gap estimations (BrainAGEs; predicted age minus true chronological age) were calculated as indices of relative circuit maturation. RESULTS Childhood abuse was related to reduced BrainAGE (delayed maturation) specific to emotion circuits. Delayed emotion circuit BrainAGE was further related to increased hyperarousal symptoms. Childhood physical neglect was associated with increased whole-brain BrainAGE (advanced maturation). Neural contributors to emotion circuit BrainAGE differed in girls with and without an internalizing diagnosis, especially in the lateral prefrontal, parietal, and insular cortices and the hippocampus. CONCLUSIONS Abuse exposure in girls is associated with a delayed structural maturation pattern specific to emotion circuitry, a potentially adaptive mechanism enhancing threat generalization. Physical neglect, on the other hand, is associated with a broader brain-wide pattern of advanced structural maturation. The differential influence of fronto-parietal cortices and the hippocampus on emotion circuit maturity in resilient girls may represent neurodevelopmental markers of reduced psychiatric risk following abuse.
Collapse
Affiliation(s)
- Taylor J. Keding
- Neuroscience Training Program, University of Wisconsin-Madison; Madison, WI, USA
- Department of Psychiatry, University of Wisconsin School of Medicine & Public Health; Madison, WI, USA
| | - Sara A. Heyn
- Department of Psychiatry, University of Wisconsin School of Medicine & Public Health; Madison, WI, USA
| | - Justin D. Russell
- Department of Psychiatry, University of Wisconsin School of Medicine & Public Health; Madison, WI, USA
| | - Xiaojin Zhu
- Department of Computer Science, University of Wisconsin-Madison; Madison, WI, USA
| | - Josh Cisler
- Neuroscience Training Program, University of Wisconsin-Madison; Madison, WI, USA
- Department of Psychiatry, University of Wisconsin School of Medicine & Public Health; Madison, WI, USA
| | | | - Ryan J. Herringa
- Neuroscience Training Program, University of Wisconsin-Madison; Madison, WI, USA
- Department of Psychiatry, University of Wisconsin School of Medicine & Public Health; Madison, WI, USA
| |
Collapse
|
9
|
Roesmann K, Kroker T, Hein S, Rehbein M, Winker C, Leehr EJ, Klucken T, Junghöfer M. Transcranial Direct Current Stimulation of the Ventromedial Prefrontal Cortex Modulates Perceptual and Neural Patterns of Fear Generalization. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 7:210-220. [PMID: 34403785 DOI: 10.1016/j.bpsc.2021.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/15/2021] [Accepted: 08/02/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Overgeneralization of fear is a pathogenic marker of anxiety and stress-related disorders and has been linked with perceptual discrimination deficits, reduced fear inhibition, and prefrontal hyporeactivity to safety-signaling stimuli. We aimed to examine whether behavioral and neural patterns of fear generalization are influenced by the fear-inhibiting ventromedial prefrontal cortex (vmPFC). METHODS Three groups of healthy participants received excitatory (n = 27), inhibitory (n = 26), or sham (n = 26) transcranial direct current stimulation of the vmPFC after a fear conditioning phase and before a fear generalization phase. We obtained, as dependent variables, fear ratings and unconditioned stimulus-expectancy ratings, perceptual aspects of fear generalization (perceptual discrimination), pupil dilations, and source estimations of event-related fields elicited by conditioned and generalization stimuli. RESULTS After inhibitory (compared with excitatory and sham) vmPFC stimulation, we observed reduced performance in perceptual discrimination and less negative inhibitory gradients in frontal structures at midlatency and late time intervals. Fear and unconditioned stimulus-expectancy ratings as well as pupil dilation remained unaffected by stimulation. CONCLUSIONS These findings reveal a causal contribution of vmPFC reactivity to generalization patterns and suggest that vmPFC hyporeactivity consequent on inhibitory vmPFC stimulation may serve as a model for pathological processes of fear generalization (reduced discrimination, impaired fear inhibition via frontal brain structures). This encourages further basic and clinical research on the potential of targeted brain stimulation to modulate fear generalization and overgeneralization.
Collapse
Affiliation(s)
- Kati Roesmann
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany; Institute for Clinical Psychology and Psychotherapy, University of Siegen, Siegen, Germany.
| | - Thomas Kroker
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
| | - Sarah Hein
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
| | - Maimu Rehbein
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
| | - Constantin Winker
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
| | | | - Tim Klucken
- Institute for Clinical Psychology and Psychotherapy, University of Siegen, Siegen, Germany
| | - Markus Junghöfer
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
| |
Collapse
|
10
|
Roesmann K, Leehr EJ, Böhnlein J, Steinberg C, Seeger F, Schwarzmeier H, Gathmann B, Siminski N, Herrmann MJ, Dannlowski U, Lueken U, Klucken T, Hilbert K, Straube T, Junghöfer M. Behavioral and Magnetoencephalographic Correlates of Fear Generalization are Associated with Responses to Later Virtual Reality Exposure Therapy in Spider Phobia. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 7:221-230. [PMID: 34325047 DOI: 10.1016/j.bpsc.2021.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/25/2021] [Accepted: 07/19/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND As overgeneralization of fear is a pathogenic marker of anxiety disorders, we investigated whether pre-treatment levels of fear generalization in spider-phobic patients are related to their response to exposure-based treatment, in order to identify pre-treatment moderators of treatment success. METHODS Ninety patients with spider phobia completed pre-treatment clinical and magnetoencephalography (MEG) assessments, one session of virtual reality exposure therapy, and a post-treatment clinical assessment. Based on the primary outcome (30% symptom reduction in self-reported symptoms) they were categorized as responders or non-responders. In a pre-treatment MEG fear generalization paradigm involving fear conditioning with two unconditioned stimuli (UCS), we obtained fear ratings, UCS-expectancy ratings, and event-related fields to conditioned stimuli (CS-, CS+) and 7 different generalization stimuli (GS) on a perceptual continuum from CS- to CS+. RESULTS Prior to treatment, non-responders showed behavioral overgeneralization indicated by more linear generalization gradients in fear ratings. Analyses of MEG source estimations revealed that non-responders showed a decline of their (inhibitory) frontal activations to safety-signaling CS- and GS compared to CS+ over time, while responders maintained these activations at early (<300ms) and late processing stages. CONCLUSIONS Results provide initial evidence that pre-treatment differences of behavioral and neural markers of fear generalization may act as moderators of later responses to behavioral exposure. Stimulating further research on fear generalization as a potential predictive marker, our findings are an important first step in the attempt to identify patients who may not profit from ET, and to personalize and optimize treatment strategies for this vulnerable patient group.
Collapse
Affiliation(s)
- Kati Roesmann
- Institute for Clinical Psychology and Psychotherapy, University of Siegen, Germany; Institute for Biomagnetism and Biosignalanalysis, University of Münster, Germany.
| | - Elisabeth Johanna Leehr
- Institute for Translational Psychiatry, University of Münster, Albert Schweitzer-Campus 1, G 9A, 48149 Münster, Germany
| | - Joscha Böhnlein
- Institute for Translational Psychiatry, University of Münster, Albert Schweitzer-Campus 1, G 9A, 48149 Münster, Germany
| | - Christian Steinberg
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Germany
| | - Fabian Seeger
- Center for Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Germany
| | - Hanna Schwarzmeier
- Center for Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Germany
| | - Bettina Gathmann
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Germany
| | - Niklas Siminski
- Center for Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Germany
| | - Martin J Herrmann
- Center for Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Albert Schweitzer-Campus 1, G 9A, 48149 Münster, Germany
| | - Ulrike Lueken
- Center for Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Germany; Department of Psychology, Humboldt-Universität zu Berlin, Germany
| | - Tim Klucken
- Institute for Clinical Psychology and Psychotherapy, University of Siegen, Germany
| | - Kevin Hilbert
- Department of Psychology, Humboldt-Universität zu Berlin, Germany
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Germany
| | - Markus Junghöfer
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Germany
| |
Collapse
|
11
|
Webler RD, Berg H, Fhong K, Tuominen L, Holt DJ, Morey RA, Lange I, Burton PC, Fullana MA, Radua J, Lissek S. The neurobiology of human fear generalization: meta-analysis and working neural model. Neurosci Biobehav Rev 2021; 128:421-436. [PMID: 34242718 DOI: 10.1016/j.neubiorev.2021.06.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/04/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
Fear generalization to stimuli resembling a conditioned danger-cue (CS+) is a fundamental dynamic of classical fear-conditioning. Despite the ubiquity of fear generalization in human experience and its known pathogenic contribution to clinical anxiety, neural investigations of human generalization have only recently begun. The present work provides the first meta-analysis of this growing literature to delineate brain substrates of conditioned fear-generalization and formulate a working neural model. Included studies (K = 6, N = 176) reported whole-brain fMRI results and applied generalization-gradient methodology to identify brain activations that gradually strengthen (positive generalization) or weaken (negative generalization) as presented stimuli increase in CS+ resemblance. Positive generalization was instantiated in cingulo-opercular, frontoparietal, striatal-thalamic, and midbrain regions (locus coeruleus, periaqueductal grey, ventral tegmental area), while negative generalization was implemented in default-mode network nodes (ventromedial prefrontal cortex, hippocampus, middle temporal gyrus, angular gyrus) and amygdala. Findings are integrated within an updated neural account of generalization centering on the hippocampus, its modulation by locus coeruleus and basolateral amygdala, and the excitation of threat- or safety-related loci by the hippocampus.
Collapse
Affiliation(s)
- Ryan D Webler
- Department of Psychology, University of Minnesota, 75 E River Rd, Minneapolis, MN, 55455, USA
| | - Hannah Berg
- Department of Psychology, University of Minnesota, 75 E River Rd, Minneapolis, MN, 55455, USA
| | - Kimberly Fhong
- Department of Psychology, University of Minnesota, 75 E River Rd, Minneapolis, MN, 55455, USA
| | - Lauri Tuominen
- The Royal's Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, Ontario, K1Z 7K4, Canada
| | - Daphne J Holt
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Rajendra A Morey
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, Duke University Medical Center, Durham, NC, 27710, USA; VA Mid-Atlantic Mental Illness Research Education and Clinical Center, 508 Fulton Street, Durham VAMC, Durham, VA Medical Center, Durham, NC, 27705, USA; Duke-UNC Brain Imaging and Analysis Center, Duke University, 40 Duke Medicine Circle, Durham, NC, USA
| | - Iris Lange
- Department of Psychiatry and Psychology, School for Mental Health and Neuroscience, EURON, Maastricht University Medical Centre, Duboisdomein 30, 6229 GT, Maastricht, the Netherlands
| | - Philip C Burton
- Department of Psychology, University of Minnesota, 75 E River Rd, Minneapolis, MN, 55455, USA
| | - Miquel Angel Fullana
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM, Campus Casanova, Casanova, 143, 08036, Barcelona, Spain; Adult Psychiatry and Psychology Department, Institute of Neurosciences, Hospital Clínic, Casanovas 143, 08036, Barcelona, Spain
| | - Joaquim Radua
- Adult Psychiatry and Psychology Department, Institute of Neurosciences, Hospital Clínic, Casanovas 143, 08036, Barcelona, Spain; Early Psychosis: Interventions and Clinical-detection (EPIC) Laboratory, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK; Department of Clinical Neuroscience, Centre for Psychiatric Research and Education, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Shmuel Lissek
- Department of Psychology, University of Minnesota, 75 E River Rd, Minneapolis, MN, 55455, USA.
| |
Collapse
|
12
|
Balderston NL, Flook E, Hsiung A, Liu J, Thongarong A, Stahl S, Makhoul W, Sheline Y, Ernst M, Grillon C. Patients with anxiety disorders rely on bilateral dlPFC activation during verbal working memory. Soc Cogn Affect Neurosci 2020; 15:1288-1298. [PMID: 33150947 PMCID: PMC7759210 DOI: 10.1093/scan/nsaa146] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/01/2020] [Accepted: 10/22/2020] [Indexed: 01/06/2023] Open
Abstract
One of the hallmarks of anxiety disorders is impaired cognitive control, affecting working memory (WM). The dorsolateral prefrontal cortex (dlPFC) is critical for WM; however, it is still unclear how dlPFC activity relates to WM impairments in patients. Forty-one healthy volunteers and 32 anxiety (general and/or social anxiety disorder) patients completed the Sternberg WM paradigm during safety and unpredictable shock threat. On each trial, a series of letters was presented, followed by brief retention and response intervals. On low- and high-load trials, subjects retained the series (five and eight letters, respectively) in the original order, while on sort trials, subjects rearranged the series (five letters) in alphabetical order. We sampled the blood oxygenation level-dependent activity during retention using a bilateral anatomical dlPFC mask. Compared to controls, patients showed increased reaction time during high-load trials, greater right dlPFC activity and reduced dlPFC activity during threat. These results suggest that WM performance for patients and controls may rely on distinct patterns of dlPFC activity with patients requiring bilateral dlPFC activity. These results are consistent with reduced efficiency of WM in anxiety patients. This reduced efficiency may be due to an inefficient allocation of dlPFC resources across hemispheres or a decreased overall dlPFC capacity.
Collapse
Affiliation(s)
- Nicholas L Balderston
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health National Institutes of Health, Bethesda, MD 20892, USA
- Center for Neuromodulation in Depression and Stress Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elizabeth Flook
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health National Institutes of Health, Bethesda, MD 20892, USA
| | - Abigail Hsiung
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffrey Liu
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health National Institutes of Health, Bethesda, MD 20892, USA
| | - Amanda Thongarong
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health National Institutes of Health, Bethesda, MD 20892, USA
| | - Sara Stahl
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health National Institutes of Health, Bethesda, MD 20892, USA
| | - Walid Makhoul
- Center for Neuromodulation in Depression and Stress Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yvette Sheline
- Center for Neuromodulation in Depression and Stress Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Monique Ernst
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health National Institutes of Health, Bethesda, MD 20892, USA
| | - Christian Grillon
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Bernstein EE, van der Does F, Orr SP, McNally RJ. Poor Mnemonic Discrimination Predicts Overgeneralization of Fear. JOURNAL OF PSYCHOPATHOLOGY AND BEHAVIORAL ASSESSMENT 2020. [DOI: 10.1007/s10862-020-09846-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Roxburgh AD, White DJ, Cornwell BR. Anxious arousal alters prefrontal cortical control of stopping. Eur J Neurosci 2020; 55:2529-2541. [PMID: 32949060 DOI: 10.1111/ejn.14976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 11/29/2022]
Abstract
Anxiety heightens vigilance and stimulus-driven attention to the environment, which may in turn disrupt cognitive control processes such as response inhibition. How this unfolds at the neural level is unclear. Previous evidence implicates the right inferior frontal gyrus (IFG) as an important cortical node in both stimulus-driven attention and inhibitory control. Here we used magnetoencephalography (MEG) to investigate the neural mechanisms involved in the relationship between threat-induced anxiety and stopping during a stop-signal task, where a visual go signal was occasionally followed by an auditory stop signal. Healthy individuals (N = 18) performed the task during the threat of unpredictable shocks and safety to modulate anxious arousal. Behaviorally, we observed that stopping was impaired during threat (i.e. slower estimated stop-signal reaction times), indicating that anxious arousal weakens inhibitory control. MEG source analyses revealed that bilateral IFG and right dorsal prefrontal cortex showed increased beta-band activity (14-30 Hz) to the stop signal that varied as a function of successful stopping during nonanxious (safe) conditions only. Moreover, peak beta-band responses from right IFG were inversely correlated with stopping efficiency during nonanxious conditions. These findings support theoretical claims that beta oscillations function to maintain the current sensorimotor state, and that the lack of differential beta-band activity in prefrontal cortices underlies anxiety-related deficits in inhibitory control. We specifically argue that altered right IFG functioning might directly link impaired cognitive control to heightened stimulus-driven responding in anxiety states.
Collapse
Affiliation(s)
- Ariel D Roxburgh
- Centre for Mental Health, Swinburne University of Technology, Hawthorn, Vic., Australia
| | - David J White
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, Vic., Australia
| | - Brian R Cornwell
- Centre for Mental Health, Swinburne University of Technology, Hawthorn, Vic., Australia
| |
Collapse
|
15
|
Beaurenaut M, Tokarski E, Dezecache G, Grèzes J. The 'Threat of Scream' paradigm: a tool for studying sustained physiological and subjective anxiety. Sci Rep 2020; 10:12496. [PMID: 32719491 PMCID: PMC7385655 DOI: 10.1038/s41598-020-68889-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 07/02/2020] [Indexed: 12/22/2022] Open
Abstract
Progress in understanding the emergence of pathological anxiety depends on the availability of paradigms effective in inducing anxiety in a simple, consistent and sustained manner. The Threat-of-Shock paradigm has typically been used to elicit anxiety, but poses ethical issues when testing vulnerable populations. Moreover, it is not clear from past studies whether anxiety can be sustained in experiments of longer durations. Here, we present empirical support for an alternative approach, the ‘Threat-of-Scream’ paradigm, in which shocks are replaced by screams. In two studies, participants were repeatedly exposed to blocks in which they were at risk of hearing aversive screams at any time vs. blocks in which they were safe from screams. Contrary to previous ‘Threat-of-Scream’ studies, we ensured that our screams were neither harmful nor intolerable by presenting them at low intensity. We found higher subjective reports of anxiety, higher skin conductance levels, and a positive correlation between the two measures, in threat compared to safe blocks. These results were reproducible and we found no significant change over time. The unpredictable delivery of low intensity screams could become an essential part of a psychology toolkit, particularly when investigating the impact of anxiety in a diversity of cognitive functions and populations.
Collapse
Affiliation(s)
- Morgan Beaurenaut
- Laboratoire de Neurosciences Cognitives et Computationnelles, ENS, PSL Research University, INSERM, Département d'études Cognitives, Paris, France.
| | - Elliot Tokarski
- Laboratoire de Neurosciences Cognitives et Computationnelles, ENS, PSL Research University, INSERM, Département d'études Cognitives, Paris, France
| | - Guillaume Dezecache
- Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, UK.,Université Clermont Auvergne, CNRS, LAPSCO, Clermont-Ferrand, France
| | - Julie Grèzes
- Laboratoire de Neurosciences Cognitives et Computationnelles, ENS, PSL Research University, INSERM, Département d'études Cognitives, Paris, France.
| |
Collapse
|
16
|
Mnemonic discrimination in treatment-seeking adults with and without PTSD. Behav Res Ther 2020; 131:103650. [PMID: 32504887 DOI: 10.1016/j.brat.2020.103650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/24/2020] [Accepted: 05/21/2020] [Indexed: 11/22/2022]
Abstract
Posttraumatic stress disorder (PTSD) is characterized by overgeneralized emotional reactivity following a trauma. Similarities between current, safe contexts and past, threatening events trigger recurrent, distressing responses and can contribute to a host of symptoms, including reexperiencing and hypervigilance. Mnemonic discrimination, a component process of episodic memory, could promote overgeneralization when impaired. Mnemonic discrimination reflects the integration of old and new experiences and one's ability to differentiate them despite their similarities. To date, little research has been conducted in clinical populations and none with individuals with PTSD. In this study, we examined mnemonic discrimination performance among treatment-seeking adults with and without PTSD and healthy comparison participants (n = 190). There were significant group differences in mnemonic discrimination performance, but not in general recognition memory. Individuals without psychopathology outperformed individuals with PTSD and treatment-seeking individuals without PTSD. However, there were no differences in mnemonic discrimination performance among individuals with PTSD and any other diagnoses. Finally, clinical groups with or without trauma exposure also did not differ in mnemonic discrimination performance. Results held when we adjusted for general recognition memory. Findings suggest that poor mnemonic discrimination is transdiagnostically associated with emotional disorders. Future work is merited to explore this as a measurable and potentially malleable, though non-specific, risk factor.
Collapse
|
17
|
Mechanistic link between right prefrontal cortical activity and anxious arousal revealed using transcranial magnetic stimulation in healthy subjects. Neuropsychopharmacology 2020; 45:694-702. [PMID: 31791039 PMCID: PMC7021903 DOI: 10.1038/s41386-019-0583-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/08/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023]
Abstract
Much of the mechanistic research on anxiety focuses on subcortical structures such as the amygdala; however, less is known about the distributed cortical circuit that also contributes to anxiety expression. One way to learn about this circuit is to probe candidate regions using transcranial magnetic stimulation (TMS). In this study, we tested the involvement of the dorsolateral prefrontal cortex (dlPFC), in anxiety expression using 10 Hz repetitive TMS (rTMS). In a within-subject, crossover experiment, the study measured anxiety in healthy subjects before and after a session of 10 Hz rTMS to the right dorsolateral prefrontal cortex (dlPFC). It used threat of predictable and unpredictable shock to induce anxiety and anxiety potentiated startle to assess anxiety. Counter to our hypotheses, results showed an increase in anxiety-potentiated startle following active but not sham rTMS. These results suggest a mechanistic link between right dlPFC activity and physiological anxiety expression. This result supports current models of prefrontal asymmetry in affect, and lays the groundwork for further exploration into the cortical mechanisms mediating anxiety, which may lead to novel anxiety treatments.
Collapse
|
18
|
Chronic stress, structural exposures and neurobiological mechanisms: A stimulation, discrepancy and deprivation model of psychosis. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 152:41-69. [PMID: 32451000 DOI: 10.1016/bs.irn.2019.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chronic stress exposure has been established as a key vulnerability factor for developing psychotic disorders, including schizophrenia. A structural, or systems level perspective, has often been lacking in conceptualizations of chronic stress for psychotic disorders. The current review thus identified three subtypes of structural exposures. Stimulation exposures included urban environments, population density and crime exposure, with intermediary mechanisms of lack of safety and high attentional demands. Underlying neural mechanisms included threat neural circuits. Discrepancy exposures included environmental ethnic density, income inequality, and social fragmentation, with intermediary mechanisms of lack of belonging and social exclusion, and neural mechanisms including the oxytocin system. Deprivation exposures included environments lacking socioeconomic, educational, or material resources, with intermediary mechanisms of lack of needed environmental enrichment, and underlying neural mechanisms of over-pruning and protracted PFC development. Delineating stressor etiology at the systems level is a necessary step in reducing barriers to effective interventions and health policy.
Collapse
|
19
|
Oxygenation of the Prefrontal Cortex during Memory Interference. J Clin Med 2019; 8:jcm8122055. [PMID: 31766691 PMCID: PMC6947324 DOI: 10.3390/jcm8122055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Memory interference occurs when information (or memory) to be retrieved is interrupted by competing stimuli. Proactive interference (PI) occurs when previously acquired information interferes with newly acquired information, whereas retroactive interference (RI) occurs when newly acquired information interferes with previously acquired information. In animal paradigms, the prefrontal cortex (PFC) has been shown to help facilitate pattern separation, and ultimately, attenuate memory interference. Research evaluating the role of the PFC on memory interference among humans is, however, limited. The present study evaluated the relationship between PFC oxygenation on memory interference among humans, with the null hypothesis being that there is no association between PFC oxygenation and memory interference. METHODS A total of 74 participants (Mage = 20.8 years) completed the study. Participants completed a computerized memory interference task using the AB-DE AC-FG paradigm, with PFC oxyhemoglobin levels measured via functional near-infrared spectroscopy. RESULTS For PI, the change in oxygenated hemoglobin for encoding list 1 and retrieval of list 1 showed moderate evidence for the null hypothesis (BF01 = 4.05 and 3.28, respectively). For RI, the Bayesian analysis also established moderate evidence for the null hypothesis across all memory task time points. CONCLUSION Our study demonstrates evidence of the null hypothesis regarding the relationship between PFC oxygenation and memory interference. Future work should continue to investigate this topic to identify mechanistic correlates of memory interference.
Collapse
|
20
|
Implicit and explicit systems differently predict possible dangers. Sci Rep 2019; 9:13367. [PMID: 31527740 PMCID: PMC6746769 DOI: 10.1038/s41598-019-49751-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/29/2019] [Indexed: 12/19/2022] Open
Abstract
One strategy to address new potential dangers is to generate defensive responses to stimuli that remind learned threats, a phenomenon called fear generalization. During a threatening experience, the brain encodes implicit and explicit memory traces. Nevertheless, there is a lack of studies comparing implicit and explicit response patterns to novel stimuli. Here, by adopting a discriminative threat conditioning paradigm and a two-alternative forced-choice recognition task, we found that the implicit reactions were selectively elicited by the learned threat and not by a novel similar but perceptually discriminable stimulus. Conversely, subjects explicitly misidentified the same novel stimulus as the learned threat. This generalization response was not due to stress-related interference with learning, but related to the embedded threatening value. Therefore, we suggest a dissociation between implicit and explicit threat recognition profiles and propose that the generalization of explicit responses stems from a flexible cognitive mechanism dedicated to the prediction of danger.
Collapse
|
21
|
Moshirian Farahi SM, Asghari Ebrahimabad MJ, Gorji A, Bigdeli I, Moshirian Farahi SMM. Neuroticism and Frontal EEG Asymmetry Correlated With Dynamic Facial Emotional Processing in Adolescents. Front Psychol 2019; 10:175. [PMID: 30800085 PMCID: PMC6375848 DOI: 10.3389/fpsyg.2019.00175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 01/18/2019] [Indexed: 11/13/2022] Open
Abstract
The aim of this research was to investigate the link between resting frontal EEG asymmetry, neuroticism and the valence of emotional face processing in adolescents. Fifty right-handed adolescents (50% male; mean age = 14.20, SD = 1.97) were selected from schools in Mashhad. In order to investigate variables, we used BFQ-C, ADFES-BIV, and EEG. All data were analyzed using SPSS 22. The results showed that neuroticism correlates with the valences of fear, disgust, sadness, and surprise, but not with happiness, anger, and neutral faces. Furthermore, it was found that N was significantly positively correlated with mid-frontal asymmetry (F3-F4), and the lateral-frontal (F7-F8), whereas no correlation was found between N and frontal pole (Fp1-Fp2). We found significant negative correlations between the valence of fear, Fp1-Fp2, F3-F4, and F7-F8. The interaction findings revealed that neuroticism∗mid-frontal asymmetry can significantly affect the valence of fear. Therefore, neuroticism and mid-frontal EEG asymmetry may serve as a risk indicator for psychopathology.
Collapse
Affiliation(s)
| | | | - Ali Gorji
- Department of Neurology, Epilepsy Research Center, University of Münster, Münster, Germany
- Department of Neurosurgery, Epilepsy Research Center, University of Münster, Münster, Germany
| | - Imanollah Bigdeli
- Department of Psychology, Ferdowsi University of Mashhad, Mashhad, Iran
| | | |
Collapse
|
22
|
Bogdan P. Viewing Another Act as You Would Creates Altruistic Desires Towards that Other. Front Hum Neurosci 2017; 11:594. [PMID: 29276482 PMCID: PMC5727087 DOI: 10.3389/fnhum.2017.00594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/22/2017] [Indexed: 01/01/2023] Open
Abstract
There has been growing evidence for the existence of distributed, frequently updating social "indices", which are related to the reputation of others and predict altruism towards them. However, the means by which the brain modifies an index based on experiences is still unknown. This work utilizes recent insights on the role of the anterior cingulate cortex during perspective taking, dorsolateral prefrontal representations of context, the temporoparietal junctions relationship with understanding another's background, and dorsomedial prefrontal activation patterns tracking reputation. It aims to show that cognitive empathy causes comparisons between a target's action and the action one would wish to do in the target's position. It also suggests that viewing a target perform the same action that one would in the target's position creates altruistic desires towards the target. By considering these comparisons as central to understanding prosocial and antisocial motivations, a variety of behavioral studies are better explained. This piece seeks to open questions and discussions on the interplay of those brain regions, suggest future approaches to relationship therapy, and establish fundamentals for multi-agent models aimed at normative sociality.
Collapse
Affiliation(s)
- Paul Bogdan
- School of Information, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|