1
|
Scheuer KS, Jansson AM, Zhao X, Jackson MB. Inter and intralaminar excitation of parvalbumin interneurons in mouse barrel cortex. PLoS One 2024; 19:e0289901. [PMID: 38870124 PMCID: PMC11175493 DOI: 10.1371/journal.pone.0289901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 04/29/2024] [Indexed: 06/15/2024] Open
Abstract
Parvalbumin (PV) interneurons are inhibitory fast-spiking cells with essential roles in directing the flow of information through cortical circuits. These neurons set the balance between excitation and inhibition and control rhythmic activity. PV interneurons differ between cortical layers in their morphology, circuitry, and function, but how their electrophysiological properties vary has received little attention. Here we investigate responses of PV interneurons in different layers of primary somatosensory barrel cortex (BC) to different excitatory inputs. With the genetically-encoded hybrid voltage sensor, hVOS, we recorded voltage changes in many L2/3 and L4 PV interneurons simultaneously, with stimulation applied to either L2/3 or L4. A semi-automated procedure was developed to identify small regions of interest corresponding to single responsive PV interneurons. Amplitude, half-width, and rise-time were greater for PV interneurons residing in L2/3 compared to L4. Stimulation in L2/3 elicited responses in both L2/3 and L4 with longer latency compared to stimulation in L4. These differences in latency between layers could influence their windows for temporal integration. Thus, PV interneurons in different cortical layers of BC respond in a layer specific and input specific manner, and these differences have potential roles in cortical computations.
Collapse
Affiliation(s)
- Katherine S. Scheuer
- Cellular and Molecular Biology PhD Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Anna M. Jansson
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Xinyu Zhao
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Meyer B. Jackson
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
2
|
Gradwell MA, Ozeri-Engelhard N, Eisdorfer JT, Laflamme OD, Gonzalez M, Upadhyay A, Medlock L, Shrier T, Patel KR, Aoki A, Gandhi M, Abbas-Zadeh G, Oputa O, Thackray JK, Ricci M, George A, Yusuf N, Keating J, Imtiaz Z, Alomary SA, Bohic M, Haas M, Hernandez Y, Prescott SA, Akay T, Abraira VE. Multimodal sensory control of motor performance by glycinergic interneurons of the mouse spinal cord deep dorsal horn. Neuron 2024; 112:1302-1327.e13. [PMID: 38452762 DOI: 10.1016/j.neuron.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/31/2023] [Accepted: 01/26/2024] [Indexed: 03/09/2024]
Abstract
Sensory feedback is integral for contextually appropriate motor output, yet the neural circuits responsible remain elusive. Here, we pinpoint the medial deep dorsal horn of the mouse spinal cord as a convergence point for proprioceptive and cutaneous input. Within this region, we identify a population of tonically active glycinergic inhibitory neurons expressing parvalbumin. Using anatomy and electrophysiology, we demonstrate that deep dorsal horn parvalbumin-expressing interneuron (dPV) activity is shaped by convergent proprioceptive, cutaneous, and descending input. Selectively targeting spinal dPVs, we reveal their widespread ipsilateral inhibition onto pre-motor and motor networks and demonstrate their role in gating sensory-evoked muscle activity using electromyography (EMG) recordings. dPV ablation altered limb kinematics and step-cycle timing during treadmill locomotion and reduced the transitions between sub-movements during spontaneous behavior. These findings reveal a circuit basis by which sensory convergence onto dorsal horn inhibitory neurons modulates motor output to facilitate smooth movement and context-appropriate transitions.
Collapse
Affiliation(s)
- Mark A Gradwell
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Nofar Ozeri-Engelhard
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; Neuroscience PhD program, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Jaclyn T Eisdorfer
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Olivier D Laflamme
- Dalhousie PhD program, Dalhousie University, Halifax, NS, Canada; Department of Medical Neuroscience, Atlantic Mobility Action Project, Brain Repair Center, Dalhousie University, Halifax, NS, Canada
| | - Melissa Gonzalez
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; Department of Biomedical Engineering, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Aman Upadhyay
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; Neuroscience PhD program, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Laura Medlock
- Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Tara Shrier
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Komal R Patel
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Adin Aoki
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Melissa Gandhi
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Gloria Abbas-Zadeh
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Olisemaka Oputa
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Joshua K Thackray
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; Human Genetics Institute of New Jersey, Rutgers University, The State University of New Jersey, Piscataway, NJ, USA; Tourette International Collaborative Genetics Study (TIC Genetics)
| | - Matthew Ricci
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Arlene George
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Nusrath Yusuf
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; Neuroscience PhD program, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Jessica Keating
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Zarghona Imtiaz
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Simona A Alomary
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Manon Bohic
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Michael Haas
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Yurdiana Hernandez
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Steven A Prescott
- Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Turgay Akay
- Department of Medical Neuroscience, Atlantic Mobility Action Project, Brain Repair Center, Dalhousie University, Halifax, NS, Canada
| | - Victoria E Abraira
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
3
|
McDonald AJ. Functional neuroanatomy of basal forebrain projections to the basolateral amygdala: Transmitters, receptors, and neuronal subpopulations. J Neurosci Res 2024; 102:e25318. [PMID: 38491847 PMCID: PMC10948038 DOI: 10.1002/jnr.25318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/20/2024] [Accepted: 02/23/2024] [Indexed: 03/18/2024]
Abstract
The projections of the basal forebrain (BF) to the hippocampus and neocortex have been extensively studied and shown to be important for higher cognitive functions, including attention, learning, and memory. Much less is known about the BF projections to the basolateral nuclear complex of the amygdala (BNC), although the cholinergic innervation of this region by the BF is actually far more robust than that of cortical areas. This review will focus on light and electron microscopic tract-tracing and immunohistochemical (IHC) studies, many of which were published in the last decade, that have analyzed the relationship of BF inputs and their receptors to specific neuronal subtypes in the BNC in order to better understand the anatomical substrates of BF-BNC circuitry. The results indicate that BF inputs to the BNC mainly target the basolateral nucleus of the BNC (BL) and arise from cholinergic, GABAergic, and perhaps glutamatergic BF neurons. Cholinergic inputs mainly target dendrites and spines of pyramidal neurons (PNs) that express muscarinic receptors (MRs). MRs are also expressed by cholinergic axons, as well as cortical and thalamic axons that synapse with PN dendrites and spines. BF GABAergic axons to the BL also express MRs and mainly target BL interneurons that contain parvalbumin. It is suggested that BF-BL circuitry could be very important for generating rhythmic oscillations known to be critical for emotional learning. BF cholinergic inputs to the BNC might also contribute to memory formation by activating M1 receptors located on PN dendritic shafts and spines that also express NMDA receptors.
Collapse
Affiliation(s)
- Alexander Joseph McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| |
Collapse
|
4
|
Milicevic KD, Barbeau BL, Lovic DD, Patel AA, Ivanova VO, Antic SD. Physiological features of parvalbumin-expressing GABAergic interneurons contributing to high-frequency oscillations in the cerebral cortex. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 6:100121. [PMID: 38616956 PMCID: PMC11015061 DOI: 10.1016/j.crneur.2023.100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 11/13/2023] [Accepted: 12/01/2023] [Indexed: 04/16/2024] Open
Abstract
Parvalbumin-expressing (PV+) inhibitory interneurons drive gamma oscillations (30-80 Hz), which underlie higher cognitive functions. In this review, we discuss two groups/aspects of fundamental properties of PV+ interneurons. In the first group (dubbed Before Axon), we list properties representing optimal synaptic integration in PV+ interneurons designed to support fast oscillations. For example: [i] Information can neither enter nor leave the neocortex without the engagement of fast PV+ -mediated inhibition; [ii] Voltage responses in PV+ interneuron dendrites integrate linearly to reduce impact of the fluctuations in the afferent drive; and [iii] Reversed somatodendritic Rm gradient accelerates the time courses of synaptic potentials arriving at the soma. In the second group (dubbed After Axon), we list morphological and biophysical properties responsible for (a) short synaptic delays, and (b) efficient postsynaptic outcomes. For example: [i] Fast-spiking ability that allows PV+ interneurons to outpace other cortical neurons (pyramidal neurons). [ii] Myelinated axon (which is only found in the PV+ subclass of interneurons) to secure fast-spiking at the initial axon segment; and [iii] Inhibitory autapses - autoinhibition, which assures brief biphasic voltage transients and supports postinhibitory rebounds. Recent advent of scientific tools, such as viral strategies to target PV cells and the ability to monitor PV cells via in vivo imaging during behavior, will aid in defining the role of PV cells in the CNS. Given the link between PV+ interneurons and cognition, in the future, it would be useful to carry out physiological recordings in the PV+ cell type selectively and characterize if and how psychiatric and neurological diseases affect initiation and propagation of electrical signals in this cortical sub-circuit. Voltage imaging may allow fast recordings of electrical signals from many PV+ interneurons simultaneously.
Collapse
Affiliation(s)
- Katarina D. Milicevic
- University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT, 06030, USA
- University of Belgrade, Faculty of Biology, Center for Laser Microscopy, Belgrade, 11000, Serbia
| | - Brianna L. Barbeau
- University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT, 06030, USA
| | - Darko D. Lovic
- University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT, 06030, USA
- University of Belgrade, Faculty of Biology, Center for Laser Microscopy, Belgrade, 11000, Serbia
| | - Aayushi A. Patel
- University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT, 06030, USA
| | - Violetta O. Ivanova
- University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT, 06030, USA
| | - Srdjan D. Antic
- University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT, 06030, USA
| |
Collapse
|
5
|
Kalinowski D, Bogus-Nowakowska K, Kozłowska A, Równiak M. The Co-Expression Pattern of Calcium-Binding Proteins with γ-Aminobutyric Acid and Glutamate Transporters in the Amygdala of the Guinea Pig: Evidence for Glutamatergic Subpopulations. Int J Mol Sci 2023; 24:15025. [PMID: 37834473 PMCID: PMC10573686 DOI: 10.3390/ijms241915025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
The amygdala has large populations of neurons utilizing specific calcium-binding proteins such as parvalbumin (PV), calbindin (CB), or calretinin (CR). They are considered specialized subsets of γ-aminobutyric acid (GABA) interneurons; however, many of these cells are devoid of GABA or glutamate decarboxylase. The neurotransmitters used by GABA-immunonegative cells are still unknown, but it is suggested that a part may use glutamate. Thus, this study investigates in the amygdala of the guinea pig relationships between PV, CB, or CR-containing cells and GABA transporter (VGAT) or glutamate transporter type 2 (VGLUT2), markers of GABAergic and glutamatergic neurons, respectively. The results show that although most neurons using PV, CB, and CR co-expressed VGAT, each of these populations also had a fraction of VGLUT2 co-expressing cells. For almost all neurons using PV (~90%) co-expressed VGAT, while ~1.5% of them had VGLUT2. The proportion of neurons using CB and VGAT was smaller than that for PV (~80%), while the percentage of cells with VGLUT2 was larger (~4.5%). Finally, only half of the neurons using CR (~53%) co-expressed VGAT, while ~3.5% of them had VGLUT2. In conclusion, the populations of neurons co-expressing PV, CB, and CR are in the amygdala, primarily GABAergic. However, at least a fraction of neurons in each of them co-express VGLUT2, suggesting that these cells may use glutamate. Moreover, the number of PV-, CB-, and CR-containing neurons that may use glutamate is probably larger as they can utilize VGLUT1 or VGLUT3, which are also present in the amygdala.
Collapse
Affiliation(s)
- Daniel Kalinowski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, pl. Łódzki 3, 10-727 Olsztyn, Poland; (K.B.-N.); (M.R.)
| | - Krystyna Bogus-Nowakowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, pl. Łódzki 3, 10-727 Olsztyn, Poland; (K.B.-N.); (M.R.)
| | - Anna Kozłowska
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland;
| | - Maciej Równiak
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, pl. Łódzki 3, 10-727 Olsztyn, Poland; (K.B.-N.); (M.R.)
| |
Collapse
|
6
|
Scheuer KS, Jansson AM, Zhao X, Jackson MB. Inter and Intralaminar Excitation of Parvalbumin Interneurons in Mouse Barrel Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543448. [PMID: 37398428 PMCID: PMC10312540 DOI: 10.1101/2023.06.02.543448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Parvalbumin (PV) interneurons are inhibitory fast-spiking cells with essential roles in directing the flow of information through cortical circuits. These neurons set the balance between excitation and inhibition, control rhythmic activity, and have been linked to disorders including autism spectrum and schizophrenia. PV interneurons differ between cortical layers in their morphology, circuitry, and function, but how their electrophysiological properties vary has received little attention. Here we investigate responses of PV interneurons in different layers of primary somatosensory barrel cortex (BC) to different excitatory inputs. With the genetically-encoded hybrid voltage sensor, hVOS, we recorded voltage changes simultaneously in many L2/3 and L4 PV interneurons to stimulation in either L2/3 or L4. Decay-times were consistent across L2/3 and L4. Amplitude, half-width, and rise-time were greater for PV interneurons residing in L2/3 compared to L4. Stimulation in L2/3 elicited responses in both L2/3 and L4 with longer latency compared to stimulation in L4. These differences in latency between layers could influence their windows for temporal integration. Thus PV interneurons in different cortical layers of BC show differences in response properties with potential roles in cortical computations.
Collapse
Affiliation(s)
- Kate S Scheuer
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, Wisconsin, 53705
| | - Anna M Jansson
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, 53705
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, 53705
| | - Meyer B Jackson
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, 53705
| |
Collapse
|
7
|
Fish KN, Joffe ME. Targeting prefrontal cortex GABAergic microcircuits for the treatment of alcohol use disorder. Front Synaptic Neurosci 2022; 14:936911. [PMID: 36105666 PMCID: PMC9465392 DOI: 10.3389/fnsyn.2022.936911] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Developing novel treatments for alcohol use disorders (AUDs) is of paramount importance for improving patient outcomes and alleviating the suffering related to the disease. A better understanding of the molecular and neurocircuit mechanisms through which alcohol alters brain function will be instrumental in the rational development of new efficacious treatments. Clinical studies have consistently associated the prefrontal cortex (PFC) function with symptoms of AUDs. Population-level analyses have linked the PFC structure and function with heavy drinking and/or AUD diagnosis. Thus, targeting specific PFC cell types and neural circuits holds promise for the development of new treatments. Here, we overview the tremendous diversity in the form and function of inhibitory neuron subtypes within PFC and describe their therapeutic potential. We then summarize AUD population genetics studies, clinical neurophysiology findings, and translational neuroscience discoveries. This study collectively suggests that changes in fast transmission through PFC inhibitory microcircuits are a central component of the neurobiological effects of ethanol and the core symptoms of AUDs. Finally, we submit that there is a significant and timely need to examine sex as a biological variable and human postmortem brain tissue to maximize the efforts in translating findings to new clinical treatments.
Collapse
Affiliation(s)
| | - Max E. Joffe
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
8
|
Równiak M, Bogus‐Nowakowska K, Kalinowski D, Kozłowska A. The evolutionary trajectories of the individual amygdala nuclei in the common shrew, guinea pig, rabbit, fox and pig: A consequence of embryological fate and mosaic-like evolution. J Anat 2022; 240:489-502. [PMID: 34648181 PMCID: PMC8819052 DOI: 10.1111/joa.13571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 11/30/2022] Open
Abstract
The amygdala primarily evolved as a danger detector that regulates emotional behaviours and learning. However, it is also engaged in stress responses as well as olfactory/pheromonal and reproductive functions. All of these functions are processed by a set of nuclei which are derived from different telencephalic sources (pallial and subpallial) and have a unique cellular structure and specific connections. It is unclear how these individual anatomical and functional units evolved to fit the amygdala to the specific needs of various mammals. Thus, this study provides quantitative data regarding volumes, neuron density and neuron numbers in the main amygdala nuclei of the common shrew, guinea pig, rabbit, fox and pig - species from across the mammalian phylogeny which differ in brain complexity and ecology. The results show that the volume of the amygdala and its individual nuclei scale with negative allometry relative to brain mass (an allometric coefficient below one). However, in relation to the whole amygdala volume, volumes and volumetric percentages of the lateral (LA) and basomedial (BM) nuclei scale with positive allometry, for the medial (ME) and lateral olfactory tract (NLOT) nuclei these parameters scale with negative allometry while the values of these parameters for the basolateral (BL), central (CE) and cortical (CO) nuclei scale with isometry. Moreover, density of neurons scales with strong negative allometry relative to both brain mass and amygdala volume with values of allometric coefficient below zero across studied species. This value for BL is significantly lower than that for the whole amygdala, for ME it is significantly higher while values for NLOT, CE, CO, LA and BM are quite similar to the value for whole amygdala. Finally, neuron numbers in the whole amygdala and its individual nuclei scale with negative allometry in relation to brain mass. However, in relation to the number of neurons in the whole amygdala, neuron numbers and percentages of neurons for LA and BM scale with positive allometry, for BL and NLOT they scale with negative allometry while the values of these parameters for CE, CO and ME scale with isometry. In conclusion, all of these results indicate that each of the nuclei studied displays a different and unique pattern of evolution in relation to brain mass or the whole amygdala volume. These patterns do not match with the various classical concepts of amygdala parcellation; however, in some way, they reflect diversity revealed by the expression of homeobox genes in various embryological studies.
Collapse
Affiliation(s)
- Maciej Równiak
- Department of Animal Anatomy and PhysiologyFaculty of Biology and BiotechnologyUniversity of Warmia and Mazury in OlsztynOlsztynPoland
| | - Krystyna Bogus‐Nowakowska
- Department of Animal Anatomy and PhysiologyFaculty of Biology and BiotechnologyUniversity of Warmia and Mazury in OlsztynOlsztynPoland
| | - Daniel Kalinowski
- Department of Animal Anatomy and PhysiologyFaculty of Biology and BiotechnologyUniversity of Warmia and Mazury in OlsztynOlsztynPoland
| | - Anna Kozłowska
- Department of Human Physiology and PathophysiologySchool of MedicineUniversity of Warmia and Mazury in OlsztynOlsztynPoland
| |
Collapse
|
9
|
McDonald AJ, Duque A. Specific neuronal subpopulations in the amygdala of macaque monkeys express high levels of nonphosphorylated neurofilaments. Brain Res 2022; 1777:147767. [PMID: 34958755 PMCID: PMC8792357 DOI: 10.1016/j.brainres.2021.147767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/14/2021] [Accepted: 12/21/2021] [Indexed: 11/26/2022]
Abstract
Pyramidal neurons in the neocortex that express nonphosphorylated neurofilaments (NPNFs) are especially vulnerable to degeneration in Alzheimer's disease. Since the basolateral nuclear complex of the amygdala (BNC) and cortical nuclear complex of the amygdala (CNC) are cortex-like structures, containing both pyramidal (PNs) and nonpyramidal neurons (NPNs), it is of interest to determine which cell types in the primate BNC and CNC are NPNF+. We also studied NPNF expression in the non-cortex-like nuclei of the amygdala (central and medial nuclei). Digitized images of sections through fetal, newborn, infant, and adult macaque brains stained for NPNFs, obtained from the Macaque Brain Resource (MacBrainResource, MBR), were analyzed. The pattern of NPNF immunoreactivity (NPNF-ir) in the BNC, CNC, and medial nucleus was essentially identical in all four age groups, but there were some age-dependent differences in the central nucleus. All BNC and CNC nuclei contained a moderate density of NPNF+ NPNs. Both the somata and the entire dendritic arborizations of these NPNs were stained. PNs with robust NPNF-ir in their somata and proximal dendrites were only seen in the basal magnocellular nucleus, where it appeared that virtually every PN was NPNF+. This pattern of NPNF expression is distinct from that seen in the mammalian neocortex, where NPNF+ neurons are almost entirely PNs, but is very similar to that seen in a recent study of the rat BNC. These findings, in conjunction with the cortical data, suggest the possibility that NPNF+ neuronal subpopulations in the BNC and CNC might be especially vulnerable in Alzheimer's disease.
Collapse
Affiliation(s)
- Alexander Joseph McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA.
| | - Alvaro Duque
- Department of Neuroscience, Yale University School of Medicine, SHM C317B, New Haven, CT, 06520, USA
| |
Collapse
|
10
|
Antonoudiou P, Colmers PLW, Walton NL, Weiss GL, Smith AC, Nguyen DP, Lewis M, Quirk MC, Barros L, Melon LC, Maguire JL. Allopregnanolone Mediates Affective Switching Through Modulation of Oscillatory States in the Basolateral Amygdala. Biol Psychiatry 2022; 91:283-293. [PMID: 34561029 PMCID: PMC8714669 DOI: 10.1016/j.biopsych.2021.07.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/02/2021] [Accepted: 07/19/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Brexanolone (allopregnanolone) was recently approved by the Food and Drug Administration for the treatment of postpartum depression, demonstrating long-lasting antidepressant effects. Despite our understanding of the mechanism of action of neurosteroids as positive allosteric modulators of GABAA (gamma-aminobutyric acid A) receptors, we still do not fully understand how allopregnanolone exerts persistent antidepressant effects. METHODS We used electroencephalogram recordings in rats and humans along with local field potential, functional magnetic resonance imaging, and behavioral tests in mice to assess the impact of neurosteroids on network states in brain regions implicated in mood and used optogenetic manipulations to directly examine their relationship to behavioral states. RESULTS We demonstrated that allopregnanolone and synthetic neuroactive steroid analogs with molecular pharmacology similar to allopregnanolone (SGE-516 [tool compound] and zuranolone [SAGE-217, investigational compound]) modulate oscillations across species. We further demonstrated a critical role for interneurons in generating oscillations in the basolateral amygdala (BLA) and a role for δ-containing GABAA receptors in mediating the ability of neurosteroids to modulate network and behavioral states. Allopregnanolone in the BLA enhances BLA high theta oscillations (6-12 Hz) through δ-containing GABAA receptors, a mechanism distinct from other GABAA positive allosteric modulators, such as benzodiazepines, and alters behavioral states. Treatment with the allopregnanolone analog SGE-516 protects mice from chronic stress-induced disruption of network and behavioral states, which is correlated with the modulation of theta oscillations in the BLA. Optogenetic manipulation of the network state influences the behavioral state after chronic unpredictable stress. CONCLUSIONS Our findings demonstrate a novel molecular and cellular mechanism mediating the well-established anxiolytic and antidepressant effects of neuroactive steroids.
Collapse
Affiliation(s)
- Pantelis Antonoudiou
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, 02111, USA
| | - Phillip LW Colmers
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, 02111, USA
| | - Najah L Walton
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, 02111, USA
| | - Grant L Weiss
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, 02111, USA
| | - Anne C Smith
- Sage Therapeutics, Inc., Cambridge, Massachusetts, 02142, USA
| | - David P Nguyen
- Sage Therapeutics, Inc., Cambridge, Massachusetts, 02142, USA
| | - Mike Lewis
- Sage Therapeutics, Inc., Cambridge, Massachusetts, 02142, USA
| | - Michael C Quirk
- Sage Therapeutics, Inc., Cambridge, Massachusetts, 02142, USA
| | - Lea Barros
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, 02111, USA,Department of Biology, Hamilton College, Clinton, NY. 13323, United States
| | - Laverne C Melon
- Department of Biology, Wesleyan University, Middletown, Connecticut, 06459, USA
| | - Jamie L Maguire
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
11
|
Michaelson SD, Müller TM, Bompolaki M, Miranda Tapia AP, Villarroel HS, Mackay JP, Balogun PJ, Urban JH, Colmers WF. Long-Lived Organotypic Slice Culture Model of the Rat Basolateral Amygdala. Curr Protoc 2021; 1:e267. [PMID: 34670009 DOI: 10.1002/cpz1.267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Organotypic slice cultures (OTCs) have been employed in the laboratory since the early 1980s and have proved to be useful for the study of a number of neural systems. Our recent work focuses on the development of behavioral stress resilience induced by repeated daily injections of neuropeptide Y into the basolateral amygdala (BLA). Resilience develops over weeks, persisting to 8 weeks. To unravel the cellular mechanisms underlying neuropeptide Y-induced stress resilience we developed in vitro OTCs of the BLA. Here, we provide an optimized protocol that consistently yields viable and healthy OTCs containing the BLA and surrounding tissue using the interface method, prepared with slices taken from postnatal (P) day 14 rats. We explain key points to optimizing tissue viability and discuss mitigation or avoidance of pitfalls that can arise to aid in successful implementation of this technique. We show that principal neurons in BLA OTCs (8 weeks in vitro = equivalent postnatal day 70) develop into networks that are electrophysiologically very similar to those from acute slices obtained from older rats (P70) and respond to pharmacological treatments in a comparable way. Furthermore, we highlight how these cultures be used to further understand the molecular, cellular, and circuit-level neuropathophysiological changes underlying stress disorders. BLA OTCs provide long-term physiological and pharmacological results whose predictions were borne out in vivo, supporting the validity of the BLA OTC as a model to unravel BLA neurocircuitry. Recent preliminary results also support the successful application of this approach to preparing long-lived OTCs of BLA and neocortex from mice. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Organotypic slice culture Support Protocol 1: Changing medium Support Protocol 2: Drug incubations Basic Protocol 2: Excision of OTC slices from inserts Support Protocol 3: Fixation of slices.
Collapse
Affiliation(s)
- Sheldon D Michaelson
- Department of Pharmacology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Taylor M Müller
- Department of Pharmacology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Maria Bompolaki
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Chicago Medical School/Rosalind Franklin University of Medicine & Science, North Chicago, Illinois
| | - Ana Pamela Miranda Tapia
- Department of Pharmacology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Heika Silveira Villarroel
- Department of Pharmacology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - James P Mackay
- Department of Pharmacology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Pauline J Balogun
- Department of Pharmacology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Janice H Urban
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Chicago Medical School/Rosalind Franklin University of Medicine & Science, North Chicago, Illinois
| | - William F Colmers
- Department of Pharmacology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
12
|
Hájos N. Interneuron Types and Their Circuits in the Basolateral Amygdala. Front Neural Circuits 2021; 15:687257. [PMID: 34177472 PMCID: PMC8222668 DOI: 10.3389/fncir.2021.687257] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/11/2021] [Indexed: 11/29/2022] Open
Abstract
The basolateral amygdala (BLA) is a cortical structure based on its cell types, connectivity features, and developmental characteristics. This part of the amygdala is considered to be the main entry site of processed and multisensory information delivered via cortical and thalamic afferents. Although GABAergic inhibitory cells in the BLA comprise only 20% of the entire neuronal population, they provide essential control over proper network operation. Previous studies have uncovered that GABAergic cells in the basolateral amygdala are as diverse as those present in other cortical regions, including the hippocampus and neocortex. To understand the role of inhibitory cells in various amygdala functions, we need to reveal the connectivity and input-output features of the different types of GABAergic cells. Here, I review the recent achievements in uncovering the diversity of GABAergic cells in the basolateral amygdala with a specific focus on the microcircuit organization of these inhibitory cells.
Collapse
Affiliation(s)
- Norbert Hájos
- Laboratory of Network Neurophysiology, ELRN Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
13
|
McDonald AJ, Mascagni F. Specific neuronal subpopulations in the rat basolateral amygdala express high levels of nonphosphorylated neurofilaments. J Comp Neurol 2021; 529:3292-3312. [PMID: 33960421 DOI: 10.1002/cne.25169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 12/25/2022]
Abstract
Cortical pyramidal neurons (PNs) containing nonphosphorylated neurofilaments (NNFs) localized with the SMI-32 monoclonal antibody have been shown to be especially vulnerable to degeneration in Alzheimer's disease (AD). The present investigation is the first to study the expression of SMI-32+ NNFs in neurons of the basolateral nuclear complex of the amygdala (BNC), which contains cortex-like PNs and nonpyramidal neurons (NPNs). We observed that PNs in the rat basolateral nucleus (BL), but not in the lateral (LAT) or basomedial (BM) nuclei, have significant levels of SMI-32-ir in their somata with antibody diluents that did not contain Triton X-100, but staining in these cells was greatly attenuated when the antibody diluent contained 0.3% Triton. Using Triton-containing diluents, we found that all SMI-32+ neurons in all three of the BNC nuclei were NPNs. Using a dual-labeling immunoperoxidase technique, we demonstrated that most of these SMI-32+ NPNs were parvalbumin-positive (PV+) or somatostatin-positive NPNs but not vasoactive intestinal peptide-positive or neuropeptide Y-positive NPNs. Using a technique that combines retrograde tracing with SMI-32 immunohistochemistry using intermediate levels of Triton in the diluent, we found that all BNC neurons projecting to the mediodorsal thalamic nucleus (MD) were large NPNs, and most were SMI-32+. In contrast, BNC neurons projecting to the ventral striatum or cerebral cortex were PNs that expressed low levels of SMI-32 immunoreactivity (SMI-32-ir) in the BL, and no SMI-32-ir in the LAT or BM. These data suggest that the main neuronal subpopulations in the BNC that degenerate in AD may be PV+ and MD-projecting NPNs.
Collapse
Affiliation(s)
- Alexander Joseph McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Franco Mascagni
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| |
Collapse
|
14
|
Perumal MB, Sah P. Inhibitory Circuits in the Basolateral Amygdala in Aversive Learning and Memory. Front Neural Circuits 2021; 15:633235. [PMID: 33994955 PMCID: PMC8120102 DOI: 10.3389/fncir.2021.633235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/23/2021] [Indexed: 11/21/2022] Open
Abstract
Neural circuits in the basolateral amygdala (BLA) play a pivotal role in the learning and memory formation, and processing of emotionally salient experiences, particularly aversive ones. A diverse population of GABAergic neurons present in the BLA orchestrate local circuits to mediate emotional memory functions. Targeted manipulation of GABAergic neuronal subtypes has shed light on cell-type specific functional roles in the fear learning and memory, revealing organizing principles for the operation of inhibitory circuit motifs in the BLA.
Collapse
Affiliation(s)
| | - Pankaj Sah
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.,Joint Center for Neuroscience and Neural Engineering, Southern University of Science and Technology, Shenzhen, China.,Department of Biology, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
15
|
Maturation of amygdala inputs regulate shifts in social and fear behaviors: A substrate for developmental effects of stress. Neurosci Biobehav Rev 2021; 125:11-25. [PMID: 33581221 DOI: 10.1016/j.neubiorev.2021.01.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 11/21/2022]
Abstract
Stress can negatively impact brain function and behaviors across the lifespan. However, stressors during adolescence have particularly harmful effects on brain maturation, and on fear and social behaviors that extend beyond adolescence. Throughout development, social behaviors are refined and the ability to suppress fear increases, both of which are dependent on amygdala activity. We review rodent literature focusing on developmental changes in social and fear behaviors, cortico-amygdala circuits underlying these changes, and how this circuitry is altered by stress. We first describe changes in fear and social behaviors from adolescence to adulthood and parallel developmental changes in cortico-amygdala circuitry. We propose a framework in which maturation of cortical inputs to the amygdala promote changes in social drive and fear regulation, and the particularly damaging effects of stress during adolescence may occur through lasting changes in this circuit. This framework may explain why anxiety and social pathologies commonly co-occur, adolescents are especially vulnerable to stressors impacting social and fear behaviors, and predisposed towards psychiatric disorders related to abnormal cortico-amygdala circuits.
Collapse
|
16
|
McDonald AJ. Immunohistochemical Identification of Interneuronal Subpopulations in the Basolateral Amygdala of the Rhesus Monkey (Macaca mulatta). Neuroscience 2021; 455:113-127. [PMID: 33359654 PMCID: PMC7855802 DOI: 10.1016/j.neuroscience.2020.12.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/02/2020] [Accepted: 12/11/2020] [Indexed: 12/21/2022]
Abstract
Inhibitory circuits in the basolateral nuclear complex of the amygdala (BNC) critical for controlling the acquisition, expression, and extinction of emotional responses are mediated by GABAergic interneurons (INs). Studies in rodents have demonstrated that separate IN subpopulations, identified by their expression of calcium-binding proteins and neuropeptides, play discrete roles in the intrinsic circuitry of the BNC. Far less is known about IN subpopulations in primates. In order to fill in this gap in our understanding of primate INs, the present investigation used dual-labeling immunohistochemistry for IN markers to identify subpopulations expressing cholecystokinin (CCK), calbindin (CB), calretinin (CR), and somatostatin (SOM) in somata and axon terminals in the monkey BNC. In general, colocalization patterns seen in somata and axon terminals were similar. It was found that there was virtually no colocalization of CB and CR, the two calcium-binding proteins investigated. Three subtypes of CCK-immunoreactive (CCK+) INs were identified on the basis of their expression of CR or CB: (1) CCK+/CR+; (2) CCK+/CB+); and (3) CCK+/CR-/CB-. Almost no colocalization of CCK with SOM was observed, but there was extensive colocalization of SOM and CB. CCK+, CR+, and CCK+/CR+ double-labeled axon terminals were seen surrounding pyramidal cell somata in basket-like plexuses, as well as in the neuropil. CB+, SOM+, and CB+/SOM+ terminals did not form baskets, suggesting that these IN subpopulations are mainly dendrite-targeting neurons. In general, the IN subpopulations in the monkey are not dissimilar to those seen in rodents but, unlike rodents, CB+ INs in the monkey are not basket cells.
Collapse
Affiliation(s)
- Alexander J McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA.
| |
Collapse
|
17
|
Chou P, Wang GH, Hsueh SW, Yang YC, Kuo CC. Delta-Frequency Augmentation and Synchronization in Seizure Discharges and Telencephalic Transmission. iScience 2020; 23:101666. [PMID: 33134896 PMCID: PMC7586134 DOI: 10.1016/j.isci.2020.101666] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/09/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Epileptic seizures constitute a common neurological disease primarily diagnosed by characteristic rhythms or waves in the local field potentials (LFPs) of cerebral cortices or electroencephalograms. With a basolateral amygdala (BLA) kindling model, we found that the dominant frequency of BLA oscillations is in the delta range (1-5 Hz) in both normal and seizure conditions. Multi-unit discharges are increased with higher seizure staging but remain phase-locked to the delta waves in LFPs. Also, the change in synchrony precedes and outlasts the changes in discharging units as well as behavioral seizures. One short train of stimuli readily drives the pyramidal-inhibitory neuronal networks in BLA slices into prolonged reverberating activities, where the burst and interburst intervals may concurrently set a "natural wavelength" for delta frequencies. Seizures thus could be viewed as erroneous temporospatial continuums to normal oscillations in a system with a built-in synchronizing and resonating nature for information relay.
Collapse
Affiliation(s)
- Ping Chou
- Department of Physiology, National Taiwan University College of Medicine, 1 Jen-Ai Road, 1st Section, Taipei 100, Taiwan
| | - Guan-Hsun Wang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Department of Medical Education, Chang Gung Memorial Hospital, Linkou Medical Center, Tao-Yuan, Taiwan
| | - Shu-Wei Hsueh
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Ya-Chin Yang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Tao-Yuan, Taiwan
| | - Chung-Chin Kuo
- Department of Physiology, National Taiwan University College of Medicine, 1 Jen-Ai Road, 1st Section, Taipei 100, Taiwan
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
18
|
Yang YC, Wang GH, Chuang AY, Hsueh SW. Perampanel reduces paroxysmal depolarizing shift and inhibitory synaptic input in excitatory neurons to inhibit epileptic network oscillations. Br J Pharmacol 2020; 177:5177-5194. [PMID: 32901915 DOI: 10.1111/bph.15253] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 08/10/2020] [Accepted: 08/28/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Perampanel is a newly approved anticonvulsant uniquely targeting AMPA receptors, which mediate the most abundant form of excitatory synaptic transmission in the brain. However, the network mechanism underlying the anti-epileptic effect of the AMPAergic inhibition remains to be explored. EXPERIMENTAL APPROACH The mechanism of perampanel action was studied with the basolateral amygdala network containing pyramidal-inhibitory neuronal resonators in seizure models of 4-aminopyridine (4-AP) and electrical kindling. KEY RESULTS Application of either 4-AP or electrical kindling to the basolateral amygdala readily induces AMPAergic transmission-dependent reverberating activities between pyramidal-inhibitory neuronal resonators, which are chiefly characterized by burst discharges in inhibitory neurons and corresponding recurrent inhibitory postsynaptic potentials in pyramidal neurons. Perampanel reduces post-kindling "paroxysmal depolarizing shift" especially in pyramidal neurons and, counterintuitively, eliminates burst activities in inhibitory neurons and inhibitory synaptic inputs onto excitatory pyramidal neurons to result in prevention of epileptiform discharges and seizure behaviours. Intriguingly, similar effects can be obtained with not only the AMPA receptor antagonist CNQX but also the GABAA receptor antagonist bicuculline, which is usually considered as a proconvulsant. CONCLUSION AND IMPLICATIONS Ictogenesis depends on the AMPA receptor-dependent recruitment of pyramidal-inhibitory neuronal network oscillations tuned by dynamic glutamatergic and GABAergic transmission. The anticonvulsant effect of perampanel then stems from disruption of the coordinated network activities rather than simply decreased neuronal excitability or excitatory transmission. Positive or negative modulation of epileptic network reverberations may be pro-ictogenic or anti-ictogenic, respectively, constituting a more applicable rationale for the therapy against seizures.
Collapse
Affiliation(s)
- Ya-Chin Yang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Guan-Hsun Wang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Medical Education, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Ai-Yu Chuang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shu-Wei Hsueh
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
19
|
McDonald AJ, Augustine JR. Nonpyramidal neurons in the primate basolateral amygdala: A Golgi study in the baboon (Papio cynocephalus) and long-tailed macaque (Macaca fascicularis). J Comp Neurol 2020; 528:772-786. [PMID: 31600841 PMCID: PMC8259058 DOI: 10.1002/cne.24785] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 12/31/2022]
Abstract
Nonpyramidal GABAergic interneurons in the basolateral nuclear complex (BNC) of the amygdala are critical for the regulation of emotion. Remarkably, there have been no Golgi studies of these neurons in nonhuman primates. Therefore, in the present study we investigated the morphology of nonpyramidal neurons (NPNs) in the BNC of the baboon and monkey using the Golgi technique. NPNs were scattered throughout all nuclei of the BNC and had aspiny or spine-sparse dendrites. NPNs were morphologically heterogeneous and could be divided into small, medium, large, and giant types based on the size of their somata. NPNs could be further divided on the basis of their somatodendritic morphology into four types: multipolar, bitufted, bipolar, and irregular. NPN axons, when stained, formed dense local arborizations that overlapped their dendritic fields to varying extents. These axons always exhibited varying numbers of varicosities representing axon terminals. Three specialized NPN subtypes were recognized because of their unique anatomical features: axo-axonic cells, neurogliaform cells, and giant cells. The axons of axo-axonic cells formed "axonal cartridges," with clustered varicosities that contacted the axon initial segments of pyramidal neurons (PNs). Neurogliaform cells had small somata and numerous short dendrites that formed a dense dendritic arborization; they also exhibited a very dense axonal arborization that overlapped the dendritic field. Giant cells had very large irregular somata and long, thick dendrites; their distal dendrites often branched extensively and had long appendages. In general, the NPNs of the baboon and monkey BNC, including the specialized subtypes, were similar to those of rodents.
Collapse
Affiliation(s)
- Alexander J McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina
| | - James R Augustine
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina
| |
Collapse
|
20
|
McDonald AJ. Functional neuroanatomy of the basolateral amygdala: Neurons, neurotransmitters, and circuits. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2020; 26:1-38. [PMID: 34220399 PMCID: PMC8248694 DOI: 10.1016/b978-0-12-815134-1.00001-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alexander J McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
21
|
Ito W, Fusco B, Morozov A. Disinhibition-assisted long-term potentiation in the prefrontal-amygdala pathway via suppression of somatostatin-expressing interneurons. NEUROPHOTONICS 2020; 7:015007. [PMID: 32090134 PMCID: PMC7019182 DOI: 10.1117/1.nph.7.1.015007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Significance: Natural brain adaptations often involve changes in synaptic strength. The artificial manipulations can help investigate the role of synaptic strength in a specific brain circuit not only in various physiological phenomena like correlated neuronal firing and oscillations but also in behaviors. High- and low-frequency stimulation at presynaptic sites has been used widely to induce long-term potentiation (LTP) and depression. This approach is effective in many brain areas but not in the basolateral amygdala (BLA) because the robust local GABAergic tone inside BLA restricts synaptic plasticity. Aim: We aimed at identifying the subclass of GABAergic neurons that gate LTP in the BLA afferents from the dorsomedial prefrontal cortex (dmPFC). Approach: Chemogenetic or optogenetic suppression of specific GABAergic neurons in BLA was combined with high-frequency stimulation of the BLA afferents as a method for LTP induction. Results: Chemogenetic suppression of somatostatin-positive interneurons (Sst-INs) enabled the ex vivo LTP by high-frequency stimulation of the afferent but the suppression of parvalbumin-positive interneurons (PV-INs) did not. Moreover, optogenetic suppression of Sst-INs with Arch also enabled LTP of the dmPFC-BLA synapses, both ex vivo and in vivo. Conclusions: These findings reveal that Sst-INs but not PV-INs gate LTP in the dmPFC-BLA pathway and provide a method for artificial synaptic facilitation in BLA.
Collapse
Affiliation(s)
- Wataru Ito
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, United States
| | - Brendon Fusco
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, United States
| | - Alexei Morozov
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, United States
- Virginia Tech, School of Biomedical Engineering and Sciences, Blacksburg, Virginia, United States
- Virginia Tech Carilion School of Medicine, Department of Psychiatry and Behavioral Medicine, Roanoke, Virginia, United States
| |
Collapse
|
22
|
McDonald AJ, Mascagni F. Cholecystokinin immunoreactive neurons in the basolateral amygdala of the rhesus monkey (Macaca mulatta). J Comp Neurol 2019; 527:2694-2702. [PMID: 30980540 PMCID: PMC6721981 DOI: 10.1002/cne.24700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/29/2019] [Accepted: 04/10/2019] [Indexed: 01/08/2023]
Abstract
Several distinct subpopulations of interneurons (INs) in the amygdalar basolateral nuclear complex (BNC) of the rat can be recognized on the basis of their expression of calcium-binding proteins and neuropeptides, including parvalbumin (PV), somatostatin (SOM), calretinin (CR), and cholecystokinin (CCK). In the rat BNC CCK is expressed in two separate IN subpopulations, termed large (CCKL ) and small (CCKS ). These subpopulations exhibit distinct connections indicative of discrete functional roles in the circuitry of the BNC. Although there have been several studies of PV+, SOM+, and CR+ INs in the primate BNC, there is almost no information regarding CCK+ INs in these species. Therefore, in the present study the distribution and morphology of CCK+ INs and their axon terminals in the BNC of the monkey was investigated. CCK immunoreactivity in the BNC was observed in somata and proximal dendrites of nonpyramidal neurons, as well as in axon terminals. A moderate density of CCK+ INs was found in all nuclei of the BNC. CCK+ INs in the BNC were morphologically heterogeneous, with both small and large varieties observed. All CCK+ somata gave rise to 2-4 dendrites that branched sparingly and were aspiny. CCK+ axon terminals in the BNC were found both in the neuropil and forming pericellular baskets contacting somata of pyramidal cells. In addition, many CCK+ neurons were contacted by multiple CCK+ terminals, indicative of the existence of a CCK interneuronal network. These data indicate that the morphology of CCK+ INs in the monkey is very similar to that of the rat.
Collapse
Affiliation(s)
- Alexander Joseph McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208
| | - Franco Mascagni
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208
| |
Collapse
|
23
|
Gamma Oscillations in the Basolateral Amygdala: Biophysical Mechanisms and Computational Consequences. eNeuro 2019; 6:eN-NWR-0388-18. [PMID: 30805556 PMCID: PMC6361623 DOI: 10.1523/eneuro.0388-18.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/12/2018] [Accepted: 12/22/2018] [Indexed: 01/04/2023] Open
Abstract
The basolateral nucleus of the amygdala (BL) is thought to support numerous emotional behaviors through specific microcircuits. These are often thought to be comprised of feedforward networks of principal cells (PNs) and interneurons. Neither well-understood nor often considered are recurrent and feedback connections, which likely engender oscillatory dynamics within BL. Indeed, oscillations in the gamma frequency range (40 − 100 Hz) are known to occur in the BL, and yet their origin and effect on local circuits remains unknown. To address this, we constructed a biophysically and anatomically detailed model of the rat BL and its local field potential (LFP) based on the physiological and anatomical literature, along with in vivo and in vitro data we collected on the activities of neurons within the rat BL. Remarkably, the model produced intermittent gamma oscillations (∼50 − 70 Hz) whose properties matched those recorded in vivo, including their entrainment of spiking. BL gamma-band oscillations were generated by the intrinsic circuitry, depending upon reciprocal interactions between PNs and fast-spiking interneurons (FSIs), while connections within these cell types affected the rhythm’s frequency. The model allowed us to conduct experimentally impossible tests to characterize the synaptic and spatial properties of gamma. The entrainment of individual neurons to gamma depended on the number of afferent connections they received, and gamma bursts were spatially restricted in the BL. Importantly, the gamma rhythm synchronized PNs and mediated competition between ensembles. Together, these results indicate that the recurrent connectivity of BL expands its computational and communication repertoire.
Collapse
|
24
|
Santiago AN, Lim KY, Opendak M, Sullivan RM, Aoki C. Early life trauma increases threat response of peri-weaning rats, reduction of axo-somatic synapses formed by parvalbumin cells and perineuronal net in the basolateral nucleus of amygdala. J Comp Neurol 2018; 526:2647-2664. [PMID: 30136731 DOI: 10.1002/cne.24522] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/20/2018] [Accepted: 08/03/2018] [Indexed: 01/17/2023]
Abstract
Early life trauma is a risk factor for life-long disorders related to emotional processing, but knowledge underlying its enduring effect is incomplete. This study was motivated by the hypothesis that early life trauma increases amygdala-dependent threat responses via reduction in inhibition by parvalbumin (PV) interneurons and perineuronal nets (PNN) supporting PV cells, thus increasing excitability of the basolateral amygdala (BLA). From postnatal day (PN) 8-12, rat pups of both sexes were reared under normal bedding or under insufficient nest-building materials to induce maternal-to-infant maltreatment trauma (Scarcity-Adversity Model, SAM). At weaning age of PN23, the SAM group exhibited increased threat responses to predator odor. The SAM-induced increase in threat response was recapitulated in normally reared PN22-23 rats that were unilaterally depleted of PNN in the BLA by the enzymes, chondroitinase-ABC plus hyaluronidase at PN19-20. Light and electron microscopic analysis of the BLA revealed that anterior-to-mid levels of SAM group's BLAs exhibited decreased PNN intensity and decreased axo-somatic synapses between PV-to-principal pyramidal-like neurons and PV-to-PV. PV and PNN densities (cells/mm2 ) in the BLA of both control (CON) and SAM groups were still low at PN12 and SAM delayed the ontogenetic rise of PV intensity and PNN density. Moreover, PV cell density in the anterior-to-mid BLA correlated negatively with threat response of CON animals, but not for SAM animals. Thus, reduction of PNN-supported, PV-mediated somatic inhibition of pyramidal cells provides a mechanistic support for the enduring effect of early life maltreatment manifested as increasing innate threat response at weaning.
Collapse
Affiliation(s)
- Adrienne N Santiago
- Center for Neural Science, New York University, New York, New York.,Emotional Brain Institute, Nathan Kline Institute, New York University School of Medicine, New York, New York.,Department of Child and Adolescent Psychiatry, NYU School of Medicine, New York, New York
| | - Kayla Y Lim
- Center for Neural Science, New York University, New York, New York
| | - Maya Opendak
- Emotional Brain Institute, Nathan Kline Institute, New York University School of Medicine, New York, New York.,Department of Child and Adolescent Psychiatry, NYU School of Medicine, New York, New York
| | - Regina M Sullivan
- Emotional Brain Institute, Nathan Kline Institute, New York University School of Medicine, New York, New York.,Department of Child and Adolescent Psychiatry, NYU School of Medicine, New York, New York
| | - Chiye Aoki
- Center for Neural Science, New York University, New York, New York
| |
Collapse
|
25
|
Krabbe S, Gründemann J, Lüthi A. Amygdala Inhibitory Circuits Regulate Associative Fear Conditioning. Biol Psychiatry 2018; 83:800-809. [PMID: 29174478 DOI: 10.1016/j.biopsych.2017.10.006] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/28/2017] [Accepted: 10/04/2017] [Indexed: 11/16/2022]
Abstract
Associative memory formation is essential for an animal's survival by ensuring adaptive behavioral responses in an ever-changing environment. This is particularly important under conditions of immediate threats such as in fear learning. One of the key brain regions involved in associative fear learning is the amygdala. The basolateral amygdala is the main entry site for sensory information to the amygdala complex, and local plasticity in excitatory basolateral amygdala principal neurons is considered to be crucial for learning of conditioned fear responses. However, activity and plasticity of excitatory circuits are tightly controlled by local inhibitory interneurons in a spatially and temporally defined manner. In this review, we provide an updated view on how distinct interneuron subtypes in the basolateral amygdala contribute to the acquisition and extinction of conditioned fear memories.
Collapse
Affiliation(s)
- Sabine Krabbe
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Jan Gründemann
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Andreas Lüthi
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; University of Basel, Basel, Switzerland.
| |
Collapse
|
26
|
Apland JP, Aroniadou-Anderjaska V, Figueiredo TH, Pidoplichko VI, Rossetti K, Braga MFM. Comparing the Antiseizure and Neuroprotective Efficacy of LY293558, Diazepam, Caramiphen, and LY293558-Caramiphen Combination against Soman in a Rat Model Relevant to the Pediatric Population. J Pharmacol Exp Ther 2018; 365:314-326. [PMID: 29467308 PMCID: PMC5878669 DOI: 10.1124/jpet.117.245969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/08/2018] [Indexed: 12/13/2022] Open
Abstract
The currently Food and Drug Administration-approved anticonvulsant for the treatment of status epilepticus (SE) induced by nerve agents is the benzodiazepine diazepam; however, diazepam does not appear to offer neuroprotective benefits. This is of particular concern with respect to the protection of children because, in the developing brain, synaptic transmission mediated via GABAA receptors, the target of diazepam, is weak. In the present study, we exposed 21-day-old male rats to 1.2 × LD50 soman and compared the antiseizure, antilethality, and neuroprotective efficacy of diazepam (10 mg/kg), LY293558 (an AMPA/GluK1 receptor antagonist; 15 mg/kg), caramiphen (CRM, an antimuscarinic with NMDA receptor-antagonistic properties; 50 mg/kg), and LY293558 (15 mg/kg) + CRM (50 mg/kg), administered 1 hour after exposure. Diazepam, LY293558, and LY293558 + CRM, but not CRM alone, terminated SE; LY293558 + CRM treatment acted significantly faster and produced a survival rate greater than 85%. Thirty days after soman exposure, neurodegeneration in limbic regions was most severe in the CRM-treated group, minimal to severe-depending on the region-in the diazepam group, absent to moderate in the LY293558-treated group, and totally absent in the LY293558 + CRM group. Amygdala and hippocampal atrophy, a severe reduction in spontaneous inhibitory activity in the basolateral amygdala, and increased anxiety-like behavior in the open-field and acoustic startle response tests were present in the diazepam and CRM groups, whereas the LY293558 and LY293558 + CRM groups did not differ from controls. The combined administration of LY293558 and CRM, by blocking mainly AMPA, GluK1, and NMDA receptors, is a very effective anticonvulsant and neuroprotective therapy against soman in young rats.
Collapse
Affiliation(s)
- James P Apland
- Neuroscience Branch, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (J.P.A.); and Departments of Anatomy, Physiology, and Genetics (V.A.-A., T.H.F., V.I.P., K.R., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Vassiliki Aroniadou-Anderjaska
- Neuroscience Branch, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (J.P.A.); and Departments of Anatomy, Physiology, and Genetics (V.A.-A., T.H.F., V.I.P., K.R., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Taiza H Figueiredo
- Neuroscience Branch, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (J.P.A.); and Departments of Anatomy, Physiology, and Genetics (V.A.-A., T.H.F., V.I.P., K.R., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Volodymyr I Pidoplichko
- Neuroscience Branch, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (J.P.A.); and Departments of Anatomy, Physiology, and Genetics (V.A.-A., T.H.F., V.I.P., K.R., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Katia Rossetti
- Neuroscience Branch, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (J.P.A.); and Departments of Anatomy, Physiology, and Genetics (V.A.-A., T.H.F., V.I.P., K.R., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Maria F M Braga
- Neuroscience Branch, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (J.P.A.); and Departments of Anatomy, Physiology, and Genetics (V.A.-A., T.H.F., V.I.P., K.R., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
27
|
Babaev O, Piletti Chatain C, Krueger-Burg D. Inhibition in the amygdala anxiety circuitry. Exp Mol Med 2018; 50:1-16. [PMID: 29628509 PMCID: PMC5938054 DOI: 10.1038/s12276-018-0063-8] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 01/09/2023] Open
Abstract
Inhibitory neurotransmission plays a key role in anxiety disorders, as evidenced by the anxiolytic effect of the benzodiazepine class of γ-aminobutyric acid (GABA) receptor agonists and the recent discovery of anxiety-associated variants in the molecular components of inhibitory synapses. Accordingly, substantial interest has focused on understanding how inhibitory neurons and synapses contribute to the circuitry underlying adaptive and pathological anxiety behaviors. A key element of the anxiety circuitry is the amygdala, which integrates information from cortical and thalamic sensory inputs to generate fear and anxiety-related behavioral outputs. Information processing within the amygdala is heavily dependent on inhibitory control, although the specific mechanisms by which amygdala GABAergic neurons and synapses regulate anxiety-related behaviors are only beginning to be uncovered. Here, we summarize the current state of knowledge and highlight open questions regarding the role of inhibition in the amygdala anxiety circuitry. We discuss the inhibitory neuron subtypes that contribute to the processing of anxiety information in the basolateral and central amygdala, as well as the molecular determinants, such as GABA receptors and synapse organizer proteins, that shape inhibitory synaptic transmission within the anxiety circuitry. Finally, we conclude with an overview of current and future approaches for converting this knowledge into successful treatment strategies for anxiety disorders.
Collapse
Affiliation(s)
- Olga Babaev
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Carolina Piletti Chatain
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Dilja Krueger-Burg
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany.
| |
Collapse
|
28
|
Amir A, Headley DB, Lee SC, Haufler D, Paré D. Vigilance-Associated Gamma Oscillations Coordinate the Ensemble Activity of Basolateral Amygdala Neurons. Neuron 2018; 97:656-669.e7. [PMID: 29420934 PMCID: PMC5809002 DOI: 10.1016/j.neuron.2017.12.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/30/2017] [Accepted: 12/21/2017] [Indexed: 01/24/2023]
Abstract
Principal basolateral amygdala (BL) neurons profoundly influence motivated behaviors, yet few of them are activated by emotionally valenced stimuli. Here, we show that a likely explanation for this paradox is the synchronizing influence of the high-gamma rhythm. High-gamma (75-95 Hz) entrained BL firing more strongly than all other rhythms. It was most pronounced during states of increased vigilance, when rats were apprehensive. Relative to behavioral states, high-gamma produced minor changes in firing rates yet dramatic increases in synchrony. Moreover, connected pairs of cells showed similarly high levels of entrainment and synchronization. Unexpectedly, prefrontal- and accumbens-projecting cells, respectively, showed high and low entrainment by high-gamma, indicating that this rhythm differentially synchronizes the activity of BL neurons projecting to specific sites. Overall, our findings suggest that individual BL neurons encode information not only by changing their firing rates, but also by synchronizing their collective activity, amplifying their impact on target structures.
Collapse
Affiliation(s)
- Alon Amir
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, 197 University Avenue, Newark, NJ 07102, USA
| | - Drew B Headley
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, 197 University Avenue, Newark, NJ 07102, USA
| | - Seung-Chan Lee
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, 197 University Avenue, Newark, NJ 07102, USA
| | - Darrell Haufler
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, 197 University Avenue, Newark, NJ 07102, USA
| | - Denis Paré
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, 197 University Avenue, Newark, NJ 07102, USA.
| |
Collapse
|
29
|
Aroniadou-Anderjaska V, Pidoplichko VI, Figueiredo TH, Braga MFM. Oscillatory Synchronous Inhibition in the Basolateral Amygdala and its Primary Dependence on NR2A-containing NMDA Receptors. Neuroscience 2018; 373:145-158. [PMID: 29339324 DOI: 10.1016/j.neuroscience.2018.01.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/20/2017] [Accepted: 01/07/2018] [Indexed: 12/18/2022]
Abstract
Synchronous, rhythmic firing of GABAergic interneurons is a fundamental mechanism underlying the generation of brain oscillations, and evidence suggests that NMDA receptors (NMDARs) play a key role in oscillatory activity by regulating the activity of interneurons. Consistent with this, derangement of brain rhythms in certain neuropsychiatric disorders, notably schizophrenia and autism, is associated with NMDAR hypofunction and loss of inhibitory interneurons. In the basolateral amygdala (BLA)-dysfunction of which is involved in a host of neuropsychiatric diseases-, principal neurons display spontaneous, rhythmic "bursts" of inhibitory activity, which could potentially be involved in the orchestration of oscillations in the BLA network; here, we investigated the role of NMDARs in these inhibitory oscillations. Rhythmic bursts of spontaneous IPSCs (0.5 Hz average burst frequency) recorded from rat BLA principal cells were blocked or significantly suppressed by D-AP5, and could be driven by NMDAR activation alone. BLA interneurons generated spontaneous bursts of suprathreshold EPSCs at a similar frequency, which were also blocked or reduced by D-AP5. PEAQX (GluN2A-NMDAR antagonist; 0.4 μM) or Ro-25-6981 (GluN2B-NMDAR antagonist; 5 μM) suppressed the IPSC and EPSC bursts; suppression by PEAQX was significantly greater than that by Ro-25-6981. Immunohistochemical labeling revealed the presence of both GluN2A- and GluN2B-NMDARs on GABAergic BLA interneurons, while, functionally, GluN2A-NMDARs have the dominant role, as suggested by a greater reduction of NMDA-evoked currents by PEAQX versus Ro-25-6981. Entrainment of BLA principal neurons in an oscillatory generation of inhibitory activity depends primarily on activation of GluN2A-NMDARs, and interneuronal GluN2A-NMDARs may play a significant role.
Collapse
Affiliation(s)
- Vassiliki Aroniadou-Anderjaska
- Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Volodymyr I Pidoplichko
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Taiza H Figueiredo
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Maria F M Braga
- Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| |
Collapse
|
30
|
Yang Y, Wang JZ. From Structure to Behavior in Basolateral Amygdala-Hippocampus Circuits. Front Neural Circuits 2017; 11:86. [PMID: 29163066 PMCID: PMC5671506 DOI: 10.3389/fncir.2017.00086] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/17/2017] [Indexed: 01/03/2023] Open
Abstract
Emotion influences various cognitive processes, including learning and memory. The amygdala is specialized for input and processing of emotion, while the hippocampus is essential for declarative or episodic memory. During emotional reactions, these two brain regions interact to translate the emotion into particular outcomes. Here, we briefly introduce the anatomy and functions of amygdala and hippocampus, and then present behavioral, electrophysiological, optogenetic and biochemical evidence from recent studies to illustrate how amygdala and hippocampus work synergistically to form long-term memory. With recent technological advances, the causal investigations of specific neural circuit between amygdala and hippocampus will help us understand the brain mechanisms of emotion-regulated memories and improve clinical treatment of emotion-associated memory disorders in patients.
Collapse
Affiliation(s)
- Ying Yang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
31
|
Parvalbumin, but not calretinin, neurons express high levels of α1-containing GABA A receptors, α7-containing nicotinic acetylcholine receptors and D2-dopamine receptors in the basolateral amygdala of the rat. J Chem Neuroanat 2017; 86:41-51. [PMID: 28834708 DOI: 10.1016/j.jchemneu.2017.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/15/2017] [Accepted: 08/15/2017] [Indexed: 01/28/2023]
Abstract
The generation of emotional responses by the basolateral amygdala is largely determined by the balance of excitatory and inhibitory inputs to its principal neurons - the pyramidal cells. The activity of these neurons is tightly controlled by g-aminobutyric acid (GABA)ergic interneurons, especially by those expressing parvalbumin (PV) and calretinin (CR). Although it is known that GABAergic, cholinergic and dopaminergic fibres make synapses on PV and CR cells, knowledge of the various receptors which are used by these cells is still incomplete. Thus, the present study investigates whether neurons expressing PV or CR co-express specific GABA, acetylcholine and/or dopamine receptors in the basolateral amygdala of the rat. The results show that almost two-thirds of PV neurons co-express high concentrations of α1 subunit of GABAA receptor, and more than half of them co-express high levels of α7 subunit of nicotinic acetylcholine receptor and/or D2-subtype of dopamine receptor. In contrast, a smaller percentage of CR neurons had detectable amounts of these receptors and at lower levels of abundance in most cases. In conclusion, the present results indicate that not only principal neurons but also GABAergic interneurons have specific receptors, which allow these cells to respond to the GABAergic, cholinergic and dopaminergic inputs coming to the basolateral amygdala of the rat. Since these cells receive intrinsic GABAergic inputs, they are strongly interconnected. Since they also receive extrinsic cholinergic and dopaminergic inputs, such stimulation may result in stimulus-driven feed-forward control of the principal neurons. The effects of such control may be either feed-forward inhibition of the principal neurons via α7 nicotinic acetylcholine receptors or disinhibition of these cells via D2-dopamine receptors.
Collapse
|
32
|
Równiak M. The neurons expressing calcium-binding proteins in the amygdala of the guinea pig: precisely designed interface for sex hormones. Brain Struct Funct 2017; 222:3775-3793. [PMID: 28456912 PMCID: PMC5676811 DOI: 10.1007/s00429-017-1432-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 04/24/2017] [Indexed: 01/18/2023]
Abstract
The generation of emotional responses by the amygdala is determined largely by the balance of excitatory and inhibitory inputs to its principal neurons. These responses are often sex-specific, and any imbalance in excitatory and/or inhibitory tones leads to serious psychiatric disorders which occur with different rates in men versus women. To investigate the neural basis of sex-specific processing in the amygdala, relationships between the neurons expressing calbindin (CB), parvalbumin (PV) and calretinin (CR), which form in the amygdala main subsets of γ-aminobutyric acid (GABA)-ergic inhibitory system, and neurons endowed with oestrogen alpha (ERα), oestrogen beta (ERβ) or androgen (AR) receptors were analysed using double immunohistochemistry in male and female guinea pig subjects. The results show that in various nuclei of the amygdala in both sexes small subsets of CB neurons and substantial proportions of PV neurons co-express ERβ, while many of the CR neurons co-express ERα. Both these oestrogen-sensitive populations are strictly separated as CB and PV neurons almost never co-express ERα, while CR cells are usually devoid of ERβ. In addition, in the medial nucleus and some other neighbouring regions, there are non-overlapping subpopulations of CB and CR neurons which co-express AR. In conclusion, the localization of ERα, ERβ or AR within subsets of GABAergic interneurons across diverse amygdaloid regions suggests that steroid hormones may exert a significant influence over local neuronal activity by directly modulating inhibitory tone. The control of inhibitory tone may be one of the mechanisms whereby oestrogen and androgen could modulate amygdala processing in a sex-specific manner. Another mechanism may be thorough steroid-sensitive projection neurons, which are most probably located in the medial and central nuclei.
Collapse
Affiliation(s)
- Maciej Równiak
- Department of Comparative Anatomy, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, pl. Łódzki 3, 10-727, Olsztyn, Poland.
| |
Collapse
|
33
|
Fukuda T. Structural organization of the dendritic reticulum linked by gap junctions in layer 4 of the visual cortex. Neuroscience 2017; 340:76-90. [DOI: 10.1016/j.neuroscience.2016.10.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/07/2016] [Accepted: 10/20/2016] [Indexed: 11/16/2022]
|
34
|
Lucas EK, Jegarl AM, Morishita H, Clem RL. Multimodal and Site-Specific Plasticity of Amygdala Parvalbumin Interneurons after Fear Learning. Neuron 2016; 91:629-43. [PMID: 27427462 DOI: 10.1016/j.neuron.2016.06.032] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 05/12/2016] [Accepted: 06/15/2016] [Indexed: 01/02/2023]
Abstract
Stimulus processing in fear conditioning is constrained by parvalbumin interneurons (PV-INs) through inhibition of principal excitatory neurons. However, the contributions of PV-IN microcircuits to input gating and long-term plasticity in the fear system remain unknown. Here we interrogate synaptic connections between afferent pathways, PV-INs, and principal excitatory neurons in the basolateral amygdala. We find that subnuclei of this region are populated two functionally distinct PV-IN networks. PV-INs in the lateral (LA), but not the basal (BA), amygdala possess complex dendritic arborizations, receive potent excitatory drive, and mediate feedforward inhibition onto principal neurons. After fear conditioning, PV-INs exhibit nucleus- and target-selective plasticity, resulting in persistent reduction of their excitatory input and inhibitory output in LA but not BA. These data reveal previously overlooked specializations of amygdala PV-INs and indicate specific circuit mechanisms for inhibitory plasticity during the encoding of associative fear memories.
Collapse
Affiliation(s)
- Elizabeth K Lucas
- Fishberg Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anita M Jegarl
- Fishberg Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hirofumi Morishita
- Fishberg Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Roger L Clem
- Fishberg Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
35
|
Muller JF, Mascagni F, Zaric V, Mott DD, McDonald AJ. Localization of the M2 muscarinic cholinergic receptor in dendrites, cholinergic terminals, and noncholinergic terminals in the rat basolateral amygdala: An ultrastructural analysis. J Comp Neurol 2016; 524:2400-17. [PMID: 26779591 DOI: 10.1002/cne.23959] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/29/2015] [Accepted: 01/04/2016] [Indexed: 02/04/2023]
Abstract
Activation of M2 muscarinic receptors (M2Rs) in the rat anterior basolateral nucleus (BLa) is critical for the consolidation of memories of emotionally arousing events. The present investigation used immunocytochemistry at the electron microscopic level to determine which structures in the BLa express M2Rs. In addition, dual localization of M2R and the vesicular acetylcholine transporter protein (VAChT), a marker for cholinergic axons, was performed to determine whether M2R is an autoreceptor in cholinergic axons innervating the BLa. M2R immunoreactivity (M2R-ir) was absent from the perikarya of pyramidal neurons, with the exception of the Golgi complex, but was dense in the proximal dendrites and axon initial segments emanating from these neurons. Most perikarya of nonpyramidal neurons were also M2R-negative. About 95% of dendritic shafts and 60% of dendritic spines were M2 immunoreactive (M2R(+) ). Some M2R(+) dendrites had spines, suggesting that they belonged to pyramidal cells, whereas others had morphological features typical of nonpyramidal neurons. M2R-ir was also seen in axon terminals, most of which formed asymmetrical synapses. The main targets of M2R(+) terminals forming asymmetrical (putative excitatory) synapses were dendritic spines, most of which were M2R(+) . The main targets of M2R(+) terminals forming symmetrical (putative inhibitory or neuromodulatory) synapses were unlabeled perikarya and M2R(+) dendritic shafts. M2R-ir was also seen in VAChT(+) cholinergic terminals, indicating a possible autoreceptor role. These findings suggest that M2R-mediated mechanisms in the BLa are very complex, involving postsynaptic effects in dendrites as well as regulating release of glutamate, γ-aminobutyric acid, and acetylcholine from presynaptic axon terminals. J. Comp. Neurol. 524:2400-2417, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jay F Muller
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, 29208
| | - Franco Mascagni
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, 29208
| | - Violeta Zaric
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, 29208
| | - David D Mott
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, 29208
| | - Alexander J McDonald
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, 29208
| |
Collapse
|
36
|
Prager EM, Bergstrom HC, Wynn GH, Braga MFM. The basolateral amygdala γ-aminobutyric acidergic system in health and disease. J Neurosci Res 2015; 94:548-67. [PMID: 26586374 DOI: 10.1002/jnr.23690] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/01/2015] [Accepted: 10/18/2015] [Indexed: 01/13/2023]
Abstract
The brain comprises an excitatory/inhibitory neuronal network that maintains a finely tuned balance of activity critical for normal functioning. Excitatory activity in the basolateral amygdala (BLA), a brain region that plays a central role in emotion and motivational processing, is tightly regulated by a relatively small population of γ-aminobutyric acid (GABA) inhibitory neurons. Disruption in GABAergic inhibition in the BLA can occur when there is a loss of local GABAergic interneurons, an alteration in GABAA receptor activation, or a dysregulation of mechanisms that modulate BLA GABAergic inhibition. Disruptions in GABAergic control of the BLA emerge during development, in aging populations, or after trauma, ultimately resulting in hyperexcitability. BLA hyperexcitability manifests behaviorally as an increase in anxiety, emotional dysregulation, or development of seizure activity. This Review discusses the anatomy, development, and physiology of the GABAergic system in the BLA and circuits that modulate GABAergic inhibition, including the dopaminergic, serotonergic, noradrenergic, and cholinergic systems. We highlight how alterations in various neurotransmitter receptors, including the acid-sensing ion channel 1a, cannabinoid receptor 1, and glutamate receptor subtypes, expressed on BLA interneurons, modulate GABAergic transmission and how defects of these systems affect inhibitory tonus within the BLA. Finally, we discuss alterations in the BLA GABAergic system in neurodevelopmental (autism/fragile X syndrome) and neurodegenerative (Alzheimer's disease) diseases and after the development of epilepsy, anxiety, and traumatic brain injury. A more complete understanding of the intrinsic excitatory/inhibitory circuit balance of the amygdala and how imbalances in inhibitory control contribute to excessive BLA excitability will guide the development of novel therapeutic approaches in neuropsychiatric diseases.
Collapse
Affiliation(s)
- Eric M Prager
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services, University of the Health Sciences, Bethesda, Maryland
| | | | - Gary H Wynn
- Center for the Study of Traumatic Stress, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Program in Neuroscience, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Maria F M Braga
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services, University of the Health Sciences, Bethesda, Maryland.,Center for the Study of Traumatic Stress, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Program in Neuroscience, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
37
|
Zhang J, Muller JF, McDonald AJ. Mu opioid receptor localization in the basolateral amygdala: An ultrastructural analysis. Neuroscience 2015; 303:352-63. [PMID: 26164501 DOI: 10.1016/j.neuroscience.2015.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 10/23/2022]
Abstract
Receptor binding studies have shown that the density of mu opioid receptors (MORs) in the basolateral amygdala is among the highest in the brain. Activation of these receptors in the basolateral amygdala is critical for stress-induced analgesia, memory consolidation of aversive events, and stress adaptation. Despite the importance of MORs in these stress-related functions, little is known about the neural circuits that are modulated by amygdalar MORs. In the present investigation light and electron microscopy combined with immunohistochemistry was used to study the expression of MORs in the anterior basolateral nucleus (BLa). At the light microscopic level, light to moderate MOR-immunoreactivity (MOR-ir) was observed in a small number of cell bodies of nonpyramidal interneurons and in a small number of processes and puncta in the neuropil. At the electron microscopic level most MOR-ir was observed in dendritic shafts, dendritic spines, and axon terminals. MOR-ir was also observed in the Golgi apparatus of the cell bodies of pyramidal neurons (PNs) and interneurons. Some of the MOR-positive (MOR+) dendrites were spiny, suggesting that they belonged to PNs, while others received multiple asymmetrical synapses typical of interneurons. The great majority of MOR+ axon terminals (80%) that formed synapses made asymmetrical (excitatory) synapses; their main targets were spines, including some that were MOR+. The main targets of symmetrical (inhibitory and/or neuromodulatory) synapses were dendritic shafts, many of which were MOR+, but some of these terminals formed synapses with somata or spines. All of our observations were consistent with the few electrophysiological studies which have been performed on MOR activation in the basolateral amygdala. Collectively, these findings suggest that MORs may be important for filtering out weak excitatory inputs to PNs, allowing only strong inputs or synchronous inputs to influence pyramidal neuronal firing.
Collapse
Affiliation(s)
- J Zhang
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, United States
| | - J F Muller
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, United States
| | - A J McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, United States.
| |
Collapse
|
38
|
Babaev O, Botta P, Meyer E, Müller C, Ehrenreich H, Brose N, Lüthi A, Krueger-Burg D. Neuroligin 2 deletion alters inhibitory synapse function and anxiety-associated neuronal activation in the amygdala. Neuropharmacology 2015; 100:56-65. [PMID: 26142252 DOI: 10.1016/j.neuropharm.2015.06.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 06/20/2015] [Accepted: 06/25/2015] [Indexed: 10/23/2022]
Abstract
Neuroligin 2 (Nlgn2) is a synaptic adhesion protein that plays a central role in the maturation and function of inhibitory synapses. Nlgn2 mutations have been associated with psychiatric disorders such as schizophrenia, and in mice, deletion of Nlgn2 results in a pronounced anxiety phenotype. To date, however, the molecular and cellular mechanisms linking Nlgn2 deletion to psychiatric phenotypes remain completely unknown. The aim of this study was therefore to define the role of Nlgn2 in anxiety-related neural circuits. To this end, we used a combination of behavioral, immunohistochemical, and electrophysiological approaches in Nlgn2 knockout (KO) mice to expand the behavioral characterization of these mice and to assess the functional consequences of Nlgn2 deletion in the amygdala. Moreover, we investigated the differential activation of anxiety-related circuits in Nlgn2 KO mice using a cFOS activation assay following exposure to an anxiogenic stimulus. We found that Nlgn2 is present at the majority of inhibitory synapses in the basal amygdala, where its deletion affects postsynaptic structures specifically at perisomatic sites and leads to impaired inhibitory synaptic transmission. Following exposure to an anxiogenic environment, Nlgn2 KO mice show a robust anxiety phenotype as well as exacerbated induction of cFOS expression specifically in CaMKII-positive projection neurons, but not in parvalbumin- or somatostatin-positive interneurons. Our data indicate that Nlgn2 deletion predominantly affects inhibitory synapses onto projection neurons in basal amygdala, resulting in decreased inhibitory drive onto these neurons and leading to their excessive activation under anxiogenic conditions. This article is part of the Special Issue entitled 'Synaptopathy--from Biology to Therapy'.
Collapse
Affiliation(s)
- Olga Babaev
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Paolo Botta
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstr. 66, 4058 Basel, Switzerland
| | - Elisabeth Meyer
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstr. 66, 4058 Basel, Switzerland
| | - Christian Müller
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstr. 66, 4058 Basel, Switzerland
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Andreas Lüthi
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstr. 66, 4058 Basel, Switzerland
| | - Dilja Krueger-Burg
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany.
| |
Collapse
|
39
|
Gafford GM, Ressler KJ. Mouse models of fear-related disorders: Cell-type-specific manipulations in amygdala. Neuroscience 2015; 321:108-120. [PMID: 26102004 DOI: 10.1016/j.neuroscience.2015.06.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/06/2015] [Accepted: 06/09/2015] [Indexed: 11/15/2022]
Abstract
Fear conditioning is a model system used to study threat responses, fear memory and their dysregulation in a variety of organisms. Newly developed tools such as optogenetics, Cre recombinase and DREADD technologies have allowed researchers to manipulate anatomically or molecularly defined cell subtypes with a high degree of temporal control and determine the effect of this manipulation on behavior. These targeted molecular techniques have opened up a new appreciation for the critical contributions different subpopulations of cells make to fear behavior and potentially to treatment of fear and anxiety disorders. Here we review progress to date across a variety of techniques to understand fear-related behavior through the manipulation of different cell subtypes within the amygdala.
Collapse
Affiliation(s)
- G M Gafford
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA; Center for Behavioral Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - K J Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA; Center for Behavioral Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, USA; Howard Hughes Medical Institute, Bethesda, MD, USA.
| |
Collapse
|
40
|
Klenowski PM, Fogarty MJ, Belmer A, Noakes PG, Bellingham MC, Bartlett SE. Structural and functional characterization of dendritic arbors and GABAergic synaptic inputs on interneurons and principal cells in the rat basolateral amygdala. J Neurophysiol 2015; 114:942-57. [PMID: 26041829 DOI: 10.1152/jn.00824.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 06/02/2015] [Indexed: 11/22/2022] Open
Abstract
The basolateral amygdala (BLA) is a complex brain region associated with processing emotional states, such as fear, anxiety, and stress. Some aspects of these emotional states are driven by the network activity of synaptic connections, derived from both local circuitry and projections to the BLA from other regions. Although the synaptic physiology and general morphological characteristics are known for many individual cell types within the BLA, the combination of morphological, electrophysiological, and distribution of neurochemical GABAergic synapses in a three-dimensional neuronal arbor has not been reported for single neurons from this region. The aim of this study was to assess differences in morphological characteristics of BLA principal cells and interneurons, quantify the distribution of GABAergic neurochemical synapses within the entire neuronal arbor of each cell type, and determine whether GABAergic synaptic density correlates with electrophysiological recordings of inhibitory postsynaptic currents. We show that BLA principal neurons form complex dendritic arborizations, with proximal dendrites having fewer spines but higher densities of neurochemical GABAergic synapses compared with distal dendrites. Furthermore, we found that BLA interneurons exhibited reduced dendritic arbor lengths and spine densities but had significantly higher densities of putative GABAergic synapses compared with principal cells, which was correlated with an increased frequency of spontaneous inhibitory postsynaptic currents. The quantification of GABAergic connectivity, in combination with morphological and electrophysiological measurements of the BLA cell types, is the first step toward a greater understanding of how fear and stress lead to changes in morphology, local connectivity, and/or synaptic reorganization of the BLA.
Collapse
Affiliation(s)
- Paul M Klenowski
- Translational Research Institute and Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Matthew J Fogarty
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia; and
| | - Arnauld Belmer
- Translational Research Institute and Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Peter G Noakes
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia; and Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Mark C Bellingham
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia; and
| | - Selena E Bartlett
- Translational Research Institute and Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia;
| |
Collapse
|
41
|
The densities of calbindin and parvalbumin, but not calretinin neurons, are sexually dimorphic in the amygdala of the guinea pig. Brain Res 2015; 1604:84-97. [DOI: 10.1016/j.brainres.2015.01.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 01/19/2015] [Accepted: 01/28/2015] [Indexed: 11/23/2022]
|
42
|
Bowers ME, Ressler KJ. Interaction between the cholecystokinin and endogenous cannabinoid systems in cued fear expression and extinction retention. Neuropsychopharmacology 2015; 40:688-700. [PMID: 25176168 PMCID: PMC4289957 DOI: 10.1038/npp.2014.225] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/10/2014] [Accepted: 08/02/2014] [Indexed: 01/29/2023]
Abstract
Post-traumatic stress disorder (PTSD) is thought to develop, in part, from improper inhibition of fear. Accordingly, one of the most effective treatment strategies for PTSD is exposure-based psychotherapy. Ideally, neuroscience would inform adjunct therapies that target the neurotransmitter systems involved in extinction processes. Separate studies have implicated the cholecystokinin (CCK) and endocannabinoid systems in fear; however, there is a high degree of anatomical colocalization between the cannabinoid 1 receptor (Cnr1) and CCK in the basolateral amygdala (BLA), a brain region critical for emotion regulation. Although most research has focused on GABA and GABAergic plasticity as the mechanism by which Cnr1 mediates fear inhibition, we hypothesize that a functional interaction between Cnr1 and CCKB receptor (CCKBR) is critical for fear extinction processes. In this study, systemic pharmacological manipulation of the cannabinoid system modulated cued fear expression in C57BL/6J mice after consolidation of auditory fear conditioning. Knockout of the CCKBR, however, had no effect on fear- or anxiety-like behaviors. Nonetheless, administration of a Cnr1 antagonist increased freezing behavior during a cued fear expression test in wild-type subjects, but had no effect on freezing behavior in CCKBR knockout littermates. In addition, we found that Cnr1-positive fibers form perisomatic clusters around CCKBR-positive cell bodies in the BLA. These CCKBR-positive cells comprise a molecularly heterogenous population of excitatory and inhibitory neurons. These findings provide novel evidence that Cnr1 contributes to cued fear expression via an interaction with the CCK system. Dysfunctional Cnr1-CCKBR interactions might contribute to the etiology of, or result from, fear-related psychiatric disease.
Collapse
Affiliation(s)
- Mallory E Bowers
- Behavioral Neuroscience, Department of Psychiatry and Behavioral Sciences, Howard Hughes Medical Institute, Emory University, Yerkes Research Center, Atlanta, GA, USA
| | - Kerry J Ressler
- Behavioral Neuroscience, Department of Psychiatry and Behavioral Sciences, Howard Hughes Medical Institute, Emory University, Yerkes Research Center, Atlanta, GA, USA,Howard Hughes Medical Institute, Emory University, Atlanta, GA, USA,Behavioral Neuroscience, Department of Psychiatry and Behavioral Sciences, Howard Hughes Medical Institute, Emory University, Yerkes Research Center, 954 Gatewood Dr, NE Atlanta, GA 30329, USA, Tel: +1 404 727 7739, Fax: +1 404 727 8070, E-mail:
| |
Collapse
|
43
|
Rademacher DJ, Mendoza-Elias N, Meredith GE. Effects of context-drug learning on synaptic connectivity in the basolateral nucleus of the amygdala in rats. Eur J Neurosci 2015; 41:205-15. [PMID: 25359418 PMCID: PMC4300287 DOI: 10.1111/ejn.12781] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/27/2014] [Accepted: 10/08/2014] [Indexed: 12/23/2022]
Abstract
Context-drug learning produces structural and functional synaptic changes in the circuitry of the basolateral nucleus of the amygdala (BLA). However, how the synaptic changes translated to the neuronal targets was not established. Thus, in the present study, immunohistochemistry with a cell-specific marker and the stereological quantification of synapses was used to determine if context-drug learning increases the number of excitatory and inhibitory/modulatory synapses contacting the gamma-aminobutyric acid (GABA) interneurons and/or the pyramidal neurons in the BLA circuitry. Amphetamine-conditioned place preference increased the number of asymmetric (excitatory) synapses contacting the spines and dendrites of pyramidal neurons and the number of multisynaptic boutons contacting pyramidal neurons and GABA interneurons. Context-drug learning increased asymmetric (excitatory) synapses onto dendrites of GABA interneurons and increased symmetric (inhibitory or modulatory) synapses onto dendrites but not perikarya of these same interneurons. The formation of context-drug associations alters the synaptic connectivity in the BLA circuitry, findings that have important implications for drug-seeking behavior.
Collapse
Affiliation(s)
- David J. Rademacher
- Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064
| | - Nasya Mendoza-Elias
- Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064
- Department of Pharmaceutical Sciences, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064
| | - Gloria E. Meredith
- Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064
- Department of Pharmaceutical Sciences, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064
| |
Collapse
|
44
|
Abstract
We review recent work on the role of intrinsic amygdala networks in the regulation of classically conditioned defensive behaviors, commonly known as conditioned fear. These new developments highlight how conditioned fear depends on far more complex networks than initially envisioned. Indeed, multiple parallel inhibitory and excitatory circuits are differentially recruited during the expression versus extinction of conditioned fear. Moreover, shifts between expression and extinction circuits involve coordinated interactions with different regions of the medial prefrontal cortex. However, key areas of uncertainty remain, particularly with respect to the connectivity of the different cell types. Filling these gaps in our knowledge is important because much evidence indicates that human anxiety disorders results from an abnormal regulation of the networks supporting fear learning.
Collapse
|
45
|
Serrano-Velez JL, Rodriguez-Alvarado M, Torres-Vazquez II, Fraser SE, Yasumura T, Vanderpool KG, Rash JE, Rosa-Molinar E. Abundance of gap junctions at glutamatergic mixed synapses in adult Mosquitofish spinal cord neurons. Front Neural Circuits 2014; 8:66. [PMID: 25018700 PMCID: PMC4072101 DOI: 10.3389/fncir.2014.00066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 05/28/2014] [Indexed: 11/13/2022] Open
Abstract
"Dye-coupling", whole-mount immunohistochemistry for gap junction channel protein connexin 35 (Cx35), and freeze-fracture replica immunogold labeling (FRIL) reveal an abundance of electrical synapses/gap junctions at glutamatergic mixed synapses in the 14th spinal segment that innervates the adult male gonopodium of Western Mosquitofish, Gambusia affinis (Mosquitofish). To study gap junctions' role in fast motor behavior, we used a minimally-invasive neural-tract-tracing technique to introduce gap junction-permeant or -impermeant dyes into deep muscles controlling the gonopodium of the adult male Mosquitofish, a teleost fish that rapidly transfers (complete in <20 mS) spermatozeugmata into the female reproductive tract. Dye-coupling in the 14th spinal segment controlling the gonopodium reveals coupling between motor neurons and a commissural primary ascending interneuron (CoPA IN) and shows that the 14th segment has an extensive and elaborate dendritic arbor and more gap junctions than do other segments. Whole-mount immunohistochemistry for Cx35 results confirm dye-coupling and show it occurs via gap junctions. Finally, FRIL shows that gap junctions are at mixed synapses and reveals that >50 of the 62 gap junctions at mixed synapses are in the 14th spinal segment. Our results support and extend studies showing gap junctions at mixed synapses in spinal cord segments involved in control of genital reflexes in rodents, and they suggest a link between mixed synapses and fast motor behavior. The findings provide a basis for studies of specific roles of spinal neurons in the generation/regulation of sex-specific behavior and for studies of gap junctions' role in regulating fast motor behavior. Finally, the CoPA IN provides a novel candidate neuron for future studies of gap junctions and neural control of fast motor behaviors.
Collapse
Affiliation(s)
| | | | | | - Scott E Fraser
- Molecular and Computational Biology Section, University of Southern California Los Angeles, CA, USA
| | - Thomas Yasumura
- Department of Biomedical Sciences, Colorado State University Fort Collins, CO, USA
| | | | - John E Rash
- Department of Biomedical Sciences, Colorado State University Fort Collins, CO, USA ; Program in Molecular, Cellular and Integrative Neurosciences, Colorado State University Fort Collins, CO, USA
| | - Eduardo Rosa-Molinar
- Biological Imaging Group, University of Puerto Rico San Juan, PR, USA ; Institute of Neurobiology, School of Medicine, University of Puerto Rico San Juan, PR, USA
| |
Collapse
|
46
|
Unal G, Paré JF, Smith Y, Paré D. Cortical inputs innervate calbindin-immunoreactive interneurons of the rat basolateral amygdaloid complex. J Comp Neurol 2014; 522:1915-28. [PMID: 24285470 PMCID: PMC3984626 DOI: 10.1002/cne.23511] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/15/2013] [Accepted: 11/25/2013] [Indexed: 01/04/2023]
Abstract
The present study was undertaken to shed light on the synaptic organization of the rat basolateral amygdala (BLA). The BLA contains multiple types of GABAergic interneurons that are differentially connected with extrinsic afferents and other BLA cells. Previously, it was reported that parvalbumin immunoreactive (PV(+) ) interneurons receive strong excitatory inputs from principal BLA cells but very few cortical inputs, implying a prevalent role in feedback inhibition. However, because prior physiological studies indicate that cortical afferents do trigger feedforward inhibition in principal cells, the present study aimed to determine whether a numerically important subtype of interneurons, expressing calbindin (CB(+) ), receives cortical inputs. Rats received injections of the anterograde tracer Phaseolus vulgaris-leucoagglutinin (PHAL) in the perirhinal cortex or adjacent temporal neocortex. Light and electron microscopic observations of the relations between cortical inputs and BLA neurons were performed in the lateral (LA) and basolateral (BL) nuclei. Irrespective of the injection site (perirhinal or temporal neocortex) and target nucleus (LA or BL), ~90% of cortical axon terminals formed asymmetric synapses with dendritic spines of principal BLA neurons, while 10% contacted the dendritic shafts of presumed interneurons, half of which were CB(+) . Given the previously reported pattern of CB coexpression among GABAergic interneurons of the BLA, these results suggest that a subset of PV-immunonegative cells that express CB, most likely the somatostatin-positive interneurons, are important mediators of cortically evoked feedforward inhibition in the BLA.
Collapse
Affiliation(s)
- Gunes Unal
- Center for Molecular & Behavioral Neuroscience, Rutgers University, Newark, NJ 07102
| | - Jean-Francois Paré
- Yerkes National Primate Research Center and Department of Neurology, Emory University, 954 Gatewood Road, Atlanta, GA 30329
| | - Yoland Smith
- Yerkes National Primate Research Center and Department of Neurology, Emory University, 954 Gatewood Road, Atlanta, GA 30329
| | - Denis Paré
- Center for Molecular & Behavioral Neuroscience, Rutgers University, Newark, NJ 07102
| |
Collapse
|
47
|
Wolff SBE, Gründemann J, Tovote P, Krabbe S, Jacobson GA, Müller C, Herry C, Ehrlich I, Friedrich RW, Letzkus JJ, Lüthi A. Amygdala interneuron subtypes control fear learning through disinhibition. Nature 2014; 509:453-8. [DOI: 10.1038/nature13258] [Citation(s) in RCA: 347] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 03/17/2014] [Indexed: 12/14/2022]
|
48
|
Abstract
The discovery that even small changes in extracellular acidity can alter the excitability of neuronal networks via activation of acid-sensing ion channels (ASICs) could have therapeutic application in a host of neurological and psychiatric illnesses. Recent evidence suggests that activation of ASIC1a, a subtype of ASICs that is widely distributed in the brain, is necessary for the expression of fear and anxiety. Antagonists of ASIC1a, therefore, have been proposed as a potential treatment for anxiety. The basolateral amygdala (BLA) is central to fear generation, and anxiety disorders are characterized by BLA hyperexcitability. To better understand the role of ASIC1a in anxiety, we attempted to provide a direct assessment of whether ASIC1a activation increases BLA excitability. In rat BLA slices, activation of ASIC1a by low pH or ammonium elicited inward currents in both interneurons and principal neurons, and increased spontaneous IPSCs recorded from principal cells significantly more than spontaneous EPSCs. Epileptiform activity induced by high potassium and low magnesium was suppressed by ammonium. Antagonism of ASIC1a decreased spontaneous IPSCs more than EPSCs, and increased the excitability of the BLA network, as reflected by the pronounced increase of evoked field potentials, suggesting that ASIC1a channels are active in the basal state. In vivo activation or blockade of ASIC1a in the BLA suppressed or increased, respectively, anxiety-like behavior. Thus, in the rat BLA, ASIC1a has an inhibitory and anxiolytic function. The discovery of positive ASIC1a modulators may hold promise for the treatment of anxiety disorders.
Collapse
|
49
|
Bombardi C. Neuronal localization of the 5-HT2 receptor family in the amygdaloid complex. Front Pharmacol 2014; 5:68. [PMID: 24782772 PMCID: PMC3988395 DOI: 10.3389/fphar.2014.00068] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 03/24/2014] [Indexed: 12/21/2022] Open
Abstract
The amygdaloid complex (or amygdala), a heterogeneous structure located in the medial portion of the temporal lobe, is composed of deep, superficial, and “remaining” nuclei. This structure is involved in the generation of emotional behavior, in the formation of emotional memories and in the modulation of the consolidation of explicit memories for emotionally arousing events. The serotoninergic fibers originating in the dorsal and medial raphe nuclei are critically involved in amygdalar functions. Serotonin (5-hydroxytryptamine, 5-HT) regulates amygdalar activity through the activation of the 5-HT2 receptor family, which includes three receptor subtypes: 5-HT2A, 5-HT2B, and 5-HT2C. The distribution and the functional activity of the 5-HT2 receptor family has been studied more extensively than that of the 5-HT2A receptor subtypes, especially in the deep nuclei. In these nuclei, the 5-HT2A receptor is expressed on both pyramidal and non-pyramidal neurons, and could play a critical role in the formation of emotional memories. However, the exact role of the 5-HT2A receptor subtypes, as well as that of the 5-HT2B and 5-HT2C receptor subtypes, in the modulation of the amygdalar microcircuits requires additional study. The present review reports data concerning the distribution and the functional roles of the 5-HT2 receptor family in the amygdala.
Collapse
Affiliation(s)
- Cristiano Bombardi
- Department of Veterinary Medical Sciences, University of Bologna Bologna, Italy
| |
Collapse
|
50
|
Capogna M. GABAergic cell type diversity in the basolateral amygdala. Curr Opin Neurobiol 2014; 26:110-6. [PMID: 24486420 DOI: 10.1016/j.conb.2014.01.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/10/2013] [Accepted: 01/08/2014] [Indexed: 11/20/2022]
Abstract
Here I review the diversity of GABAergic neurons in the rodent basolateral amygdala (BLA). In spite of the recent identification of the role played by certain neurons of BLA in learning and memory of fear, the diversity of GABAergic neurons has not been fully explored. I describe analogies and differences between GABAergic neurons in BLA and cerebral cortex. Emphasis is given to a comprehensive functional, neurochemical and anatomical classification of GABAergic neuron types.
Collapse
Affiliation(s)
- Marco Capogna
- MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK.
| |
Collapse
|