1
|
Le Bihan D. From Brownian motion to virtual biopsy: a historical perspective from 40 years of diffusion MRI. Jpn J Radiol 2024:10.1007/s11604-024-01642-z. [PMID: 39289243 DOI: 10.1007/s11604-024-01642-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/07/2024] [Indexed: 09/19/2024]
Abstract
Diffusion MRI was introduced in 1985, showing how the diffusive motion of molecules, especially water, could be spatially encoded with MRI to produce images revealing the underlying structure of biologic tissues at a microscopic scale. Diffusion is one of several Intravoxel Incoherent Motions (IVIM) accessible to MRI together with blood microcirculation. Diffusion imaging first revolutionized the management of acute cerebral ischemia by allowing diagnosis at an acute stage when therapies can still work, saving the outcomes of many patients. Since then, the field of diffusion imaging has expanded to the whole body, with broad applications in both clinical and research settings, providing insights into tissue integrity, structural and functional abnormalities from the hindered diffusive movement of water molecules in tissues. Diffusion imaging is particularly used to manage many neurologic disorders and in oncology for detecting and classifying cancer lesions, as well as monitoring treatment response at an early stage. The second major impact of diffusion imaging concerns the wiring of the brain (Diffusion Tensor Imaging, DTI), allowing to obtain from the anisotropic movement of water molecules in the brain white-matter images in 3 dimensions of the brain connections making up the Connectome. DTI has opened up new avenues of clinical diagnosis and research to investigate brain diseases, neurogenesis and aging, with a rapidly extending field of application in psychiatry, revealing how mental illnesses could be seen as Connectome spacetime disorders. Adding that water diffusion is closely associated to neuronal activity, as shown from diffusion fMRI, one may consider that diffusion MRI is ideally suited to investigate both brain structure and function. This article retraces the early days and milestones of diffusion MRI which spawned over 40 years, showing how diffusion MRI emerged and expanded in the research and clinical fields, up to become a pillar of modern clinical imaging.
Collapse
Affiliation(s)
- Denis Le Bihan
- NeuroSpin, CEA, Paris-Saclay University, Bât 145, CEA-Saclay Center, 91191, Gif-sur-Yvette, France.
- Human Brain Research Center, Kyoto University, Kyoto, Japan.
- Department of System Neuroscience, National Institutes for Physiological Sciences, Okazaki, Japan.
| |
Collapse
|
2
|
Wang S, Wang Y, Xu FH, Shen L, Zhao Y. Establishing group-level brain structural connectivity incorporating anatomical knowledge under latent space modeling. Med Image Anal 2024; 99:103309. [PMID: 39243600 DOI: 10.1016/j.media.2024.103309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/09/2024]
Abstract
Brain structural connectivity, capturing the white matter fiber tracts among brain regions inferred by diffusion MRI (dMRI), provides a unique characterization of brain anatomical organization. One fundamental question to address with structural connectivity is how to properly summarize and perform statistical inference for a group-level connectivity architecture, for instance, under different sex groups, or disease cohorts. Existing analyses commonly summarize group-level brain connectivity by a simple entry-wise sample mean or median across individual brain connectivity matrices. However, such a heuristic approach fully ignores the associations among structural connections and the topological properties of brain networks. In this project, we propose a latent space-based generative network model to estimate group-level brain connectivity. Within our modeling framework, we incorporate the anatomical information of brain regions as the attributes of nodes to enhance the plausibility of our estimation and improve biological interpretation. We name our method the attributes-informed brain connectivity (ABC) model, which compared with existing group-level connectivity estimations, (1) offers an interpretable latent space representation of the group-level connectivity, (2) incorporates the anatomical knowledge of nodes and tests its co-varying relationship with connectivity and (3) quantifies the uncertainty and evaluates the likelihood of the estimated group-level effects against chance. We devise a novel Bayesian MCMC algorithm to estimate the model. We evaluate the performance of our model through extensive simulations. By applying the ABC model to study brain structural connectivity stratified by sex among Alzheimer's Disease (AD) subjects and healthy controls incorporating the anatomical attributes (volume, thickness and area) on nodes, our method shows superior predictive power on out-of-sample structural connectivity and identifies meaningful sex-specific network neuromarkers for AD.
Collapse
Affiliation(s)
- Selena Wang
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, United States of America.
| | - Yiting Wang
- Department of Statistics, Virginia University, United States of America
| | - Frederick H Xu
- Department of Bioengineering, University of Pennsylvania, United States of America
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, United States of America
| | - Yize Zhao
- Department of Biostatistics, Yale Univeristy, United States of America
| |
Collapse
|
3
|
Hauw F, Béranger B, Cohen L. Subtitled speech: the neural mechanisms of ticker-tape synaesthesia. Brain 2024; 147:2530-2541. [PMID: 38620012 PMCID: PMC11224615 DOI: 10.1093/brain/awae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 02/21/2024] [Accepted: 03/21/2024] [Indexed: 04/17/2024] Open
Abstract
The acquisition of reading modifies areas of the brain associated with vision and with language, in addition to their connections. These changes enable reciprocal translation between orthography and the sounds and meaning of words. Individual variability in the pre-existing cerebral substrate contributes to the range of eventual reading abilities, extending to atypical developmental patterns, including dyslexia and reading-related synaesthesias. The present study is devoted to the little-studied but highly informative ticker-tape synaesthesia, in which speech perception triggers the vivid and irrepressible perception of words in their written form in the mind's eye. We scanned a group of 17 synaesthetes and 17 matched controls with functional MRI, while they listened to spoken sentences, words, numbers or pseudowords (Experiment 1), viewed images and written words (Experiment 2) or were at rest (Experiment 3). First, we found direct correlates of the ticker-tape synaesthesia phenomenon: during speech perception, as ticker-tape synaesthesia was active, synaesthetes showed over-activation of left perisylvian regions supporting phonology and of the occipitotemporal visual word form area, where orthography is represented. Second, we provided support to the hypothesis that ticker-tape synaesthesia results from atypical relationships between spoken and written language processing: the ticker-tape synaesthesia-related regions overlap closely with cortices activated during reading, and the overlap of speech-related and reading-related areas is larger in synaesthetes than in controls. Furthermore, the regions over-activated in ticker-tape synaesthesia overlap with regions under-activated in dyslexia. Third, during the resting state (i.e. in the absence of current ticker-tape synaesthesia), synaesthetes showed increased functional connectivity between left prefrontal and bilateral occipital regions. This pattern might reflect a lowered threshold for conscious access to visual mental contents and might imply a non-specific predisposition to all synaesthesias with a visual content. These data provide a rich and coherent account of ticker-tape synaesthesia as a non-detrimental developmental condition created by the interaction of reading acquisition with an atypical cerebral substrate.
Collapse
Affiliation(s)
- Fabien Hauw
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, Institut du Cerveau, ICM, Paris 75013, France
- AP-HP, Hôpital de La Pitié Salpêtrière, Fédération de Neurologie, Paris 75013, France
| | - Benoît Béranger
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, Institut du Cerveau, ICM, Paris 75013, France
| | - Laurent Cohen
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, Institut du Cerveau, ICM, Paris 75013, France
- AP-HP, Hôpital de La Pitié Salpêtrière, Fédération de Neurologie, Paris 75013, France
| |
Collapse
|
4
|
Chis-Ciure R, Melloni L, Northoff G. A measure centrality index for systematic empirical comparison of consciousness theories. Neurosci Biobehav Rev 2024; 161:105670. [PMID: 38615851 DOI: 10.1016/j.neubiorev.2024.105670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/15/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Consciousness science is marred by disparate constructs and methodologies, making it challenging to systematically compare theories. This foundational crisis casts doubts on the scientific character of the field itself. Addressing it, we propose a framework for systematically comparing consciousness theories by introducing a novel inter-theory classification interface, the Measure Centrality Index (MCI). Recognizing its gradient distribution, the MCI assesses the degree of importance a specific empirical measure has for a given consciousness theory. We apply the MCI to probe how the empirical measures of the Global Neuronal Workspace Theory (GNW), Integrated Information Theory (IIT), and Temporospatial Theory of Consciousness (TTC) would fare within the context of the other two. We demonstrate that direct comparison of IIT, GNW, and TTC is meaningful and valid for some measures like Lempel-Ziv Complexity (LZC), Autocorrelation Window (ACW), and possibly Mutual Information (MI). In contrast, it is problematic for others like the anatomical and physiological neural correlates of consciousness (NCC) due to their MCI-based differential weightings within the structure of the theories. In sum, we introduce and provide proof-of-principle of a novel systematic method for direct inter-theory empirical comparisons, thereby addressing isolated evolution of theories and confirmatory bias issues in the state-of-the-art neuroscience of consciousness.
Collapse
Affiliation(s)
- Robert Chis-Ciure
- New York University (NYU), New York, USA; International Center for Neuroscience and Ethics (CINET), Tatiana Foundation, Madrid, Spain; Wolfram Physics Project, USA.
| | - Lucia Melloni
- Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany
| | - Georg Northoff
- University of Ottawa, Institute of Mental Health Research at the Royal Ottawa Hospital, Ottawa, Canada
| |
Collapse
|
5
|
Young MJ, Fecchio M, Bodien YG, Edlow BL. Covert cortical processing: a diagnosis in search of a definition. Neurosci Conscious 2024; 2024:niad026. [PMID: 38327828 PMCID: PMC10849751 DOI: 10.1093/nc/niad026] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/22/2023] [Accepted: 12/10/2023] [Indexed: 02/09/2024] Open
Abstract
Historically, clinical evaluation of unresponsive patients following brain injury has relied principally on serial behavioral examination to search for emerging signs of consciousness and track recovery. Advances in neuroimaging and electrophysiologic techniques now enable clinicians to peer into residual brain functions even in the absence of overt behavioral signs. These advances have expanded clinicians' ability to sub-stratify behaviorally unresponsive and seemingly unaware patients following brain injury by querying and classifying covert brain activity made evident through active or passive neuroimaging or electrophysiologic techniques, including functional MRI, electroencephalography (EEG), transcranial magnetic stimulation-EEG, and positron emission tomography. Clinical research has thus reciprocally influenced clinical practice, giving rise to new diagnostic categories including cognitive-motor dissociation (i.e. 'covert consciousness') and covert cortical processing (CCP). While covert consciousness has received extensive attention and study, CCP is relatively less understood. We describe that CCP is an emerging and clinically relevant state of consciousness marked by the presence of intact association cortex responses to environmental stimuli in the absence of behavioral evidence of stimulus processing. CCP is not a monotonic state but rather encapsulates a spectrum of possible association cortex responses from rudimentary to complex and to a range of possible stimuli. In constructing a roadmap for this evolving field, we emphasize that efforts to inform clinicians, philosophers, and researchers of this condition are crucial. Along with strategies to sensitize diagnostic criteria and disorders of consciousness nosology to these vital discoveries, democratizing access to the resources necessary for clinical identification of CCP is an emerging clinical and ethical imperative.
Collapse
Affiliation(s)
- Michael J Young
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 101 Merrimac Street, Suite 310, Boston, MA 02114, USA
| | - Matteo Fecchio
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 101 Merrimac Street, Suite 310, Boston, MA 02114, USA
| | - Yelena G Bodien
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 101 Merrimac Street, Suite 310, Boston, MA 02114, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, 300 1st Ave, Charlestown, Boston, MA 02129, USA
| | - Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 101 Merrimac Street, Suite 310, Boston, MA 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 149 13th St, Charlestown, Charlestown, MA 02129, USA
| |
Collapse
|
6
|
Tumkaya S, Yücens B, Gündüz M, Maheu M, Berkovitch L. Disruption of consciousness depends on insight in OCD and on positive symptoms in schizophrenia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.571832. [PMID: 38293050 PMCID: PMC10827121 DOI: 10.1101/2024.01.02.571832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Disruption of conscious access contributes to the advent of psychotic symptoms in schizophrenia but could also explain lack of insight in other psychiatric disorders. In this study, we explored how insight and psychotic symptoms related to disruption of consciousness. We explored consciousness in patients with schizophrenia, patients with obsessive-compulsive disorder (OCD) with good vs. poor insight and matched controls. Participants underwent clinical assessments and performed a visual masking task allowing us to measure individual consciousness threshold. We used a principal component analysis to reduce symptom dimensionality and explored how consciousness measures related to symptomatology. We found that clinical dimensions could be well summarized by a restricted set of principal components which also correlated with the extent of consciousness disruption. More specifically, positive symptoms were associated with impaired conscious access in patients with schizophrenia whereas the level of insight delineated two subtypes of OCD patients, those with poor insight who had consciousness impairments similar to patients with schizophrenia, and those with good insight who resemble healthy controls. Our study provides new insights about consciousness disruption in psychiatric disorders, showing that it relates to positive symptoms in schizophrenia and with insight in OCD. In OCD, it revealed a distinct subgroup sharing neuropathological features with schizophrenia. Our findings refine the mapping between symptoms and cognition, paving the way for a better treatment selection.
Collapse
Affiliation(s)
- Selim Tumkaya
- Department of Psychiatry, Pamukkale University School of Medicine, Denizli, Turkey
- Department of Neuroscience, Pamukkale University School of Medicine, Denizli, Turkey
| | - Bengü Yücens
- Department of Psychiatry, Pamukkale University School of Medicine, Denizli, Turkey
| | - Muhammet Gündüz
- Department of Psychiatry, Government Hospital of Bolvadin, Bolvadin, Turkey
| | - Maxime Maheu
- Department of Neurophysiology and Pathophysiology, Center for Experimental Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- Department of Synaptic Physiology, Centre for Molecular Neurobiology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Lucie Berkovitch
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- University Department of Psychiatry, Pôle Hospitalo-Universitaire Psychiatrie Paris 15, Groupe Hospitalier Universitaire Paris, Paris, France
- Saclay CEA Centre, Neurospin, Gif-Sur-Yvette Cedex, France
- Paris Cité University, Paris, France
| |
Collapse
|
7
|
Van Dyken PC, MacKinley M, Khan AR, Palaniyappan L. Cortical Network Disruption Is Minimal in Early Stages of Psychosis. SCHIZOPHRENIA BULLETIN OPEN 2024; 5:sgae010. [PMID: 39144115 PMCID: PMC11207789 DOI: 10.1093/schizbullopen/sgae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Background and Hypothesis Schizophrenia is associated with white matter disruption and topological reorganization of cortical connectivity but the trajectory of these changes, from the first psychotic episode to established illness, is poorly understood. Current studies in first-episode psychosis (FEP) patients using diffusion magnetic resonance imaging (dMRI) suggest such disruption may be detectable at the onset of psychosis, but specific results vary widely, and few reports have contextualized their findings with direct comparison to young adults with established illness. Study Design Diffusion and T1-weighted 7T MR scans were obtained from N = 112 individuals (58 with untreated FEP, 17 with established schizophrenia, 37 healthy controls) recruited from London, Ontario. Voxel- and network-based analyses were used to detect changes in diffusion microstructural parameters. Graph theory metrics were used to probe changes in the cortical network hierarchy and to assess the vulnerability of hub regions to disruption. The analysis was replicated with N = 111 (57 patients, 54 controls) from the Human Connectome Project-Early Psychosis (HCP-EP) dataset. Study Results Widespread microstructural changes were found in people with established illness, but changes in FEP patients were minimal. Unlike the established illness group, no appreciable topological changes in the cortical network were observed in FEP patients. These results were replicated in the early psychosis patients of the HCP-EP datasets, which were indistinguishable from controls in most metrics. Conclusions The white matter structural changes observed in established schizophrenia are not a prominent feature in the early stages of this illness.
Collapse
Affiliation(s)
- Peter C Van Dyken
- Neuroscience Graduate Program, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Michael MacKinley
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada
| | - Ali R Khan
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Lena Palaniyappan
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, London, ON, Canada
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
8
|
Le Bihan D. From Black Holes Entropy to Consciousness: The Dimensions of the Brain Connectome. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1645. [PMID: 38136525 PMCID: PMC10743094 DOI: 10.3390/e25121645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
It has been shown that the theory of relativity can be applied physically to the functioning brain, so that the brain connectome should be considered as a four-dimensional spacetime entity curved by brain activity, just as gravity curves the four-dimensional spacetime of the physical world. Following the most recent developments in modern theoretical physics (black hole entropy, holographic principle, AdS/CFT duality), we conjecture that consciousness can naturally emerge from this four-dimensional brain connectome when a fifth dimension is considered, in the same way that gravity emerges from a 'flat' four-dimensional quantum world, without gravitation, present at the boundaries of a five-dimensional spacetime. This vision makes it possible to envisage quantitative signatures of consciousness based on the entropy of the connectome and the curvature of spacetime estimated from data obtained by fMRI in the resting state (nodal activity and functional connectivity) and constrained by the anatomical connectivity derived from diffusion tensor imaging.
Collapse
Affiliation(s)
- Denis Le Bihan
- NeuroSpin, Frédéric Joliot Institute for Life Sciences (Commissariat à l’Energie Atomique, CEA), Centre d’Études de Saclay, Paris-Saclay University, Bâtiment 145, 91191 Gif-sur-Yvette, France;
- Human Brain Research Center, Kyoto University, Kyoto 606-8501, Japan
- Department of System Neuroscience, National Institutes for Physiological Sciences, Okazaki 444-8585, Japan
| |
Collapse
|
9
|
Stefanelli R. Theories of consciousness and psychiatric disorders - A comparative analysis. Neurosci Biobehav Rev 2023; 152:105204. [PMID: 37127069 DOI: 10.1016/j.neubiorev.2023.105204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/06/2023] [Accepted: 04/27/2023] [Indexed: 05/03/2023]
Abstract
Disorders of consciousness represent an efficient way to test theories of consciousness' (ToCs) predictions. So far, ToCs have mostly focused on disorders of quantitative awareness such as coma, vegetative state, spatial neglect and hemianopia. Psychiatric disorders, by contrast, have received little attention, leaving their contribution to consciousness research almost unexplored. Therefore, this paper aims to assess the relation between ToCs and psychiatric disorders - that is, the extent to which current ToCs can account for psychiatric symptomatology. First, I review direct and indirect evidence linking each ToC to psychiatry disorders. Next, I differentiate ToCs based on their theoretical and methodological ground, highlighting how they distinctively address neural, cognitive, and phenomenological aspects of conscious experience and, in turn, psychiatric symptoms. Finally, I refer to one specific symptom to directly compare ToCs' explanatory power. Overall, Temporospatial Theory of Consciousness (TTC) appears to provide a more comprehensive account of psychiatric disorders, suggesting that a novel dimension of consciousness (i.e., form of consciousness) may be needed to address more qualitative alterations in conscious experience.
Collapse
Affiliation(s)
- Riccardo Stefanelli
- Research Master in Cognitive and Clinical Neuroscience, Faculty of Psychology and Neuroscience, University of Maastricht, the Netherlands.
| |
Collapse
|
10
|
Chen F, Mihaljevic M, Hou Z, Li Y, Lu H, Mori S, Sawa A, Faria AV. Relation between white matter integrity, perfusion, and processing speed in early-stage schizophrenia. J Psychiatr Res 2023; 163:166-171. [PMID: 37210835 DOI: 10.1016/j.jpsychires.2023.05.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
OBJECTIVE Cerebral blood flow (CBF) plays a critical role in the maintenance of neuronal integrity, and CBF alterations have been linked to deleterious white matter changes. Several studies report CBF and white matter structural alterations individually. However, whether and how these pathological changes relate to each other remains elusive. By using our cohort of individuals with early-stage schizophrenia, we investigated the relationship between CBF and white matter structure. METHOD We studied 51 early-stage schizophrenia patients and age- and sex-matched healthy controls. We investigated the relationship among tissue structure (assessed with diffusion weighted imaging), perfusion (accessed by pseudo-continuous arterial labeling imaging), and neuropsychological indices (focusing on processing speed). We focused on the corpus callosum, due to its major role in associative functions and directness on revealing the architecture of a major white matter bundle. We performed mediation analysis to identify the possible mechanism underlay the relationship among cognition and white matter integrity and perfusion. RESULTS The CBF and the fractional anisotropy (FA) were inversely correlated in the corpus callosum of early-stage schizophrenia patients. While CBF negatively correlated with processing speed, FA correlated positively with this cognitive measure. These results were not observed in controls. Mediation analysis revealed that the effect of FA on processing speed was mediated via the CBF. CONCLUSIONS We provide evidence of a relationship between brain perfusion and white matter integrity in the corpus callosum in early-stage schizophrenia. These findings may shed the light on underlying metabolic support for structural changes with cognitive impact in schizophrenia.
Collapse
Affiliation(s)
- Feng Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, 570311, China
| | - Marina Mihaljevic
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhipeng Hou
- Department of Radiology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Yang Li
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, 570311, China
| | - Hanzhang Lu
- Department of Radiology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Susumu Mori
- Department of Radiology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Akira Sawa
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, The Whiting School of Engineering, Baltimore, MD, USA; Department of Mental Health, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Andreia V Faria
- Department of Radiology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
11
|
Seitz RJ, Angel HF, Paloutzian RF. Bridging the gap between believing and memory functions. EUROPES JOURNAL OF PSYCHOLOGY 2023; 19:113-124. [PMID: 37063695 PMCID: PMC10103061 DOI: 10.5964/ejop.7461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/11/2022] [Indexed: 03/01/2023]
Abstract
Believing has recently been recognized as a fundamental brain function linking a person’s experience with his or her attitude, actions and predictions. In general, believing results from the integration of ambient information with emotions and can be reinforced or modulated in a probabilistic fashion by new experiences. Although these processes occur in the subliminal realm, humans can become aware of what they believe and express it verbally. We explain how believing is interwoven with memory functions in a multifaceted fashion. Linking the typically rapid and adequate reactions of a subject to what he/she believes is enabled by working memory. Perceptions are stored in episodic memory as beneficial or aversive events, while the corresponding verbal descriptions of what somebody believes are stored in semantic memory. After recall from memory of what someone believes, personally relevant information can be communicated to other people. Thus, memory is essential for maintaining what people believe.
Collapse
Affiliation(s)
- Rüdiger J. Seitz
- Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | | | | |
Collapse
|
12
|
Giersch A, Laprévote V. Perceptual Functioning. Curr Top Behav Neurosci 2023; 63:79-113. [PMID: 36306053 DOI: 10.1007/7854_2022_393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Perceptual disorders are not part of the diagnosis criteria for schizophrenia. Yet, a considerable amount of work has been conducted, especially on visual perception abnormalities, and there is little doubt that visual perception is altered in patients. There are several reasons why such perturbations are of interest in this pathology. They are observed during the prodromal phase of psychosis, they are related to the pathophysiology (clinical disorganization, disorders of the sense of self), and they are associated with neuronal connectivity disorders. Perturbations occur at different levels of processing and likely affect how patients interact and adapt to their surroundings. The literature has become very large, and here we try to summarize different models that have guided the exploration of perception in patients. We also illustrate several lines of research by showing how perception has been investigated and by discussing the interpretation of the results. In addition to discussing domains such as contrast sensitivity, masking, and visual grouping, we develop more recent fields like processing at the level of the retina, and the timing of perception.
Collapse
Affiliation(s)
- Anne Giersch
- University of Strasbourg, INSERM U1114, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France.
| | - Vincent Laprévote
- University of Strasbourg, INSERM U1114, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France
- CLIP Centre de Liaison et d'Intervention Précoce, Centre Psychothérapique de Nancy, Laxou, France
- Faculté de Médecine, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
13
|
Zovetti N, Bellani M, Chowdury A, Alessandrini F, Zoccatelli G, Perlini C, Ricciardi GK, Marzi CA, Diwadkar VA, Brambilla P. Inefficient white matter activity in Schizophrenia evoked during intra and inter-hemispheric communication. Transl Psychiatry 2022; 12:449. [PMID: 36244980 PMCID: PMC9573867 DOI: 10.1038/s41398-022-02200-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
Intensive cognitive tasks induce inefficient regional and network responses in schizophrenia (SCZ). fMRI-based studies have naturally focused on gray matter, but appropriately titrated visuo-motor integration tasks reliably activate inter- and intra-hemispheric white matter pathways. Such tasks can assess network inefficiency without demanding intensive cognitive effort. Here, we provide the first application of this framework to the study of white matter functional responses in SCZ. Event-related fMRI data were acquired from 28 patients (nine females, mean age 43.3, ±11.7) and 28 age- and gender-comparable controls (nine females, mean age 42.1 ± 10.1), using the Poffenberger paradigm, a rapid visual detection task used to induce intra- (ipsi-lateral visual and motor cortex) or inter-hemispheric (contra-lateral visual and motor cortex) transfer. fMRI data were pre- and post-processed to reliably isolate activations in white matter, using probabilistic tractography-based white matter tracts. For intra- and inter-hemispheric transfer conditions, SCZ evinced hyper-activations in longitudinal and transverse white matter tracts, with hyper-activation in sub-regions of the corpus callosum primarily observed during inter-hemispheric transfer. Evidence for the functional inefficiency of white matter was observed in conjunction with small (~50 ms) but significant increases in response times. Functional inefficiencies in SCZ are (1) observable in white matter, with the degree of inefficiency contextually related to task-conditions, and (2) are evoked by simple detection tasks without intense cognitive processing. These cumulative results while expanding our understanding of this dys-connection syndrome, also extend the search of biomarkers beyond the traditional realm of fMRI studies of gray matter.
Collapse
Affiliation(s)
- Niccolò Zovetti
- grid.5611.30000 0004 1763 1124Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
| | - Marcella Bellani
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy.
| | - Asadur Chowdury
- grid.254444.70000 0001 1456 7807Department of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, MI USA
| | - Franco Alessandrini
- grid.411475.20000 0004 1756 948XNeuroradiology Department, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Giada Zoccatelli
- grid.411475.20000 0004 1756 948XNeuroradiology Department, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Cinzia Perlini
- grid.5611.30000 0004 1763 1124Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Psychology, University of Verona, Verona, Italy
| | - Giuseppe K. Ricciardi
- Pathology and Diagnostics, Section of Neuroradiology, Hospital Trust Verona, Verona, Italy
| | - Carlo A. Marzi
- grid.5611.30000 0004 1763 1124Physiology and Psychology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy ,National Institute of Neuroscience, Verona, Italy
| | - Vaibhav A. Diwadkar
- grid.254444.70000 0001 1456 7807Department of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, MI USA
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy. .,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| |
Collapse
|
14
|
Diamond A, Silverstein SM, Keane BP. Visual system assessment for predicting a transition to psychosis. Transl Psychiatry 2022; 12:351. [PMID: 36038544 PMCID: PMC9424317 DOI: 10.1038/s41398-022-02111-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 01/19/2023] Open
Abstract
The field of psychiatry is far from perfect in predicting which individuals will transition to a psychotic disorder. Here, we argue that visual system assessment can help in this regard. Such assessments have generated medium-to-large group differences with individuals prior to or near the first psychotic episode or have shown little influence of illness duration in larger samples of more chronic patients. For example, self-reported visual perceptual distortions-so-called visual basic symptoms-occur in up to 2/3rds of those with non-affective psychosis and have already longitudinally predicted an impending onset of schizophrenia. Possibly predictive psychophysical markers include enhanced contrast sensitivity, prolonged backward masking, muted collinear facilitation, reduced stereoscopic depth perception, impaired contour and shape integration, and spatially restricted exploratory eye movements. Promising brain-based markers include visual thalamo-cortical hyperconnectivity, decreased occipital gamma band power during visual detection (MEG), and reduced visually evoked occipital P1 amplitudes (EEG). Potentially predictive retinal markers include diminished cone a- and b-wave amplitudes and an attenuated photopic flicker response during electroretinography. The foregoing assessments are often well-described mechanistically, implying that their findings could readily shed light on the underlying pathophysiological changes that precede or accompany a transition to psychosis. The retinal and psychophysical assessments in particular are inexpensive, well-tolerated, easy to administer, and brief, with few inclusion/exclusion criteria. Therefore, across all major levels of analysis-from phenomenology to behavior to brain and retinal functioning-visual system assessment could complement and improve upon existing methods for predicting which individuals go on to develop a psychotic disorder.
Collapse
Affiliation(s)
- Alexander Diamond
- Department of Psychiatry, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, USA
| | - Steven M Silverstein
- Department of Psychiatry, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, USA
- Department of Neuroscience, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, USA
- Center for Visual Science, University of Rochester, 601 Elmwood Ave, Rochester, NY, USA
- Department of Ophthalmology, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, USA
| | - Brian P Keane
- Department of Psychiatry, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, USA.
- Department of Neuroscience, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, USA.
- Center for Visual Science, University of Rochester, 601 Elmwood Ave, Rochester, NY, USA.
- Department of Brain & Cognitive Sciences, University of Rochester, 358 Meliora Hall, NY, Rochester, USA.
| |
Collapse
|
15
|
Berkovitch L, Gaillard R, Abdel-Ahad P, Smadja S, Gauthier C, Attali D, Beaucamps H, Plaze M, Pessiglione M, Vinckier F. Preserved Unconscious Processing in Schizophrenia: The Case of Motivation. Schizophr Bull 2022; 48:1094-1103. [PMID: 35751516 PMCID: PMC9434445 DOI: 10.1093/schbul/sbac076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND AND HYPOTHESIS Motivation deficit is a hallmark of schizophrenia that has a strong impact on their daily life. An alteration of reward processing has been repeatedly highlighted in schizophrenia, but to what extent it involves a deficient amplification of reward representation through conscious processing remains unclear. Indeed, patients with schizophrenia exhibit a disruption of conscious processing, whereas unconscious processing appears to be largely preserved. STUDY DESIGN To further explore the nature of motivational deficit in schizophrenia and the implication of consciousness disruption in this symptom, we used a masking paradigm testing motivation both under conscious and unconscious conditions in patients with schizophrenia (n = 31) and healthy controls (n = 32). Participants were exposed to conscious or subliminal coin pictures representing money at stake and were subsequently asked to perform an effort-task by squeezing a handgrip as hard as possible to win this reward. STUDY RESULTS We observed a preserved effect of unconscious monetary rewards on force production in both groups, without any significant difference between them. By contrast, in the conscious condition, patients with schizophrenia were less sensitive to rewards than controls. Our results confirm that unconscious incentives have effects on exerted forces in the general population, and demonstrate that patients with schizophrenia exhibit a dissociation between an impaired conscious motivation and a preserved unconscious motivation. CONCLUSIONS These findings suggest the existence of several steps in motivational processes that can be differentially affected and might have implication for patient care.
Collapse
Affiliation(s)
- Lucie Berkovitch
- To whom correspondence should be addressed; Service Hospitalo-Universitaire, Pôle Hospitalo-Universitaire Psychiatrie Paris 15, GHU Paris Psychiatrie et Neurosciences, Centre Hospitalier Sainte Anne, 1 rue Cabanis, 75014 Paris, France; tel: 0033145658867, fax: 0033145657689, e-mail:
| | - Raphaël Gaillard
- Université Paris Cité, F-75006 Paris, France,Department of Psychiatry, Service Hospitalo-Universitaire, GHU Paris Psychiatrie and Neurosciences, F-75014 Paris, France
| | - Pierre Abdel-Ahad
- Université Paris Cité, F-75006 Paris, France,Department of Psychiatry, Service Hospitalo-Universitaire, GHU Paris Psychiatrie and Neurosciences, F-75014 Paris, France
| | - Sarah Smadja
- Université Paris Cité, F-75006 Paris, France,Department of Psychiatry, Service Hospitalo-Universitaire, GHU Paris Psychiatrie and Neurosciences, F-75014 Paris, France
| | - Claire Gauthier
- Université Paris Cité, F-75006 Paris, France,Department of Psychiatry, Service Hospitalo-Universitaire, GHU Paris Psychiatrie and Neurosciences, F-75014 Paris, France
| | - David Attali
- Université Paris Cité, F-75006 Paris, France,Department of Psychiatry, Service Hospitalo-Universitaire, GHU Paris Psychiatrie and Neurosciences, F-75014 Paris, France
| | - Hadrien Beaucamps
- Université Paris Cité, F-75006 Paris, France,Department of Psychiatry, Service Hospitalo-Universitaire, GHU Paris Psychiatrie and Neurosciences, F-75014 Paris, France
| | - Marion Plaze
- Université Paris Cité, F-75006 Paris, France,Department of Psychiatry, Service Hospitalo-Universitaire, GHU Paris Psychiatrie and Neurosciences, F-75014 Paris, France
| | - Mathias Pessiglione
- Motivation, Brain and Behavior (MBB) Lab, Paris Brain Institute (ICM), Hôpital Pitié-Salpêtrière, F-75013 Paris, France,Sorbonne University, Inserm, CNRS, Paris, France
| | - Fabien Vinckier
- Université Paris Cité, F-75006 Paris, France,Department of Psychiatry, Service Hospitalo-Universitaire, GHU Paris Psychiatrie and Neurosciences, F-75014 Paris, France,Motivation, Brain and Behavior (MBB) Lab, Paris Brain Institute (ICM), Hôpital Pitié-Salpêtrière, F-75013 Paris, France
| |
Collapse
|
16
|
Mathematical Model Insights into EEG Origin under Transcranial Direct Current Stimulation (tDCS) in the Context of Psychosis. J Clin Med 2022; 11:jcm11071845. [PMID: 35407453 PMCID: PMC8999473 DOI: 10.3390/jcm11071845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/12/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Schizophrenia is a psychotic disease that develops progressively over years with a transition from prodromal to psychotic state associated with a disruption in brain activity. Transcranial Direct Current Stimulation (tDCS), known to alleviate pharmaco-resistant symptoms in patients suffering from schizophrenia, promises to prevent such a psychotic transition. To understand better how tDCS affects brain activity, we propose a neural cortico-thalamo-cortical (CTC) circuit model involving the Ascending Reticular Arousal System (ARAS) that permits to describe major impact features of tDCS, such as excitability for short-duration stimulation and electroencephalography (EEG) power modulation for long-duration stimulation. To this end, the mathematical model relates stimulus duration and Long-Term Plasticity (LTP) effect, in addition to describing the temporal LTP decay after stimulus offset. This new relation promises to optimize future stimulation protocols. Moreover, we reproduce successfully EEG-power modulation under tDCS in a ketamine-induced psychosis model and confirm the N-methyl-d-aspartate (NMDA) receptor hypofunction hypothesis in the etiopathophysiology of schizophrenia. The model description points to an important role of the ARAS and the δ-rhythm synchronicity in CTC circuit in early-stage psychosis.
Collapse
|
17
|
Rappe S, Wilkinson S. Counterfactual cognition and psychosis: adding complexity to predictive processing accounts. PHILOSOPHICAL PSYCHOLOGY 2022. [DOI: 10.1080/09515089.2022.2054789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sofiia Rappe
- Faculty of Philosophy, Ludwig-Maximilians-Universität München, München, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, München, Germany
| | - Sam Wilkinson
- Department of Sociology, Philosophy, and Anthropology, University of Exeter, Exeter, UK
| |
Collapse
|
18
|
Hare SM. Hallucinations: A Functional Network Model of How Sensory Representations Become Selected for Conscious Awareness in Schizophrenia. Front Neurosci 2021; 15:733038. [PMID: 34887720 PMCID: PMC8650055 DOI: 10.3389/fnins.2021.733038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022] Open
Abstract
Hallucinations are conscious perception-like experiences that are a common symptom of schizophrenia spectrum disorders (SSD). Current neuroscience evidence suggests several brain areas are involved in the generation of hallucinations including the sensory cortex, insula, putamen, and hippocampus. But how does activity in these regions give rise to aberrant conscious perceptions that seemingly invade ongoing conscious experience? Most existing models assume that sensory representations are sometimes spontaneously activated in the brain, and that these spontaneous activations somehow play a causal role in the generation of hallucinations. Yet, it remains unclear how these representations become selected for conscious processing. No existing theory of hallucinations has specified such a “selection mechanism.” Global Workspace (GW) theorists argue that the brain’s interconnected processors select relevant piece(s) of information for broadcasting to other brain processors, rendering the information accessible to consciousness; this process known as “ignition” is associated with synchronized activity across distributed cortical and subcortical brain regions. Yet, it remains unclear how certain information and representations become selected for conscious processing. While GW theorists maintain that attention plays an important role, they have not delineated a formal “selection mechanism.” This paper specifies a selection mechanism based upon two central hypotheses: (1) a functional network called the “salience network” plays a critical role in selecting sensory representations for conscious broadcast to the GW in normal (healthy) perception; (2) sensory representations become abnormally selected for conscious broadcast to the GW (instead of being filtered out of consciousness) in individuals with SSD that experience hallucinations.
Collapse
Affiliation(s)
- Stephanie M Hare
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
19
|
Kristensen TD, Glenthøj LB, Ambrosen K, Syeda W, Raghava JM, Krakauer K, Wenneberg C, Fagerlund B, Pantelis C, Glenthøj BY, Nordentoft M, Ebdrup BH. Global fractional anisotropy predicts transition to psychosis after 12 months in individuals at ultra-high risk for psychosis. Acta Psychiatr Scand 2021; 144:448-463. [PMID: 34333760 DOI: 10.1111/acps.13355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Psychosis spectrum disorders are associated with cerebral changes, but the prognostic value and clinical utility of these findings are unclear. Here, we applied a multivariate statistical model to examine the predictive accuracy of global white matter fractional anisotropy (FA) for transition to psychosis in individuals at ultra-high risk for psychosis (UHR). METHODS 110 UHR individuals underwent 3 Tesla diffusion-weighted imaging and clinical assessments at baseline, and after 6 and 12 months. Using logistic regression, we examined the reliability of global FA at baseline as a predictor for psychosis transition after 12 months. We tested the predictive accuracy, sensitivity and specificity of global FA in a multivariate prediction model accounting for potential confounders to FA (head motion in scanner, age, gender, antipsychotic medication, parental socioeconomic status and activity level). In secondary analyses, we tested FA as a predictor of clinical symptoms and functional level using multivariate linear regression. RESULTS Ten UHR individuals had transitioned to psychosis after 12 months (9%). The model reliably predicted transition at 12 months (χ2 = 17.595, p = 0.040), accounted for 15-33% of the variance in transition outcome with a sensitivity of 0.70, a specificity of 0.88 and AUC of 0.87. Global FA predicted level of UHR symptoms (R2 = 0.055, F = 6.084, p = 0.016) and functional level (R2 = 0.040, F = 4.57, p = 0.036) at 6 months, but not at 12 months. CONCLUSION Global FA provided prognostic information on clinical outcome and symptom course of UHR individuals. Our findings suggest that the application of prediction models including neuroimaging data can inform clinical management on risk for psychosis transition.
Collapse
Affiliation(s)
- Tina D Kristensen
- Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, and Center for Neuropsychiatric Schizophrenia Research, CNSR, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark.,Copenhagen Research Centre for Mental Health (CORE), Copenhagen University Hospital, Copenhagen, Denmark
| | - Louise B Glenthøj
- Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, and Center for Neuropsychiatric Schizophrenia Research, CNSR, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark.,Copenhagen Research Centre for Mental Health (CORE), Copenhagen University Hospital, Copenhagen, Denmark
| | - Karen Ambrosen
- Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, and Center for Neuropsychiatric Schizophrenia Research, CNSR, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Warda Syeda
- Melbourne Neuropsychiatry Center, Department of Psychiatry, The University of Melbourne, Melbourne, Vic., Australia
| | - Jayachandra M Raghava
- Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, and Center for Neuropsychiatric Schizophrenia Research, CNSR, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark.,Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, University of Copenhagen, Glostrup, Denmark
| | - Kristine Krakauer
- Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, and Center for Neuropsychiatric Schizophrenia Research, CNSR, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark.,Copenhagen Research Centre for Mental Health (CORE), Copenhagen University Hospital, Copenhagen, Denmark
| | - Christina Wenneberg
- Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, and Center for Neuropsychiatric Schizophrenia Research, CNSR, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark.,Copenhagen Research Centre for Mental Health (CORE), Copenhagen University Hospital, Copenhagen, Denmark
| | - Birgitte Fagerlund
- Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, and Center for Neuropsychiatric Schizophrenia Research, CNSR, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark.,Department of Psychology, Faculty of Social Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christos Pantelis
- Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, and Center for Neuropsychiatric Schizophrenia Research, CNSR, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark.,Melbourne Neuropsychiatry Center, Department of Psychiatry, The University of Melbourne, Melbourne, Vic., Australia
| | - Birte Y Glenthøj
- Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, and Center for Neuropsychiatric Schizophrenia Research, CNSR, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Merete Nordentoft
- Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, and Center for Neuropsychiatric Schizophrenia Research, CNSR, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark.,Copenhagen Research Centre for Mental Health (CORE), Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bjørn H Ebdrup
- Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, and Center for Neuropsychiatric Schizophrenia Research, CNSR, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark.,Department of Psychology, Faculty of Social Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Grave J, Madeira N, Martins MJ, Silva S, Korb S, Soares SC. Slower access to visual awareness but otherwise intact implicit perception of emotional faces in schizophrenia-spectrum disorders. Conscious Cogn 2021; 93:103165. [PMID: 34274640 DOI: 10.1016/j.concog.2021.103165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 11/28/2022]
Abstract
Schizophrenia-spectrum disorders are characterized by deficits in social domains. Extant research has reported an impaired ability to perceive emotional faces in schizophrenia. Yet, it is unclear if these deficits occur already in the access to visual awareness. To investigate this question, 23 people with schizophrenia or schizoaffective disorder and 22 healthy controls performed a breaking continuous flash suppression task with fearful, happy, and neutral faces. Response times were analysed with generalized linear mixed models. People with schizophrenia-spectrum disorders were slower than controls in detecting faces, but did not show emotion-specific impairments. Moreover, happy faces were detected faster than neutral and fearful faces, across all participants. Although caution is needed when interpreting the main effect of group, our findings may suggest an elevated threshold for visual awareness in schizophrenia-spectrum disorders, but an intact implicit emotion perception. Our study provides a new insight into the mechanisms underlying emotion perception in schizophrenia-spectrum disorders.
Collapse
Affiliation(s)
- Joana Grave
- William James Center for Research, Department of Education and Psychology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Center for Health Technology and Services Research, Department of Education and Psychology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Nuno Madeira
- Psychiatry Department, Centro Hospitalar e Universitário de Coimbra, Praceta Prof. Mota Pinto, 3000-075 Coimbra, Portugal; Institute of Psychological Medicine, Faculty of Medicine - University of Coimbra, Portugal, Rua Larga, 3004-504 Coimbra, Portugal
| | - Maria João Martins
- Institute of Psychological Medicine, Faculty of Medicine - University of Coimbra, Portugal, Rua Larga, 3004-504 Coimbra, Portugal; Ocupational Health and Safety Management Services, University of Coimbra Social Services, Rua Doutor Guilherme Moreira 12, 3000-210 Coimbra, Portugal
| | - Samuel Silva
- Department of Electronics, Telecommunication and Informatics (DETI)/Institute of Electronics and Informatics Engineering (IEETA), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Sebastian Korb
- Department of Psychology, University of Essex, CO4 3SQ Colchester, United Kingdom; Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Liebiggasse 5 1010, Vienna, Austria
| | - Sandra Cristina Soares
- William James Center for Research, Department of Education and Psychology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Center for Health Technology and Services Research, Department of Education and Psychology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
21
|
Zadeh-Haghighi H, Simon C. Entangled radicals may explain lithium effects on hyperactivity. Sci Rep 2021; 11:12121. [PMID: 34108537 PMCID: PMC8190433 DOI: 10.1038/s41598-021-91388-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/26/2021] [Indexed: 02/05/2023] Open
Abstract
It is known that bipolar disorder and its lithium treatment involve the modulation of oxidative stress. Moreover, it has been observed that lithium's effects are isotope-dependent. Based on these findings, here we propose that lithium exerts its effects by influencing the recombination dynamics of a naturally occurring radical pair involving oxygen. We develop a simple model inspired by the radical-pair mechanism in cryptochrome in the context of avian magnetoreception and xenon-induced anesthesia. Our model reproduces the observed isotopic dependence in the lithium treatment of hyperactivity in rats. It predicts a magnetic-field dependence of the effectiveness of lithium, which provides one potential experimental test of our hypothesis. Our findings show that Nature might harness quantum entanglement for the brain's cognitive processes.
Collapse
Affiliation(s)
- Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Quantum Alberta, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Quantum Alberta, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
22
|
Seitz RJ. Beliefs: A challenge in neuropsychological disorders. J Neuropsychol 2021; 16:21-37. [PMID: 33969626 DOI: 10.1111/jnp.12249] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/11/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Beliefs have recently been defined as the neural product of perception of objects and events in the external world and of an affirmative internal affective state reflecting personal meaning. It is, however, undetermined in which way diseases of the brain affect these integrative processes. METHODS Here, the formation and updating of abnormal beliefs in cerebral disorders are described. RESULTS It will be shown that well-defined neuropsychological syndromes resulting from brain lesions also interfere with the neural processes that enable the formation, up-dating and communication of beliefs. Similarly, in neuropsychiatric disorders abnormal and delusional beliefs appear to be caused by altered perception and/or misattribution of aversive meaning. CONCLUSION Given the importance of beliefs for ordinary social behaviour, abnormal beliefs are a challenge in neuropsychological disorders.
Collapse
Affiliation(s)
- Rüdiger J Seitz
- Department of Neurology, Centre of Neurology and Neuropsychiatry, LVR-Klinikum Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany.,Florey Neuroscience Institutes, Melbourne, Victoria, Australia
| |
Collapse
|
23
|
Ng S, Herbet G, Lemaitre AL, Moritz-Gasser S, Duffau H. Disrupting self-evaluative processing with electrostimulation mapping during awake brain surgery. Sci Rep 2021; 11:9386. [PMID: 33931714 PMCID: PMC8087680 DOI: 10.1038/s41598-021-88916-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/19/2021] [Indexed: 02/08/2023] Open
Abstract
Brain awake surgery with cognitive monitoring for tumor removal has become a standard of treatment for functional purpose. Yet, little attention has been given to patients' interpretation and awareness of their own responses to selected cognitive tasks during direct electrostimulation (DES). We aim to report disruptions of self-evaluative processing evoked by DES during awake surgery. We further investigate cortico-subcortical structures involved in self-assessment process and report the use of an intraoperative self-assessment tool, the self-confidence index (SCI). Seventy-two patients who had undergone awake brain tumor resections were selected. Inclusion criteria were the occurrence of a DES-induced disruption of an ongoing task followed by patient's failure to remember or criticize these impairments, or a dissociation between patient's responses to an ongoing task and patient's SCI. Disruptions of self-evaluation were frequently associated with semantic disorders and critical sites were mostly found along the left/right ventral semantic streams. Disconnectome analyses generated from a tractography-based atlas confirmed the high probability of the inferior fronto-occipital fasciculus to be transitory 'disconnected'. These findings suggest that white matters pathways belonging to the ventral semantic stream may be critically involved in human self-evaluative processing. Finally, the authors discuss the implementation of the SCI task during multimodal intraoperative monitoring.
Collapse
Affiliation(s)
- Sam Ng
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Av Augustin Fliche, 34295, Montpellier, France. .,Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM U1191, Montpellier, France.
| | - Guillaume Herbet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Av Augustin Fliche, 34295, Montpellier, France.,Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM U1191, Montpellier, France.,Department of Speech-Language Pathology, University of Montpellier, Montpellier, France
| | - Anne-Laure Lemaitre
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Av Augustin Fliche, 34295, Montpellier, France.,Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM U1191, Montpellier, France
| | - Sylvie Moritz-Gasser
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Av Augustin Fliche, 34295, Montpellier, France.,Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM U1191, Montpellier, France.,Department of Speech-Language Pathology, University of Montpellier, Montpellier, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Av Augustin Fliche, 34295, Montpellier, France.,Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM U1191, Montpellier, France.,Department of Speech-Language Pathology, University of Montpellier, Montpellier, France
| |
Collapse
|
24
|
Has Silemek AC, Ranjeva J, Audoin B, Heesen C, Gold SM, Kühn S, Weygandt M, Stellmann J. Delayed access to conscious processing in multiple sclerosis: Reduced cortical activation and impaired structural connectivity. Hum Brain Mapp 2021; 42:3379-3395. [PMID: 33826184 PMCID: PMC8249884 DOI: 10.1002/hbm.25440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 01/24/2023] Open
Abstract
Although multiple sclerosis (MS) is frequently accompanied by visuo‐cognitive impairment, especially functional brain mechanisms underlying this impairment are still not well understood. Consequently, we used a functional MRI (fMRI) backward masking task to study visual information processing stratifying unconscious and conscious in MS. Specifically, 30 persons with MS (pwMS) and 34 healthy controls (HC) were shown target stimuli followed by a mask presented 8–150 ms later and had to compare the target to a reference stimulus. Retinal integrity (via optical coherence tomography), optic tract integrity (visual evoked potential; VEP) and whole brain structural connectivity (probabilistic tractography) were assessed as complementary structural brain integrity markers. On a psychophysical level, pwMS reached conscious access later than HC (50 vs. 16 ms, p < .001). The delay increased with disease duration (p < .001, β = .37) and disability (p < .001, β = .24), but did not correlate with conscious information processing speed (Symbol digit modality test, β = .07, p = .817). No association was found for VEP and retinal integrity markers. Moreover, pwMS were characterized by decreased brain activation during unconscious processing compared with HC. No group differences were found during conscious processing. Finally, a complementary structural brain integrity analysis showed that a reduced fractional anisotropy in corpus callosum and an impaired connection between right insula and primary visual areas was related to delayed conscious access in pwMS. Our study revealed slowed conscious access to visual stimulus material in MS and a complex pattern of functional and structural alterations coupled to unconscious processing of/delayed conscious access to visual stimulus material in MS.
Collapse
Affiliation(s)
- Arzu C. Has Silemek
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS)Universitätsklinikum Hamburg‐Eppendorf (UKE)HamburgGermany
| | - Jean‐Philippe Ranjeva
- Aix‐Marseille UniversityCNRS, CRMBMMarseille CedexFrance
- APHMHopital de la Timone, CEMEREMMarseilleFrance
| | - Bertrand Audoin
- Aix‐Marseille UniversityCNRS, CRMBMMarseille CedexFrance
- APHMHopital de la Timone, CEMEREMMarseilleFrance
| | - Christoph Heesen
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS)Universitätsklinikum Hamburg‐Eppendorf (UKE)HamburgGermany
- Klinik und Poliklinik für NeurologieUniversitätsklinikum Hamburg‐EppendorfHamburgGermany
| | - Stefan M. Gold
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS)Universitätsklinikum Hamburg‐Eppendorf (UKE)HamburgGermany
- Charité ‐ Universitätsmedizin Berlin, Freie Universität BerlinHumboldt Universität zu Berlin, and Berlin Institute of Health (BIH), Klinik für Psychiatrie & Psychotherapie und Medizinische Klinik m.S. Psychosomatik, Campus Benjamin Franklin (CBF)BerlinGermany
| | - Simone Kühn
- Clinic for Psychiatry and PsychotherapyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Lise Meitner Group for Environmental NeuroscienceMax Planck Institute for Human DevelopmentBerlinGermany
| | - Martin Weygandt
- Max Delbrück Center for Molecular Medicine and Charité – Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt‐Universität zu Berlin, and Berlin Institute of Health, Experimental and Clinical Research CenterBerlinGermany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt‐Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research CenterBerlinGermany
| | - Jan‐Patrick Stellmann
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS)Universitätsklinikum Hamburg‐Eppendorf (UKE)HamburgGermany
- Aix‐Marseille UniversityCNRS, CRMBMMarseille CedexFrance
- APHMHopital de la Timone, CEMEREMMarseilleFrance
- Klinik und Poliklinik für NeurologieUniversitätsklinikum Hamburg‐EppendorfHamburgGermany
| |
Collapse
|