1
|
Bean BP. Mechanisms of pacemaking in mammalian neurons. J Physiol 2024. [PMID: 39303139 DOI: 10.1113/jp284759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
Many neurons in the mammalian brain show pacemaking activity: rhythmic generation of action potentials in the absence of sensory or synaptic input. Slow pacemaking of neurons releasing modulatory transmitters is easy to rationalize. More surprisingly, many neurons in the motor system also show pacemaking activity, often rapid, including cerebellar Purkinje neurons that fire spontaneously at 20-100 Hz, as well as key neurons in the basal ganglia, including subthalamic nucleus neurons and globus pallidus neurons. Although the spontaneous rhythmic firing of pacemaking neurons is phenomenologically similar to cardiac pacemaking, the underlying ionic mechanism in most neurons is quite different than for cardiac pacemaking. Few spontaneously active neurons rely on HCN 'pacemaker' channels for their activity. Most commonly, a central element is 'persistent' sodium current, steady-state subthreshold current carried by the same voltage-dependent sodium channels that underlie fast action potentials. Persistent sodium current is a steeply voltage-dependent current with a midpoint near -60 mV, which results in regenerative spontaneous depolarization once it produces a net inward current when summed with all other background currents, often at voltages as negative as -70 mV. This 'engine' of pacemaking is present in almost all neurons and must be held in check in non-pacemaking neurons by sufficiently large competing outward currents from background potassium channels. The intrinsic propensity of neurons to fire spontaneously underlies key normal functions such as respiration and generates the complex background oscillatory circuits revealed in EEGs, but can also produce out-of-control oscillations of overall brain function in epilepsy, ataxia and tremor.
Collapse
Affiliation(s)
- Bruce P Bean
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Gonye EC, Shi Y, Li K, Clements RT, Xu W, Bayliss DA. Intrinsic Molecular Proton Sensitivity Underlies GPR4 Effects on Retrotrapezoid Nucleus Neuronal Activation and CO 2-Stimulated Breathing. J Neurosci 2024; 44:e0799242024. [PMID: 39107057 PMCID: PMC11376338 DOI: 10.1523/jneurosci.0799-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/28/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024] Open
Abstract
An interoceptive homeostatic reflex monitors levels of CO2/H+ to maintain blood gas homeostasis and rapidly regulate tissue acid-base balance by driving lung ventilation and CO2 excretion-this CO2-evoked increase in respiration is the hypercapnic ventilatory reflex (HCVR). Retrotrapezoid nucleus (RTN) neurons provide crucial excitatory drive to downstream respiratory rhythm/pattern-generating circuits, and their activity is directly modulated by changes in CO2/H+ RTN neurons express GPR4 and TASK-2, global deletion of which abrogates CO2/H+ activation of RTN neurons and the HCVR. It has not been determined if the intrinsic pH sensitivity of these proton detectors is required for these effects. We used CRISPR/Cas9 genome editing to generate mice with mutations in either of two pH-sensing histidine residues in GPR4 to determine effects on RTN neuronal CO2/H+ sensitivity and the HCVR. In global GPR4(H81F) and GPR4(H167F) mice, CO2-stimulated breathing and CO2-induced RTN neuronal activation were strongly blunted, with no effect on hypoxia-stimulated breathing. In brainstem slices from GPR4(H81F) mice, peak firing of RTN neurons during bath acidification was significantly reduced compared with GPR4 wild-type mice, and a subpopulation of RTN neurons was rendered pH-insensitive, phenocopying previous results from GPR4-deleted mice. These effects were independent of changes in RTN number/distribution, neuronal excitability or transcript levels for GPR4 and TASK-2. CO2-stimulated breathing was reduced to a similar extent in GPR4(H81F) and TASK-2-deleted mice, with combined mutation yielding no additional deficit in the HCVR. Together, these data demonstrate that the intrinsic pH sensitivity of GPR4 is necessary for full elaboration of the HCVR.
Collapse
Affiliation(s)
- Elizabeth C Gonye
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22903
| | - Yingtang Shi
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22903
| | - Keyong Li
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22903
| | - Rachel T Clements
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22903
| | - Wenhao Xu
- Genetically Engineered Mouse Model Core, University of Virginia, Charlottesville, Virginia 22903
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22903
| |
Collapse
|
3
|
Yun SH, Mansurov V, Yang L, Yoon J, Leblanc N, Craviso GL, Zaklit J. Modulating Ca 2+ influx into adrenal chromaffin cells with short-duration nanosecond electric pulses. Biophys J 2024; 123:2537-2556. [PMID: 38909279 PMCID: PMC11365113 DOI: 10.1016/j.bpj.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/07/2024] [Accepted: 06/20/2024] [Indexed: 06/24/2024] Open
Abstract
Isolated bovine adrenal chromaffin cells exposed to single 2-, 4-, or 5-ns pulses undergo a rapid, transient rise in intracellular Ca2+ mediated by Ca2+ entry via voltage-gated Ca2+ channels (VGCCs), mimicking the activation of these cells in vivo by acetylcholine. However, pulse durations 150 ns or longer elicit larger amplitude and longer-lived Ca2+ responses due to Ca2+ influx via both VGCCs and a yet to be identified plasma membrane pathway(s). To further our understanding of the differential effects of ultrashort versus longer pulse durations on Ca2+ influx, chromaffin cells were loaded with calcium green-1 and exposed to single 3-, 5-, 11-, 25-, or 50-ns pulses applied at their respective Ca2+ activation threshold electric fields. Increasing pulse duration from 3 or 5 ns to only 11 ns was sufficient to elicit increased amplitude and longer-lived Ca2+ responses in the majority of cells, a trend that continued as pulse duration increased to 50 ns. The amplification of Ca2+ responses was not the result of Ca2+ release from intracellular stores and was accompanied by a decreased effectiveness of VGCC inhibitors to block the responses and a reduced reliance on extracellular Na+ and membrane depolarization to evoke the responses. Inhibitors of pannexin channels, P2X receptors, or non-selective cation channels failed to attenuate 50-ns-elicited Ca2+ responses, ruling out these Ca2+-permeable channels as secondary Ca2+ entry pathways. Analytical calculations and numerical modeling suggest that the parameter that best determines the response of chromaffin cells to increasing pulse durations is the time the membrane charges to its peak voltage. These results highlight the pronounced sensitivity of a neuroendocrine cell to pulse durations differing by only tens of nanoseconds, which has important implications for the future development of nanosecond pulse technologies enabling electrostimulation applications for spatially focused and graded in vivo neuromodulation.
Collapse
Affiliation(s)
- Sung Hae Yun
- Department of Electrical and Biomedical Engineering, College of Engineering, University of Nevada, Reno, Nevada
| | - Vasilii Mansurov
- Department of Electrical and Biomedical Engineering, College of Engineering, University of Nevada, Reno, Nevada
| | - Lisha Yang
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Jihwan Yoon
- Department of Electrical and Biomedical Engineering, College of Engineering, University of Nevada, Reno, Nevada
| | - Normand Leblanc
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Gale L Craviso
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Josette Zaklit
- Department of Electrical and Biomedical Engineering, College of Engineering, University of Nevada, Reno, Nevada.
| |
Collapse
|
4
|
Wu L, Zhang D, Wu Y, Liu J, Jiang J, Zhou C. Sodium Leak Channel in Glutamatergic Neurons of the Lateral Parabrachial Nucleus Helps to Maintain Respiratory Frequency Under Sevoflurane Anesthesia. Neurosci Bull 2024; 40:1127-1140. [PMID: 38767833 PMCID: PMC11306470 DOI: 10.1007/s12264-024-01223-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/15/2024] [Indexed: 05/22/2024] Open
Abstract
The lateral parabrachial nucleus (PBL) is implicated in the regulation of respiratory activity. Sodium leak channel (NALCN) mutations disrupt the respiratory rhythm and influence anesthetic sensitivity in both rodents and humans. Here, we investigated whether the NALCN in PBL glutamatergic neurons maintains respiratory function under general anesthesia. Our results showed that chemogenetic activation of PBL glutamatergic neurons increased the respiratory frequency (RF) in mice; whereas chemogenetic inhibition suppressed RF. NALCN knockdown in PBL glutamatergic neurons but not GABAergic neurons significantly reduced RF under physiological conditions and caused more respiratory suppression under sevoflurane anesthesia. NALCN knockdown in PBL glutamatergic neurons did not further exacerbate the respiratory suppression induced by propofol or morphine. Under sevoflurane anesthesia, painful stimuli rapidly increased the RF, which was not affected by NALCN knockdown in PBL glutamatergic neurons. This study suggested that the NALCN is a key ion channel in PBL glutamatergic neurons that maintains respiratory frequency under volatile anesthetic sevoflurane but not intravenous anesthetic propofol.
Collapse
Affiliation(s)
- Lin Wu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Donghang Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yujie Wu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingyao Jiang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
El Hamamy A, Iqbal Z, Mai Le N, Ranjan A, Zhang Y, Lin HW, Tan C, Patrizz A, McCullough LD, Li J. Targeted TGF-βR2 Knockdown in the Retrotrapezoid Nucleus Mitigates Respiratory Dysfunction and Cognitive Decline in a Mouse Model of Cerebral Amyloid Angiopathy with and without Stroke. RESEARCH SQUARE 2024:rs.3.rs-4438544. [PMID: 38854014 PMCID: PMC11160887 DOI: 10.21203/rs.3.rs-4438544/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Introduction Cerebral amyloid angiopathy (CAA) is characterized by the deposition of amyloid-beta peptides within cerebral blood vessels, leading to neurovascular complications. Ischemic strokes result from acute disruptions in cerebral blood flow, triggering metabolic disturbances and neurodegeneration. Both conditions often co-occur and are associated with respiratory dysfunctions. The retrotrapezoid nucleus (RTN), which is crucial for CO2 sensing and breathing regulation in the brainstem, may play a key role in breathing disorders seen in these conditions. This study aims to investigate the role of Transforming Growth Factor Beta (TGF-β) signaling in the RTN on respiratory and cognitive functions in CAA, both with and without concurrent ischemic stroke. Methods Adult male Tg-SwDI (CAA model) mice and C57BL/6 wild-type controls underwent stereotaxic injections of lentivirus targeting TGF-β2R2 in the RTN. Stroke was induced by middle cerebral artery occlusion using a monofilament. Respiratory functions were assessed using whole-body plethysmography, while cognitive functions were evaluated through the Barnes Maze and Novel Object Recognition Test (NORT). Immunohistochemical analysis was conducted to measure TGF-βR2 and GFAP expressions in the RTN. Results CAA mice exhibited significant respiratory dysfunctions, including reduced respiratory rates and increased apnea frequency, as well as impaired cognitive performance. TGF-βR2 knockdown in the RTN improved respiratory functions and cognitive outcomes in CAA mice. In CAA mice with concurrent stroke, TGF-βR2 knockdown similarly enhanced respiratory and cognitive functions. Immunohistochemistry confirmed reduced TGF-βR2 and GFAP expressions in the RTN following knockdown. Conclusions Our findings demonstrate that increased TGF-β signaling and gliosis in the RTN contribute to respiratory and cognitive dysfunctions in CAA and CAA with stroke. Targeting TGF-βR2 signaling in the RTN offers a promising therapeutic strategy to mitigate these impairments. This study is the first to report a causal link between brainstem gliosis and both respiratory and cognitive dysfunctions in CAA and stroke models.
Collapse
Affiliation(s)
| | - Zahid Iqbal
- University of Texas Health Science Center at Houston
| | - Ngoc Mai Le
- University of Texas Health Science Center at Houston
| | - Arya Ranjan
- University of Texas Health Science Center at Houston
| | - YuXing Zhang
- University of Texas Health Science Center at Houston
| | - Hung Wen Lin
- University of Texas Health Science Center at Houston
| | - Chunfeng Tan
- University of Texas Health Science Center at Houston
| | | | | | - Jun Li
- University of Texas Health Science Center at Houston
| |
Collapse
|
6
|
Ricardo PC, Arias MC, de Souza Araujo N. Decoding bee cleptoparasitism through comparative transcriptomics of Coelioxoides waltheriae and its host Tetrapedia diversipes. Sci Rep 2024; 14:12361. [PMID: 38811580 PMCID: PMC11137135 DOI: 10.1038/s41598-024-56261-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/04/2024] [Indexed: 05/31/2024] Open
Abstract
Cleptoparasitism, also known as brood parasitism, is a widespread strategy among bee species in which the parasite lays eggs into the nests of the host species. Even though this behavior has significant ecological implications for the dynamics of several species, little is known about the molecular pathways associated with cleptoparasitism. To shed some light on this issue, we used gene expression data to perform a comparative analysis between two solitary neotropical bees: Coelioxoides waltheriae, an obligate parasite, and their specific host Tetrapedia diversipes. We found that ortholog genes involved in signal transduction, sensory perception, learning, and memory formation were differentially expressed between the cleptoparasite and the host. We hypothesize that these genes and their associated molecular pathways are engaged in cleptoparasitism-related processes and, hence, are appealing subjects for further investigation into functional and evolutionary aspects of cleptoparasitism in bees.
Collapse
Affiliation(s)
- Paulo Cseri Ricardo
- Departamento de Genética e Biologia Evolutiva - Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
| | - Maria Cristina Arias
- Departamento de Genética e Biologia Evolutiva - Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
7
|
Zhang D, Wei Y. Role of sodium leak channel (NALCN) in sensation and pain: an overview. Front Pharmacol 2024; 14:1349438. [PMID: 38273833 PMCID: PMC10808581 DOI: 10.3389/fphar.2023.1349438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024] Open
Abstract
The sodium leak channel (NALCN) is widely expressed in the central nervous system and plays a pivotal role in regulating the resting membrane potential (RMP) by mediating the Na+ leak current. NALCN was first reported in 1999, and since then, increasing evidence has provided insights into the structure and functions of NALCN. As an essential component of neuronal background currents, NALCN has been shown to be involved in many important physiological functions, particularly in the respiratory rhythm, as NALCN mutant mice have a severely disrupted respiratory rhythm and die within 24 h of birth. Many patients with NALCN mutations also develop serious clinical syndromes, such as severe hypotonia, speech impairment, and cognitive delay. Recently, emerging studies have clarified the human NALCN structure and revealed additional properties and functions of NALCN. For instance, accumulating evidence highlights that the NALCN is involved in normal sensation and pain. Here, we review the current literature and summarize the role of the NALCN in sensation and pain.
Collapse
Affiliation(s)
- Donghang Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yiyong Wei
- Department of Anesthesiology, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, China
| |
Collapse
|
8
|
Ngodup T, Irie T, Elkins SP, Trussell LO. The Na + leak channel NALCN controls spontaneous activity and mediates synaptic modulation by α2-adrenergic receptors in auditory neurons. eLife 2024; 12:RP89520. [PMID: 38197879 PMCID: PMC10945507 DOI: 10.7554/elife.89520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Cartwheel interneurons of the dorsal cochlear nucleus (DCN) potently suppress multisensory signals that converge with primary auditory afferent input, and thus regulate auditory processing. Noradrenergic fibers from locus coeruleus project to the DCN, and α2-adrenergic receptors inhibit spontaneous spike activity but simultaneously enhance synaptic strength in cartwheel cells, a dual effect leading to enhanced signal-to-noise for inhibition. However, the ionic mechanism of this striking modulation is unknown. We generated a glycinergic neuron-specific knockout of the Na+ leak channel NALCN in mice and found that its presence was required for spontaneous firing in cartwheel cells. Activation of α2-adrenergic receptors inhibited both NALCN and spike generation, and this modulation was absent in the NALCN knockout. Moreover, α2-dependent enhancement of synaptic strength was also absent in the knockout. GABAB receptors mediated inhibition through NALCN as well, acting on the same population of channels as α2 receptors, suggesting close apposition of both receptor subtypes with NALCN. Thus, multiple neuromodulatory systems determine the impact of synaptic inhibition by suppressing the excitatory leak channel, NALCN.
Collapse
Affiliation(s)
- Tenzin Ngodup
- Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science UniversityPortlandUnited States
| | - Tomohiko Irie
- Department of Physiology, Kitasato University School of MedicineSagamiharaJapan
| | - Seán P Elkins
- Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science UniversityPortlandUnited States
| | - Laurence O Trussell
- Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science UniversityPortlandUnited States
| |
Collapse
|
9
|
Monteil A, Guérineau NC, Gil-Nagel A, Parra-Diaz P, Lory P, Senatore A. New insights into the physiology and pathophysiology of the atypical sodium leak channel NALCN. Physiol Rev 2024; 104:399-472. [PMID: 37615954 DOI: 10.1152/physrev.00014.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/13/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023] Open
Abstract
Cell excitability and its modulation by hormones and neurotransmitters involve the concerted action of a large repertoire of membrane proteins, especially ion channels. Unique complements of coexpressed ion channels are exquisitely balanced against each other in different excitable cell types, establishing distinct electrical properties that are tailored for diverse physiological contributions, and dysfunction of any component may induce a disease state. A crucial parameter controlling cell excitability is the resting membrane potential (RMP) set by extra- and intracellular concentrations of ions, mainly Na+, K+, and Cl-, and their passive permeation across the cell membrane through leak ion channels. Indeed, dysregulation of RMP causes significant effects on cellular excitability. This review describes the molecular and physiological properties of the Na+ leak channel NALCN, which associates with its accessory subunits UNC-79, UNC-80, and NLF-1/FAM155 to conduct depolarizing background Na+ currents in various excitable cell types, especially neurons. Studies of animal models clearly demonstrate that NALCN contributes to fundamental physiological processes in the nervous system including the control of respiratory rhythm, circadian rhythm, sleep, and locomotor behavior. Furthermore, dysfunction of NALCN and its subunits is associated with severe pathological states in humans. The critical involvement of NALCN in physiology is now well established, but its study has been hampered by the lack of specific drugs that can block or agonize NALCN currents in vitro and in vivo. Molecular tools and animal models are now available to accelerate our understanding of how NALCN contributes to key physiological functions and the development of novel therapies for NALCN channelopathies.
Collapse
Affiliation(s)
- Arnaud Monteil
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
- LabEx "Ion Channel Science and Therapeutics," Montpellier, France
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nathalie C Guérineau
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
- LabEx "Ion Channel Science and Therapeutics," Montpellier, France
| | - Antonio Gil-Nagel
- Department of Neurology, Epilepsy Program, Hospital Ruber Internacional, Madrid, Spain
| | - Paloma Parra-Diaz
- Department of Neurology, Epilepsy Program, Hospital Ruber Internacional, Madrid, Spain
| | - Philippe Lory
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
- LabEx "Ion Channel Science and Therapeutics," Montpellier, France
| | - Adriano Senatore
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| |
Collapse
|
10
|
Ngodup T, Irie T, Elkins S, Trussell LO. The Na + leak channel NALCN controls spontaneous activity and mediates synaptic modulation by α2-adrenergic receptors in auditory neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.23.546323. [PMID: 37987013 PMCID: PMC10659375 DOI: 10.1101/2023.06.23.546323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Cartwheel interneurons of the dorsal cochlear nucleus (DCN) potently suppress multisensory signals that converge with primary auditory afferent input, and thus regulate auditory processing. Noradrenergic fibers from locus coeruleus project to the DCN, and α2-adrenergic receptors inhibit spontaneous spike activity but simultaneously enhance synaptic strength in cartwheel cells, a dual effect leading to enhanced signal-to-noise for inhibition. However, the ionic mechanism of this striking modulation is unknown. We generated a glycinergic neuron-specific knockout of the Na+ leak channel NALCN, and found that its presence was required for spontaneous firing in cartwheel cells. Activation of α2-adrenergic receptors inhibited both NALCN and spike generation, and this modulation was absent in the NALCN knockout. Moreover, α2-dependent enhancement of synaptic strength was also absent in the knockout. GABAB receptors mediated inhibition through NALCN as well, acting on the same population of channels as α2 receptors, suggesting close apposition of both receptor subtypes with NALCN. Thus, multiple neuromodulatory systems determine the impact of synaptic inhibition by suppressing the excitatory leak channel, NALCN.
Collapse
Affiliation(s)
- Tenzin Ngodup
- Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science University, Portland OR USA
| | - Tomohiko Irie
- Department of Physiology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Sean Elkins
- Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science University, Portland OR USA
| | - Laurence O Trussell
- Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science University, Portland OR USA
| |
Collapse
|
11
|
Yoda S, Onimaru H, Izumizaki M. Effects of aconitine on the respiratory activity of brainstem-spinal cord preparations isolated from newborn rats. Pflugers Arch 2023; 475:1301-1314. [PMID: 37707585 DOI: 10.1007/s00424-023-02857-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Aconitine is a sodium channel opener, but its effects on the respiratory center are not well understood. We investigated the dose-dependent effects of aconitine on central respiratory activity in brainstem-spinal cord preparations isolated from newborn rats. Bath application of 0.5-5 μM aconitine caused an increase in respiratory rhythm and decrease in the inspiratory burst amplitude of the fourth cervical ventral root (C4). Separate application of aconitine revealed that medullary neurons were responsible for the respiratory rhythm increase, and neurons in both the medulla and spinal cord were involved in the decrease of C4 amplitude by aconitine. A local anesthetic, lidocaine (100 μM), or a voltage-dependent sodium channel blocker, tetrodotoxin (0.1 μM), partially antagonized the C4 amplitude decrease by aconitine. Tetrodotoxin treatment tentatively decreased the respiratory rhythm, but lidocaine tended to further increase the rhythm. Treatment with 100 μM riluzole or 100 μM flufenamic acid, which are known to inhibit respiratory pacemaker activity, did not reduce the respiratory rhythm enhanced by aconitine + lidocaine. The application of 1 μM aconitine depolarized the preinspiratory, expiratory, and inspiratory motor neurons. The facilitated burst rhythm of inspiratory neurons after aconitine disappeared in a low Ca2+/high Mg2+ synaptic blockade solution. We showed the dose-dependent effects of aconitine on respiratory activity. The antagonists reversed the depressive effects of aconitine in different manners, possibly due to their actions on different sites of sodium channels. The burst-generating pacemaker properties of neurons may not be involved in the generation of the facilitated rhythm after aconitine treatment.
Collapse
Affiliation(s)
- Shunya Yoda
- Department of Physiology, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Hiroshi Onimaru
- Department of Physiology, Showa University School of Medicine, Tokyo, 142-8555, Japan.
| | - Masahiko Izumizaki
- Department of Physiology, Showa University School of Medicine, Tokyo, 142-8555, Japan
| |
Collapse
|
12
|
Delgado-Zabalza L, Mallet NP, Glangetas C, Dabee G, Garret M, Miguelez C, Baufreton J. Targeting parvalbumin-expressing neurons in the substantia nigra pars reticulata restores motor function in parkinsonian mice. Cell Rep 2023; 42:113287. [PMID: 37843977 DOI: 10.1016/j.celrep.2023.113287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/31/2023] [Accepted: 09/29/2023] [Indexed: 10/18/2023] Open
Abstract
The activity of substantia nigra pars reticulata (SNr) neurons, the main output structure of basal ganglia, is altered in Parkinson's disease (PD). However, neither the underlying mechanisms nor the type of neurons responsible for PD-related motor dysfunctions have been elucidated yet. Here, we show that parvalbumin-expressing SNr neurons (SNr-PV+) occupy dorsolateral parts and possess specific electrophysiological properties compared with other SNr cells. We also report that only SNr-PV+ neurons' intrinsic excitability is reduced by downregulation of sodium leak channels in a PD mouse model. Interestingly, in anesthetized parkinsonian mice in vivo, SNr-PV+ neurons display a bursty pattern of activity dependent on glutamatergic tone. Finally, we demonstrate that chemogenetic inhibition of SNr-PV+ neurons is sufficient to alleviate motor impairments in parkinsonian mice. Overall, our findings establish cell-type-specific dysfunction in experimental parkinsonism in the SNr and provide a potential cellular therapeutic target to alleviate motor symptoms in PD.
Collapse
Affiliation(s)
- Lorena Delgado-Zabalza
- University Bordeaux, CNRS, IMN, UMR 5293, 33000 Bordeaux, France; Department of Pharmacology. University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Nicolas P Mallet
- University Bordeaux, CNRS, IMN, UMR 5293, 33000 Bordeaux, France
| | | | - Guillaume Dabee
- University Bordeaux, CNRS, IMN, UMR 5293, 33000 Bordeaux, France
| | - Maurice Garret
- University Bordeaux, CNRS, INCIA, UMR 5287, 33000 Bordeaux, France
| | - Cristina Miguelez
- Department of Pharmacology. University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; Autonomic and Movement Disorders Unit, Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Jérôme Baufreton
- University Bordeaux, CNRS, IMN, UMR 5293, 33000 Bordeaux, France.
| |
Collapse
|
13
|
Cobb-Lewis DE, Sansalone L, Khaliq ZM. Contributions of the Sodium Leak Channel NALCN to Pacemaking of Medial Ventral Tegmental Area and Substantia Nigra Dopaminergic Neurons. J Neurosci 2023; 43:6841-6853. [PMID: 37640554 PMCID: PMC10573758 DOI: 10.1523/jneurosci.0930-22.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/31/2023] Open
Abstract
We tested the role of the sodium leak channel, NALCN, in pacemaking of dopaminergic neuron (DAN) subpopulations from adult male and female mice. In situ hybridization revealed NALCN RNA in all DANs, with lower abundance in medial ventral tegmental area (VTA) relative to substantia nigra pars compacta (SNc). Despite lower relative abundance of NALCN, we found that acute pharmacological blockade of NALCN in medial VTA DANs slowed pacemaking by 49.08%. We also examined the electrophysiological properties of projection-defined VTA DAN subpopulations identified by retrograde labeling. Inhibition of NALCN reduced pacemaking in DANs projecting to medial nucleus accumbens (NAc) and others projecting to lateral NAc by 70.74% and 31.98%, respectively, suggesting that NALCN is a primary driver of pacemaking in VTA DANs. In SNc DANs, potentiating NALCN by lowering extracellular calcium concentration speeded pacemaking in wildtype but not NALCN conditional knockout mice, demonstrating functional presence of NALCN. In contrast to VTA DANs, however, pacemaking in SNc DANs was unaffected by inhibition of NALCN. Instead, we found that inhibition of NALCN increased the gain of frequency-current plots at firing frequencies slower than spontaneous firing. Similarly, inhibition of the hyperpolarization-activated cyclic nucleotide-gated (HCN) conductance increased gain but had little effect on pacemaking. Interestingly, simultaneous inhibition of NALCN and HCN resulted in significant reduction in pacemaker rate. Thus, we found NALCN makes substantial contributions to driving pacemaking in VTA DAN subpopulations. In SNc DANs, NALCN is not critical for pacemaking but inhibition of NALCN makes cells more sensitive to hyperpolarizing stimuli.SIGNIFICANCE STATEMENT Pacemaking in midbrain dopaminergic neurons (DAN) relies on multiple subthreshold conductances, including a sodium leak. Whether the sodium leak channel, NALCN, contributes to pacemaking in DANs located in the VTA and the SNc has not yet been determined. Using electrophysiology and pharmacology, we show that NALCN plays a prominent role in driving pacemaking in projection-defined VTA DAN subpopulations. By contrast, pacemaking in SNc neurons does not rely on NALCN. Instead, the presence of NALCN regulates the excitability of SNc DANs by reducing the gain of the neuron's response to inhibitory stimuli. Together, these findings will inform future efforts to obtain DAN subpopulation-specific treatments for use in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Dana E Cobb-Lewis
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
- Institute for Neuroscience, George Washington University School of Medicine and Health Sciences, Washington, DC 20037
| | - Lorenzo Sansalone
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Zayd M Khaliq
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
14
|
Burke CT, Vitko I, Straub J, Nylund EO, Gawda A, Blair K, Sullivan KA, Ergun L, Ottolini M, Patel MK, Perez-Reyes E. EpiPro, a Novel, Synthetic, Activity-Regulated Promoter That Targets Hyperactive Neurons in Epilepsy for Gene Therapy Applications. Int J Mol Sci 2023; 24:14467. [PMID: 37833914 PMCID: PMC10572392 DOI: 10.3390/ijms241914467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Epileptogenesis is characterized by intrinsic changes in neuronal firing, resulting in hyperactive neurons and the subsequent generation of seizure activity. These alterations are accompanied by changes in gene transcription networks, first with the activation of early-immediate genes and later with the long-term activation of genes involved in memory. Our objective was to engineer a promoter containing binding sites for activity-dependent transcription factors upregulated in chronic epilepsy (EpiPro) and validate it in multiple rodent models of epilepsy. First, we assessed the activity dependence of EpiPro: initial electrophysiology studies found that EpiPro-driven GFP expression was associated with increased firing rates when compared with unlabeled neurons, and the assessment of EpiPro-driven GFP expression revealed that GFP expression was increased ~150× after status epilepticus. Following this, we compared EpiPro-driven GFP expression in two rodent models of epilepsy, rat lithium/pilocarpine and mouse electrical kindling. In rodents with chronic epilepsy, GFP expression was increased in most neurons, but particularly in dentate granule cells, providing in vivo evidence to support the "breakdown of the dentate gate" hypothesis of limbic epileptogenesis. Finally, we assessed the time course of EpiPro activation and found that it was rapidly induced after seizures, with inactivation following over weeks, confirming EpiPro's potential utility as a gene therapy driver for epilepsy.
Collapse
Affiliation(s)
- Cassidy T. Burke
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Iuliia Vitko
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Justyna Straub
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Elsa O. Nylund
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Agnieszka Gawda
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Kathryn Blair
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Kyle A. Sullivan
- Computational and Predictive Biology, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Lara Ergun
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Matteo Ottolini
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22908, USA (M.K.P.)
| | - Manoj K. Patel
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22908, USA (M.K.P.)
- UVA Brain Institute, University of Virginia, Charlottesville, VA 22908, USA
| | - Edward Perez-Reyes
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
- UVA Brain Institute, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
15
|
Gonye EC, Bayliss DA. Criteria for central respiratory chemoreceptors: experimental evidence supporting current candidate cell groups. Front Physiol 2023; 14:1241662. [PMID: 37719465 PMCID: PMC10502317 DOI: 10.3389/fphys.2023.1241662] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023] Open
Abstract
An interoceptive homeostatic system monitors levels of CO2/H+ and provides a proportionate drive to respiratory control networks that adjust lung ventilation to maintain physiologically appropriate levels of CO2 and rapidly regulate tissue acid-base balance. It has long been suspected that the sensory cells responsible for the major CNS contribution to this so-called respiratory CO2/H+ chemoreception are located in the brainstem-but there is still substantial debate in the field as to which specific cells subserve the sensory function. Indeed, at the present time, several cell types have been championed as potential respiratory chemoreceptors, including neurons and astrocytes. In this review, we advance a set of criteria that are necessary and sufficient for definitive acceptance of any cell type as a respiratory chemoreceptor. We examine the extant evidence supporting consideration of the different putative chemoreceptor candidate cell types in the context of these criteria and also note for each where the criteria have not yet been fulfilled. By enumerating these specific criteria we hope to provide a useful heuristic that can be employed both to evaluate the various existing respiratory chemoreceptor candidates, and also to focus effort on specific experimental tests that can satisfy the remaining requirements for definitive acceptance.
Collapse
Affiliation(s)
- Elizabeth C. Gonye
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States
| | | |
Collapse
|
16
|
Mucke HAM. Drug Repurposing Patent Applications April-June 2023. Assay Drug Dev Technol 2023; 21:288-295. [PMID: 37668595 DOI: 10.1089/adt.2023.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023] Open
|
17
|
Li K, Gonye EC, Stornetta RL, Bayliss CB, Yi G, Stornetta DS, Baca SM, Abbott SB, Guyenet PG, Bayliss DA. The astrocytic Na + -HCO 3 - cotransporter, NBCe1, is dispensable for respiratory chemosensitivity. J Physiol 2023; 601:3667-3686. [PMID: 37384821 PMCID: PMC10528273 DOI: 10.1113/jp284960] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/02/2023] [Indexed: 07/01/2023] Open
Abstract
The interoceptive homeostatic mechanism that controls breathing, blood gases and acid-base balance in response to changes in CO2 /H+ is exquisitely sensitive, with convergent roles proposed for chemosensory brainstem neurons in the retrotrapezoid nucleus (RTN) and their supporting glial cells. For astrocytes, a central role for NBCe1, a Na+ -HCO3 - cotransporter encoded by Slc4a4, has been envisaged in multiple mechanistic models (i.e. underlying enhanced CO2 -induced local extracellular acidification or purinergic signalling). We tested these NBCe1-centric models by using conditional knockout mice in which Slc4a4 was deleted from astrocytes. In GFAP-Cre;Slc4a4fl/fl mice we found diminished expression of Slc4a4 in RTN astrocytes by comparison to control littermates, and a concomitant reduction in NBCe1-mediated current. Despite disrupted NBCe1 function in RTN-adjacent astrocytes from these conditional knockout mice, CO2 -induced activation of RTN neurons or astrocytes in vitro and in vivo, and CO2 -stimulated breathing, were indistinguishable from NBCe1-intact littermates; hypoxia-stimulated breathing and sighs were likewise unaffected. We obtained a more widespread deletion of NBCe1 in brainstem astrocytes by using tamoxifen-treated Aldh1l1-Cre/ERT2;Slc4a4fl/fl mice. Again, there was no difference in effects of CO2 or hypoxia on breathing or on neuron/astrocyte activation in NBCe1-deleted mice. These data indicate that astrocytic NBCe1 is not required for the respiratory responses to these chemoreceptor stimuli in mice, and that any physiologically relevant astrocytic contributions must involve NBCe1-independent mechanisms. KEY POINTS: The electrogenic NBCe1 transporter is proposed to mediate local astrocytic CO2 /H+ sensing that enables excitatory modulation of nearby retrotrapezoid nucleus (RTN) neurons to support chemosensory control of breathing. We used two different Cre mouse lines for cell-specific and/or temporally regulated deletion of the NBCe1 gene (Slc4a4) in astrocytes to test this hypothesis. In both mouse lines, Slc4a4 was depleted from RTN-associated astrocytes but CO2 -induced Fos expression (i.e. cell activation) in RTN neurons and local astrocytes was intact. Likewise, respiratory chemoreflexes evoked by changes in CO2 or O2 were unaffected by loss of astrocytic Slc4a4. These data do not support the previously proposed role for NBCe1 in respiratory chemosensitivity mediated by astrocytes.
Collapse
Affiliation(s)
- Keyong Li
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA, 22908
| | - Elizabeth C. Gonye
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA, 22908
| | - Ruth L. Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA, 22908
| | | | - Grace Yi
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA, 22908
| | - Daniel S. Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA, 22908
| | - Serapio M. Baca
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA, 22908
| | - Stephen B.G. Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA, 22908
| | - Patrice G. Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA, 22908
| | - Douglas A. Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA, 22908
| |
Collapse
|
18
|
Wu L, Wu Y, Liu J, Jiang J, Zhou C, Zhang D. Sodium Leak Channel in Glutamatergic Neurons of the Lateral Parabrachial Nucleus Modulates Inflammatory Pain in Mice. Int J Mol Sci 2023; 24:11907. [PMID: 37569281 PMCID: PMC10418977 DOI: 10.3390/ijms241511907] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
Elevated excitability of glutamatergic neurons in the lateral parabrachial nucleus (PBL) is associated with the pathogenesis of inflammatory pain, but the underlying molecular mechanisms are not fully understood. Sodium leak channel (NALCN) is widely expressed in the central nervous system and regulates neuronal excitability. In this study, chemogenetic manipulation was used to explore the association between the activity of PBL glutamatergic neurons and pain thresholds. Complete Freund's adjuvant (CFA) was used to construct an inflammatory pain model in mice. Pain behaviour was tested using von Frey filaments and Hargreaves tests. Local field potential (LFP) was used to record the activity of PBL glutamatergic neurons. Gene knockdown techniques were used to investigate the role of NALCN in inflammatory pain. We further explored the downstream projections of PBL using cis-trans-synaptic tracer virus. The results showed that chemogenetic inhibition of PBL glutamatergic neurons increased pain thresholds in mice, whereas chemogenetic activation produced the opposite results. CFA plantar modelling increased the number of C-Fos protein and NALCN expression in PBL glutamatergic neurons. Knockdown of NALCN in PBL glutamatergic neurons alleviated CFA-induced pain. CFA injection induced C-Fos protein expression in central nucleus amygdala (CeA) neurons, which was suppressed by NALCN knockdown in PBL glutamatergic neurons. Therefore, elevated expression of NALCN in PBL glutamatergic neurons contributes to the development of inflammatory pain via PBL-CeA projections.
Collapse
Affiliation(s)
- Lin Wu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.W.); (Y.W.); (J.L.); (J.J.)
- Laboratory of Anaesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yujie Wu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.W.); (Y.W.); (J.L.); (J.J.)
- Laboratory of Anaesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.W.); (Y.W.); (J.L.); (J.J.)
- Laboratory of Anaesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingyao Jiang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.W.); (Y.W.); (J.L.); (J.J.)
- Laboratory of Anaesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Cheng Zhou
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.W.); (Y.W.); (J.L.); (J.J.)
- Laboratory of Anaesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Donghang Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.W.); (Y.W.); (J.L.); (J.J.)
- Laboratory of Anaesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
19
|
Hahn S, Um KB, Kim SW, Kim HJ, Park MK. Proximal dendritic localization of NALCN channels underlies tonic and burst firing in nigral dopaminergic neurons. J Physiol 2023; 601:171-193. [PMID: 36398712 DOI: 10.1113/jp283716] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
In multipolar nigral dopamine (DA) neurons, the highly excitable proximal dendritic compartments (PDCs) and two Na+ -permeable leak channels, TRPC3 and NALCN, play a key role in pacemaking. However, the causal link between them is unknown. Here we report that the proximal dendritic localization of NALCN underlies pacemaking and burst firing in DA neurons. Our morphological analysis of nigral DA neurons reveals that TRPC3 is ubiquitously expressed in the whole somatodendritic compartment, but NALCN is localized within the PDCs. Blocking either TRPC3 or NALCN channels abolished pacemaking. However, only blocking NALCN, not TRPC3, degraded burst discharges. Furthermore, local glutamate uncaging readily induced burst discharges within the PDCs, compared with other parts of the neuron, and NALCN channel inhibition dissipated burst generation, indicating the importance of NALCN to the high excitability of PDCs. Therefore, we conclude that PDCs serve as a common base for tonic and burst firing in nigral DA neurons. KEY POINTS: Midbrain dopamine (DA) neurons are slow pacemakers that can generate tonic and burst firings, and the highly excitable proximal dendritic compartments (PDCs) and two Na+ -permeable leak channels, TRPC3 and NALCN, play a key role in pacemaking. We find that slow tonic firing depends on the basal activity of both the NALCN and TRPC3 channels, but that burst firing does not require TRPC3 channels but relies only on NALCN channels. We find that TRPC3 is ubiquitously expressed in the entire somatodendritic compartment, but that NALCN exists only within the PDCs in nigral DA neurons. We show that NALCN channel localization confers high excitability on PDCs and is essential for burst generation in nigral DA neurons. These results suggest that PDCs serve as a common base for tonic and burst firing in nigral DA neurons.
Collapse
Affiliation(s)
- Suyun Hahn
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Ki Bum Um
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - So Woon Kim
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Hyun Jin Kim
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea.,Samsung Medical Center, Samsung Biomedical Research Institute, Seoul, Korea
| | - Myoung Kyu Park
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea.,Samsung Medical Center, Samsung Biomedical Research Institute, Seoul, Korea
| |
Collapse
|
20
|
Maselli K, Park H, Breilyn MS, Arens R. Severe central sleep apnea in a child with biallelic variants in NALCN. J Clin Sleep Med 2022; 18:2507-2513. [PMID: 35808948 PMCID: PMC9516572 DOI: 10.5664/jcsm.10146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022]
Abstract
The sodium leak channel, nonselective (NALCN), is necessary for the proper function of the neurons that play an important role in the sleep-wake cycle and regulation of breathing patterns during wakefulness and sleep. We report a 38-month-old male with developmental delay, hypotonia, and severe central sleep apnea with periodic breathing requiring noninvasive ventilation during sleep, who was found to have novel biallelic pathogenic variants in NALCN. A review of the literature illustrates 17 additional children with biallelic variants in the NALCN gene. The clinical and sleep manifestations of these children are discussed. CITATION Maselli K, Park H, Breilyn MS, Arens R. Severe central sleep apnea in a child with biallelic variants in NALCN. J Clin Sleep Med. 2022;18(10):2507-2513.
Collapse
Affiliation(s)
- Kristina Maselli
- Sleep Wake Disorders Center, Department of Neurology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Hyunbin Park
- Division of Pediatric Respiratory and Sleep Medicine, Department of Pediatrics, Children’s Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York
| | - Margo Sheck Breilyn
- Genetics and Genomics, Department of Pediatrics, The Mount Sinai Hospital, New York, New York
| | - Raanan Arens
- Division of Pediatric Respiratory and Sleep Medicine, Department of Pediatrics, Children’s Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
21
|
Network-Based Data Analysis Reveals Ion Channel-Related Gene Features in COVID-19: A Bioinformatic Approach. Biochem Genet 2022; 61:471-505. [PMID: 36104591 PMCID: PMC9473477 DOI: 10.1007/s10528-022-10280-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 09/01/2022] [Indexed: 11/02/2022]
Abstract
Coronavirus disease 2019 (COVID-19) seriously threatens human health and has been disseminated worldwide. Although there are several treatments for COVID-19, its control is currently suboptimal. Therefore, the development of novel strategies to treat COVID-19 is necessary. Ion channels are located on the membranes of all excitable cells and many intracellular organelles and are key components involved in various biological processes. They are a target of interest when searching for drug targets. This study aimed to reveal the relevant molecular features of ion channel genes in COVID-19 based on bioinformatic analyses. The RNA-sequencing data of patients with COVID-19 and healthy subjects (GSE152418 and GSE171110 datasets) were obtained from the Gene Expression Omnibus (GEO) database. Ion channel genes were selected from the Hugo Gene Nomenclature Committee (HGNC) database. The RStudio software was used to process the data based on the corresponding R language package to identify ion channel-associated differentially expressed genes (DEGs). Based on the DEGs, Gene Ontology (GO) functional and pathway enrichment analyses were performed using the Enrichr web tool. The STRING database was used to generate a protein-protein interaction (PPI) network, and the Cytoscape software was used to screen for hub genes in the PPI network based on the cytoHubba plug-in. Transcription factors (TF)-DEG, DEG-microRNA (miRNA) and DEG-disease association networks were constructed using the NetworkAnalyst web tool. Finally, the screened hub genes as drug targets were subjected to enrichment analysis based on the DSigDB using the Enrichr web tool to identify potential therapeutic agents for COVID-19. A total of 29 ion channel-associated DEGs were identified. GO functional analysis showed that the DEGs were integral components of the plasma membrane and were mainly involved in inorganic cation transmembrane transport and ion channel activity functions. Pathway analysis showed that the DEGs were mainly involved in nicotine addiction, calcium regulation in the cardiac cell and neuronal system pathways. The top 10 hub genes screened based on the PPI network included KCNA2, KCNJ4, CACNA1A, CACNA1E, NALCN, KCNA5, CACNA2D1, TRPC1, TRPM3 and KCNN3. The TF-DEG and DEG-miRNA networks revealed significant TFs (FOXC1, GATA2, HINFP, USF2, JUN and NFKB1) and miRNAs (hsa-mir-146a-5p, hsa-mir-27a-3p, hsa-mir-335-5p, hsa-let-7b-5p and hsa-mir-129-2-3p). Gene-disease association network analysis revealed that the DEGs were closely associated with intellectual disability and cerebellar ataxia. Drug-target enrichment analysis showed that the relevant drugs targeting the hub genes CACNA2D1, CACNA1A, CACNA1E, KCNA2 and KCNA5 were gabapentin, gabapentin enacarbil, pregabalin, guanidine hydrochloride and 4-aminopyridine. The results of this study provide a valuable basis for exploring the mechanisms of ion channel genes in COVID-19 and clues for developing therapeutic strategies for COVID-19.
Collapse
|
22
|
Zhou C, Zhou Q, He X, He Y, Wang X, Zhu X, Zhang Y, Ma L. Differential modulation of C. elegans motor behavior by NALCN and two-pore domain potassium channels. PLoS Genet 2022; 18:e1010126. [PMID: 35482723 PMCID: PMC9049526 DOI: 10.1371/journal.pgen.1010126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 02/28/2022] [Indexed: 11/18/2022] Open
Abstract
Two-pore domain potassium channels (K2P) are a large family of “background” channels that allow outward “leak” of potassium ions. The NALCN/UNC80/UNC79 complex is a non-selective channel that allows inward flow of sodium and other cations. It is unclear how K2Ps and NALCN differentially modulate animal behavior. Here, we found that loss of function (lf) in the K2P gene twk-40 suppressed the reduced body curvatures of C. elegans NALCN(lf) mutants. twk-40(lf) caused a deep body curvature and extended backward locomotion, and these phenotypes appeared to be associated with neuron-specific expression of twk-40 and distinct twk-40 transcript isoforms. To survey the functions of other less studied K2P channels, we examined loss-of-function mutants of 13 additional twk genes expressed in the motor circuit and detected defective body curvature and/or locomotion in mutants of twk-2, twk-17, twk-30, twk-48, unc-58, and the previously reported twk-7. We generated presumptive gain-of-function (gf) mutations in twk-40, twk-2, twk-7, and unc-58 and found that they caused paralysis. Further analyses detected variable genetic interactions between twk-40 and other twk genes, an interdependence between twk-40 and twk-2, and opposite behavioral effects between NALCN and twk-2, twk-7, or unc-58. Finally, we found that the hydrophobicity/hydrophilicity property of TWK-40 residue 159 could affect the channel activity. Together, our study identified twk-40 as a novel modulator of the motor behavior, uncovered potential behavioral effects of five other K2P genes and suggests that NALCN and some K2Ps can oppositely affect C. elegans behavior.
Collapse
Affiliation(s)
- Chuanman Zhou
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Qian Zhou
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xiaohui He
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yunxia He
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xiaoqin Wang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xiaowei Zhu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yujia Zhang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Long Ma
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Molecular Precision Medicine, Central South University, Changsha, Hunan, China
- * E-mail:
| |
Collapse
|
23
|
Shi Y, Sobrinho CR, Soto-Perez J, Milla BM, Stornetta DS, Stornetta RL, Takakura AC, Mulkey DK, Moreira TS, Bayliss DA. 5-HT7 receptors expressed in the mouse parafacial region are not required for respiratory chemosensitivity. J Physiol 2022; 600:2789-2811. [PMID: 35385139 PMCID: PMC9167793 DOI: 10.1113/jp282279] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/23/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract A brainstem homeostatic system senses CO2/H+ to regulate ventilation, blood gases and acid–base balance. Neurons of the retrotrapezoid nucleus (RTN) and medullary raphe are both implicated in this mechanism as respiratory chemosensors, but recent pharmacological work suggested that the CO2/H+ sensitivity of RTN neurons is mediated indirectly, by raphe‐derived serotonin acting on 5‐HT7 receptors. To investigate this further, we characterized Htr7 transcript expression in phenotypically identified RTN neurons using multiplex single cell qRT‐PCR and RNAscope. Although present in multiple neurons in the parafacial region of the ventrolateral medulla, Htr7 expression was undetectable in most RTN neurons (Nmb+/Phox2b+) concentrated in the densely packed cell group ventrolateral to the facial nucleus. Where detected, Htr7 expression was modest and often associated with RTN neurons that extend dorsolaterally to partially encircle the facial nucleus. These dorsolateral Nmb+/Htr7+ neurons tended to express Nmb at high levels and the intrinsic RTN proton detectors Gpr4 and Kcnk5 at low levels. In mouse brainstem slices, CO2‐stimulated firing in RTN neurons was mostly unaffected by a 5‐HT7 receptor antagonist, SB269970 (n = 11/13). At the whole animal level, microinjection of SB269970 into the RTN of conscious mice blocked respiratory stimulation by co‐injected LP‐44, a 5‐HT7 receptor agonist, but had no effect on CO2‐stimulated breathing in those same mice. We conclude that Htr7 is expressed by a minor subset of RTN neurons with a molecular profile distinct from the established chemoreceptors and that 5‐HT7 receptors have negligible effects on CO2‐evoked firing activity in RTN neurons or on CO2‐stimulated breathing in mice. Key points Neurons of the retrotrapezoid nucleus (RTN) are intrinsic CO2/H+ chemosensors and serve as an integrative excitatory hub for control of breathing. Serotonin can activate RTN neurons, in part via 5‐HT7 receptors, and those effects have been implicated in conferring an indirect CO2 sensitivity. Multiple single cell molecular approaches revealed low levels of 5‐HT7 receptor transcript expression restricted to a limited population of RTN neurons. Pharmacological experiments showed that 5‐HT7 receptors in RTN are not required for CO2/H+‐stimulation of RTN neuronal activity or CO2‐stimulated breathing. These data do not support a role for 5‐HT7 receptors in respiratory chemosensitivity mediated by RTN neurons.
Collapse
Affiliation(s)
- Yingtang Shi
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Cleyton R Sobrinho
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Jaseph Soto-Perez
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Brenda M Milla
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Daniel S Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Ruth L Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
24
|
Yang L, Pierce S, Gould TW, Craviso GL, Leblanc N. Ultrashort nanosecond electric pulses activate a conductance in bovine adrenal chromaffin cells that involves cation entry through TRPC and NALCN channels. Arch Biochem Biophys 2022; 723:109252. [DOI: 10.1016/j.abb.2022.109252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/25/2022] [Accepted: 04/12/2022] [Indexed: 12/14/2022]
|
25
|
Structural architecture of the human NALCN channelosome. Nature 2022; 603:180-186. [PMID: 34929720 DOI: 10.1038/s41586-021-04313-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/07/2021] [Indexed: 11/08/2022]
Abstract
Depolarizing sodium (Na+) leak currents carried by the NALCN channel regulate the resting membrane potential of many neurons to modulate respiration, circadian rhythm, locomotion and pain sensitivity1-8. NALCN requires FAM155A, UNC79 and UNC80 to function, but the role of these auxiliary subunits is not understood3,7,9-12. NALCN, UNC79 and UNC80 are essential in rodents2,9,13, and mutations in human NALCN and UNC80 cause severe developmental and neurological disease14,15. Here we determined the structure of the NALCN channelosome, an approximately 1-MDa complex, as fundamental aspects about the composition, assembly and gating of this channelosome remain obscure. UNC79 and UNC80 are massive HEAT-repeat proteins that form an intertwined anti-parallel superhelical assembly, which docks intracellularly onto the NALCN-FAM155A pore-forming subcomplex. Calmodulin copurifies bound to the carboxy-terminal domain of NALCN, identifying this region as a putative modulatory hub. Single-channel analyses uncovered a low open probability for the wild-type complex, highlighting the tightly closed S6 gate in the structure, and providing a basis to interpret the altered gating properties of disease-causing variants. Key constraints between the UNC79-UNC80 subcomplex and the NALCN DI-DII and DII-DIII linkers were identified, leading to a model of channelosome gating. Our results provide a structural blueprint to understand the physiology of the NALCN channelosome and a template for drug discovery to modulate the resting membrane potential.
Collapse
|
26
|
Winczewska-Wiktor A, Hirschfeld AS, Badura-Stronka M, Wojsyk-Banaszak I, Sobkowiak P, Bartkowska-Śniatkowska A, Babak V, Steinborn B. Central Apneas Due to the CLIFAHDD Syndrome Successfully Treated with Pyridostigmine. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020775. [PMID: 35055596 PMCID: PMC8776169 DOI: 10.3390/ijerph19020775] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/12/2021] [Accepted: 01/06/2022] [Indexed: 02/05/2023]
Abstract
NALCN mutations lead to complex neurodevelopmental syndromes, including infantile hypotonia with psychomotor retardation and characteristic facies (IHPRF) and congenital contractures of limbs and face, hypotonia, and developmental delay (CLIFAHDD), which are recessively and dominantly inherited, respectively. We present a patient in whom congenital myasthenic syndrome (CMS) was suspected due to the occurrence of hypotonia and apnea episodes requiring resuscitation. For this reason, treatment with pyridostigmine was introduced. After starting the treatment, a significant improvement was observed in reducing the apnea episodes and slight psychomotor progress. In the course of further diagnostics, CMS was excluded, and CLIFAHDD syndrome was confirmed. Thus, we try to explain a possible mechanism of clinical improvement after the introduction of treatment with pyridostigmine in a patient with a mutation in the NALCN gene.
Collapse
Affiliation(s)
- Anna Winczewska-Wiktor
- Chair and Department of Developmental Neurology, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland;
- Correspondence:
| | - Adam Sebastian Hirschfeld
- Chair and Department of Medical Genetics, Poznan University of Medical Sciences, 60-352 Poznan, Poland; (A.S.H.); (M.B.-S.); (V.B.)
| | - Magdalena Badura-Stronka
- Chair and Department of Medical Genetics, Poznan University of Medical Sciences, 60-352 Poznan, Poland; (A.S.H.); (M.B.-S.); (V.B.)
- Centers of Medical Genetics GENESIS, 60-529 Poznan, Poland
| | - Irena Wojsyk-Banaszak
- Department of Pulmonology, Pediatric Allergy and Clinical Immunology, Poznan University of Medical Sciences, 60-572 Poznan, Poland; (I.W.-B.); (P.S.)
| | - Paulina Sobkowiak
- Department of Pulmonology, Pediatric Allergy and Clinical Immunology, Poznan University of Medical Sciences, 60-572 Poznan, Poland; (I.W.-B.); (P.S.)
| | - Alicja Bartkowska-Śniatkowska
- Department of Pediatric Anesthesiology and Intensive Therapy, Poznan University of Medical Sciences, 60-572 Poznan, Poland;
| | - Valeriia Babak
- Chair and Department of Medical Genetics, Poznan University of Medical Sciences, 60-352 Poznan, Poland; (A.S.H.); (M.B.-S.); (V.B.)
| | - Barbara Steinborn
- Chair and Department of Developmental Neurology, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland;
| |
Collapse
|
27
|
Abstract
Brain PCO2 is sensed primarily via changes in [H+]. Small pH changes are detected in the medulla oblongata and trigger breathing adjustments that help maintain arterial PCO2 constant. Larger perturbations of brain CO2/H+, possibly also sensed elsewhere in the CNS, elicit arousal, dyspnea, and stress, and cause additional breathing modifications. The retrotrapezoid nucleus (RTN), a rostral medullary cluster of glutamatergic neurons identified by coexpression of Phoxb and Nmb transcripts, is the lynchpin of the central respiratory chemoreflex. RTN regulates breathing frequency, inspiratory amplitude, and active expiration. It is exquisitely responsive to acidosis in vivo and maintains breathing autorhythmicity during quiet waking, slow-wave sleep, and anesthesia. The RTN response to [H+] is partly an intrinsic neuronal property mediated by proton sensors TASK-2 and GPR4 and partly a paracrine effect mediated by astrocytes and the vasculature. The RTN also receives myriad excitatory or inhibitory synaptic inputs including from [H+]-responsive neurons (e.g., serotonergic). RTN is silenced by moderate hypoxia. RTN inactivity (periodic or sustained) contributes to periodic breathing and, likely, to central sleep apnea. RTN development relies on transcription factors Egr2, Phox2b, Lbx1, and Atoh1. PHOX2B mutations cause congenital central hypoventilation syndrome; they impair RTN development and consequently the central respiratory chemoreflex.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States.
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
28
|
TRPM4 Contributes to Subthreshold Membrane Potential Oscillations in Multiple Mouse Pacemaker Neurons. eNeuro 2021; 8:ENEURO.0212-21.2021. [PMID: 34732535 PMCID: PMC8607911 DOI: 10.1523/eneuro.0212-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/13/2021] [Accepted: 10/21/2021] [Indexed: 02/08/2023] Open
Abstract
Select neuronal populations display steady rhythmic neuronal firing that provides tonic excitation to drive downstream networks and behaviors. In noradrenergic neurons of the locus coeruleus (LC), circadian neurons of the suprachiasmatic nucleus (SCN), and CO2/H+-activated neurons of the brainstem retrotrapezoid nucleus (RTN), large subthreshold membrane potential oscillations contribute to the pacemaker-like action potential discharge. The oscillations and firing in LC and SCN involve contributions from leak sodium (NALCN) and L-type calcium channels while recent work from RTN suggested an additional pivotal role for a secondary calcium-activated and voltage-gated cationic current sensitive to TRPM4 channel blockers. Here, we tested whether TRPM4 contributes to subthreshold oscillations in mouse LC and SCN. By RNAscope in situ hybridization, Trpm4 transcripts were detected in both cell groups. In whole-cell recordings from acute slice preparations, prominent voltage-dependent membrane potential oscillations were revealed in LC and SCN after blocking action potentials. These oscillations were inhibited by two chemically-distinct blockers of TRPM4, 9-phenanthrol (9-pt) and 4-chloro-2-[[2-(2-chlorophenoxy)acetyl]amino]benzoic acid (CBA). Under whole-cell voltage clamp, inward currents evoked by oscillation voltage waveforms were inhibited in LC by blocking L-type calcium channels and TRPM4. These data implicate TRPM4 in the large subthreshold membrane potential oscillations that underlie tonic action potential discharge in LC and SCN, providing a voltage-dependent and calcium-dependent cationic current to augment the depolarizing inward Na+ and Ca2+ currents previously associated with this distinctive electroresponsive property.
Collapse
|
29
|
Magalhães KS, da Silva MP, Mecawi AS, Paton JFR, Machado BH, Moraes DJA. Intrinsic and synaptic mechanisms controlling the expiratory activity of excitatory lateral parafacial neurones of rats. J Physiol 2021; 599:4925-4948. [PMID: 34510468 DOI: 10.1113/jp281545] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/07/2021] [Indexed: 12/21/2022] Open
Abstract
Active expiration is essential for increasing pulmonary ventilation during high chemical drive (hypercapnia). The lateral parafacial (pFL ) region, which contains expiratory neurones, drives abdominal muscles during active expiration in response to hypercapnia. However, the electrophysiological properties and synaptic mechanisms determining the activity of pFL expiratory neurones, as well as the specific conditions for their emergence, are not fully understood. Using whole cell electrophysiology and single cell quantitative RT-PCR techniques, we describe the intrinsic electrophysiological properties, the phenotype and the respiratory-related synaptic inputs to the pFL expiratory neurones, as well as the mechanisms for the expression of their expiratory activity under conditions of hypercapnia-induced active expiration, using in situ preparations of juvenile rats. We also evaluated whether these neurones possess intrinsic CO2 /[H+ ] sensitivity and burst generating properties. GABAergic and glycinergic inhibition during inspiration and expiration suppressed the activity of glutamatergic pFL expiratory neurones in normocapnia. In hypercapnia, these neurones escape glycinergic inhibition and generate burst discharges at the end of expiration. Evidence for the contribution of post-inhibitory rebound, CaV 3.2 isoform of T-type Ca2+ channels and intracellular [Ca2+ ] is presented. Neither intrinsic bursting properties, mediated by persistent Na+ current, nor CO2 /[H+ ] sensitivity or expression of CO2 /[H+ ] sensitive ion channels/receptors (TASK or GPR4) were observed. On the other hand, hyperpolarisation-activated cyclic nucleotide-gated and twik-related K+ leak channels were recorded. Post-synaptic disinhibition and the intrinsic electrophysiological properties of glutamatergic neurones play important roles in the generation of the expiratory oscillations in the pFL region during hypercapnia in rats. KEY POINTS: Hypercapnia induces active expiration in rats and the recruitment of a specific population of expiratory neurones in the lateral parafacial (pFL ) region. Post-synaptic GABAergic and glycinergic inhibition both suppress the activity of glutamatergic pFL neurones during inspiratory and expiratory phases in normocapnia. Hypercapnia reduces glycinergic inhibition during expiration leading to burst generation by pFL neurones; evidence for a contribution of post-inhibitory rebound, voltage-gated Ca2+ channels and intracellular [Ca2+ ] is presented. pFL glutamatergic expiratory neurones are neither intrinsic burster neurones, nor CO2 /[H+ ] sensors, and do not express CO2 /[H+ ] sensitive ion channels or receptors. Post-synaptic disinhibition and the intrinsic electrophysiological properties of glutamatergic neurones both play important roles in the generation of the expiratory oscillations in the pFL region during hypercapnia in rats.
Collapse
Affiliation(s)
- Karolyne S Magalhães
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Melina P da Silva
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - André S Mecawi
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Julian F R Paton
- Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, Park Road, Grafton, Auckland, New Zealand
| | - Benedito H Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Davi J A Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
30
|
Um KB, Hahn S, Kim SW, Lee YJ, Birnbaumer L, Kim HJ, Park MK. TRPC3 and NALCN channels drive pacemaking in substantia nigra dopaminergic neurons. eLife 2021; 10:70920. [PMID: 34409942 PMCID: PMC8456572 DOI: 10.7554/elife.70920] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/18/2021] [Indexed: 01/16/2023] Open
Abstract
Midbrain dopamine (DA) neurons are slow pacemakers that maintain extracellular DA levels. During the interspike intervals, subthreshold slow depolarization underlies autonomous pacemaking and determines its rate. However, the ion channels that determine slow depolarization are unknown. Here we show that TRPC3 and NALCN channels together form sustained inward currents responsible for the slow depolarization of nigral DA neurons. Specific TRPC3 channel blockade completely blocked DA neuron pacemaking, but the pacemaking activity in TRPC3 knock-out (KO) mice was perfectly normal, suggesting the presence of compensating ion channels. Blocking NALCN channels abolished pacemaking in both TRPC3 KO and wild-type mice. The NALCN current and mRNA and protein expression are increased in TRPC3 KO mice, indicating that NALCN compensates for TRPC3 currents. In normal conditions, TRPC3 and NALCN contribute equally to slow depolarization. Therefore, we conclude that TRPC3 and NALCN are two major leak channels that drive robust pacemaking in nigral DA neurons.
Collapse
Affiliation(s)
- Ki Bum Um
- Department of physiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Suyun Hahn
- Department of physiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - So Woon Kim
- Department of physiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Yoon Je Lee
- Department of physiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Lutz Birnbaumer
- Neurobiology Laboratory. National Institute of Environmental Health Sciences, North Carolina 27709, USA; and Institute of Biomedical Research (BIOMED), Catholic University of Argentina, Buenos Aires, Argentina
| | - Hyun Jin Kim
- Department of physiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Myoung Kyu Park
- Department of physiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea
| |
Collapse
|
31
|
Jiang J, Jiao Y, Gao P, Yin W, Zhou W, Zhang Y, Liu Y, Wen D, Wang Y, Zhou L, Yu T, Yu W. Propofol differentially induces unconsciousness and respiratory depression through distinct interactions between GABAA receptor and GABAergic neuron in corresponding nuclei. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1076-1087. [PMID: 34137445 DOI: 10.1093/abbs/gmab084] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
Propofol is the most commonly used intravenous anesthetic worldwide. It can induce loss of consciousness prior to the occurrence of severe respiratory suppression, which is also a pharmacodynamic feature of all general anesthetics. However, the neural mechanisms underlying this natural phenomenon are controversial and highly related to patient safety. In the present study, we demonstrated that the pharmacodynamic effects of propofol (50 and 100 μM) on suppression of consciousness-related excitatory postsynaptic currents in the medial prefrontal cortex (mPFC) and centromedian nucleus of the thalamus (CMT) were lower than those in the kernel respiratory rhythmogenesis nucleus pre-Bötzinger complex (PrBo). Furthermore, we unexpectedly found that the GABAA receptor β3 subunit is the key target for propofol's action and that it is mutually and exclusively expressed in GABAergic neurons. It is also more abundant in the mPFC and CMT, but mainly co-localized with GABAergic neurons in the PrBo. As a result, the differentiated expression pattern should mediate more neuron suppression through the activation of GABAergic neurons in the mPFC and CMT at low doses of propofol (50 μM). However, PrBo GABAergic neurons were only activated by propofol at a high dose (100 μM). These results highlight the detailed pharmacodynamic effects of propofol on consciousness-related and respiration-related nuclei and provide the distinct interaction mechanism between the β3 subunit and GABAergic neurons in mediating the suppression of consciousness compared to the inhibition of respiration.
Collapse
Affiliation(s)
- Junli Jiang
- Department of Anesthesiology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200127, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Guizhou 563000, China
| | - Yingfu Jiao
- Department of Anesthesiology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Po Gao
- Department of Anesthesiology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wen Yin
- Department of Anesthesiology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei Zhou
- Department of Anesthesiology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yunchun Zhang
- Department of Anesthesiology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yanjun Liu
- Department of Anesthesiology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Daxiang Wen
- Department of Anesthesiology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yuan Wang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Guizhou 563000, China
| | - Liang Zhou
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Guizhou 563000, China
| | - Tian Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Guizhou 563000, China
- Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Guizhou 563000, China
| | - Weifeng Yu
- Department of Anesthesiology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
32
|
Impheng H, Lemmers C, Bouasse M, Legros C, Pakaprot N, Guérineau NC, Lory P, Monteil A. The sodium leak channel NALCN regulates cell excitability of pituitary endocrine cells. FASEB J 2021; 35:e21400. [PMID: 33793981 DOI: 10.1096/fj.202000841rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 11/11/2022]
Abstract
Anterior pituitary endocrine cells that release hormones such as growth hormone and prolactin are excitable and fire action potentials. In these cells, several studies previously showed that extracellular sodium (Na+ ) removal resulted in a negative shift of the resting membrane potential (RMP) and a subsequent inhibition of the spontaneous firing of action potentials, suggesting the contribution of a Na+ background conductance. Here, we show that the Na+ leak channel NALCN conducts a Ca2+ - Gd3+ -sensitive and TTX-resistant Na+ background conductance in the GH3 cell line, a cell model of pituitary endocrine cells. NALCN knockdown hyperpolarized the RMP, altered GH3 cell electrical properties and inhibited prolactin secretion. Conversely, the overexpression of NALCN depolarized the RMP, also reshaping the electrical properties of GH3 cells. Overall, our results indicate that NALCN is functional in GH3 cells and involved in endocrine cell excitability as well as in hormone secretion. Indeed, the GH3 cell line suitably models native pituitary cells that display a similar Na+ background conductance and appears as a proper cellular model to study the role of NALCN in cellular excitability.
Collapse
Affiliation(s)
- Hathaichanok Impheng
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx 'Ion Channel Science and Therapeutics', Montpellier, France
| | - Céline Lemmers
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France.,PVM, BCM, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Malik Bouasse
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx 'Ion Channel Science and Therapeutics', Montpellier, France
| | - Christian Legros
- MITOVASC Institute, UMR CNRS 6015 - UMR INSERM U1083, Université d'Angers, Angers, France
| | - Narawut Pakaprot
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nathalie C Guérineau
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx 'Ion Channel Science and Therapeutics', Montpellier, France
| | - Philippe Lory
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx 'Ion Channel Science and Therapeutics', Montpellier, France
| | - Arnaud Monteil
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx 'Ion Channel Science and Therapeutics', Montpellier, France.,PVM, BCM, Université de Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
33
|
Wu Y, Zhang D, Liu J, Yang Y, Ou M, Liu B, Zhou C. Sodium Leak Channel in the Nucleus Accumbens Modulates Ethanol-Induced Acute Stimulant Responses and Locomotor Sensitization in Mice: A Brief Research Report. Front Neurosci 2021; 15:687470. [PMID: 34335164 PMCID: PMC8316816 DOI: 10.3389/fnins.2021.687470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/18/2021] [Indexed: 02/05/2023] Open
Abstract
Ethanol can induce acute stimulant responses in animals and human beings. Moreover, repeated exposure to ethanol may produce increased sensitivity to its acute locomotor stimulant actions, a process referred to as locomotor sensitization. The molecular mechanism of the development of acute stimulant responses and locomotor sensitization by ethanol is not fully understood. Sodium leak channel (NALCN) is widely expressed in central nervous system and controls the basal excitability of neurons. The present study aims to determine whether NALCN is implicated in the ethanol-induced acute responses and locomotor sensitization in mice. Here, our results showed that ethanol caused acute stimulant responses in DBA/2 mice. Locomotor sensitization was successfully induced following the sensitization procedure. Accordingly, the expression levels of NALCN mRNA and protein in the nucleus accumbens (NAc) were markedly increased in the sensitization mice compared to the control mice. Knockdown the expression levels of NALCN in the NAc alleviated both the ethanol-induced acute responses and locomotor sensitization. Our findings indicate that upregulation of NALCN expression in the NAc contributes to the ethanol-induced acute stimulant responses and locomotor sensitization in DBA/2 mice.
Collapse
Affiliation(s)
- Yujie Wu
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Donghang Zhang
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Liu
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yaoxin Yang
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Mengchan Ou
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
34
|
The Neuroprotective Effects of GPR4 Inhibition through the Attenuation of Caspase Mediated Apoptotic Cell Death in an MPTP Induced Mouse Model of Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22094674. [PMID: 33925146 PMCID: PMC8125349 DOI: 10.3390/ijms22094674] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/17/2022] Open
Abstract
The proton-activated G protein-coupled receptor (GPCR) 4 (GPR4) is constitutively active at physiological pH, and GPR4 knockout protected dopaminergic neurons from caspase-dependent mitochondria-associated apoptosis. This study explored the role of GPR4 in a 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-treated mouse model of Parkinson's disease (PD). In mice, subchronic MPTP administration causes oxidative stress-induced apoptosis in the dopaminergic neurons of the substantia nigra pars compacta (SNpc), resulting in motor deficits. NE52-QQ57, a selective GPR4 antagonist, reduced dopaminergic neuronal loss in MPTP-treated mice, improving motor and memory functions. MPTP and NE52-QQ57 co-treatment in mice significantly decreased pro-apoptotic marker Bax protein levels and increased anti-apoptotic marker Bcl-2 protein levels in the SNpc and striatum. MPTP-induced caspase 3 activation and poly (ADP-ribose) polymerase (PARP) cleavage significantly decreased in the SNpc and striatum of mice co-treated with NE52-QQ57. MPTP and NE52-QQ57 co-treatment significantly increased tyrosine hydroxylase (TH)-positive cell numbers in the SNpc and striatum compared with MPTP alone. NE52-QQ57 and MPTP co-treatment improved rotarod and pole test-assessed motor performance and improved Y-maze test-assessed spatial memory. Our findings suggest GPR4 may represent a potential therapeutic target for PD, and GPR4 activation is involved in caspase-mediated neuronal apoptosis in the SNpc and striatum of MPTP-treated mice.
Collapse
|
35
|
TRPM4 keeps up the pace. Cell Calcium 2021; 96:102401. [PMID: 33831708 DOI: 10.1016/j.ceca.2021.102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/19/2021] [Indexed: 11/22/2022]
Abstract
The study by Li et al., provides a detailed pharmacological characterization of the ionic mechanisms that underlie rhythmic activity of retrotrapezoid nucleus neurons that control breathing. Specifically, the authors demonstrate a role of the transient receptor potential melastatin 4 (TRPM4) ion channel in the generation of subthreshold excitatory oscillations. Additionally, they propose that the ion channel contributes to tonic action potential (AP) firing - referred to as "pacemaking" - of these brainstem neurons with relevance for respiratory breathing and homeostasis in vivo.
Collapse
|
36
|
Zhang D, Zhao W, Liu J, Ou M, Liang P, Li J, Chen Y, Liao D, Bai S, Shen J, Chen X, Huang H, Zhou C. Sodium leak channel contributes to neuronal sensitization in neuropathic pain. Prog Neurobiol 2021; 202:102041. [PMID: 33766679 DOI: 10.1016/j.pneurobio.2021.102041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/08/2021] [Accepted: 03/18/2021] [Indexed: 02/08/2023]
Abstract
Neuropathic pain affects up to 10 % of the total population and no specific target is ideal for therapeutic need. The sodium leak channel (NALCN), a non-selective cation channel, mediates the background Na+ leak conductance and controls neuronal excitability and rhythmic behaviors. Here, we show that increases of NALCN expression and function in dorsal root ganglion (DRG) and dorsal spinal cord contribute to chronic constriction injury (CCI)-induced neuropathic pain in rodents. NALCN current and neuronal excitability in acutely isolated DRG neurons and spinal cord slices of rats were increased after CCI which were decreased to normal levels by NALCN-siRNA. Accordingly, pain-related symptoms were significantly alleviated by NALCN-siRNA-mediated NALCN knockdown and completely prevented by NALCN-shRNA-mediated NALCN knockdown in rats or by conditional NALCN knockout in mice. Our results indicate that increases in NALCN expression and function contribute to CCI-induced neuronal sensitization; therefore, NALCN may be a novel molecular target for control of neuropathic pain.
Collapse
Affiliation(s)
- Donghang Zhang
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Wenling Zhao
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Jin Liu
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Mengchan Ou
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Peng Liang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Jia Li
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Yali Chen
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Daqing Liao
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Siqi Bai
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiefei Shen
- Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases and Department of Prosthodontics, West China Stomatology Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Han Huang
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Department of Anesthesiology & Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital of Sichuan University, Chengdu 610041, Sichuan, China.
| | - Cheng Zhou
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
37
|
Li K, Abbott SBG, Shi Y, Eggan P, Gonye EC, Bayliss DA. TRPM4 mediates a subthreshold membrane potential oscillation in respiratory chemoreceptor neurons that drives pacemaker firing and breathing. Cell Rep 2021; 34:108714. [PMID: 33535052 PMCID: PMC7888550 DOI: 10.1016/j.celrep.2021.108714] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/04/2020] [Accepted: 01/12/2021] [Indexed: 12/01/2022] Open
Abstract
Brainstem networks that control regular tidal breathing depend on excitatory drive, including from tonically active, CO2/H+-sensitive neurons of the retrotrapezoid nucleus (RTN). Here, we examine intrinsic ionic mechanisms underlying the metronomic firing activity characteristic of RTN neurons. In mouse brainstem slices, large-amplitude membrane potential oscillations are evident in synaptically isolated RTN neurons after blocking action potentials. The voltage-dependent oscillations are abolished by sodium replacement; blocking calcium channels (primarily L-type); chelating intracellular Ca2+; and inhibiting TRPM4, a Ca2+-dependent cationic channel. Likewise, oscillation voltage waveform currents are sensitive to calcium and TRPM4 channel blockers. Extracellular acidification and serotonin (5-HT) evoke membrane depolarization that augments TRPM4-dependent oscillatory activity and action potential discharge. Finally, inhibition of TRPM4 channels in the RTN of anesthetized mice reduces central respiratory output. These data implicate TRPM4 in a subthreshold oscillation that supports the pacemaker-like firing of RTN neurons required for basal, CO2-stimulated, and state-dependent breathing.
Collapse
Affiliation(s)
- Keyong Li
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Stephen B G Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Yingtang Shi
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Pierce Eggan
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Elizabeth C Gonye
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
38
|
Shi Y, Stornetta DS, Reklow RJ, Sahu A, Wabara Y, Nguyen A, Li K, Zhang Y, Perez-Reyes E, Ross RA, Lowell BB, Stornetta RL, Funk GD, Guyenet PG, Bayliss DA. A brainstem peptide system activated at birth protects postnatal breathing. Nature 2021; 589:426-430. [PMID: 33268898 PMCID: PMC7855323 DOI: 10.1038/s41586-020-2991-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 09/29/2020] [Indexed: 01/29/2023]
Abstract
Among numerous challenges encountered at the beginning of extrauterine life, the most celebrated is the first breath that initiates a life-sustaining motor activity1. The neural systems that regulate breathing are fragile early in development, and it is not clear how they adjust to support breathing at birth. Here we identify a neuropeptide system that becomes activated immediately after birth and supports breathing. Mice that lack PACAP selectively in neurons of the retrotrapezoid nucleus (RTN) displayed increased apnoeas and blunted CO2-stimulated breathing; re-expression of PACAP in RTN neurons corrected these breathing deficits. Deletion of the PACAP receptor PAC1 from the pre-Bötzinger complex-an RTN target region responsible for generating the respiratory rhythm-phenocopied the breathing deficits observed after RTN deletion of PACAP, and suppressed PACAP-evoked respiratory stimulation in the pre-Bötzinger complex. Notably, a postnatal burst of PACAP expression occurred in RTN neurons precisely at the time of birth, coinciding with exposure to the external environment. Neonatal mice with deletion of PACAP in RTN neurons displayed increased apnoeas that were further exacerbated by changes in ambient temperature. Our findings demonstrate that well-timed PACAP expression by RTN neurons provides an important supplementary respiratory drive immediately after birth and reveal key molecular components of a peptidergic neural circuit that supports breathing at a particularly vulnerable period in life.
Collapse
Affiliation(s)
- Yingtang Shi
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Daniel S. Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Robert J. Reklow
- Department of Physiology, Women & Children’s Health Research Institute, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Alisha Sahu
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Yvonne Wabara
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Ashley Nguyen
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Keyong Li
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Yong Zhang
- Department of Physiology, Women & Children’s Health Research Institute, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Edward Perez-Reyes
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Rachel A. Ross
- Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA,McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| | - Bradford B. Lowell
- Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA
| | - Ruth L. Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Gregory D. Funk
- Department of Physiology, Women & Children’s Health Research Institute, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Patrice G. Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Douglas A. Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
39
|
Moreira TS, Sobrinho CR, Falquetto B, Oliveira LM, Lima JD, Mulkey DK, Takakura AC. The retrotrapezoid nucleus and the neuromodulation of breathing. J Neurophysiol 2020; 125:699-719. [PMID: 33427575 DOI: 10.1152/jn.00497.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Breathing is regulated by a host of arousal and sleep-wake state-dependent neuromodulators to maintain respiratory homeostasis. Modulators such as acetylcholine, norepinephrine, histamine, serotonin (5-HT), adenosine triphosphate (ATP), substance P, somatostatin, bombesin, orexin, and leptin can serve complementary or off-setting functions depending on the target cell type and signaling mechanisms engaged. Abnormalities in any of these modulatory mechanisms can destabilize breathing, suggesting that modulatory mechanisms are not overly redundant but rather work in concert to maintain stable respiratory output. The present review focuses on the modulation of a specific cluster of neurons located in the ventral medullary surface, named retrotrapezoid nucleus, that are activated by changes in tissue CO2/H+ and regulate several aspects of breathing, including inspiration and active expiration.
Collapse
Affiliation(s)
- Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Cleyton R Sobrinho
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Barbara Falquetto
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Luiz M Oliveira
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Janayna D Lima
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| |
Collapse
|
40
|
Volatile Anesthetics Activate a Leak Sodium Conductance in Retrotrapezoid Nucleus Neurons to Maintain Breathing during Anesthesia in Mice. Anesthesiology 2020; 133:824-838. [PMID: 32773689 DOI: 10.1097/aln.0000000000003493] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Volatile anesthetics moderately depress respiratory function at clinically relevant concentrations. Phox2b-expressing chemosensitive neurons in the retrotrapezoid nucleus, a respiratory control center, are activated by isoflurane, but the underlying mechanisms remain unclear. The hypothesis of this study was that the sodium leak channel contributes to the volatile anesthetics-induced modulation of retrotrapezoid nucleus neurons and to respiratory output. METHODS The contribution of sodium leak channels to isoflurane-, sevoflurane-, and propofol-evoked activity of Phox2b-expressing retrotrapezoid nucleus neurons and respiratory output were evaluated in wild-type and genetically modified mice lacking sodium leak channels (both sexes). Patch-clamp recordings were performed in acute brain slices. Whole-body plethysmography was used to measure the respiratory activity. RESULTS Isoflurane at 0.42 to 0.50 mM (~1.5 minimum alveolar concentration) increased the sodium leak channel-mediated holding currents and conductance from -75.0 ± 12.9 to -130.1 ± 34.9 pA (mean ± SD, P = 0.002, n = 6) and 1.8 ± 0.5 to 3.6 ± 1.0 nS (P = 0.001, n = 6), respectively. At these concentrations, isoflurane increased activity of Phox2b-expressing retrotrapezoid nucleus neurons from 1.1 ± 0.2 to 2.8 ± 0.2 Hz (P < 0.001, n = 5), which was eliminated by bath application of gadolinium or genetic silencing of sodium leak channel. Genetic silencing of sodium leak channel in the retrotrapezoid nucleus resulted in a diminished ventilatory response to carbon dioxide in mice under control conditions and during isoflurane anesthesia. Sevoflurane produced an effect comparable to that of isoflurane, whereas propofol did not activate sodium leak channel-mediated holding conductance. CONCLUSIONS Isoflurane and sevoflurane increase neuronal excitability of chemosensitive retrotrapezoid nucleus neurons partly by enhancing sodium leak channel conductance. Sodium leak channel expression in the retrotrapezoid nucleus is required for the ventilatory response to carbon dioxide during anesthesia by isoflurane and sevoflurane, thus identifying sodium leak channel as a requisite determinant of respiratory output during anesthesia of volatile anesthetics. EDITOR’S PERSPECTIVE
Collapse
|
41
|
A Leptin-Mediated Neural Mechanism Linking Breathing to Metabolism. Cell Rep 2020; 33:108358. [PMID: 33176139 DOI: 10.1016/j.celrep.2020.108358] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/27/2020] [Accepted: 10/16/2020] [Indexed: 01/10/2023] Open
Abstract
Breathing is coupled to metabolism. Leptin, a peptide mainly secreted in proportion to adipose tissue mass, increases energy expenditure with a parallel increase in breathing. We demonstrate that optogenetic activation of LepRb neurons in the nucleus of the solitary tract (NTS) mimics the respiratory stimulation after systemic leptin administration. We show that leptin activates the sodium leak channel (NALCN), thereby depolarizing a subset of glutamatergic (VGluT2) LepRb NTS neurons expressing galanin. Mice with selective deletion of NALCN in LepRb neurons have increased breathing irregularity and central apneas. On a high-fat diet, these mice gain weight with an associated depression of minute ventilation and tidal volume, which are not detected in control littermates. Anatomical mapping reveals LepRb NTS-originating glutamatergic axon terminals in a brainstem inspiratory premotor region (rVRG) and dorsomedial hypothalamus. These findings directly link a defined subset of NTS LepRb cells to the matching of ventilation to energy balance.
Collapse
|
42
|
Structure of the human sodium leak channel NALCN. Nature 2020; 587:313-318. [DOI: 10.1038/s41586-020-2570-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/02/2020] [Indexed: 01/17/2023]
|
43
|
Wie J, Bharthur A, Wolfgang M, Narayanan V, Ramsey K, Aranda K, Zhang Q, Zhou Y, Ren D. Intellectual disability-associated UNC80 mutations reveal inter-subunit interaction and dendritic function of the NALCN channel complex. Nat Commun 2020; 11:3351. [PMID: 32620897 PMCID: PMC7335163 DOI: 10.1038/s41467-020-17105-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 06/11/2020] [Indexed: 01/08/2023] Open
Abstract
The sodium-leak channel NALCN forms a subthreshold sodium conductance that controls the resting membrane potentials of neurons. The auxiliary subunits of the channel and their functions in mammals are largely unknown. In this study, we demonstrate that two large proteins UNC80 and UNC79 are subunits of the NALCN complex. UNC80 knockout mice are neonatal lethal. The C-terminus of UNC80 contains a domain that interacts with UNC79 and overcomes a soma-retention signal to achieve dendritic localization. UNC80 lacking this domain, as found in human patients, still supports whole-cell NALCN currents but lacks dendritic localization. Our results establish the subunit composition of the NALCN complex, uncover the inter-subunit interaction domains, reveal the functional significance of regulation of dendritic membrane potential by the sodium-leak channel complex, and provide evidence supporting that genetic variations found in individuals with intellectual disability are the causes for the phenotype observed in patients.
Collapse
Affiliation(s)
- Jinhong Wie
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Apoorva Bharthur
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Morgan Wolfgang
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ, 85012, USA
| | - Vinodh Narayanan
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ, 85012, USA
| | - Keri Ramsey
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ, 85012, USA
| | - Kimberly Aranda
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Qi Zhang
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yandong Zhou
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Dejian Ren
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
44
|
Hahn S, Kim SW, Um KB, Kim HJ, Park MK. N-benzhydryl quinuclidine compounds are a potent and Src kinase-independent inhibitor of NALCN channels. Br J Pharmacol 2020; 177:3795-3810. [PMID: 32436268 DOI: 10.1111/bph.15104] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE NALCN is a Na+ leak, GPCR-activated channel that regulates the resting membrane potential and neuronal excitability. Despite numerous possible roles for NALCN in both normal physiology and disease processes, lack of specific blockers hampers further investigation. EXPERIMENTAL APPROACH The effect of N-benzhydryl quinuclidine compounds on NALCN channels was demonstrated using whole-cell patch-clamp recordings in HEK293T cells overexpressing NALCN and acutely isolated nigral dopaminergic neurons that express NALCN endogenously. Src kinase activity was measured using a Src kinase assay kit, and voltage and current-clamp recordings from nigral dopaminergic neurons were used to measure NALCN currents and membrane potentials. KEY RESULTS N-benzhydryl quinuclidine compounds inhibited NALCN channels without affecting TRPC channels, another important route for Na+ leak. In HEK293T cells overexpressing NALCN, N-benzhydryl quinuclidine compounds potently suppressed muscarinic M3 receptor-activated NALCN currents. Structure-function relationship studies suggest that the quinuclidine ring with a benzhydryl group imparts the ability to inhibit NALCN currents regardless of Src family kinases. Moreover, N-benzhydryl quinuclidine compounds inhibited not only GPCR-activated NALCN currents but also background Na+ leak currents and hyperpolarized the membrane potential in native midbrain dopaminergic neurons that express NALCN endogenously. CONCLUSION AND IMPLICATIONS These findings suggest that N-benzhydryl quinuclidine compounds have a pharmacological potential to directly inhibit NALCN channels and could be a useful tool to investigate functions of NALCN channels.
Collapse
Affiliation(s)
- Suyun Hahn
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - So Woon Kim
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Ki Bum Um
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Hyun Jin Kim
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - Myoung Kyu Park
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| |
Collapse
|
45
|
Chua HC, Wulf M, Weidling C, Rasmussen LP, Pless SA. The NALCN channel complex is voltage sensitive and directly modulated by extracellular calcium. SCIENCE ADVANCES 2020; 6:eaaz3154. [PMID: 32494638 PMCID: PMC7182417 DOI: 10.1126/sciadv.aaz3154] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 02/03/2020] [Indexed: 05/24/2023]
Abstract
The sodium leak channel (NALCN) is essential for survival in mammals: NALCN mutations are life-threatening in humans and knockout is lethal in mice. However, the basic functional and pharmacological properties of NALCN have remained elusive. Here, we found that robust function of NALCN in heterologous systems requires co-expression of UNC79, UNC80, and FAM155A. The resulting NALCN channel complex is constitutively active and conducts monovalent cations but is blocked by physiological concentrations of extracellular divalent cations. Our data support the notion that NALCN is directly responsible for the increased excitability observed in a variety of neurons in reduced extracellular Ca2+. Despite the smaller number of voltage-sensing residues in NALCN, the constitutive activity is modulated by voltage, suggesting that voltage-sensing domains can give rise to a broader range of gating phenotypes than previously anticipated. Our work points toward formerly unknown contributions of NALCN to neuronal excitability and opens avenues for pharmacological targeting.
Collapse
|
46
|
The NALCN Channel Regulator UNC-80 Functions in a Subset of Interneurons To Regulate Caenorhabditis elegans Reversal Behavior. G3-GENES GENOMES GENETICS 2020; 10:199-210. [PMID: 31690562 PMCID: PMC6945035 DOI: 10.1534/g3.119.400692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
NALCN (Na+leak channel, non-selective) is a conserved, voltage-insensitive cation channel that regulates resting membrane potential and neuronal excitability. UNC79 and UNC80 are key regulators of the channel function. However, the behavioral effects of the channel complex are not entirely clear and the neurons in which the channel functions remain to be identified. In a forward genetic screen for C. elegans mutants with defective avoidance response to the plant hormone methyl salicylate (MeSa), we isolated multiple loss-of-function mutations in unc-80 and unc-79. C. elegans NALCN mutants exhibited similarly defective MeSa avoidance. Interestingly, NALCN, unc-80 and unc-79 mutants all showed wild type-like responses to other attractive or repelling odorants, suggesting that NALCN does not broadly affect odor detection or related forward and reversal behaviors. To understand in which neurons the channel functions, we determined the identities of a subset of unc-80-expressing neurons. We found that unc-79 and unc-80 are expressed and function in overlapping neurons, which verified previous assumptions. Neuron-specific transgene rescue and knockdown experiments suggest that the command interneurons AVA and AVE and the anterior guidepost neuron AVG can play a sufficient role in mediating unc-80 regulation of the MeSa avoidance. Though primarily based on genetic analyses, our results further imply that MeSa might activate NALCN by direct or indirect actions. Altogether, we provide an initial look into the key neurons in which the NALCN channel complex functions and identify a novel function of the channel in regulating C. elegans reversal behavior through command interneurons.
Collapse
|
47
|
Ou M, Zhao W, Liu J, Liang P, Huang H, Yu H, Zhu T, Zhou C. The General Anesthetic Isoflurane Bilaterally Modulates Neuronal Excitability. iScience 2019; 23:100760. [PMID: 31926429 PMCID: PMC6956953 DOI: 10.1016/j.isci.2019.100760] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/16/2019] [Accepted: 12/06/2019] [Indexed: 02/05/2023] Open
Abstract
Volatile anesthetics induce hyperactivity during induction while producing anesthesia at higher concentrations. They also bidirectionally modulate many neuronal functions. However, the neuronal mechanism is unclear. The effects of isoflurane on sodium channel currents were analyzed in acute mouse brain slices, including sodium leak (NALCN) currents and voltage-gated sodium channels (Nav) currents. Isoflurane at sub-anesthetic concentrations increased the spontaneous firing rate of CA3 pyramidal neurons, whereas anesthetic concentrations of isoflurane decreased the firing rate. Isoflurane at sub-anesthetic concentrations enhanced NALCN conductance but minimally inhibited Nav currents. Isoflurane at anesthetic concentrations depressed Nav currents and action potential amplitudes. Isoflurane at sub-anesthetic concentrations depolarized resting membrane potential (RMP) of neurons, whereas hyperpolarized the RMP at anesthetic concentrations. Isoflurane at low concentrations induced hyperactivity in vivo, which was diminished in NALCN knockdown mice. In conclusion, enhancement of NALCN by isoflurane contributes to its bidirectional modulation of neuronal excitability and the hyperactivity during induction. Volatile anesthetic isoflurane exerts bidirectional modulation of neuronal excitability Isoflurane enhances NALCN conductance at sub-anesthetic concentration NALCN knockdown diminishes behavioral hyperactivity during isoflurane induction
Collapse
Affiliation(s)
- Mengchan Ou
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China; Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Wenling Zhao
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China; Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Jin Liu
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China; Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Peng Liang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Han Huang
- Department of Anesthesiology, West China Second Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Hai Yu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Cheng Zhou
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China; Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China.
| |
Collapse
|
48
|
Souza GMPR, Kanbar R, Stornetta DS, Abbott SBG, Stornetta RL, Guyenet PG. Breathing regulation and blood gas homeostasis after near complete lesions of the retrotrapezoid nucleus in adult rats. J Physiol 2019; 596:2521-2545. [PMID: 29667182 DOI: 10.1113/jp275866] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/04/2018] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS The retrotrapezoid nucleus (RTN) drives breathing proportionally to brain PCO2 but its role during various states of vigilance needs clarification. Under normoxia, RTN lesions increased the arterial PCO2 set-point, lowered the PO2 set-point and reduced alveolar ventilation relative to CO2 production. Tidal volume was reduced and breathing frequency increased to a comparable degree during wake, slow-wave sleep and REM sleep. RTN lesions did not produce apnoeas or disordered breathing during sleep. RTN lesions in rats virtually eliminated the central respiratory chemoreflex (CRC) while preserving the cardiorespiratory responses to hypoxia; the relationship between CRC and number of surviving RTN Nmb neurons was an inverse exponential. The CRC does not function without the RTN. In the quasi-complete absence of the RTN and CRC, alveolar ventilation is reduced despite an increased drive to breathe from the carotid bodies. ABSTRACT The retrotrapezoid nucleus (RTN) is one of several CNS nuclei that contribute, in various capacities (e.g. CO2 detection, neuronal modulation) to the central respiratory chemoreflex (CRC). Here we test how important the RTN is to PCO2 homeostasis and breathing during sleep or wake. RTN Nmb-positive neurons were killed with targeted microinjections of substance P-saporin conjugate in adult rats. Under normoxia, rats with large RTN lesions (92 ± 4% cell loss) had normal blood pressure and arterial pH but were hypoxic (-8 mmHg PaO2 ) and hypercapnic (+10 mmHg ). In resting conditions, minute volume (VE ) was normal but breathing frequency (fR ) was elevated and tidal volume (VT ) reduced. Resting O2 consumption and CO2 production were normal. The hypercapnic ventilatory reflex in 65% FiO2 had an inverse exponential relationship with the number of surviving RTN neurons and was decreased by up to 92%. The hypoxic ventilatory reflex (HVR; FiO2 21-10%) persisted after RTN lesions, hypoxia-induced sighing was normal and hypoxia-induced hypotension was reduced. In rats with RTN lesions, breathing was lowest during slow-wave sleep, especially under hyperoxia, but apnoeas and sleep-disordered breathing were not observed. In conclusion, near complete RTN destruction in rats virtually eliminates the CRC but the HVR persists and sighing and the state dependence of breathing are unchanged. Under normoxia, RTN lesions cause no change in VE but alveolar ventilation is reduced by at least 21%, probably because of increased physiological dead volume. RTN lesions do not cause sleep apnoea during slow-wave sleep, even under hyperoxia.
Collapse
Affiliation(s)
- George M P R Souza
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Roy Kanbar
- Department of Pharmaceutical Sciences, Lebanese American University, Beyrouth, Lebanon
| | - Daniel S Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Stephen B G Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Ruth L Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
49
|
Guyenet PG, Stornetta RL, Souza GMPR, Abbott SBG, Shi Y, Bayliss DA. The Retrotrapezoid Nucleus: Central Chemoreceptor and Regulator of Breathing Automaticity. Trends Neurosci 2019; 42:807-824. [PMID: 31635852 DOI: 10.1016/j.tins.2019.09.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/28/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022]
Abstract
The ventral surface of the rostral medulla oblongata has been suspected since the 1960s to harbor central respiratory chemoreceptors [i.e., acid-activated neurons that regulate breathing to maintain a constant arterial PCO2 (PaCO2)]. The key neurons, a.k.a. the retrotrapezoid nucleus (RTN), have now been identified. In this review we describe their transcriptome, developmental lineage, and anatomical projections. We also review their contribution to CO2 homeostasis and to the regulation of breathing automaticity during sleep and wake. Finally, we discuss several mechanisms that contribute to the activation of RTN neurons by CO2in vivo: cell-autonomous effects of protons; paracrine effects of pH mediated by surrounding astrocytes and blood vessels; and excitatory inputs from other CO2-responsive CNS neurons.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA.
| | - Ruth L Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - George M P R Souza
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Stephen B G Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Yingtang Shi
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
50
|
Bouasse M, Impheng H, Servant Z, Lory P, Monteil A. Functional expression of CLIFAHDD and IHPRF pathogenic variants of the NALCN channel in neuronal cells reveals both gain- and loss-of-function properties. Sci Rep 2019; 9:11791. [PMID: 31409833 PMCID: PMC6692409 DOI: 10.1038/s41598-019-48071-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 07/29/2019] [Indexed: 12/24/2022] Open
Abstract
The excitability of neurons is tightly dependent on their ion channel repertoire. Among these channels, the leak sodium channel NALCN plays a crucial role in the maintenance of the resting membrane potential. Importantly, NALCN mutations lead to complex neurodevelopmental syndromes, including infantile hypotonia with psychomotor retardation and characteristic facies (IHPRF) and congenital contractures of limbs and face, hypotonia and developmental delay (CLIFAHDD), which are recessively and dominantly inherited, respectively. Unfortunately, the biophysical properties of NALCN are still largely unknown to date, as well as the functional consequences of both IHPRF and CLIFAHDD mutations on NALCN current. Here we have set-up the heterologous expression of NALCN in the neuronal cell line NG108-15 to investigate the electrophysiological properties of NALCN carrying representative IHPRF and CLIFAHDD mutations. Several original properties of the wild-type (wt) NALCN current were retrieved: mainly carried by external Na+, blocked by Gd3+, insensitive to TTX and potentiated by low external Ca2+ concentration. However, we found that this current displays a time-dependent inactivation in the −80/−40 mV range of membrane potential, and a non linear current-voltage relationship indicative of voltage sensitivity. Importantly, no detectable current was recorded with the IHPRF missense mutation p.Trp1287Leu (W1287L), while the CLIFAHDD mutants, p.Leu509Ser (L509S) and p.Tyr578Ser (Y578S), showed higher current densities and slower inactivation, compared to wt NALCN current. This study reveals that heterologous expression of NALCN channel can be achieved in the neuronal cell line NG108-15 to study the electrophysiological properties of wt and mutants. From our results, we conclude that IHPRF and CLIFAHDD missense mutations are loss- and gain-of-function variants, respectively.
Collapse
Affiliation(s)
- Malik Bouasse
- IGF, CNRS, INSERM, University of Montpellier, LabEx 'Ion Channel Science and Therapeutics', Montpellier, France
| | - Hathaichanok Impheng
- IGF, CNRS, INSERM, University of Montpellier, LabEx 'Ion Channel Science and Therapeutics', Montpellier, France
| | - Zoe Servant
- IGF, CNRS, INSERM, University of Montpellier, LabEx 'Ion Channel Science and Therapeutics', Montpellier, France
| | - Philippe Lory
- IGF, CNRS, INSERM, University of Montpellier, LabEx 'Ion Channel Science and Therapeutics', Montpellier, France
| | - Arnaud Monteil
- IGF, CNRS, INSERM, University of Montpellier, LabEx 'Ion Channel Science and Therapeutics', Montpellier, France.
| |
Collapse
|