1
|
Diep D, de la Salle S, Thibault Lévesque J, Lifshitz M, Garel N, Greenway KT. The ketamine chameleon: history, pharmacology, and the contested value of experience. Expert Rev Clin Pharmacol 2025:1-21. [PMID: 39868914 DOI: 10.1080/17512433.2025.2459377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/13/2025] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
INTRODUCTION Since its synthesis in 1962, ketamine has been widely used in diverse medical contexts, from anesthesia to treatment-resistant depression. However, interpretations of ketamine's subjective effects remain polarized. Biomedical frameworks typically construe the drug's experiential effects as dissociative or psychotomimetic, while psychedelic paradigms emphasize the potential therapeutic merits of these non-ordinary states. AREAS COVERED Ketamine's psychoactive effects have inspired diverse interpretations. In this review, we trace the historical evolution of these perspectives - which we broadly categorize as 'dissociative,' 'dream-like,' and 'psychedelic' - and show how they emerged out of these clinical contexts. We highlight the influence of factors such as language, dose, and environmental context on ketamine's effects and therapeutic outcomes. We discuss potential mechanisms underlying these context-dependent effects and explore the broader clinical and research-related ramifications. EXPERT OPINION Ketamine's subjective effects are undeniably powerful, yet their therapeutic significance remains debated. A nuanced, interdisciplinary approach is essential for maximizing ketamine's potential. Future research should focus on how explanatory models, treatment environments, and patient preparation can optimize ketamine's benefits while minimizing distress. We suggest that, rather than being a tiger to be tamed as its creator once described, ketamine may best be understood as a chameleon whose color shifts depending on its context.
Collapse
Affiliation(s)
- Danny Diep
- Department of Psychiatry, McGill University, Montréal, Québec, Canada
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Sara de la Salle
- Department of Psychiatry, McGill University, Montréal, Québec, Canada
- Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, Canada
| | | | - Michael Lifshitz
- Department of Psychiatry, McGill University, Montréal, Québec, Canada
- Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, Canada
| | - Nicolas Garel
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Department of Psychiatry and Addictology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Kyle T Greenway
- Department of Psychiatry, McGill University, Montréal, Québec, Canada
- Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, Canada
| |
Collapse
|
2
|
Gakare SG, Shelkar GP, Gawande DY, Pavuluri R, Gandhi PJ, Dravid SM. GluN2D-containing NMDA receptors in parvalbumin neurons in the nucleus accumbens regulate nocifensive responses in neuropathic pain. Neurobiol Dis 2025; 205:106784. [PMID: 39733959 DOI: 10.1016/j.nbd.2024.106784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/20/2024] [Accepted: 12/25/2024] [Indexed: 12/31/2024] Open
Abstract
Neuropathic pain presents a significant challenge, with its underlying mechanisms still not fully understood. Here, we investigated the role of GluN2C- and GluN2D-containing NMDA receptors in the development of neuropathic pain induced by cisplatin, a widely used chemotherapeutic agent. Through genetic and pharmacological strategies, we found that GluN2D-containing NMDA receptors play a targeted role in regulating cisplatin-induced neuropathic pain (CINP), while sparing inflammatory or acute pain responses. Specifically, both GluN2D knockout (KO) mice and pharmacological blockade of GluN2D-containing receptors produced robust reduction in mechanical nocifensive response in CINP. In contrast, GluN2C KO mice behaved similar to wildtype mice in CINP but showed reduced mechanical hypersensitivity in inflammatory pain. Using conditional KO strategy, we addressed the region- and cell-type involved in GluN2D-mediated changes in CINP. Animals with conditional deletion of GluN2D receptors from parvalbumin interneurons (PVIs) or local ablation of GluN2D from nucleus accumbens (NAc) displayed reduced mechanical hypersensitivity in CINP, underscoring the pivotal role of accumbal GluN2D in PVIs in neuropathic pain. Furthermore, CINP increased excitatory neurotransmission in the NAc in wildtype mice and this effect is dampened in PV-GluN2D KO mice. Other changes in CINP in NAc included an increase in vGluT1 and c-fos labeled neurons in wildtype which were absent in PV-GluN2D KO mice. GiDREADD-induced inhibition of PVIs in the NAc produced reduction in mechanical hypersensitivity in CINP. These findings unveil a novel cell-type and region-specific role of GluN2D-containing NMDA receptors in neuropathic pain and identify PVIs in NAc as a novel mediator of pain behaviors.
Collapse
Affiliation(s)
- Sukanya G Gakare
- Department of Psychiatry and Behavioral Sciences, Texas A&M University School of Medicine, College Station, TX 77845, USA
| | - Gajanan P Shelkar
- Department of Psychiatry and Behavioral Sciences, Texas A&M University School of Medicine, College Station, TX 77845, USA
| | - Dinesh Y Gawande
- Department of Psychiatry and Behavioral Sciences, Texas A&M University School of Medicine, College Station, TX 77845, USA
| | - Ratnamala Pavuluri
- Department of Psychiatry and Behavioral Sciences, Texas A&M University School of Medicine, College Station, TX 77845, USA
| | - Pauravi J Gandhi
- Department of Psychiatry and Behavioral Sciences, Texas A&M University School of Medicine, College Station, TX 77845, USA
| | - Shashank M Dravid
- Department of Psychiatry and Behavioral Sciences, Texas A&M University School of Medicine, College Station, TX 77845, USA.
| |
Collapse
|
3
|
Ricci V, De Berardis D, Shoib S, Martinotti G, Maina G. Psychotic-Like Experiences in Young Recreational Users of Ketamine: A Case Study. J Psychoactive Drugs 2025:1-10. [PMID: 39780457 DOI: 10.1080/02791072.2025.2449909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
This study explores the psychotic-like experiences (PLEs) associated with recreational ketamine use among young adults. Ketamine, initially introduced as an anesthetic, is now widely used recreationally for its dissociative effects, raising concerns about its impact on mental health. Ten participants aged 18-24, who used ketamine recreationally multiple times a week, were assessed using the Community Assessment of Psychic Experiences (CAPE-42). Results showed a significant positive correlation between the frequency of ketamine use and PLEs, with no significant impact from other substances like THC, MDMA, and alcohol. These findings confirm ketamine's potential to induce psychotic-like symptoms by antagonizing NMDA receptors, similar to schizophrenia. The study underscores the need for preventive measures and targeted interventions to address the mental health risks of frequent ketamine use, particularly among young adults. However, limitations such as the small sample size and reliance on self-reported data suggest that further research is needed to establish causality and examine long-term effects. Overall, this study highlights the significant association between recreational ketamine use and increased PLEs, emphasizing the importance of early detection and intervention strategies.
Collapse
Affiliation(s)
- Valerio Ricci
- Department of Mental Health, Psychiatric Service for Diagnosis and Treatment, San Luigi Gonzaga Hospital, University of Turin, Turin, Orbassano, Italy
| | - Domenico De Berardis
- NHS, Department of Mental Health, Psychiatric Service for Diagnosis and Treatment, Teramo, Italy
| | - Sheikh Shoib
- Department of Psychiatry, DH Pulwama, Kashmir, India
| | - Giovanni Martinotti
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D'Annunzio Chieti-Pescara, Chieti, Italy
| | - Giuseppe Maina
- Department of Mental Health, Psychiatric Service for Diagnosis and Treatment, San Luigi Gonzaga Hospital, University of Turin, Turin, Orbassano, Italy
- Department of Neurosciences "Rita Levi Montalcini",University of Turin,Turin,Italy
| |
Collapse
|
4
|
Ascic E, Marigo M, David L, Frisch Herrik K, Grupe M, Hougaard C, Mørk A, Jones CR, Badolo L, Frederiksen K, Boonen HCM, Jensen HS, Kilburn JP. Advancements in NMDA Receptor-Targeted Antidepressants: From d-Cycloserine Discovery to Preclinical Efficacy of Lu AF90103. J Med Chem 2024; 67:20135-20155. [PMID: 39560374 DOI: 10.1021/acs.jmedchem.4c01477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
The discovery of d-cycloserine (DCS), a partial agonist of the NMDA receptor that exhibits antidepressant effects without the psychotomimetic effects of ketamine, has fueled interest in new NMDA-targeting antidepressants. Our objective was to identify potent partial agonists mirroring DCS, particularly tailored for the GluN2B subtype of the NMDA receptor. Through a structure-based drug design approach, we discovered compound 42d. This compound acts as a partial agonist of the GluN1/GluN2B complex, exhibiting 24% efficacy, and has an EC50 value of 78 nM. Subsequent investigations led us to 42e (Lu AF90103), a methyl ester prodrug of 42d capable of penetrating the blood-brain barrier, as confirmed by rat microdialysis studies. In different rat in vivo models relevant to neuropsychiatric diseases, administering 42e led to 42d demonstrating both acute effects, observed in a seizure model and EEG, and lasting effects in the stress-sensitive hippocampal pathway and an antidepressant-sensitive model.
Collapse
Affiliation(s)
- Erhad Ascic
- Neuroscience Drug Discovery Denmark, H. Lundbeck A/S, 9 Ottiliavej, Valby, DK-2500 Copenhagen, Denmark
| | - Mauro Marigo
- Neuroscience Drug Discovery Denmark, H. Lundbeck A/S, 9 Ottiliavej, Valby, DK-2500 Copenhagen, Denmark
| | - Laurent David
- Neuroscience Drug Discovery Denmark, H. Lundbeck A/S, 9 Ottiliavej, Valby, DK-2500 Copenhagen, Denmark
| | - Kjartan Frisch Herrik
- Neuroscience Drug Discovery Denmark, H. Lundbeck A/S, 9 Ottiliavej, Valby, DK-2500 Copenhagen, Denmark
| | - Morten Grupe
- Neuroscience Drug Discovery Denmark, H. Lundbeck A/S, 9 Ottiliavej, Valby, DK-2500 Copenhagen, Denmark
| | - Charlotte Hougaard
- Neuroscience Drug Discovery Denmark, H. Lundbeck A/S, 9 Ottiliavej, Valby, DK-2500 Copenhagen, Denmark
| | - Arne Mørk
- Neuroscience Drug Discovery Denmark, H. Lundbeck A/S, 9 Ottiliavej, Valby, DK-2500 Copenhagen, Denmark
| | - Christopher R Jones
- Neuroscience Drug Discovery Denmark, H. Lundbeck A/S, 9 Ottiliavej, Valby, DK-2500 Copenhagen, Denmark
| | - Lassina Badolo
- Neuroscience Drug Discovery Denmark, H. Lundbeck A/S, 9 Ottiliavej, Valby, DK-2500 Copenhagen, Denmark
| | - Kristen Frederiksen
- Neuroscience Drug Discovery Denmark, H. Lundbeck A/S, 9 Ottiliavej, Valby, DK-2500 Copenhagen, Denmark
| | - Harrie C M Boonen
- Neuroscience Drug Discovery Denmark, H. Lundbeck A/S, 9 Ottiliavej, Valby, DK-2500 Copenhagen, Denmark
| | - Henrik Sindal Jensen
- Neuroscience Drug Discovery Denmark, H. Lundbeck A/S, 9 Ottiliavej, Valby, DK-2500 Copenhagen, Denmark
| | - John Paul Kilburn
- Neuroscience Drug Discovery Denmark, H. Lundbeck A/S, 9 Ottiliavej, Valby, DK-2500 Copenhagen, Denmark
| |
Collapse
|
5
|
Guo F, Zhang B, Shen F, Li Q, Song Y, Li T, Zhang Y, Du W, Li Y, Liu W, Cao H, Zhou X, Zheng Y, Zhu S, Li Y, Liu Z. Sevoflurane acts as an antidepressant by suppression of GluN2D-containing NMDA receptors on interneurons. Br J Pharmacol 2024; 181:3483-3502. [PMID: 38779864 DOI: 10.1111/bph.16420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 10/18/2023] [Accepted: 11/15/2023] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND AND PURPOSE Sevoflurane, a commonly used inhaled anaesthetic known for its favourable safety profile and rapid onset and offset, has not been thoroughly investigated as a potential treatment for depression. In this study, we reveal the mechanism through which sevoflurane delivers enduring antidepressant effects. EXPERIMENTAL APPROACH To assess the antidepressant effects of sevoflurane, behavioural tests were conducted, along with in vitro and ex vivo whole-cell patch-clamp recordings, to examine the effects on GluN1-GluN2 incorporated N-methyl-d-aspartate (NMDA) receptors (NMDARs) and neuronal circuitry in the medial prefrontal cortex (mPFC). Multiple-channel electrophysiology in freely moving mice was performed to evaluate sevoflurane's effects on neuronal activity, and GluN2D knockout (grin2d-/-) mice were used to confirm the requirement of GluN2D for the antidepressant effects. KEY RESULTS Repeated exposure to subanaesthetic doses of sevoflurane produced sustained antidepressant effects lasting up to 2 weeks. Sevoflurane preferentially inhibited GluN2C- and GluN2D-containing NMDARs, causing a reduction in interneuron activity. In contrast, sevoflurane increased action potentials (AP) firing and decreased spontaneous inhibitory postsynaptic current (sIPSC) in mPFC pyramidal neurons, demonstrating a disinhibitory effect. These effects were absent in grin2d-/- mice, and both pharmacological blockade and genetic knockout of GluN2D abolished sevoflurane's antidepressant actions, suggesting that GluN2D is essential for its antidepressant effect. CONCLUSION AND IMPLICATIONS Sevoflurane directly targets GluN2D, leading to a specific decrease in interneuron activity and subsequent disinhibition of pyramidal neurons, which may underpin its antidepressant effects. Targeting the GluN2D subunit could hold promise as a potential therapeutic strategy for treating depression.
Collapse
Affiliation(s)
- Fei Guo
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Bing Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fuyi Shen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qian Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yingcai Song
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tianyu Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yongmei Zhang
- University of Chinese Academy of Sciences, Beijing, China
| | - Weijia Du
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuanxi Li
- Institute for Cognitive Neurodynamics, East China University of Science and Technology, Shanghai, China
| | - Wei Liu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hang Cao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xianjin Zhou
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yinli Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Shujia Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yang Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhiqiang Liu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
- Anesthesia and Brain Function Research Institute, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Adam E, Kowalski M, Akeju O, Miller EK, Brown EN, McCarthy MM, Kopell N. Ketamine can produce oscillatory dynamics by engaging mechanisms dependent on the kinetics of NMDA receptors. Proc Natl Acad Sci U S A 2024; 121:e2402732121. [PMID: 38768339 PMCID: PMC11145256 DOI: 10.1073/pnas.2402732121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024] Open
Abstract
Ketamine is an N-methyl-D-aspartate (NMDA)-receptor antagonist that produces sedation, analgesia, and dissociation at low doses and profound unconsciousness with antinociception at high doses. At high and low doses, ketamine can generate gamma oscillations (>25 Hz) in the electroencephalogram (EEG). The gamma oscillations are interrupted by slow-delta oscillations (0.1 to 4 Hz) at high doses. Ketamine's primary molecular targets and its oscillatory dynamics have been characterized. However, how the actions of ketamine at the subcellular level give rise to the oscillatory dynamics observed at the network level remains unknown. By developing a biophysical model of cortical circuits, we demonstrate how NMDA-receptor antagonism by ketamine can produce the oscillatory dynamics observed in human EEG recordings and nonhuman primate local field potential recordings. We have identified how impaired NMDA-receptor kinetics can cause disinhibition in neuronal circuits and how a disinhibited interaction between NMDA-receptor-mediated excitation and GABA-receptor-mediated inhibition can produce gamma oscillations at high and low doses, and slow-delta oscillations at high doses. Our work uncovers general mechanisms for generating oscillatory brain dynamics that differs from ones previously reported and provides important insights into ketamine's mechanisms of action as an anesthetic and as a therapy for treatment-resistant depression.
Collapse
Affiliation(s)
- Elie Adam
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Marek Kowalski
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215
| | - Oluwaseun Akeju
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114
- Department of Anesthesia, Harvard Medical School, Boston, MA 02215
| | - Earl K Miller
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Emery N Brown
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114
- Department of Anesthesia, Harvard Medical School, Boston, MA 02215
| | - Michelle M McCarthy
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215
| | - Nancy Kopell
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215
| |
Collapse
|
7
|
Reinhart KM, Morton RA, Brennan KC, Carlson AP, Shuttleworth CW. Ketamine improves neuronal recovery following spreading depolarization in peri-infarct tissues. J Neurochem 2024; 168:855-867. [PMID: 37596720 PMCID: PMC10986311 DOI: 10.1111/jnc.15923] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/10/2023] [Accepted: 07/06/2023] [Indexed: 08/20/2023]
Abstract
Spreading depolarization (SD) has emerged as an important contributor to the enlargement of acute brain injuries. We previously showed that the N-methyl-D-aspartate receptor antagonist ketamine was able to prevent deleterious consequences of SD in brain slices, under conditions of metabolic compromise. The current study aimed to extend these observations into an in vivo stroke model, to test whether gradients of metabolic capacity lead to differential accumulation of calcium (Ca2+) following SD. In addition, we tested whether ketamine protects vulnerable tissuewhile allowing SD to propagate through surrounding undamaged tissue. Focal lesions were generated using a distal middle cerebral artery occlusion in mice, and clusters of SD were generated at 20 min intervals with remote microinjection of potassium chloride. SDs invading peri-infarct regions had significantly different consequences, depending on the distance from the infarct core. Proximal to the lesion, Ca2+ transients were extended, as compared with responses in better-perfused tissue more remote from the lesion. Extracellular potential shifts were also longer and hyperemia responses were reduced in proximal regions following SDs. Consistent with in vitro studies, ketamine, at concentrations that did not abolish the propagation of SD, reduced the accumulation of intracellular Ca2+ in proximal regions following an SD wave. These findings suggest that deleterious consequences of SD can be targeted in vivo, without requiring outright block of SD initiation and propagation.
Collapse
Affiliation(s)
- Katelyn M Reinhart
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Russell A Morton
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - K C Brennan
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Andrew P Carlson
- Department of Neurosurgery, University of New Mexico, Albuquerque, New Mexico, USA
| | - C William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| |
Collapse
|
8
|
Moujaes F, Ji JL, Rahmati M, Burt JB, Schleifer C, Adkinson BD, Savic A, Santamauro N, Tamayo Z, Diehl C, Kolobaric A, Flynn M, Rieser N, Fonteneau C, Camarro T, Xu J, Cho Y, Repovs G, Fineberg SK, Morgan PT, Seifritz E, Vollenweider FX, Krystal JH, Murray JD, Preller KH, Anticevic A. Ketamine induces multiple individually distinct whole-brain functional connectivity signatures. eLife 2024; 13:e84173. [PMID: 38629811 PMCID: PMC11023699 DOI: 10.7554/elife.84173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/15/2024] [Indexed: 04/19/2024] Open
Abstract
Background Ketamine has emerged as one of the most promising therapies for treatment-resistant depression. However, inter-individual variability in response to ketamine is still not well understood and it is unclear how ketamine's molecular mechanisms connect to its neural and behavioral effects. Methods We conducted a single-blind placebo-controlled study, with participants blinded to their treatment condition. 40 healthy participants received acute ketamine (initial bolus 0.23 mg/kg, continuous infusion 0.58 mg/kg/hr). We quantified resting-state functional connectivity via data-driven global brain connectivity and related it to individual ketamine-induced symptom variation and cortical gene expression targets. Results We found that: (i) both the neural and behavioral effects of acute ketamine are multi-dimensional, reflecting robust inter-individual variability; (ii) ketamine's data-driven principal neural gradient effect matched somatostatin (SST) and parvalbumin (PVALB) cortical gene expression patterns in humans, while the mean effect did not; and (iii) behavioral data-driven individual symptom variation mapped onto distinct neural gradients of ketamine, which were resolvable at the single-subject level. Conclusions These results highlight the importance of considering individual behavioral and neural variation in response to ketamine. They also have implications for the development of individually precise pharmacological biomarkers for treatment selection in psychiatry. Funding This study was supported by NIH grants DP5OD012109-01 (A.A.), 1U01MH121766 (A.A.), R01MH112746 (J.D.M.), 5R01MH112189 (A.A.), 5R01MH108590 (A.A.), NIAAA grant 2P50AA012870-11 (A.A.); NSF NeuroNex grant 2015276 (J.D.M.); Brain and Behavior Research Foundation Young Investigator Award (A.A.); SFARI Pilot Award (J.D.M., A.A.); Heffter Research Institute (Grant No. 1-190420) (FXV, KHP); Swiss Neuromatrix Foundation (Grant No. 2016-0111) (FXV, KHP); Swiss National Science Foundation under the framework of Neuron Cofund (Grant No. 01EW1908) (KHP); Usona Institute (2015 - 2056) (FXV). Clinical trial number NCT03842800.
Collapse
Affiliation(s)
- Flora Moujaes
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital for Psychiatry ZurichZurichSwitzerland
| | - Jie Lisa Ji
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
| | - Masih Rahmati
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
| | - Joshua B Burt
- Department of Physics, Yale UniversityBostonUnited States
| | - Charles Schleifer
- David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Brendan D Adkinson
- Interdepartmental Neuroscience Program, Yale UniversityNew HavenUnited States
| | | | - Nicole Santamauro
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
| | - Zailyn Tamayo
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
| | - Caroline Diehl
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
| | | | - Morgan Flynn
- Department of Psychiatry, Vanderbilt University Medical CenterNashvilleUnited States
| | - Nathalie Rieser
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital for Psychiatry ZurichZurichSwitzerland
| | - Clara Fonteneau
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
| | - Terry Camarro
- Magnetic Resonance Research Center, Yale University School of MedicineNew HavenUnited States
| | - Junqian Xu
- Department of Radiology and Psychiatry, Baylor College of MedicineHoustonUnited States
| | - Youngsun Cho
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
- Child Study Center, Yale University School of MedicineNew HavenUnited States
| | - Grega Repovs
- Department of Psychology, University of LjubljanaLjubljanaSlovenia
| | - Sarah K Fineberg
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
| | - Peter T Morgan
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
- Department of Psychiatry, Bridgeport HospitalBridgeportUnited States
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital for Psychiatry ZurichZurichSwitzerland
| | - Franz X Vollenweider
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital for Psychiatry ZurichZurichSwitzerland
| | - John H Krystal
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
| | - John D Murray
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
- Department of Physics, Yale UniversityBostonUnited States
- Department of Psychology, Yale UniversityNew HavenUnited States
| | - Katrin H Preller
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital for Psychiatry ZurichZurichSwitzerland
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
- Interdepartmental Neuroscience Program, Yale UniversityNew HavenUnited States
| |
Collapse
|
9
|
Adam E, Kowalski M, Akeju O, Miller EK, Brown EN, McCarthy MM, Kopell N. Ketamine can produce oscillatory dynamics by engaging mechanisms dependent on the kinetics of NMDA receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587998. [PMID: 38617266 PMCID: PMC11014619 DOI: 10.1101/2024.04.03.587998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Ketamine is an NMDA-receptor antagonist that produces sedation, analgesia and dissociation at low doses and profound unconsciousness with antinociception at high doses. At high and low doses, ketamine can generate gamma oscillations (>25 Hz) in the electroencephalogram (EEG). The gamma oscillations are interrupted by slow-delta oscillations (0.1-4 Hz) at high doses. Ketamine's primary molecular targets and its oscillatory dynamics have been characterized. However, how the actions of ketamine at the subcellular level give rise to the oscillatory dynamics observed at the network level remains unknown. By developing a biophysical model of cortical circuits, we demonstrate how NMDA-receptor antagonism by ketamine can produce the oscillatory dynamics observed in human EEG recordings and non-human primate local field potential recordings. We have discovered how impaired NMDA-receptor kinetics can cause disinhibition in neuronal circuits and how a disinhibited interaction between NMDA-receptor-mediated excitation and GABA-receptor-mediated inhibition can produce gamma oscillations at high and low doses, and slow-delta oscillations at high doses. Our work uncovers general mechanisms for generating oscillatory brain dynamics that differs from ones previously reported, and provides important insights into ketamine's mechanisms of action as an anesthetic and as a therapy for treatment-resistant depression.
Collapse
Affiliation(s)
- Elie Adam
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Marek Kowalski
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215
| | - Oluwaseun Akeju
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114
- Department of Anesthesia, Harvard Medical School, Boston, MA 02215
| | - Earl K. Miller
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Emery N. Brown
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114
- Department of Anesthesia, Harvard Medical School, Boston, MA 02215
| | | | - Nancy Kopell
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215
| |
Collapse
|
10
|
Krystal JH, Kaye AP, Jefferson S, Girgenti MJ, Wilkinson ST, Sanacora G, Esterlis I. Ketamine and the neurobiology of depression: Toward next-generation rapid-acting antidepressant treatments. Proc Natl Acad Sci U S A 2023; 120:e2305772120. [PMID: 38011560 DOI: 10.1073/pnas.2305772120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Ketamine has emerged as a transformative and mechanistically novel pharmacotherapy for depression. Its rapid onset of action, efficacy for treatment-resistant symptoms, and protection against relapse distinguish it from prior antidepressants. Its discovery emerged from a reconceptualization of the neurobiology of depression and, in turn, insights from the elaboration of its mechanisms of action inform studies of the pathophysiology of depression and related disorders. It has been 25 y since we first presented our ketamine findings in depression. Thus, it is timely for this review to consider what we have learned from studies of ketamine and to suggest future directions for the optimization of rapid-acting antidepressant treatment.
Collapse
Affiliation(s)
- John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Psychiatry and Behavioral Health Services, Yale-New Haven Hospital, New Haven, CT 06510
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Alfred P Kaye
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Sarah Jefferson
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Matthew J Girgenti
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Samuel T Wilkinson
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Psychiatry and Behavioral Health Services, Yale-New Haven Hospital, New Haven, CT 06510
| | - Gerard Sanacora
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Psychiatry and Behavioral Health Services, Yale-New Haven Hospital, New Haven, CT 06510
| | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| |
Collapse
|
11
|
Kim J, Kim TE, Lee SH, Koo JW. The Role of Glutamate Underlying Treatment-resistant Depression. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2023; 21:429-446. [PMID: 37424412 PMCID: PMC10335903 DOI: 10.9758/cpn.22.1034] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 07/11/2023]
Abstract
The monoamine hypothesis has significantly improved our understanding of mood disorders and their treatment by linking monoaminergic abnormalities to the pathophysiology of mood disorders. Even 50 years after the monoamine hypothesis was established, some patients do not respond to treatments for depression, including selective serotonin reuptake drugs. Accumulating evidence shows that patients with treatment-resistant depression (TRD) have severe abnormalities in the neuroplasticity and neurotrophic factor pathways, indicating that different treatment approaches may be necessary. Therefore, the glutamate hypothesis is gaining attention as a novel hypothesis that can overcome monoamine restrictions. Glutamate has been linked to structural and maladaptive morphological alterations in several brain areas associated with mood disorders. Recently, ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist, has shown efficacy in TRD treatment and has received the U.S. Food and Drug Administration approval, revitalizing psychiatry research. However, the mechanism by which ketamine improves TRD remains unclear. In this review, we re-examined the glutamate hypothesis, bringing the glutamate system onboard to join the modulation of the monoamine systems, emphasizing the most prominent ketamine antidepressant mechanisms, such as NMDAR inhibition and NMDAR disinhibition in GABAergic interneurons. Furthermore, we discuss the animal models used in preclinical studies and the sex differences in the effects of ketamine.
Collapse
Affiliation(s)
- Jeongseop Kim
- Emotion, Cognition & Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu, Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| | - Tae-Eun Kim
- Emotion, Cognition & Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu, Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| | - Seung-Hwan Lee
- Department of Psychiatry, Inje University Ilsan Paik Hospital, Goyang, Korea
| | - Ja Wook Koo
- Emotion, Cognition & Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu, Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| |
Collapse
|
12
|
Munch AS, Amat-Foraster M, Agerskov C, Bastlund JF, Herrik KF, Richter U. Sub-anesthetic doses of ketamine increase single cell entrainment in the rat auditory cortex during auditory steady-state response. J Psychopharmacol 2023; 37:822-835. [PMID: 37165655 DOI: 10.1177/02698811231164231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
BACKGROUND Understanding the effects of the N-methyl-D-aspartate receptor (NMDA-R) antagonist ketamine on brain function is of considerable interest due to the discovery of its fast-acting antidepressant properties. It is well known that gamma oscillations are increased when ketamine is administered to rodents and humans, and increases in the auditory steady-state response (ASSR) have also been observed. AIMS To elucidate the cellular substrate of the increase in network activity and synchrony observed by sub-anesthetic doses of ketamine, the aim was to investigate spike timing and regularity and determine how this is affected by the animal's motor state. METHODS Single unit activity and local field potentials from the auditory cortex of awake, freely moving rats were recorded with microelectrode arrays during an ASSR paradigm. RESULTS Ketamine administration yielded a significant increase in ASSR power and phase locking, both significantly modulated by motor activity. Before drug administration, putative fast-spiking interneurons (FSIs) were significantly more entrained to the stimulus than putative pyramidal neurons (PYRs). The degree of entrainment significantly increased at lower doses of ketamine (3 and 10 mg/kg for FSIs, 10 mg/kg for PYRs). At the highest dose (30 mg/kg), a strong increase in tonic firing of PYRs was observed. CONCLUSIONS These findings suggest an involvement of FSIs in the increased network synchrony and provide a possible cellular explanation for the well-documented effects of ketamine-induced increase in power and synchronicity during ASSR. The results support the importance to evaluate different motor states separately for more translational preclinical research.
Collapse
Affiliation(s)
- Anders Sonne Munch
- Brain Circuit and Function, Lundbeck & University of Copenhagen, Kobenhavn, Denmark
| | | | - Claus Agerskov
- Pathology, Circuits and Symptoms, Lundbeck, Valby, Denmark
| | | | | | - Ulrike Richter
- Pathology, Circuits and Symptoms, Lundbeck, Valby, Denmark
| |
Collapse
|
13
|
Kocsis B, Pittman-Polletta B. Neuropsychiatric consequences of COVID-19 related olfactory dysfunction: could non-olfactory cortical-bound inputs from damaged olfactory bulb also contribute to cognitive impairment? Front Neurosci 2023; 17:1164042. [PMID: 37425004 PMCID: PMC10323442 DOI: 10.3389/fnins.2023.1164042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/24/2023] [Indexed: 07/11/2023] Open
Affiliation(s)
- Bernat Kocsis
- Department of Psychiatry, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | | |
Collapse
|
14
|
Bechthold E, Grey L, Diamant E, Schmidt J, Steigerwald R, Zhao F, Hansen KB, Bunch L, Clausen RP, Wünsch B. In vitro ADME characterization of a very potent 3-acylamino-2-aminopropionic acid-derived GluN2C-NMDA receptor agonist and its ester prodrugs. Biol Chem 2023; 404:255-265. [PMID: 36427206 PMCID: PMC10012426 DOI: 10.1515/hsz-2022-0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/01/2022] [Indexed: 11/26/2022]
Abstract
The GluN2C subunit exists predominantly, but not exclusively in NMDA receptors within the cerebellum. Antagonists such as UBP1700 and positive allosteric modulators including PYD-106 and 3-acylamino-2-aminopropionic acid derivatives such as UA3-10 ((R)-2-amino-3-{[5-(2-bromophenyl)thiophen-2-yl]carboxamido}propionic acid) represent promising tool compounds to investigate the role of GluN2C-containing NMDA receptors in the signal transduction in the brain. However, due to its high polarity the bioavailability and CNS penetration of the amino acid UA3-10 are expected to be rather low. Herein, three ester prodrugs 12a-c of the NMDA receptor glycine site agonist UA3-10 were prepared and pharmacokinetically characterized. The esters 12a-c showed higher lipophilicity (higher logD 7.4 values) than the acid UA3-10 but almost the same binding at human serum albumin. The acid UA3-10 was rather stable upon incubation with mouse liver microsomes and NADPH, but the esters 12a-c were fast hydrolyzed to afford the acid UA3-10. Incubation with pig liver esterase and mouse serum led to rapid hydrolysis of the esters 12a-c. The isopropyl ester 12c showed a promising logD 7.4 value of 3.57 and the highest stability in the presence of pig liver esterase and mouse serum. These results demonstrate that ester prodrugs of UA3-10 can potentially afford improved bioavailability and CNS penetration.
Collapse
Affiliation(s)
- Elena Bechthold
- Westfälische Wilhelms-Universität Münster, GRK 2515, Chemical Biology of Ion Channels (Chembion), Corrensstraße 48, D-48149Münster, Germany
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149Münster, Germany
| | - Lucie Grey
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149Münster, Germany
| | - Emil Diamant
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100Copenhagen, Denmark
| | - Judith Schmidt
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149Münster, Germany
| | - Ruben Steigerwald
- Westfälische Wilhelms-Universität Münster, GRK 2515, Chemical Biology of Ion Channels (Chembion), Corrensstraße 48, D-48149Münster, Germany
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149Münster, Germany
| | - Fabao Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhua West Road, Lixia District, Ji’nan, Shandong, 250012, China
| | - Kasper B. Hansen
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, MT59812, USA
| | - Lennart Bunch
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100Copenhagen, Denmark
| | - Rasmus P. Clausen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100Copenhagen, Denmark
| | - Bernhard Wünsch
- Westfälische Wilhelms-Universität Münster, GRK 2515, Chemical Biology of Ion Channels (Chembion), Corrensstraße 48, D-48149Münster, Germany
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149Münster, Germany
| |
Collapse
|
15
|
Zhang J, Zhang M, Wang Q, Wen H, Liu Z, Wang F, Wang Y, Yao F, Song N, Kou Z, Li Y, Guo F, Zhu S. Distinct structure and gating mechanism in diverse NMDA receptors with GluN2C and GluN2D subunits. Nat Struct Mol Biol 2023; 30:629-639. [PMID: 36959261 DOI: 10.1038/s41594-023-00959-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/01/2023] [Indexed: 03/25/2023]
Abstract
N-methyl-D-aspartate (NMDA) receptors are heterotetramers comprising two GluN1 and two alternate GluN2 (N2A-N2D) subunits. Here we report full-length cryo-EM structures of the human N1-N2D di-heterotetramer (di-receptor), rat N1-N2C di-receptor and N1-N2A-N2C tri-heterotetramer (tri-receptor) at a best resolution of 3.0 Å. The bilobate N-terminal domain (NTD) in N2D intrinsically adopts a closed conformation, leading to a compact NTD tetramer in the N1-N2D receptor. Additionally, crosslinking the ligand-binding domain (LBD) of two N1 protomers significantly elevated the channel open probability (Po) in N1-N2D di-receptors. Surprisingly, the N1-N2C di-receptor adopted both symmetric (minor) and asymmetric (major) conformations, the latter further locked by an allosteric potentiator, PYD-106, binding to a pocket between the NTD and LBD in only one N2C protomer. Finally, the N2A and N2C subunits in the N1-N2A-N2C tri-receptor display a conformation close to one protomer in the N1-N2A and N1-N2C di-receptors, respectively. These findings provide a comprehensive structural understanding of diverse function in major NMDA receptor subtypes.
Collapse
Affiliation(s)
- Jilin Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ming Zhang
- University of Chinese Academy of Sciences, Beijing, China
- Center for Neurological and Psychiatric Research and Drug Discovery, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | | | - Han Wen
- DP Technology, Beijing, China
| | - Zheyi Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | | | - Fenyong Yao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Nan Song
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zengwei Kou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yang Li
- University of Chinese Academy of Sciences, Beijing, China
- Center for Neurological and Psychiatric Research and Drug Discovery, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Fei Guo
- University of Chinese Academy of Sciences, Beijing, China
- Center for Neurological and Psychiatric Research and Drug Discovery, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shujia Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
16
|
Lv S, Yao K, Zhang Y, Zhu S. NMDA receptors as therapeutic targets for depression treatment: Evidence from clinical to basic research. Neuropharmacology 2023; 225:109378. [PMID: 36539011 DOI: 10.1016/j.neuropharm.2022.109378] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Ketamine, functioning as a channel blocker of the excitatory glutamate-gated N-methyl-d-aspartate (NMDA) receptors, displays compelling fast-acting and sustained antidepressant effects for treatment-resistant depression. Over the past decades, clinical and preclinical studies have implied that the pathology of depression is associated with dysfunction of glutamatergic transmission. In particular, the discovery of antidepressant agents modulating NMDA receptor function has prompted breakthroughs for depression treatment compared with conventional antidepressants targeting the monoaminergic system. In this review, we first summarized the signalling pathway of the ketamine-mediated antidepressant effects, based on the glutamate hypothesis of depression. Second, we reviewed the hypotheses of the synaptic mechanism and network of ketamine antidepressant effects within different brain areas and distinct subcellular localizations, including NMDA receptor antagonism on GABAergic interneurons, extrasynaptic and synaptic NMDA receptor-mediated antagonism, and ketamine blocking bursting activities in the lateral habenula. Third, we reviewed the different roles of NMDA receptor subunits in ketamine-mediated cognitive and psychiatric behaviours in genetically-manipulated rodent models. Finally, we summarized the structural basis of NMDA receptor channel blockers and discussed NMDA receptor modulators that have been reported to exert potential antidepressant effects in animal models or in clinical trials. Integrating the cutting-edge technologies of cryo-EM and artificial intelligence-based drug design (AIDD), we expect that the next generation of first-in-class rapid antidepressants targeting NMDA receptors would be an emerging direction for depression therapeutics. This article is part of the Special Issue on 'Ketamine and its Metabolites'.
Collapse
Affiliation(s)
- Shiyun Lv
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, China
| | - Kejie Yao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, China
| | - Youyi Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shujia Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
17
|
Chou TH, Kang H, Simorowski N, Traynelis SF, Furukawa H. Structural insights into assembly and function of GluN1-2C, GluN1-2A-2C, and GluN1-2D NMDARs. Mol Cell 2022; 82:4548-4563.e4. [PMID: 36309015 PMCID: PMC9722627 DOI: 10.1016/j.molcel.2022.10.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/02/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Neurotransmission mediated by diverse subtypes of N-methyl-D-aspartate receptors (NMDARs) is fundamental for basic brain functions and development as well as neuropsychiatric diseases and disorders. NMDARs are glycine- and glutamate-gated ion channels that exist as heterotetramers composed of obligatory GluN1 and GluN2(A-D) and/or GluN3(A-B). The GluN2C and GluN2D subunits form ion channels with distinct properties and spatio-temporal expression patterns. Here, we provide the structures of the agonist-bound human GluN1-2C NMDAR in the presence and absence of the GluN2C-selective positive allosteric potentiator (PAM), PYD-106, the agonist-bound GluN1-2A-2C tri-heteromeric NMDAR, and agonist-bound GluN1-2D NMDARs by single-particle electron cryomicroscopy. Our analysis shows unique inter-subunit and domain arrangements of the GluN2C NMDARs, which contribute to functional regulation and formation of the PAM binding pocket and is distinct from GluN2D NMDARs. Our findings here provide the fundamental blueprint to study GluN2C- and GluN2D-containing NMDARs, which are uniquely involved in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Tsung-Han Chou
- W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Hyunook Kang
- W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Noriko Simorowski
- W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hiro Furukawa
- W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
18
|
Dutton M, Can AT, Lagopoulos J, Hermens DF. Stress, mental disorder and ketamine as a novel, rapid acting treatment. Eur Neuropsychopharmacol 2022; 65:15-29. [PMID: 36206584 DOI: 10.1016/j.euroneuro.2022.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/09/2022] [Accepted: 09/17/2022] [Indexed: 12/13/2022]
Abstract
The experience of stress is often utilised in models of emerging mental illness and neurobiological systems are implicated as the intermediary link between the experience of psychological stress and the development of a mental disorder. Chronic stress and prolonged glucocorticoid exposure have potent effects on neuronal architecture particularly in regions that modulate the hypothalamic-pituitary-adrenal (HPA) axis and are commonly associated with psychiatric disorders. This review provides an overview of stress modulating neurobiological and neurochemical systems which underpin stress-related structural and functional brain changes. These changes are thought to contribute not only to the development of disorders, but also to the treatment resistance and chronicity seen in some of our most challenging mental disorders. Reports to date suggest that stress-related psychopathology is the aetiological mechanism of these disorders and thus we review the rapid acting antidepressant ketamine as an effective emerging treatment. Ketamine, an N-methyl D-aspartate (NMDA) receptor antagonist, is shown to induce a robust treatment effect in mental disorders via enhanced synaptic strength and connectivity in key brain regions. Whilst ketamine's glutamatergic effect has been previously examined, we further consider ketamine's capacity to modulate the HPA axis and associated pathways.
Collapse
Affiliation(s)
- Megan Dutton
- Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, Queensland 4575, Australia.
| | - Adem T Can
- Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, Queensland 4575, Australia
| | - Jim Lagopoulos
- Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, Queensland 4575, Australia
| | - Daniel F Hermens
- Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, Queensland 4575, Australia
| |
Collapse
|
19
|
Xu S, Yao X, Li B, Cui R, Zhu C, Wang Y, Yang W. Uncovering the Underlying Mechanisms of Ketamine as a Novel Antidepressant. Front Pharmacol 2022; 12:740996. [PMID: 35872836 PMCID: PMC9301111 DOI: 10.3389/fphar.2021.740996] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022] Open
Abstract
Major depressive disorder (MDD) is a devastating psychiatric disorder which exacts enormous personal and social-economic burdens. Ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist, has been discovered to exert rapid and sustained antidepressant-like actions on MDD patients and animal models. However, the dissociation and psychotomimetic propensities of ketamine have limited its use for psychiatric indications. Here, we review recently proposed mechanistic hypotheses regarding how ketamine exerts antidepressant-like actions. Ketamine may potentiate α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPAR)-mediated transmission in pyramidal neurons by disinhibition and/or blockade of spontaneous NMDAR-mediated neurotransmission. Ketamine may also activate neuroplasticity- and synaptogenesis-relevant signaling pathways, which may converge on key components like brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase B (TrkB) and mechanistic target of rapamycin (mTOR). These processes may subsequently rebalance the excitatory/inhibitory transmission and restore neural network integrity that is compromised in depression. Understanding the mechanisms underpinning ketamine’s antidepressant-like actions at cellular and neural circuit level will drive the development of safe and effective pharmacological interventions for the treatment of MDD.
Collapse
Affiliation(s)
- Songbai Xu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Xiaoxiao Yao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Cuilin Zhu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Cuilin Zhu, ; Yao Wang, ; Wei Yang,
| | - Yao Wang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Cuilin Zhu, ; Yao Wang, ; Wei Yang,
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Cuilin Zhu, ; Yao Wang, ; Wei Yang,
| |
Collapse
|
20
|
Haaf M, Curic S, Steinmann S, Rauh J, Leicht G, Mulert C. Glycine attenuates impairments of stimulus-evoked gamma oscillations in the ketamine model of schizophrenia. Neuroimage 2022; 251:119004. [PMID: 35176492 DOI: 10.1016/j.neuroimage.2022.119004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 01/18/2022] [Accepted: 02/13/2022] [Indexed: 01/17/2023] Open
Abstract
Although a substantial number of studies suggests some clinical benefit concerning negative symptoms in schizophrenia through the modulation of NMDA-receptor function, none of these approaches achieved clinical approval. Given the large body of evidence concerning glutamatergic dysfunction in a subgroup of patients, biomarkers to identify those with a relevant clinical benefit through glutamatergic modulation are urgently needed. A similar reduction of the early auditory evoked gamma-band response (aeGBR) as found in schizophrenia patients can be observed in healthy subjects following the application of an NMDA-receptor antagonist in the ketamine-model, which addresses the excitation / inhibition (E/I) imbalance of the disease. Moreover, this oscillatory change can be related to the emergence of negative symptoms. Accordingly, this study investigated whether glycine-related increases of the aeGBR, through NMDA-receptor co-agonism, accompany an improvement concerning negative symptoms in the ketamine-model. The impact of subanesthetic ketamine doses and the pretreatment with glycine was examined in twenty-four healthy male participants while performing a cognitively demanding aeGBR paradigm with 64-channel electroencephalography. Negative Symptoms were assessed through the PANSS. S-Ketamine alone caused a reduction of the aeGBR amplitude associated with more pronounced negative symptoms compared to placebo. Pretreatment with glycine attenuated both, the ketamine-induced alterations of the aeGBR amplitude and the increased PANSS negative scores in glycine-responders, classified based on relative aeGBR increase. Thus, we propose that the aeGBR represents a possible biomarker for negative symptoms in schizophrenia related to insufficient glutamatergic neurotransmission. This would allow to identify patients with negative symptoms, who might benefit from glutamatergic treatment.
Collapse
Affiliation(s)
- Moritz Haaf
- Department of Psychiatry and Psychotherapy, Psychiatry Neuroimaging Branch (PNB), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stjepan Curic
- Department of Psychiatry and Psychotherapy, Psychiatry Neuroimaging Branch (PNB), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Saskia Steinmann
- Department of Psychiatry and Psychotherapy, Psychiatry Neuroimaging Branch (PNB), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonas Rauh
- Department of Psychiatry and Psychotherapy, Psychiatry Neuroimaging Branch (PNB), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gregor Leicht
- Department of Psychiatry and Psychotherapy, Psychiatry Neuroimaging Branch (PNB), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Mulert
- Department of Psychiatry and Psychotherapy, Psychiatry Neuroimaging Branch (PNB), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Center of Psychiatry, Justus-Liebig University, Giessen, Germany.
| |
Collapse
|
21
|
Wang YT, Zhang NN, Liu LJ, Jiang H, Hu D, Wang ZZ, Chen NH, Zhang Y. Glutamatergic receptor and neuroplasticity in depression: Implications for ketamine and rapastinel as the rapid-acting antidepressants. Biochem Biophys Res Commun 2022; 594:46-56. [DOI: 10.1016/j.bbrc.2022.01.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/21/2021] [Accepted: 01/08/2022] [Indexed: 12/11/2022]
|
22
|
Cathomas F, Bevilacqua L, Ramakrishnan A, Kronman H, Costi S, Schneider M, Chan KL, Li L, Nestler EJ, Shen L, Charney DS, Russo SJ, Murrough JW. Whole blood transcriptional signatures associated with rapid antidepressant response to ketamine in patients with treatment resistant depression. Transl Psychiatry 2022; 12:12. [PMID: 35013133 PMCID: PMC8748646 DOI: 10.1038/s41398-021-01712-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/22/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022] Open
Abstract
Ketamine has rapid and sustained antidepressant effects in patients with treatment-resistant depression (TRD). However, the underlying mechanisms of action are not well understood. There is increasing evidence that TRD is associated with a pro-inflammatory state and that ketamine may inhibit inflammatory processes. We thus investigated whole blood transcriptional profiles related to TRD and gene expression changes associated with treatment response to ketamine. Whole blood was collected at baseline (21 healthy controls [HC], 26 patients with TRD) and then again in patients with TRD 24 hours following a single intravenous infusion of ketamine (0.5 mg/kg). We performed RNA-sequencing and analyzed (a) baseline transcriptional profiles between patients with TRD and HC, (b) responders vs. non-responders before ketamine treatment, and (c) gene expression signatures associated with clinical improvement. At baseline, patients with TRD compared to HC showed a gene expression signature indicative of interferon signaling pathway activation. Prior to ketamine administration, the metabotropic glutamate receptor gene GRM2 and the ionotropic glutamate receptor gene GRIN2D were upregulated in responders compared to non-responders. Response to ketamine was associated with a distinct transcriptional signature, however, we did not observe gene expression changes indicative of an anti-inflammatory effect. Future studies are needed to determine the role of the peripheral immune system in the antidepressant effect of ketamine.
Collapse
Affiliation(s)
- Flurin Cathomas
- grid.59734.3c0000 0001 0670 2351Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Laura Bevilacqua
- grid.59734.3c0000 0001 0670 2351Depression and Anxiety Center for Discovery and Treatment, Department of Psychiatry, Icahn School of Medicine of Mount Sinai, New York, NY 10029 USA
| | - Aarthi Ramakrishnan
- grid.59734.3c0000 0001 0670 2351Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Hope Kronman
- grid.59734.3c0000 0001 0670 2351Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Sara Costi
- grid.59734.3c0000 0001 0670 2351Depression and Anxiety Center for Discovery and Treatment, Department of Psychiatry, Icahn School of Medicine of Mount Sinai, New York, NY 10029 USA
| | - Molly Schneider
- grid.59734.3c0000 0001 0670 2351Depression and Anxiety Center for Discovery and Treatment, Department of Psychiatry, Icahn School of Medicine of Mount Sinai, New York, NY 10029 USA
| | - Kenny L. Chan
- grid.59734.3c0000 0001 0670 2351Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Long Li
- grid.59734.3c0000 0001 0670 2351Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Eric J. Nestler
- grid.59734.3c0000 0001 0670 2351Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Li Shen
- grid.59734.3c0000 0001 0670 2351Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Dennis S. Charney
- grid.59734.3c0000 0001 0670 2351Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Depression and Anxiety Center for Discovery and Treatment, Department of Psychiatry, Icahn School of Medicine of Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Scott J. Russo
- grid.59734.3c0000 0001 0670 2351Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - James W. Murrough
- grid.59734.3c0000 0001 0670 2351Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Depression and Anxiety Center for Discovery and Treatment, Department of Psychiatry, Icahn School of Medicine of Mount Sinai, New York, NY 10029 USA
| |
Collapse
|
23
|
Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, McBain CJ, Jayaraman V, Low CM, Dell'Acqua ML, Diamond JS, Camp CR, Perszyk RE, Yuan H, Traynelis SF. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacol Rev 2021; 73:298-487. [PMID: 34753794 PMCID: PMC8626789 DOI: 10.1124/pharmrev.120.000131] [Citation(s) in RCA: 294] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many physiologic effects of l-glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, are mediated via signaling by ionotropic glutamate receptors (iGluRs). These ligand-gated ion channels are critical to brain function and are centrally implicated in numerous psychiatric and neurologic disorders. There are different classes of iGluRs with a variety of receptor subtypes in each class that play distinct roles in neuronal functions. The diversity in iGluR subtypes, with their unique functional properties and physiologic roles, has motivated a large number of studies. Our understanding of receptor subtypes has advanced considerably since the first iGluR subunit gene was cloned in 1989, and the research focus has expanded to encompass facets of biology that have been recently discovered and to exploit experimental paradigms made possible by technological advances. Here, we review insights from more than 3 decades of iGluR studies with an emphasis on the progress that has occurred in the past decade. We cover structure, function, pharmacology, roles in neurophysiology, and therapeutic implications for all classes of receptors assembled from the subunits encoded by the 18 ionotropic glutamate receptor genes. SIGNIFICANCE STATEMENT: Glutamate receptors play important roles in virtually all aspects of brain function and are either involved in mediating some clinical features of neurological disease or represent a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of this class of receptors will advance our understanding of many aspects of brain function at molecular, cellular, and system levels and provide new opportunities to treat patients.
Collapse
Affiliation(s)
- Kasper B Hansen
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Lonnie P Wollmuth
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Derek Bowie
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hiro Furukawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Frank S Menniti
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Alexander I Sobolevsky
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Geoffrey T Swanson
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Sharon A Swanger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Ingo H Greger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Terunaga Nakagawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chris J McBain
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Vasanthi Jayaraman
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chian-Ming Low
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Mark L Dell'Acqua
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Jeffrey S Diamond
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chad R Camp
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Riley E Perszyk
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hongjie Yuan
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Stephen F Traynelis
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| |
Collapse
|
24
|
Abstract
Earlier, we have shown the efficacy of racemic (±) CIQ, a positive allosteric modulator of GluN2C/2D receptor against MK-801 induced impairment of prepulse inhibition as well as working memory. The present study investigated the antipsychotic-like profile of different CIQ (±, +, -) isomers against schizophrenia-like symptoms in series of behavioural animal models like apomorphine climbing, social isolation behaviour and NMDA receptor antagonist MK-801 induced cognitive deficits. Further, we also tested CIQ (±, +, -) isomers in neurodevelopmental model against MK-801induced deficits using open field test, Y-maze test and novel object recognition test. CIQ (±, +, -) isomers decreased climbing behaviour, increased social interaction and improved the MK-801 induced deficits in working memory in Y-maze. Further, CIQ (±, +) but not CIQ (-) improved the recognition memory in novel object recognition test as well as reduced hyperlocomotion and stereotyped behaviour. We conclude that CIQ (±, +) but not CIQ (-) exhibit the significant antipsychotic-like profile.
Collapse
|
25
|
The Sustained Antidepressant Effects of Ketamine Are Independent of the Lateral Habenula. J Neurosci 2021; 41:4131-4140. [PMID: 33664132 DOI: 10.1523/jneurosci.2521-20.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 02/14/2021] [Accepted: 02/17/2021] [Indexed: 12/28/2022] Open
Abstract
Ketamine is known to have a rapid and lasting antidepressant effect. Recent studies have shown that ketamine exerts it rapid antidepressant effect by blocking burst firing in the lateral habenula (LHb). Whether the sustained antidepressant effect of ketamine occurs through the same mechanism has not been explored. Here, using male rats, we found that local infusion of (R,S)-ketamine into the LHb resulted in a rapid antidepressant-like effect 1 h after infusion, which almost returned to baseline levels after 24 h. Intra-LHb injection of (S)-ketamine also showed a significant antidepressant-like effect 1 h after injection, which recovered at 24 h. No significant antidepressant-like effect was found at 1 or 24 h after the administration of (R)-ketamine into the LHb. Injection of (2R,6R)-hydroxynorketamine, a ketamine metabolite, into the LHb did not result in any obvious antidepressant-like effect 1 or 24 h after injection. Systemic administration of (R,S)-ketamine (intraperitoneally) significantly suppressed LHb bursting activity at 1 h, but the inhibitory effect was reversed 24 h after injection. No significant effect of (R,S)-ketamine on miniature excitatory postsynaptic potentials of LHb neurons was found at 1 or 24 h after systemic application. Our study demonstrated that the sustained antidepressant-like effect of ketamine may not depend on burst firing of LHb neurons.SIGNIFICANCE STATEMENT Ketamine exerts it rapid antidepressant effect by blocking burst firing in the lateral habenula (LHb). However, whether the sustained antidepressant effect of ketamine occurs through the same mechanism has not been explored. In the present study, we demonstrated that the sustained antidepressant effect of ketamine may not depend on the burst firing of LHb neurons. This finding may lead to a novel perspective on LHb in the antidepressant effect of ketamine.
Collapse
|
26
|
Asim M, Wang B, Hao B, Wang X. Ketamine for post-traumatic stress disorders and it's possible therapeutic mechanism. Neurochem Int 2021; 146:105044. [PMID: 33862176 DOI: 10.1016/j.neuint.2021.105044] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 12/28/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a devastating medical illness, for which currently available pharmacotherapies have poor efficacy. Accumulating evidence from clinical and preclinical animal investigations supports that ketamine exhibits a rapid and persistent effect against PTSD, though the underlying molecular mechanism remains to be clarified. In this literature review, we recapitulate the achievements from early ketamine studies to the most up-to-date discoveries, with an effort to discuss an inclusive therapeutic role of ketamine for PTSD treatment and its possible therapeutic mechanism. Ketamine seems to have an inimitable mechanism of action entailing glutamate modulation via actions at the N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors, as well as downstream activation of brain-derived neurotrophic factor (BDNF) and mechanistic target of rapamycin (mTOR) signaling pathways to potentiate synaptic plasticity.
Collapse
Affiliation(s)
- Muhammad Asim
- Key Laboratory of Neuroscience, Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, Hong Kong; Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Bing Wang
- Department of Neurosurgery, The Second Affiliated Hospital, University of South China, Hengyang, China
| | - Bo Hao
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoguang Wang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
27
|
Lee WJ. Symptomatologic pathomechanism of N-methyl D-aspartate receptor encephalitis. ENCEPHALITIS 2021; 1:36-44. [PMID: 37469763 PMCID: PMC10295887 DOI: 10.47936/encephalitis.2021.00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 07/21/2023] Open
Abstract
N-methyl D-aspartate receptor (NMDAR) encephalitis is a well-characterized clinical syndrome. The main molecular mechanism of NMDAR encephalitis is autoantibody-mediated NMDAR hypofunction in the neuronal synapse. Several pathomechanistic hypotheses might explain how NMDAR hypofunction causes the typical symptoms and prognosis of NMDAR encephalitis. Suppression of NMDAR-dependent gamma-aminobutyric acid interneurons provokes an accelerated activation of the positive feedback loops of the dorsolateral prefrontal cortex/subiculum-nucleus accumbens circuit in the striatum, the ventral tegmental area (VTA), and the nucleus reuniens in the thalamus-hippocampus-VTA loop. Dysregulated activation of the VTA and cortex via those positive feedback loops may explain the rapid clinical deterioration at acute stages of the disease and the well-characterized syndrome that includes limbic system dysfunction, intractable seizures, dyskinesia, coma, and the characteristic extreme delta brush. Progressive cerebellar atrophy is correlated with cumulative disease burden and is associated with worse long-term outcomes, which might be explained by the NMDAR-dependent pathways required to maintain neuronal survival. Those pathomechanistic hypotheses for NMDAR encephalitis support the rationale for the early introduction of combination immunotherapy and the use of adjuvant immunotherapy in patients with persisting symptoms in chronic disease phases.
Collapse
Affiliation(s)
- Woo-Jin Lee
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
28
|
Chen QY, Li XH, Lu JS, Liu Y, Lee JHA, Chen YX, Shi W, Fan K, Zhuo M. NMDA GluN2C/2D receptors contribute to synaptic regulation and plasticity in the anterior cingulate cortex of adult mice. Mol Brain 2021; 14:60. [PMID: 33766086 PMCID: PMC7995764 DOI: 10.1186/s13041-021-00744-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/02/2021] [Indexed: 01/25/2023] Open
Abstract
INTRODUCTION N-Methyl-D-aspartate receptors (NMDARs) play a critical role in different forms of plasticity in the central nervous system. NMDARs are always assembled in tetrameric form, in which two GluN1 subunits and two GluN2 and/or GluN3 subunits combine together. Previous studies focused mainly on the hippocampus. The anterior cingulate cortex (ACC) is a key cortical region for sensory and emotional functions. NMDAR GluN2A and GluN2B subunits have been previously investigated, however much less is known about the GluN2C/2D subunits. RESULTS In the present study, we found that the GluN2C/2D subunits are expressed in the pyramidal cells of ACC of adult mice. Application of a selective antagonist of GluN2C/2D, (2R*,3S*)-1-(9-bromophenanthrene-3-carbonyl) piperazine-2,3-dicarboxylic acid (UBP145), significantly reduced NMDAR-mediated currents, while synaptically evoked EPSCs were not affected. UBP145 affected neither the postsynaptic long-term potentiation (post-LTP) nor the presynaptic LTP (pre-LTP). Furthermore, the long-term depression (LTD) was also not affected by UBP145. Finally, both UBP145 decreased the frequency of the miniature EPSCs (mEPSCs) while the amplitude remained intact, suggesting that the GluN2C/2D may be involved in presynaptic regulation of spontaneous glutamate release. CONCLUSIONS Our results provide direct evidence that the GluN2C/2D contributes to evoked NMDAR mediated currents and mEPSCs in the ACC, which may have significant physiological implications.
Collapse
Affiliation(s)
- Qi-Yu Chen
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,International Institute for Brain Research, Qingdao International Academician Park, Qingdao, China
| | - Xu-Hui Li
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,International Institute for Brain Research, Qingdao International Academician Park, Qingdao, China.,Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, ON, Canada
| | - Jing-Shan Lu
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,International Institute for Brain Research, Qingdao International Academician Park, Qingdao, China
| | - Yinglu Liu
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, ON, Canada
| | - Jung-Hyun Alex Lee
- Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, ON, Canada
| | - Yu-Xin Chen
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Wantong Shi
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Kexin Fan
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China. .,International Institute for Brain Research, Qingdao International Academician Park, Qingdao, China. .,Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, ON, Canada.
| |
Collapse
|
29
|
Involvement of NMDA receptors containing the GluN2C subunit in the psychotomimetic and antidepressant-like effects of ketamine. Transl Psychiatry 2020; 10:427. [PMID: 33303736 PMCID: PMC7729946 DOI: 10.1038/s41398-020-01110-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 11/05/2020] [Accepted: 11/17/2020] [Indexed: 12/24/2022] Open
Abstract
Acute ketamine administration evokes rapid and sustained antidepressant effects in treatment-resistant patients. However, ketamine also produces transient perceptual disturbances similarly to those evoked by other non-competitive NMDA-R antagonists like phencyclidine (PCP). Although the brain networks involved in both ketamine actions are not fully understood, PCP and ketamine activate thalamo-cortical networks after NMDA-R blockade in GABAergic neurons of the reticular thalamic nucleus (RtN). Given the involvement of thalamo-cortical networks in processing sensory information, these networks may underlie psychotomimetic action. Since the GluN2C subunit is densely expressed in the thalamus, including the RtN, we examined the dependence of psychotomimetic and antidepressant-like actions of ketamine on the presence of GluN2C subunits, using wild-type and GluN2C knockout (GluN2CKO) mice. Likewise, since few studies have investigated ketamine's effects in females, we used mice of both sexes. GluN2C deletion dramatically reduced stereotyped (circling) behavior induced by ketamine in male and female mice, while the antidepressant-like effect was fully preserved in both genotypes and sexes. Despite ketamine appeared to induce similar effects in both sexes, some neurobiological differences were observed between male and female mice regarding c-fos expression in thalamic nuclei and cerebellum, and glutamate surge in prefrontal cortex. In conclusion, the GluN2C subunit may discriminate between antidepressant-like and psychotomimetic actions of ketamine. Further, the abundant presence of GluN2C subunits in the cerebellum and the improved motor coordination of GluN2CKO mice after ketamine treatment suggest the involvement of cerebellar NMDA-Rs in some behavioral actions of ketamine.
Collapse
|
30
|
Zhang B, Yang X, Ye L, Liu R, Ye B, Du W, Shen F, Li Q, Guo F, Liu J, Guo F, Li Y, Xu Z, Liu Z. Ketamine activated glutamatergic neurotransmission by GABAergic disinhibition in the medial prefrontal cortex. Neuropharmacology 2020; 194:108382. [PMID: 33144117 DOI: 10.1016/j.neuropharm.2020.108382] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 01/23/2023]
Abstract
The fast-onset antidepressant actions of ketamine at subanaesthetic doses have attracted enormous interest in psychiatric disease treatment. However, the severe psychotomimetic side effects foster an urgent need to deeply understand the fast-onset antidepressant mechanism of ketamine. Ketamine, as a non-competitive NMDAR antagonist, increases the overall excitability of the mPFC, which is presumed to be essential for the antidepressant action of ketamine. However, the underlying mechanism is still elusive. Here, our results showed that low concentration of ketamine increased the activity and the excitatory/inhibitory ratio of pyramidal neurons; these changes were accompanied by diminished interneurons activity in the mPFC. Moreover, ketamine induced increases in excitatory transmission and antidepressant-like effects, which might rely on the functional intact of GABAergic system in the mPFC. These results suggest a critical role of the mPFC GABAergic system in the fast antidepressant effects of a subanaesthetic dose ketamine.
Collapse
Affiliation(s)
- Bing Zhang
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China; Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - Xili Yang
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - Luyu Ye
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Shanghai, 201203, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Rui Liu
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - Binglu Ye
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - Weijia Du
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - Fuyi Shen
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - Qian Li
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - Fan Guo
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Shanghai, 201203, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Jinqi Liu
- The MacDuffie School, 66 School Street, Granby, MA, 01033, USA
| | - Fei Guo
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Shanghai, 201203, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Yang Li
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Shanghai, 201203, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
| | - Zhendong Xu
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China.
| | - Zhiqiang Liu
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China; Anesthesia and Brain Function Research Institute, Tongji University School of Medicine, Shanghai, 200082, China.
| |
Collapse
|
31
|
Ashourpour F, Jafari A, Babaei P. Co-treatment of AMPA endocytosis inhibitor and GluN2B antagonist facilitate consolidation and retrieval of memory impaired by β amyloid peptide. Int J Neurosci 2020; 132:714-723. [PMID: 33115292 DOI: 10.1080/00207454.2020.1837800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Glutamate neurotransmission stands as an important issue to minimize memory impairment. We investigated the effects of an inhibitor of α-amino-3-hydroxy-5-methyl-4-isozazole propionic acid receptors (AMPA) endocytosis and GluN2B subunit of N-methyl-d-aspartate receptors (NMDA), either isolated or combined, on memory impairments induced by Amyloid beta1-42 (Aβ). METHODS Eighty male Wistar rats were used for two experiments of consolidation and retrieval of memory. Memory impairment was induced by intracerebroventricular (ICV) injection of Aβ1-42 (2 μg/μl), and evaluated using Morris Water Maze (MWM). Each experiment consisted of 5 groups: Saline + Saline, Aβ + Saline, Aβ + Ifenprodil (Ifen, 3 nmol/ICV), Aβ +Tat-GluR23Y (3 µmol/kg/IP), and Aβ1 +Ifen + Tat-GluR23Y. Then, hippocampal cAMP-response element-binding protein (CREB) was measured by western blotting. Data were analyzed by Analysis of variance (ANOVA) repeated measure, and one-way Anova followed by Tukey's post hoc test. RESULTS During retrieval, Aβ+ Tat-GluR23Y showed significant improvement in total time spent (TTS) in the target quadrant (p = 0.009), escape latency to a platform (p = 0.008) and hippocampal level of CREB (p = 0.006) compared with Aβ + saline. Also, coadministration of Tat-GluR23Yand Ifen similar to Tat-GluR23Y alone caused significant improvement in TTS (p = 0.014) and latency to platform (p = 0.013). During consolidation, shorter escape latency (p = 0.001), longer TTS (p = 0.002) and higher level of hippocampal CREB were observed in the Aβ + Tat-GluR23Y (p = 0.001) and Aβ+ Tat-GluR23Y + Ifen (p = 0.017), respectively. CONCLUSION The present study provides pieces of evidence that inhibition of AMPARs endocytosis using Tat-GluR23Y facilitates memory consolidation and retrieval in Aβ induced memory impairment via the CREB signaling pathway.[Formula: see text].
Collapse
Affiliation(s)
- Fatemeh Ashourpour
- Cellular & Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.,Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Adele Jafari
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Parvin Babaei
- Cellular & Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.,Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.,Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
32
|
Epplin MP, Mohan A, Harris LD, Zhu Z, Strong KL, Bacsa J, Le P, Menaldino DS, Traynelis SF, Liotta DC. Discovery of Dihydropyrrolo[1,2- a]pyrazin-3(4 H)-one-Based Second-Generation GluN2C- and GluN2D-Selective Positive Allosteric Modulators (PAMs) of the N-Methyl-d-Aspartate (NMDA) Receptor. J Med Chem 2020; 63:7569-7600. [PMID: 32538088 DOI: 10.1021/acs.jmedchem.9b01733] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The N-methyl-d-aspartate receptor (NMDAR) is an ion channel that mediates the slow, Ca2+-permeable component of glutamatergic synaptic transmission in the central nervous system (CNS). NMDARs are known to play a significant role in basic neurological functions, and their dysfunction has been implicated in several CNS disorders. Herein, we report the discovery of second-generation GluN2C/D-selective NMDAR-positive allosteric modulators (PAMs) with a dihydropyrrolo[1,2-a]pyrazin-3(4H)-one core. The prototype, R-(+)-EU-1180-453, exhibits log unit improvements in the concentration needed to double receptor response, lipophilic efficiency, and aqueous solubility, and lowers cLogP by one log unit compared to the first-generation prototype CIQ. Additionally, R-(+)-EU-1180-453 was found to increase glutamate potency 2-fold, increase the response to maximally effective concentration of agonist 4-fold, and the racemate is brain-penetrant. These compounds are useful second-generation in vitro tools and a promising step toward in vivo tools for the study of positive modulation of GluN2C- and GluN2D-containing NMDA receptors.
Collapse
Affiliation(s)
- Matthew P Epplin
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Ayush Mohan
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Lynnea D Harris
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Zongjian Zhu
- Department of Pharmacology and Chemical Biology, Emory University, 1510 Clifton Road, Atlanta, Georgia 30322, United States
| | - Katie L Strong
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - John Bacsa
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Phuong Le
- Department of Pharmacology and Chemical Biology, Emory University, 1510 Clifton Road, Atlanta, Georgia 30322, United States
| | - David S Menaldino
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University, 1510 Clifton Road, Atlanta, Georgia 30322, United States
| | - Dennis C Liotta
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
33
|
Structure-Activity Relationships for the Anaesthetic and Analgaesic Properties of Aromatic Ring-Substituted Ketamine Esters. Molecules 2020; 25:molecules25122950. [PMID: 32604891 PMCID: PMC7356787 DOI: 10.3390/molecules25122950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 11/16/2022] Open
Abstract
A series of benzene ring substituted ketamine N-alkyl esters were prepared from the corresponding substituted norketamines. Few of the latter have been reported since they have not been generally accessible via known routes. We report a new general route to many of these norketamines via the Neber (oxime to α-aminoketone) rearrangement of readily available substituted 2-phenycyclohexanones. We explored the use of the substituents Cl, Me, OMe, CF3, and OCF3, with a wide range of lipophilic and electronic properties, at all available benzene ring positions. The 2- and 3-substituted compounds were generally more active than 4-substituted compounds. The most generally acceptable substituent was Cl, while the powerful electron-withdrawing substituents CF3 and OCF3 provided fewer effective analogues.
Collapse
|
34
|
Widman AJ, McMahon LL. Effects of ketamine and other rapidly acting antidepressants on hippocampal excitatory and inhibitory transmission. ADVANCES IN PHARMACOLOGY 2020; 89:3-41. [PMID: 32616211 DOI: 10.1016/bs.apha.2020.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A single sub-anesthetic intravascular dose of the use-dependent NMDAR antagonist, ketamine, improves mood in patients with treatment resistant depression within hours that can last for days, creating an entirely new treatment strategy for the most seriously ill patients. However, the psychomimetic effects and abuse potential of ketamine require that new therapies be developed that maintain the rapid antidepressant effects of ketamine without the unwanted side effects. This necessitates a detailed understanding of what cellular and synaptic mechanisms are immediately activated once ketamine reaches the brain that triggers the needed changes to elicit the improved behavior. Intense research has centered on the effects of ketamine, and the other rapidly acting antidepressants, on excitatory and inhibitory circuits in hippocampus and medial prefrontal cortex to determine common mechanisms, including key modifications in synaptic transmission and the precise location of the NMDARs that mediate the rapid and sustained antidepressant response. We review data comparing the effects of ketamine with other NMDAR receptor modulators and the muscarinic M1 acetylcholine receptor antagonist, scopolamine, together with evidence supporting the disinhibition hypothesis and the direct inhibition hypothesis of ketamine's mechanism of action on synaptic circuits using preclinical models.
Collapse
Affiliation(s)
- Allie J Widman
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Lori L McMahon
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
35
|
Shin C, Kim YK. Ketamine in Major Depressive Disorder: Mechanisms and Future Perspectives. Psychiatry Investig 2020; 17:181-192. [PMID: 32209965 PMCID: PMC7113176 DOI: 10.30773/pi.2019.0236] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/18/2019] [Indexed: 02/08/2023] Open
Abstract
Major depressive disorder (MDD) is a serious psychiatric illness that causes functional impairment in many people. While monoaminergic antidepressants have been used to effectively treat MDD, these antidepressants have limitations in that they have delayed onset of action and many patients remain treatment-resistant. Therefore, there is a need to develop antidepressants with a novel target, and researchers have directed their attention to the glutamatergic system. Ketamine, although developed as an anesthetic, has been found to produce an antidepressant effect at sub-anesthetic doses via N-Methyl-D-aspartic acid (NMDA) receptor blockade as well as NMDA receptor- independent pathways. A single infusion of ketamine produced rapid improvement in clinical symptoms to a considerable level and led to the resolution of serious depressive symptoms, including imminent suicidal ideation, in patients with MDD. A series of recent randomized controlled trials have provided a high level of evidence for the therapeutic efficacy of ketamine treatment in MDD and presented new insights on the dose, usage, and route of administration of ketamine as an antidepressant. With this knowledge, it is expected that ketamine treatment protocols for MDD will be established as a treatment option available in clinical practice. However, long-term safety must be taken into consideration as ketamine has abuse potential and it is associated with psychological side effects such as dissociative or psychotomimetic effects.
Collapse
Affiliation(s)
- Cheolmin Shin
- Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
| |
Collapse
|
36
|
Harvey M, Sleigh J, Voss L, Bickerdike M, Dimitrov I, Denny W. KEA-1010, a ketamine ester analogue, retains analgesic and sedative potency but is devoid of Psychomimetic effects. BMC Pharmacol Toxicol 2019; 20:85. [PMID: 31856925 PMCID: PMC6923863 DOI: 10.1186/s40360-019-0374-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/26/2019] [Indexed: 12/21/2022] Open
Abstract
Background Ketamine, a widely used anaesthetic and analgesic agent, is known to improve the analgesic efficacy of opioids and to attenuate central sensitisation and opioid-induced hyperalgesia. Clinical use is, however, curtailed by unwanted psychomimetic effects thought to be mediated by N-methyl-D-aspartate (NMDA) receptor antagonism. KEA-1010, a ketamine ester-analogue designed for rapid offset of hypnosis through hydrolysis mediated break-down, has been shown to result in short duration sedation yet prolonged attenuation of nociceptive responses in animal models. Here we report on behavioural effects following KEA-1010 administration to rodents. Methods KEA-1010 was compared with racemic ketamine in its ability to produce loss of righting reflex following intravenous injection in rats. Analgesic activity was assessed in thermal tail flick latency (TFL) and paw incision models when injected acutely and when co-administered with fentanyl. Tail flick analgesic assessment was further undertaken in morphine tolerant rats. Behavioural aberration was assessed following intravenous injection in rats undergoing TFL assessment and in auditory pre-pulse inhibition models. Results KEA-1010 demonstrated an ED50 similar to ketamine for loss of righting reflex following bolus intravenous injection (KEA-1010 11.4 mg/kg [95% CI 10.6 to 12.3]; ketamine (racemic) 9.6 mg/kg [95% CI 8.5–10.9]). Duration of hypnosis was four-fold shorter in KEA-1010 treated animals. KEA-1010 prolonged thermal tail flick responses comparably with ketamine when administered de novo, and augmented morphine-induced prolongation of tail flick when administered acutely. The analgesic effect of KEA-1010 on thermal tail flick was preserved in opioid tolerant rats. KEA-1010 resulted in increased paw-withdrawal thresholds in a rat paw incision model, similar in magnitude yet more persistent than that seen with fentanyl injection, and additive when co-administered with fentanyl. In contrast to ketamine, behavioural aberration following KEA-1010 injection was largely absent and no pre-pulse inhibition to acoustic startle was observed following KEA-1010 administration in rats. Conclusions KEA-1010 provides antinociceptive efficacy in acute thermal and mechanical pain models that augments standard opioid analgesia and is preserved in opioid tolerant rodents. The NMDA channel affinity and psychomimetic signature of the parent compound ketamine is largely absent for KEA-1010.
Collapse
Affiliation(s)
- Martyn Harvey
- Emergency Department, Waikato Hospital, Pembroke St, Hamilton, 3240, New Zealand.
| | - Jamie Sleigh
- Anesthesia Department, Waikato Hospital, Pembroke St, Hamilton, 3240, New Zealand
| | - Logan Voss
- Anesthesia Department, Waikato Hospital, Pembroke St, Hamilton, 3240, New Zealand
| | - Mike Bickerdike
- Kea Therapeutics Ltd, Lumley Centre, 88 Shortland Street, Auckland, New Zealand
| | - Ivaylo Dimitrov
- Auckland Cancer Society Research Centre, University of Auckland, Park Rd, Auckland, New Zealand
| | - William Denny
- Auckland Cancer Society Research Centre, University of Auckland, Park Rd, Auckland, New Zealand
| |
Collapse
|
37
|
Ding Y, Wang L, Huo Y, Sun Y, Wang L, Gao Z, Sun Y. Roles of GluN2C in cerebral ischemia: GluN2C expressed in different cell types plays different role in ischemic damage. J Neurosci Res 2019; 98:1188-1197. [DOI: 10.1002/jnr.24574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 11/05/2019] [Accepted: 11/26/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Yue Ding
- Shijiazhuang Vocational College of Technology and Information Shijiazhuang PR China
| | - Le Wang
- Department of Pharmaceutical Engineering Hebei Chemical & Pharmaceutical College Shijiazhuang China
| | - Yuexiang Huo
- Department of Pharmacy Hebei University of Science and Technology Shijiazhuang China
| | - Yanping Sun
- State Key Laboratory Breeding Base—Hebei Province Key Laboratory of Molecular Chemistry for Drug Shijiazhuang China
| | - Long Wang
- Department of Family and Consumer Sciences California State University Long Beach CA USA
| | - Zibin Gao
- Department of Pharmacy Hebei University of Science and Technology Shijiazhuang China
- State Key Laboratory Breeding Base—Hebei Province Key Laboratory of Molecular Chemistry for Drug Shijiazhuang China
| | - Yongjun Sun
- Department of Pharmacy Hebei University of Science and Technology Shijiazhuang China
- Hebei Research Center of Pharmaceutical and Chemical Engineering Hebei University of Science and Technology Shijiazhuang China
| |
Collapse
|
38
|
Liu J, Shelkar GP, Zhao F, Clausen RP, Dravid SM. Modulation of burst firing of neurons in nucleus reticularis of the thalamus by GluN2C-containing NMDA receptors. Mol Pharmacol 2019; 96:mol.119.116780. [PMID: 31160332 PMCID: PMC6620419 DOI: 10.1124/mol.119.116780] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/17/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022] Open
Abstract
The GluN2C subunit of the NMDA receptor is enriched in the neurons in nucleus reticularis of the thalamus (nRT), but its role in regulating their function is not well understood. We found that deletion of GluN2C subunit did not affect spike frequency in response to depolarizing current injection or hyperpolarization-induced rebound burst firing of nRT neurons. D-cycloserine or CIQ (GluN2C/GluN2D positive allosteric modulator) did not affect the depolarization-induced spike frequency in nRT neurons. A newly identified highly potent and efficacious co-agonist of GluN1/GluN2C NMDA receptors, AICP, was found to reduce the spike frequency and burst firing of nRT neurons in wildtype but not GluN2C knockout. This effect was potentially due to facilitation of GluN2C-containing receptors because inhibition of NMDA receptors by AP5 did not affect spike frequency in nRT neurons. We evaluated the effect of intracerebroventricular injection of AICP. AICP did not affect basal locomotion or prepulse inhibition but facilitated MK-801-induced hyperlocomotion. This effect was observed in wildtype but not in GluN2C knockout mice demonstrating that AICP produces GluN2C-selective effects in vivo Using a chemogenetic approach we examined the role of nRT in this behavioral effect. Gq or Gi coupled DREADDs were selectively expressed in nRT neurons using cre-dependent viral vectors and PV-Cre mouse line. We found that similar to AICP effect, activation of Gq but not Gi coupled DREADD facilitated MK-801-induced hyperlocomotion. Together, these results identify a unique role of GluN2C-containing receptors in the regulation of nRT neurons and suggest GluN2C-selective in vivo targeting of NMDA receptors by AICP. SIGNIFICANCE STATEMENT: The nucleus reticularis of the thalamus composed of GABAergic neurons is termed as guardian of the gateway and is an important regulator of corticothalamic communication which may be impaired in autism, non-convulsive seizures and other conditions. We found that strong facilitation of tonic activity of GluN2C subtype of NMDA receptors using AICP, a newly identified glycine-site agonist of NMDA receptors, modulates the function of reticular thalamus neurons. AICP was also able to produce GluN2C-dependent behavioral effects in vivo. Together, these finding identify a novel mechanism and a pharmacological tool to modulate activity of reticular thalamic neurons in disease states.
Collapse
|
39
|
Shelkar GP, Pavuluri R, Gandhi PJ, Ravikrishnan A, Gawande DY, Liu J, Stairs DJ, Ugale RR, Dravid SM. Differential effect of NMDA receptor GluN2C and GluN2D subunit ablation on behavior and channel blocker-induced schizophrenia phenotypes. Sci Rep 2019; 9:7572. [PMID: 31110197 PMCID: PMC6527682 DOI: 10.1038/s41598-019-43957-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 04/25/2019] [Indexed: 12/18/2022] Open
Abstract
The GluN2C- and GluN2D-containing NMDA receptors are distinct from GluN2A- and GluN2B-containing receptors in many aspects including lower sensitivity to Mg2+ block and lack of desensitization. Recent studies have highlighted the unique contribution of GluN2C and GluN2D subunits in various aspects of neuronal and circuit function and behavior, however a direct comparison of the effect of ablation of these subunits in mice on pure background strain has not been conducted. Using knockout-first strains for the GRIN2C and GRIN2D produced on pure C57BL/6N strain, we compared the effect of partial or complete ablation of GluN2C and GluN2D subunit on various behaviors relevant to mental disorders. A large number of behaviors described previously in GluN2C and GluN2D knockout mice were reproduced in these mice, however, some specific differences were also observed possibly representing strain effects. We also examined the response to NMDA receptor channel blockers in these mouse strains and surprisingly found that unlike previous reports GluN2D knockout mice were not resistant to phencyclidine-induced hyperlocomotion. Interestingly, the GluN2C knockout mice showed reduced sensitivity to phencyclidine-induced hyperlocomotion. We also found that NMDA receptor channel blocker produced a deficit in prepulse inhibition which was prevented by a GluN2C/2D potentiator in wildtype and GluN2C heterozygous mice but not in GluN2C knockout mice. Together these results demonstrate a unique role of GluN2C subunit in schizophrenia-like behaviors.
Collapse
Affiliation(s)
- Gajanan P Shelkar
- Department of Pharmacology, Creighton University, Omaha, NE, 68178, USA
| | | | - Pauravi J Gandhi
- Department of Pharmacology, Creighton University, Omaha, NE, 68178, USA
| | | | - Dinesh Y Gawande
- Department of Pharmacology, Creighton University, Omaha, NE, 68178, USA
| | - Jinxu Liu
- Department of Pharmacology, Creighton University, Omaha, NE, 68178, USA
| | | | - Rajesh R Ugale
- Department of Pharmaceutical Sciences, R.T.M. Nagpur University, Nagpur, Maharashtra, 440033, India
| | - Shashank M Dravid
- Department of Pharmacology, Creighton University, Omaha, NE, 68178, USA.
| |
Collapse
|
40
|
Hasegawa S, Yoshimi A, Mouri A, Uchida Y, Hida H, Mishina M, Yamada K, Ozaki N, Nabeshima T, Noda Y. Acute administration of ketamine attenuates the impairment of social behaviors induced by social defeat stress exposure as juveniles via activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Neuropharmacology 2019; 148:107-116. [DOI: 10.1016/j.neuropharm.2018.12.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/05/2018] [Accepted: 12/18/2018] [Indexed: 12/11/2022]
|
41
|
Thankachan S, Katsuki F, McKenna JT, Yang C, Shukla C, Deisseroth K, Uygun DS, Strecker RE, Brown RE, McNally JM, Basheer R. Thalamic Reticular Nucleus Parvalbumin Neurons Regulate Sleep Spindles and Electrophysiological Aspects of Schizophrenia in Mice. Sci Rep 2019; 9:3607. [PMID: 30837664 PMCID: PMC6401113 DOI: 10.1038/s41598-019-40398-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 02/11/2019] [Indexed: 02/05/2023] Open
Abstract
The thalamic reticular nucleus (TRN) is implicated in schizophrenia pathology. However, it remains unclear whether alterations of TRN activity can account for abnormal electroencephalographic activity observed in patients, namely reduced spindles (10-15 Hz) during sleep and increased delta (0.5-4 Hz) and gamma-band activity (30-80 Hz) during wakefulness. Here, we utilized optogenetic and reverse-microdialysis approaches to modulate activity of the major subpopulation of TRN GABAergic neurons, which express the calcium-binding protein parvalbumin (PV), and are implicated in schizophrenia dysfunction. An automated algorithm with enhanced efficiency and reproducibility compared to manual detection was used for sleep spindle assessment. A novel, low power, waxing-and-waning optogenetic stimulation paradigm preferentially induced spindles that were indistinguishable from spontaneously occurring sleep spindles without altering the behavioral state, when compared to a single pulse laser stimulation used by us and others. Direct optogenetic inhibition of TRN-PV neurons was ineffective in blocking spindles but increased both wakefulness and cortical delta/gamma activity, as well as impaired the 40 Hz auditory steady-state response. For the first time we demonstrate that spindle density is markedly reduced by (i) optogenetic stimulation of a major GABA/PV inhibitory input to TRN arising from basal forebrain parvalbumin neurons (BF-PV) and; (ii) localized pharmacological inhibition of low-threshold calcium channels, implicated as a genetic risk factor for schizophrenia. Together with clinical findings, our results support impaired TRN-PV neuron activity as a potential cause of schizophrenia-linked abnormalities in cortical delta, gamma, and spindle activity. Modulation of the BF-PV input to TRN may improve these neural abnormalities.
Collapse
Affiliation(s)
- Stephen Thankachan
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA, USA
| | - Fumi Katsuki
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA, USA
| | - James T McKenna
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA, USA
| | - Chun Yang
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA, USA
| | - Charu Shukla
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA, USA
| | - Karl Deisseroth
- Stanford University, Psychiatry and Behavioral Sciences/Bioengineering, Stanford, CA, USA
| | - David S Uygun
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA, USA
| | - Robert E Strecker
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA, USA
| | - Ritchie E Brown
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA, USA
| | - James M McNally
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA, USA.
| | - Radhika Basheer
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA, USA.
| |
Collapse
|
42
|
Bygrave AM, Kilonzo K, Kullmann DM, Bannerman DM, Kätzel D. Can N-Methyl-D-Aspartate Receptor Hypofunction in Schizophrenia Be Localized to an Individual Cell Type? Front Psychiatry 2019; 10:835. [PMID: 31824347 PMCID: PMC6881463 DOI: 10.3389/fpsyt.2019.00835] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/21/2019] [Indexed: 01/07/2023] Open
Abstract
Hypofunction of N-methyl-D-aspartate glutamate receptors (NMDARs), whether caused by endogenous factors like auto-antibodies or mutations, or by pharmacological or genetic manipulations, produces a wide variety of deficits which overlap with-but do not precisely match-the symptom spectrum of schizophrenia. In order to understand how NMDAR hypofunction leads to different components of the syndrome, it is necessary to take into account which neuronal subtypes are particularly affected by it in terms of detrimental functional alterations. We provide a comprehensive overview detailing findings in rodent models with cell type-specific knockout of NMDARs. Regarding inhibitory cortical cells, an emerging model suggests that NMDAR hypofunction in parvalbumin (PV) positive interneurons is a potential risk factor for this disease. PV interneurons display a selective vulnerability resulting from a combination of genetic, cellular, and environmental factors that produce pathological multi-level positive feedback loops. Central to this are two antioxidant mechanisms-NMDAR activity and perineuronal nets-which are themselves impaired by oxidative stress, amplifying disinhibition. However, NMDAR hypofunction in excitatory pyramidal cells also produces a range of schizophrenia-related deficits, in particular maladaptive learning and memory recall. Furthermore, NMDAR blockade in the thalamus disturbs thalamocortical communication, and NMDAR ablation in dopaminergic neurons may provoke over-generalization in associative learning, which could relate to the positive symptom domain. Therefore, NMDAR hypofunction can produce schizophrenia-related effects through an action on various different circuits and cell types.
Collapse
Affiliation(s)
- Alexei M Bygrave
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, United States
| | - Kasyoka Kilonzo
- Institute of Applied Physiology, Ulm University, Ulm, Germany
| | - Dimitri M Kullmann
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Dennis Kätzel
- Institute of Applied Physiology, Ulm University, Ulm, Germany
| |
Collapse
|
43
|
Glasgow NG, Wilcox MR, Johnson JW. Effects of Mg 2+ on recovery of NMDA receptors from inhibition by memantine and ketamine reveal properties of a second site. Neuropharmacology 2018; 137:344-358. [PMID: 29793153 PMCID: PMC6050087 DOI: 10.1016/j.neuropharm.2018.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/18/2018] [Accepted: 05/11/2018] [Indexed: 01/19/2023]
Abstract
Memantine and ketamine are NMDA receptor (NMDAR) open channel blockers that are thought to act via similar mechanisms at NMDARs, but exhibit divergent clinical effects. Both drugs act by entering open NMDARs and binding at a site deep within the ion channel (the deep site) at which the endogenous NMDAR channel blocker Mg2+ also binds. Under physiological conditions, Mg2+ increases the IC50s of memantine and ketamine through competition for binding at the deep site. Memantine also can inhibit NMDARs after associating with a second site accessible in the absence of agonist, a process termed second site inhibition (SSI) that is not observed with ketamine. Here we investigated the effects of 1 mM Mg2+ on recovery from inhibition by memantine and ketamine, and on memantine SSI, of the four main diheteromeric NMDAR subtypes. We found that: recovery from memantine inhibition depended strongly on the concentration of memantine used to inhibit the NMDAR response; Mg2+ accelerated recovery from memantine and ketamine inhibition through distinct mechanisms and in an NMDAR subtype-dependent manner; and Mg2+ occupation of the deep site disrupted memantine SSI in a subtype-dependent manner. Our results support the hypothesis that memantine associates with, but does not inhibit at the second site. After associating with the second site, memantine can either slowly dissociate directly to the extracellular solution, or transit to the deep site, resulting in typical channel block. Memantine's relatively slow dissociation from the second site underlies the dependence of NMDAR recovery from inhibition on both memantine concentration and on Mg2+.
Collapse
Affiliation(s)
- Nathan G Glasgow
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Madeleine R Wilcox
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jon W Johnson
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
44
|
Reinhart KM, Shuttleworth CW. Ketamine reduces deleterious consequences of spreading depolarizations. Exp Neurol 2018; 305:121-128. [PMID: 29653188 PMCID: PMC6261532 DOI: 10.1016/j.expneurol.2018.04.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/31/2018] [Accepted: 04/08/2018] [Indexed: 01/12/2023]
Abstract
Recent work has implicated spreading depolarization (SD) as a key contributor the progression of acute brain injuries, however development of interventions selectively targeting SD has lagged behind. Initial clinical intervention efforts have focused on observations that relatively high doses of the sedative agent ketamine can completely suppress SD. However, blocking propagation of SD could theoretically prevent beneficial effects of SD in surrounding brain regions. Selective targeting of deleterious consequences of SD (rather than abolition) could be a useful adjunct approach, and be achieved with lower ketamine concentrations. We utilized a brain slice model to test whether deleterious consequences of SD could be prevented by ketamine, using concentrations that did not prevent the initiation and propagation of SD. Studies were conducted using murine brain slices, with focal KCl as an SD stimulus. Consequences of SD were assessed with electrophysiological and imaging measures of ionic and synaptic recovery. Under control conditions, ketamine (up to 30 μM) did not prevent SD, but significantly reduced neuronal Ca2+ loading and the duration of associated extracellular potential shifts. Recovery of postsynaptic potentials after SD was also significantly accelerated. When SD was evoked on a background of mild metabolic compromise, neuronal recovery was substantially impaired. Under compromised conditions, the same concentrations of ketamine reduced ionic and metabolic loading during SD, sufficient to preserve functional recovery after repetitive SDs. These results suggest that lower concentrations of ketamine could be utilized to prevent damaging consequences of SD, while not blocking them outright and thereby preserving potentially protective effects of SD.
Collapse
Affiliation(s)
- Katelyn M Reinhart
- Department of Neurosciences, University of New Mexico School of Medicine, United States
| | - C William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, United States.
| |
Collapse
|
45
|
Temporally dissociable effects of ketamine on neuronal discharge and gamma oscillations in rat thalamo-cortical networks. Neuropharmacology 2018; 137:13-23. [DOI: 10.1016/j.neuropharm.2018.04.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/19/2018] [Accepted: 04/21/2018] [Indexed: 12/28/2022]
|
46
|
Abstract
Clinical studies have demonstrated that a single sub-anesthetic dose of the dissociative anesthetic ketamine induces rapid and sustained antidepressant actions. Although this finding has been met with enthusiasm, ketamine's widespread use is limited by its abuse potential and dissociative properties. Recent preclinical research has focused on unraveling the molecular mechanisms underlying the antidepressant actions of ketamine in an effort to develop novel pharmacotherapies, which will mimic ketamine's antidepressant actions but lack its undesirable effects. Here we review hypotheses for the mechanism of action of ketamine as an antidepressant, including synaptic or GluN2B-selective extra-synaptic N-methyl-D-aspartate receptor (NMDAR) inhibition, inhibition of NMDARs localized on GABAergic interneurons, inhibition of NMDAR-dependent burst firing of lateral habenula neurons, and the role of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor activation. We also discuss links between ketamine's antidepressant actions and downstream mechanisms regulating synaptic plasticity, including brain-derived neurotrophic factor (BDNF), eukaryotic elongation factor 2 (eEF2), mechanistic target of rapamycin (mTOR) and glycogen synthase kinase-3 (GSK-3). Mechanisms that do not involve direct inhibition of the NMDAR, including a role for ketamine's (R)-ketamine enantiomer and hydroxynorketamine (HNK) metabolites, specifically (2R,6R)-HNK, are also discussed. Proposed mechanisms of ketamine's action are not mutually exclusive and may act in a complementary manner to exert acute changes in synaptic plasticity, leading to sustained strengthening of excitatory synapses, which are necessary for antidepressant behavioral actions. Understanding the molecular mechanisms underpinning ketamine's antidepressant actions will be invaluable for the identification of targets, which will drive the development of novel, effective, next-generation pharmacotherapies for the treatment of depression.
Collapse
|
47
|
Ravikrishnan A, Gandhi PJ, Shelkar GP, Liu J, Pavuluri R, Dravid SM. Region-specific Expression of NMDA Receptor GluN2C Subunit in Parvalbumin-Positive Neurons and Astrocytes: Analysis of GluN2C Expression using a Novel Reporter Model. Neuroscience 2018; 380:49-62. [PMID: 29559384 DOI: 10.1016/j.neuroscience.2018.03.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/26/2018] [Accepted: 03/09/2018] [Indexed: 12/12/2022]
Abstract
Hypofunction of NMDA receptors in parvalbumin (PV)-positive interneurons has been proposed as a potential mechanism for cortical abnormalities and symptoms in schizophrenia. GluN2C-containing receptors have been linked to this hypothesis due to the higher affinity of psychotomimetic doses of ketamine for GluN1/2C receptors. However, the precise cell-type expression of GluN2C subunit remains unknown. We describe the expression of the GluN2C subunit using a novel EGFP reporter model. We observed EGFP(GluN2C) localization in PV-positive neurons in the nucleus reticularis of the thalamus, globus pallidus externa and interna, ventral pallidum and substantia nigra. In contrast, EGFP(GluN2C)-expressing cells did not co-localize with PV-positive neurons in the cortex, striatum, hippocampus or amygdala. Instead, EGFP(GluN2C) expression in these regions co-localized with an astrocytic marker. We confirmed functional expression of GluN2C-containing receptors in the PV-neurons in substantia nigra and cortical astrocytes using electrophysiology. GluN2C was found to be enriched in several first-order and higher order thalamic nuclei. Interestingly, we found that a previous GluN2C β-gal reporter model excluded expression from PV-neurons and certain thalamic nuclei but exhibited expression in the retrosplenial cortex. GluN2C's unique distribution in neuronal and non-neuronal cells in a brain region-specific manner raises interesting questions regarding the role of GluN2C-containing receptors in the central nervous system.
Collapse
Affiliation(s)
| | - Pauravi J Gandhi
- Department of Pharmacology, Creighton University, Omaha, NE 68178, USA
| | - Gajanan P Shelkar
- Department of Pharmacology, Creighton University, Omaha, NE 68178, USA
| | - Jinxu Liu
- Department of Pharmacology, Creighton University, Omaha, NE 68178, USA
| | | | - Shashank M Dravid
- Department of Pharmacology, Creighton University, Omaha, NE 68178, USA.
| |
Collapse
|
48
|
Cortical Circuit Models in Psychiatry. COMPUTATIONAL PSYCHIATRY 2018. [DOI: 10.1016/b978-0-12-809825-7.00001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Lang E, Mallien AS, Vasilescu AN, Hefter D, Luoni A, Riva MA, Borgwardt S, Sprengel R, Lang UE, Gass P, Inta D. Molecular and cellular dissection of NMDA receptor subtypes as antidepressant targets. Neurosci Biobehav Rev 2017; 84:352-358. [PMID: 28843752 DOI: 10.1016/j.neubiorev.2017.08.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 07/26/2017] [Accepted: 08/17/2017] [Indexed: 10/19/2022]
Abstract
A growing body of evidence supports the idea that drugs targeting the glutamate system may represent a valuable therapeutic alternative in major depressive disorders (MDD). The rapid and prolonged mood elevating effect of the NMDA receptor (NMDAR) antagonist ketamine has been studied intensely. However, its clinical use is hampered by deleterious side-effects, such as psychosis. Therefore, a better understanding of the mechanisms of the psychotropic effects after NMDAR blockade is necessary to develop glutamatergic antidepressants with improved therapeutic profile. Here we review recent experimental data that addressed molecular/cellular determinants of the antidepressant effect mediated by inactivating NMDAR subtypes. We refer to results obtained both in pharmacological and genetic animal models, ranging from global to conditional NMDAR manipulation. Our main focus is on the contribution of different NMDAR subtypes to the psychoactive effects induced by NMDAR ablation/blockade. We review data analyzing the effect of NMDAR subtype deletions limited to specific neuronal populations/brain areas in the regulation of mood. Altogether, these studies suggest effective and putative specific NMDAR drug targets for MDD treatment.
Collapse
Affiliation(s)
- Elisabeth Lang
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Anne S Mallien
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Andrei-Nicolae Vasilescu
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Dimitri Hefter
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Alessia Luoni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Stefan Borgwardt
- Department of Psychiatry (UPK), University of Basel, Switzerland
| | - Rolf Sprengel
- Max-Planck Research Group at the Institute for Anatomy and Cell Biology, Heidelberg University, Germany
| | - Undine E Lang
- Department of Psychiatry (UPK), University of Basel, Switzerland
| | - Peter Gass
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Dragos Inta
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany; Department of Psychiatry (UPK), University of Basel, Switzerland.
| |
Collapse
|
50
|
Dauvermann MR, Lee G, Dawson N. Glutamatergic regulation of cognition and functional brain connectivity: insights from pharmacological, genetic and translational schizophrenia research. Br J Pharmacol 2017. [PMID: 28626937 DOI: 10.1111/bph.13919] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The pharmacological modulation of glutamatergic neurotransmission to improve cognitive function has been a focus of intensive research, particularly in relation to the cognitive deficits seen in schizophrenia. Despite this effort, there has been little success in the clinical use of glutamatergic compounds as procognitive drugs. Here, we review a selection of the drugs used to modulate glutamatergic signalling and how they impact on cognitive function in rodents and humans. We highlight how glutamatergic dysfunction, and NMDA receptor hypofunction in particular, is a key mechanism contributing to the cognitive deficits observed in schizophrenia and outline some of the glutamatergic targets that have been tested as putative procognitive targets for this disorder. Using translational research in this area as a leading exemplar, namely, models of NMDA receptor hypofunction, we discuss how the study of functional brain network connectivity can provide new insight into how the glutamatergic system impacts on cognitive function. Future studies characterizing functional brain network connectivity will increase our understanding of how glutamatergic compounds regulate cognition and could contribute to the future success of glutamatergic drug validation. Linked Articles This article is part of a themed section on Pharmacology of Cognition: a Panacea for Neuropsychiatric Disease? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.19/issuetoc.
Collapse
Affiliation(s)
- Maria R Dauvermann
- School of Psychology, National University of Ireland, Galway, Ireland.,McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Graham Lee
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Neil Dawson
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| |
Collapse
|