1
|
Kazmierska-Grebowska P, Żakowski W, Myślińska D, Sahu R, Jankowski MM. Revisiting serotonin's role in spatial memory: A call for sensitive analytical approaches. Int J Biochem Cell Biol 2024; 176:106663. [PMID: 39321568 DOI: 10.1016/j.biocel.2024.106663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
The serotonergic system is involved in various psychiatric and neurological conditions, with serotonergic drugs often used in treatment. These conditions frequently affect spatial memory, which can serve as a model of declarative memory due to well-known cellular components and advanced methods that track neural activity and behavior with high temporal resolution. However, most findings on serotonin's effects on spatial learning and memory come from studies lacking refined analytical techniques and modern approaches needed to uncover the underlying neuronal mechanisms. This In Focus review critically investigates available studies to identify areas for further exploration. It finds that well-established behavioral models could yield more insights with modern tracking and data analysis approaches, while the cellular aspects of spatial memory remain underexplored. The review highlights the complex role of serotonin in spatial memory, which holds the potential for better understanding and treating memory-related disorders.
Collapse
Affiliation(s)
| | - Witold Żakowski
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Dorota Myślińska
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Ravindra Sahu
- BioTechMed Center, Multimedia Systems Department, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk, Poland
| | - Maciej M Jankowski
- BioTechMed Center, Multimedia Systems Department, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk, Poland.
| |
Collapse
|
2
|
Giri B, Kinsky N, Kaya U, Maboudi K, Abel T, Diba K. Sleep loss diminishes hippocampal reactivation and replay. Nature 2024; 630:935-942. [PMID: 38867049 PMCID: PMC11472378 DOI: 10.1038/s41586-024-07538-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/07/2024] [Indexed: 06/14/2024]
Abstract
Memories benefit from sleep1, and the reactivation and replay of waking experiences during hippocampal sharp-wave ripples (SWRs) are considered to be crucial for this process2. However, little is known about how these patterns are impacted by sleep loss. Here we recorded CA1 neuronal activity over 12 h in rats across maze exploration, sleep and sleep deprivation, followed by recovery sleep. We found that SWRs showed sustained or higher rates during sleep deprivation but with lower power and higher frequency ripples. Pyramidal cells exhibited sustained firing during sleep deprivation and reduced firing during sleep, yet their firing rates were comparable during SWRs regardless of sleep state. Despite the robust firing and abundance of SWRs during sleep deprivation, we found that the reactivation and replay of neuronal firing patterns was diminished during these periods and, in some cases, completely abolished compared to ad libitum sleep. Reactivation partially rebounded after recovery sleep but failed to reach the levels found in natural sleep. These results delineate the adverse consequences of sleep loss on hippocampal function at the network level and reveal a dissociation between the many SWRs elicited during sleep deprivation and the few reactivations and replays that occur during these events.
Collapse
Affiliation(s)
- Bapun Giri
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Nathaniel Kinsky
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Utku Kaya
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kourosh Maboudi
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Kamran Diba
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Seenivasan P, Basak R, Narayanan R. Cross-strata co-occurrence of ripples with theta-frequency oscillations in the hippocampus of foraging rats. J Physiol 2024; 602:2315-2341. [PMID: 38654581 PMCID: PMC7615956 DOI: 10.1113/jp284629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/04/2024] [Indexed: 04/26/2024] Open
Abstract
Brain rhythms have been postulated to play central roles in animal cognition. A prominently reported dichotomy of hippocampal rhythms links theta-frequency oscillations (4-12 Hz) and ripples (120-250 Hz) exclusively to preparatory and consummatory behaviours, respectively. However, because of the differential power expression of these two signals across hippocampal strata, such exclusivity requires validation through analyses of simultaneous multi-strata recordings. We assessed co-occurrence of theta-frequency oscillations with ripples in multi-channel recordings of extracellular potentials across hippocampal strata from foraging rats. We detected all ripple events from an identified stratum pyramidale (SP) channel. We then defined theta epochs based on theta oscillations detected from the stratum lacunosum-moleculare (SLM) or the stratum radiatum (SR). We found ∼20% of ripple events (in SP) to co-occur with theta epochs identified from SR/SLM channels, defined here as theta ripples. Strikingly, when theta epochs were instead identified from the SP channel, such co-occurrences were significantly reduced because of a progressive reduction in theta power along the SLM-SR-SP axis. Behaviourally, we found most theta ripples to occur during immobile periods, with comparable theta power during exploratory and immobile theta epochs. Furthermore, the progressive reduction in theta power along the SLM-SR-SP axis was common to exploratory and immobile periods. Finally, we found a strong theta-phase preference of theta ripples within the fourth quadrant [3π/2 - 2π] of the associated theta oscillation. The prevalence of theta ripples expands the potential roles of ripple-frequency oscillations to span the continuum of encoding, retrieval and consolidation, achieved through interactions with theta oscillations. KEY POINTS: The brain manifests oscillations in recorded electrical potentials, with different frequencies of oscillation associated with distinct behavioural states. A prominently reported dichotomy assigns theta-frequency oscillations (4-12 Hz) and ripples (120-250 Hz) recorded in the hippocampus to be exclusively associated with preparatory and consummatory behaviours, respectively. Our multi-strata recordings from the rodent hippocampus coupled with cross-strata analyses provide direct quantitative evidence for the occurrence of ripple events nested within theta oscillations. These results highlight the need for an analysis pipeline that explicitly accounts for the specific strata where individual oscillatory power is high, in analysing simultaneously recorded data from multiple strata. Our observations open avenues for investigations involving cross-strata interactions between theta oscillations and ripples across different behavioural states.
Collapse
Affiliation(s)
- Pavithraa Seenivasan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Reshma Basak
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| |
Collapse
|
4
|
Moradi F, van den Berg M, Mirjebreili M, Kosten L, Verhoye M, Amiri M, Keliris GA. Early classification of Alzheimer's disease phenotype based on hippocampal electrophysiology in the TgF344-AD rat model. iScience 2023; 26:107454. [PMID: 37599835 PMCID: PMC10432721 DOI: 10.1016/j.isci.2023.107454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 04/27/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
The hippocampus plays a vital role in navigation, learning, and memory, and is affected in Alzheimer's disease (AD). This study investigated the classification of AD-transgenic rats versus wild-type littermates using electrophysiological activity recorded from the hippocampus at an early, presymptomatic stage of the disease (6 months old) in the TgF344-AD rat model. The recorded signals were filtered into low frequency (LFP) and high frequency (spiking activity) signals, and machine learning classifiers were employed to identify the rat genotype (TG vs. WT). By analyzing specific frequency bands in the low frequency signals and calculating distance metrics between spike trains in the high frequency signals, accurate classification was achieved. Gamma band power emerged as a valuable signal for classification, and combining information from both low and high frequency signals improved the accuracy further. These findings provide valuable insights into the early stage effects of AD on different regions of the hippocampus.
Collapse
Affiliation(s)
- Faraz Moradi
- Faculty of Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Monica van den Berg
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | | | - Lauren Kosten
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Mahmood Amiri
- Medical Technology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Georgios A. Keliris
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Institute of Computer Science, Foundation for Research & Technology - Hellas, Heraklion, Crete, Greece
| |
Collapse
|
5
|
Tsuji M, Nishizuka Y, Emoto K. Threat gates visual aversion via theta activity in Tachykinergic neurons. Nat Commun 2023; 14:3987. [PMID: 37443364 PMCID: PMC10345120 DOI: 10.1038/s41467-023-39667-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Animals must adapt sensory responses to an ever-changing environment for survival. Such sensory modulation is especially critical in a threatening situation, in which animals often promote aversive responses to, among others, visual stimuli. Recently, threatened Drosophila has been shown to exhibit a defensive internal state. Whether and how threatened Drosophila promotes visual aversion, however, remains elusive. Here we report that mechanical threats to Drosophila transiently gate aversion from an otherwise neutral visual object. We further identified the neuropeptide tachykinin, and a single cluster of neurons expressing it ("Tk-GAL42 ∩ Vglut neurons"), that are responsible for gating visual aversion. Calcium imaging analysis revealed that mechanical threats are encoded in Tk-GAL42 ∩ Vglut neurons as elevated activity. Remarkably, we also discovered that a visual object is encoded in Tk-GAL42 ∩ Vglut neurons as θ oscillation, which is causally linked to visual aversion. Our data reveal how a single cluster of neurons adapt organismal sensory response to a threatening situation through a neuropeptide and a combination of rate/temporal coding schemes.
Collapse
Affiliation(s)
- Masato Tsuji
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuto Nishizuka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kazuo Emoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
6
|
Sakai N, Nishino S. Comparison of Solriamfetol and Modafinil on Arousal and Anxiety-Related Behaviors in Narcoleptic Mice. Neurotherapeutics 2023; 20:546-563. [PMID: 36544071 PMCID: PMC10121964 DOI: 10.1007/s13311-022-01328-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2022] [Indexed: 12/24/2022] Open
Abstract
Wake-promoting agents are used for the management of excessive daytime sleepiness caused by narcolepsy. Clinical and preclinical data suggests that solriamfetol, a novel dopamine and norepinephrine reuptake inhibitor, is a promising therapeutic option for excessive daytime sleepiness. We provide the first head-to-head comparison of in vivo efficacy between modafinil and solriamfetol in narcoleptic mice. Both compounds induced potent wake-promoting effects in littermate wild-type and orexin-tTA; TetO-DTA mice when dosed at active and resting phases. However, neither modafinil nor solriamfetol alleviated cataplexy. Remarkably, modafinil significantly induced locomotor activity but solriamfetol had small effects. Awake electroencephalogram profiles revealed that modafinil augmented theta oscillation in a dose-dependent manner, but, on the contrary, the response to solriamfetol was blunted, reflecting the differences in their neurochemical properties and anxiogenic effects. Drug-induced anxiety-related behaviors were evaluated at equipotent wake-promoting doses in WT and DTA mice using the elevated plus maze and forced swim tests. Importantly, 100 mg/kg of modafinil significantly produced anxiety-related behaviors in WT mice, whereas 150 mg/kg of solriamfetol did not have anxiogenic effects. On the other hand, DTA mice exhibited trait anxiety and altered drug responses. Our results suggest that solriamfetol potently promotes wakefulness without psychomotor effects and without inducing anxiety-related behaviors.
Collapse
Affiliation(s)
- Noriaki Sakai
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Seiji Nishino
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, 94304, USA.
| |
Collapse
|
7
|
Giri B, Kaya U, Maboudi K, Abel T, Diba K. Sleep loss diminishes hippocampal reactivation and replay. RESEARCH SQUARE 2023:rs.3.rs-2540186. [PMID: 36824950 PMCID: PMC9949250 DOI: 10.21203/rs.3.rs-2540186/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Memories benefit from sleep, and sleep loss immediately following learning has a negative impact on subsequent memory storage. Several prominent hypotheses ascribe a central role to hippocampal sharp-wave ripples (SWRs), and the concurrent reactivation and replay of neuronal patterns from waking experience, in the offline memory consolidation process that occurs during sleep. However, little is known about how SWRs, reactivation, and replay are affected when animals are subjected to sleep deprivation. We performed long duration (~12 h), high-density silicon probe recordings from rat hippocampal CA1 neurons, in animals that were either sleeping or sleep deprived following exposure to a novel maze environment. We found that SWRs showed a sustained rate of activity during sleep deprivation, similar to or higher than in natural sleep, but with decreased amplitudes for the sharp-waves combined with higher frequencies for the ripples. Furthermore, while hippocampal pyramidal cells showed a log-normal distribution of firing rates during sleep, these distributions were negatively skewed with a higher mean firing rate in both pyramidal cells and interneurons during sleep deprivation. During SWRs, however, firing rates were remarkably similar between both groups. Despite the abundant quantity of SWRs and the robust firing activity during these events in both groups, we found that reactivation of neurons was either completely abolished or significantly diminished during sleep deprivation compared to sleep. Interestingly, reactivation partially rebounded upon recovery sleep, but failed to reach the levels characteristic of natural sleep. Similarly, the number of replays were significantly lower during sleep deprivation and recovery sleep compared to natural sleep. These results provide a network-level account for the negative impact of sleep loss on hippocampal function and demonstrate that sleep loss impacts memory storage by causing a dissociation between the amount of SWRs and the replays and reactivations that take place during these events.
Collapse
Affiliation(s)
- Bapun Giri
- Dept of Anesthesiology and Neuroscience Graduate Program, 1150 W Medical Center Dr, University of Michigan Medical School, Ann Arbor, MI 48109
- Dept of Psychology, University of Wisconsin-Milwaukee, PO Box 413, Milwaukee, WI 53201
| | - Utku Kaya
- Dept of Anesthesiology and Neuroscience Graduate Program, 1150 W Medical Center Dr, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Kourosh Maboudi
- Dept of Anesthesiology and Neuroscience Graduate Program, 1150 W Medical Center Dr, University of Michigan Medical School, Ann Arbor, MI 48109
- Dept of Psychology, University of Wisconsin-Milwaukee, PO Box 413, Milwaukee, WI 53201
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA
| | - Kamran Diba
- Dept of Anesthesiology and Neuroscience Graduate Program, 1150 W Medical Center Dr, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
8
|
van den Berg M, Toen D, Verhoye M, Keliris GA. Alterations in theta-gamma coupling and sharp wave-ripple, signs of prodromal hippocampal network impairment in the TgF344-AD rat model. Front Aging Neurosci 2023; 15:1081058. [PMID: 37032829 PMCID: PMC10075364 DOI: 10.3389/fnagi.2023.1081058] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative disorder caused by the accumulation of toxic proteins, amyloid-beta (Aβ) and tau, which eventually leads to dementia. Disease-modifying therapies are still lacking, due to incomplete insights into the neuropathological mechanisms of AD. Synaptic dysfunction is known to occur before cognitive symptoms become apparent and recent studies have demonstrated that imbalanced synaptic signaling drives the progression of AD, suggesting that early synaptic dysfunction could be an interesting therapeutic target. Synaptic dysfunction results in altered oscillatory activity, which can be detected with electroencephalography and electrophysiological recordings. However, the majority of these studies have been performed at advanced stages of AD, when extensive damage and cognitive symptoms are already present. The current study aimed to investigate if the hippocampal oscillatory activity is altered at pre-plaque stages of AD. The rats received stereotactic surgery to implant a laminar electrode in the CA1 layer of the right hippocampus. Electrophysiological recordings during two consecutive days in an open field were performed in 4-5-month-old TgF344-AD rats when increased concentrations of soluble Aβ species were observed in the brain, in the absence of Aβ-plaques. We observed a decreased power of high theta oscillations in TgF344-AD rats compared to wild-type littermates. Sharp wave-ripple (SWR) analysis revealed an increased SWR power and a decreased duration of SWR during quiet wake in TgF344-AD rats. The alterations in properties of SWR and the increased power of fast oscillations are suggestive of neuronal hyperexcitability, as has been demonstrated to occur during presymptomatic stages of AD. In addition, decreased strength of theta-gamma coupling, an important neuronal correlate of memory encoding, was observed in the TgF344-AD rats. Theta-gamma phase amplitude coupling has been associated with memory encoding and the execution of cognitive functions. Studies have demonstrated that mild cognitive impairment patients display decreased coupling strength, similar to what is described here. The current study demonstrates altered hippocampal network activity occurring at pre-plaque stages of AD and provides insights into prodromal network dysfunction in AD. The alterations observed could aid in the detection of AD during presymptomatic stages.
Collapse
Affiliation(s)
- Monica van den Berg
- Bio-Imaging Lab, University of Antwerp, Wilrijk, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
- *Correspondence: Monica van den Berg, ; Georgios A. Keliris,
| | - Daniëlle Toen
- Bio-Imaging Lab, University of Antwerp, Wilrijk, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, Wilrijk, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Georgios A. Keliris
- Bio-Imaging Lab, University of Antwerp, Wilrijk, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Institute of Computer Science, Foundation for Research and Technology – Hellas, Heraklion, Crete, Greece
- *Correspondence: Monica van den Berg, ; Georgios A. Keliris,
| |
Collapse
|
9
|
Optogenetic Suppression of Lateral Septum Somatostatin Neurons Enhances Hippocampus Cholinergic Theta Oscillations and Local Synchrony. Brain Sci 2022; 13:brainsci13010001. [PMID: 36671983 PMCID: PMC9856160 DOI: 10.3390/brainsci13010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/29/2022] Open
Abstract
The septal complex regulates both motivated and innate behaviors, chiefly by the action of its diverse population of long-range projection neurons. A small population of somatostatin-expressing GABAergic cells in the lateral septum projects deep into subcortical regions, yet on its way it also targets neighboring medial septum neurons that profusely innervate cortical targets by ascending synaptic pathways. Here, we used optogenetic stimulation and extracellular recordings in acutely anesthetized transgenic mice to show that lateral septum somatostatin neurons can disinhibit the cholinergic septo-hippocampal pathway, thus enhancing the amplitude and synchrony of theta oscillations while depressing sharp-wave ripple episodes in the dorsal hippocampus. These results suggest that septal somatostatin cells can recruit ascending cholinergic pathways to promote hippocampal theta oscillations.
Collapse
|
10
|
Matulewicz P, Ramos-Prats A, Gómez-Santacana X, Llebaria A, Ferraguti F. Control of Theta Oscillatory Activity Underlying Fear Expression by mGlu 5 Receptors. Cells 2022; 11:cells11223555. [PMID: 36428984 PMCID: PMC9688906 DOI: 10.3390/cells11223555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/19/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
Metabotropic glutamate 5 receptors (mGlu5) are thought to play an important role in mediating emotional information processing. In particular, negative allosteric modulators (NAMs) of mGlu5 have received a lot of attention as potential novel treatments for several neuropsychiatric diseases, including anxiety-related disorders. The aim of this study was to assess the influence of pre- and post-training mGlu5 inactivation in cued fear conditioned mice on neuronal oscillatory activity during fear retrieval. For this study we used the recently developed mGlu5 NAM Alloswicth-1 administered systemically. Injection of Alloswicth-1 before, but not after, fear conditioning resulted in a significant decrease in freezing upon fear retrieval. Mice injected with Alloswicth-1 pre-training were also implanted with recording microelectrodes into both the medial prefrontal cortex (mPFC) and ventral hippocampus (vHPC). The recordings revealed a reduction in theta rhythmic activity (4-12 Hz) in both the mPFC and vHPC during fear retrieval. These results indicate that inhibition of mGlu5 signaling alters local oscillatory activity in principal components of the fear brain network underlying a reduced response to a predicted threat.
Collapse
Affiliation(s)
- Pawel Matulewicz
- Institute of Pharmacology, Medical University of Innsbruck, Peter-Mayr-Str. 1, 6020 Innsbruck, Austria
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Jana Bazynskiego 8, 80-309 Gdansk, Poland
- Correspondence:
| | - Arnau Ramos-Prats
- Institute of Pharmacology, Medical University of Innsbruck, Peter-Mayr-Str. 1, 6020 Innsbruck, Austria
| | - Xavier Gómez-Santacana
- Laboratory of Medicinal Chemistry & Synthesis (MCS), Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Amadeu Llebaria
- Laboratory of Medicinal Chemistry & Synthesis (MCS), Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Francesco Ferraguti
- Institute of Pharmacology, Medical University of Innsbruck, Peter-Mayr-Str. 1, 6020 Innsbruck, Austria
| |
Collapse
|
11
|
Liang M, Lomayesva S, Isham EA. Dissociable Roles of Theta and Alpha in Sub-Second and Supra-Second Time Reproduction: An Investigation of their Links to Depression and Anxiety. TIMING & TIME PERCEPTION 2022. [DOI: 10.1163/22134468-bja10061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
A growing collection of observations has demonstrated the presence of multiple neural oscillations participating in human temporal cognition and psychiatric pathologies such as depression and anxiety. However, there remains a gap in the literature regarding the specific roles of these neural oscillations during interval timing, and how these oscillatory activities might vary with the different levels of mental health. The current study examined the participation of the frontal midline theta and occipital alpha oscillations, both of which are prevalent cortical oscillatory markers frequently reported in working memory and time perception paradigms. Participants performed a time reproduction task in the sub- (400, 600, 800 ms) and supra-second timescales (1600, 1800, 2000 ms) while undergoing scalp EEG recordings. Anxiety and depression levels were measured via self-report mental health inventories. Time–frequency analysis of scalp EEG revealed that both frontal midline and occipital alpha oscillations were engaged during the encoding of the durations. Furthermore, we observed that the correlational relationship between frontal midline theta power and the reproduction performance in the sub-second range was modulated by state anxiety. In contrast, the correlational relationship between occipital alpha and the reproduction performance of supra-second intervals was modulated by depression and trait anxiety. The results offer insights on how alpha and theta oscillations differentially play a role in interval timing and how mental health further differentially relates these neural oscillations to sub- and supra-second timescales.
Collapse
Affiliation(s)
- Mingli Liang
- Department of Psychology, University of Arizona, 1503 E. University Blvd, Tucson, AZ 85721, USA
| | - Sara Lomayesva
- Department of Psychology, University of Arizona, 1503 E. University Blvd, Tucson, AZ 85721, USA
| | - Eve A. Isham
- Department of Psychology, University of Arizona, 1503 E. University Blvd, Tucson, AZ 85721, USA
| |
Collapse
|
12
|
Yu YH, Kim SW, Kang J, Song Y, Im H, Kim SJ, Yoo DY, Lee MR, Park DK, Oh JS, Kim DS. Phosphodiesterase-5 Inhibitor Attenuates Anxious Phenotypes and Movement Disorder Induced by Mild Ischemic Stroke in Rats. J Korean Neurosurg Soc 2022; 65:665-679. [PMID: 35430790 PMCID: PMC9452378 DOI: 10.3340/jkns.2021.0101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 02/03/2022] [Indexed: 11/27/2022] Open
Abstract
Objective Patients with mild ischemic stroke experience various sequela and residual symptoms, such as anxious behavior and deficits in movement. Few approaches have been proved to be effective and safe therapeutic approaches for patients with mild ischemic stroke by acute stroke. Sildenafil (SIL), a phosphodiesterase-5 inhibitor (PDE5i), is a known remedy for neurodegenerative disorders and vascular dementia through its angiogenesis and neurogenesis effects. In this study, we investigated the efficacy of PDE5i in the emotional and behavioral abnormalities in rats with mild ischemic stroke.
Methods We divided the rats into four groups as follows (n=20, respectively) : group 1, naïve; group 2, middle cerebral artery occlusion (MCAo30); group 3, MCAo30+SIL-pre; and group 4, MCAo30+SIL-post. In the case of drug administration groups, single dose of PDE5i (sildenafil citrate, 20 mg/kg) was given at 30-minute before and after reperfusion of MCAo in rats. After surgery, we investigated and confirmed the therapeutic effect of sildenafil on histology, immunofluorescence, behavioral assays and neural oscillations.
Results Sildenafil alleviated a neuronal loss and reduced the infarction volume. And results of behavior task and immunofluorescence shown possibility that anti-inflammation process and improve motor deficits sildenafil treatment after mild ischemic stroke. Furthermore, sildenafil treatment attenuated the alteration of theta-frequency rhythm in the CA1 region of the hippocampus, a known neural oscillatory marker for anxiety disorder in rodents, induced by mild ischemic stroke.
Conclusion PDE5i as effective therapeutic agents for anxiety and movement disorders and provide robust preclinical evidence to support the development and use of PDE5i for the treatment of mild ischemic stroke residual disorders.
Collapse
|
13
|
Tomar A, McHugh TJ. The impact of stress on the hippocampal spatial code. Trends Neurosci 2021; 45:120-132. [PMID: 34916083 DOI: 10.1016/j.tins.2021.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022]
Abstract
Hippocampal function is severely compromised by prolonged, uncontrollable stress. However, how stress alters neural representations of our surroundings and events that occur within them remains less clear. We review hippocampal place cell studies that examine how spatial coding is affected by acute and chronic stress, as well as by stress accompanying fear conditioning. Emerging data suggest that chronic stress disrupts the acuity and specificity of CA1 spatial coding, both in familiar and novel contexts, and alters hippocampal oscillations. By contrast, acute stress may have a facilitatory impact on spatial representations. These findings encourage a fresh look at the documented stress-induced changes in hippocampal anatomy and in vitro excitability, and offer a new perspective on the links between stress and memory.
Collapse
Affiliation(s)
- Anupratap Tomar
- Center for Synaptic Plasticity, School of Physiology, Pharmacology, and Neuroscience, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama, Japan.
| |
Collapse
|
14
|
Ruggiero RN, Rossignoli MT, Marques DB, de Sousa BM, Romcy-Pereira RN, Lopes-Aguiar C, Leite JP. Neuromodulation of Hippocampal-Prefrontal Cortical Synaptic Plasticity and Functional Connectivity: Implications for Neuropsychiatric Disorders. Front Cell Neurosci 2021; 15:732360. [PMID: 34707481 PMCID: PMC8542677 DOI: 10.3389/fncel.2021.732360] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/01/2021] [Indexed: 01/11/2023] Open
Abstract
The hippocampus-prefrontal cortex (HPC-PFC) pathway plays a fundamental role in executive and emotional functions. Neurophysiological studies have begun to unveil the dynamics of HPC-PFC interaction in both immediate demands and long-term adaptations. Disruptions in HPC-PFC functional connectivity can contribute to neuropsychiatric symptoms observed in mental illnesses and neurological conditions, such as schizophrenia, depression, anxiety disorders, and Alzheimer's disease. Given the role in functional and dysfunctional physiology, it is crucial to understand the mechanisms that modulate the dynamics of HPC-PFC communication. Two of the main mechanisms that regulate HPC-PFC interactions are synaptic plasticity and modulatory neurotransmission. Synaptic plasticity can be investigated inducing long-term potentiation or long-term depression, while spontaneous functional connectivity can be inferred by statistical dependencies between the local field potentials of both regions. In turn, several neurotransmitters, such as acetylcholine, dopamine, serotonin, noradrenaline, and endocannabinoids, can regulate the fine-tuning of HPC-PFC connectivity. Despite experimental evidence, the effects of neuromodulation on HPC-PFC neuronal dynamics from cellular to behavioral levels are not fully understood. The current literature lacks a review that focuses on the main neurotransmitter interactions with HPC-PFC activity. Here we reviewed studies showing the effects of the main neurotransmitter systems in long- and short-term HPC-PFC synaptic plasticity. We also looked for the neuromodulatory effects on HPC-PFC oscillatory coordination. Finally, we review the implications of HPC-PFC disruption in synaptic plasticity and functional connectivity on cognition and neuropsychiatric disorders. The comprehensive overview of these impairments could help better understand the role of neuromodulation in HPC-PFC communication and generate insights into the etiology and physiopathology of clinical conditions.
Collapse
Affiliation(s)
- Rafael Naime Ruggiero
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Matheus Teixeira Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Danilo Benette Marques
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Bruno Monteiro de Sousa
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Cleiton Lopes-Aguiar
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - João Pereira Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
15
|
Altered Emotional Phenotypes in Chronic Kidney Disease Following 5/6 Nephrectomy. Brain Sci 2021; 11:brainsci11070882. [PMID: 34209259 PMCID: PMC8301795 DOI: 10.3390/brainsci11070882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 01/06/2023] Open
Abstract
Increased prevalence of chronic kidney disease (CKD) and neurological disorders including cerebrovascular disease, cognitive impairment, peripheral neuropathy, and dysfunction of central nervous system have been reported during the natural history of CKD. Psychological distress and depression are serious concerns in patients with CKD. However, the relevance of CKD due to decline in renal function and the pathophysiology of emotional deterioration is not clear. Male Sprague Dawley rats were divided into three groups: sham control, 5/6 nephrectomy at 4 weeks, and 5/6 nephrectomy at 10 weeks. Behavior tests, local field potentials, and histology and laboratory tests were conducted and investigated. We provided direct evidence showing that CKD rat models exhibited anxiogenic behaviors and depression-like phenotypes, along with altered hippocampal neural oscillations at 1–12 Hz. We generated CKD rat models by performing 5/6 nephrectomy, and identified higher level of serum creatinine and blood urea nitrogen (BUN) in CKD rats than in wild-type, depending on time. In addition, the level of α-smooth muscle actin (α-SMA) and collagen I for renal tissue was markedly elevated, with worsening fibrosis due to renal failures. The level of anxiety and depression-like behaviors increased in the 10-week CKD rat models compared with the 4-week rat models. In the recording of local field potentials, the power of delta (1–4 Hz), theta (4–7 Hz), and alpha rhythm (7–12 Hz) was significantly increased in the hippocampus of CKD rats compared with wild-type rats. Together, our findings indicated that anxiogenic behaviors and depression can be induced by CKD, and these abnormal symptoms can be worsened as the onset of CKD was prolonged. In conclusion, our results show that the hippocampus is vulnerable to uremia.
Collapse
|
16
|
Okonogi T, Sasaki T. Theta-Range Oscillations in Stress-Induced Mental Disorders as an Oscillotherapeutic Target. Front Behav Neurosci 2021; 15:698753. [PMID: 34177486 PMCID: PMC8219864 DOI: 10.3389/fnbeh.2021.698753] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
Emotional behavior and psychological disorders are expressed through coordinated interactions across multiple brain regions. Brain electrophysiological signals are composed of diverse neuronal oscillations, representing cell-level to region-level neuronal activity patterns, and serve as a biomarker of mental disorders. Here, we review recent observations from rodents demonstrating how neuronal oscillations in the hippocampus, amygdala, and prefrontal cortex are engaged in emotional behavior and altered by psychiatric changes such as anxiety and depression. In particular, we focus mainly on theta-range (4–12 Hz) oscillations, including several distinct oscillations in this frequency range. We then discuss therapeutic possibilities related to controlling such mental disease-related neuronal oscillations to ameliorate psychiatric symptoms and disorders in rodents and humans.
Collapse
Affiliation(s)
- Toya Okonogi
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takuya Sasaki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
Wirtshafter HS, Wilson MA. Lateral septum as a nexus for mood, motivation, and movement. Neurosci Biobehav Rev 2021; 126:544-559. [PMID: 33848512 DOI: 10.1016/j.neubiorev.2021.03.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/18/2021] [Accepted: 03/26/2021] [Indexed: 02/01/2023]
Abstract
The lateral septum (LS) has been implicated in a wide variety of functions, including emotional, motivational, and spatial behavior, and the LS may regulate interactions between the hippocampus and other regions that mediate goal directed behavior. In this review, we suggest that the lateral septum incorporates movement into the evaluation of environmental context with respect to motivation, anxiety, and reward to output an 'integrated movement value signal'. Specifically, hippocampally-derived contextual information may be combined with reinforcement or motivational information in the LS to inform task-relevant decisions. We will discuss how movement is represented in the LS and the literature on the LS's involvement in mood and motivation. We will then connect these results to LS movement-related literature and hypotheses about the role of the lateral septum. We suggest that the LS may communicate a movement-scaled reward signal via changes in place-, movement-, and reward-related firing, and that the LS should be considered a fundamental node of affect and locomotor pathways in the brain.
Collapse
Affiliation(s)
- Hannah S Wirtshafter
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Matthew A Wilson
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
18
|
Joseph DJ, Von Deimling M, Hasegawa Y, Cristancho AG, Ahrens-Nicklas RC, Rogers SL, Risbud R, McCoy AJ, Marsh ED. Postnatal Arx transcriptional activity regulates functional properties of PV interneurons. iScience 2020; 24:101999. [PMID: 33490907 PMCID: PMC7807163 DOI: 10.1016/j.isci.2020.101999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/08/2020] [Accepted: 12/23/2020] [Indexed: 12/16/2022] Open
Abstract
The transcription factor Aristaless-related X-linked gene (Arx) is a monogenic factor in early onset epileptic encephalopathies (EOEEs) and a fundamental regulator of early stages of brain development. However, Arx expression persists in mature GABAergic neurons with an unknown role. To address this issue, we generated a conditional knockout (CKO) mouse in which postnatal Arx was ablated in parvalbumin interneurons (PVIs). Electroencephalogram (EEG) recordings in CKO mice revealed an increase in theta oscillations and the occurrence of occasional seizures. Behavioral analysis uncovered an increase in anxiety. Genome-wide sequencing of fluorescence activated cell sorted (FACS) PVIs revealed that Arx impinged on network excitability via genes primarily associated with synaptic and extracellular matrix pathways. Whole-cell recordings revealed prominent hypoexcitability of various intrinsic and synaptic properties. These results revealed important roles for postnatal Arx expression in PVIs in the control of neural circuits and that dysfunction in those roles alone can cause EOEE-like network abnormalities.
Collapse
Affiliation(s)
- Donald J Joseph
- Division of Child Neurology, Children's Hospital of Philadelphia, Abramson Research Center, Rm. 502, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Markus Von Deimling
- Division of Child Neurology, Children's Hospital of Philadelphia, Abramson Research Center, Rm. 502, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA.,Klinik für Urologie, Städtisches Klinikum Lüneburg, Bögelstraße 1, 21339 Lüneburg, Germany
| | - Yuiko Hasegawa
- Division of Child Neurology, Children's Hospital of Philadelphia, Abramson Research Center, Rm. 502, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Ana G Cristancho
- Division of Child Neurology, Children's Hospital of Philadelphia, Abramson Research Center, Rm. 502, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Rebecca C Ahrens-Nicklas
- Division of Metabolism, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Stephanie L Rogers
- Division of Child Neurology, Children's Hospital of Philadelphia, Abramson Research Center, Rm. 502, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Rashmi Risbud
- Division of Child Neurology, Children's Hospital of Philadelphia, Abramson Research Center, Rm. 502, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Almedia J McCoy
- Division of Child Neurology, Children's Hospital of Philadelphia, Abramson Research Center, Rm. 502, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Eric D Marsh
- Division of Child Neurology, Children's Hospital of Philadelphia, Abramson Research Center, Rm. 502, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA.,Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
19
|
Abivardi A, Khemka S, Bach DR. Hippocampal Representation of Threat Features and Behavior in a Human Approach-Avoidance Conflict Anxiety Task. J Neurosci 2020; 40:6748-6758. [PMID: 32719163 PMCID: PMC7455211 DOI: 10.1523/jneurosci.2732-19.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 06/15/2020] [Accepted: 06/20/2020] [Indexed: 12/13/2022] Open
Abstract
Decisions under threat are crucial to survival and require integration of distinct situational features, such as threat probability and magnitude. Recent evidence from human lesion and neuroimaging studies implicated anterior hippocampus (aHC) and amygdala in approach-avoidance decisions under threat, and linked their integrity to cautious behavior. Here we sought to elucidate how threat dimensions and behavior are represented in these structures. Twenty human participants (11 female) completed an approach-avoidance conflict task during high-resolution fMRI. Participants could gather tokens under threat of capture by a virtual predator, which would lead to token loss. Threat probability (predator wake-up rate) and magnitude (amount of token loss) varied on each trial. To disentangle effects of threat features, and ensuing behavior, we performed a multifold parametric analysis. We found that high threat probability and magnitude related to BOLD signal in left aHC/entorhinal cortex. However, BOLD signal in this region was better explained by avoidance behavior than by these threat features. A priori ROI analysis confirmed the relation of aHC BOLD response with avoidance. Exploratory subfield analysis revealed that this relation was specific to anterior CA2/3 but not CA1. Left lateral amygdala responded to low and high, but not intermediate, threat probability. Our results suggest that aHC BOLD signal is better explained by avoidance behavior than by threat features in approach-avoidance conflict. Rather than representing threat features in a monotonic manner, it appears that aHC may compute approach-avoidance decisions based on integration of situational threat features represented in other neural structures.SIGNIFICANCE STATEMENT An effective threat anticipation system is crucial to survival across species. Natural threats, however, are diverse and have distinct features. To be able to adapt to different modes of danger, the brain needs to recognize these features, integrate them, and use them to modify behavior. Our results disclose the human anterior hippocampus as a likely arbiter of approach-avoidance decisions harnessing compound environmental information while partially replicating previous findings and blending into recent efforts to illuminate the neural basis of approach-avoidance conflict in humans.
Collapse
Affiliation(s)
- Aslan Abivardi
- Computational Psychiatry Research, Department of Psychiatry Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, 8032, Switzerland
- Zurich, Neuroscience Center Zurich, University of Zurich, Zurich, 8057, Switzerland
| | - Saurabh Khemka
- Computational Psychiatry Research, Department of Psychiatry Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, 8032, Switzerland
- Zurich, Neuroscience Center Zurich, University of Zurich, Zurich, 8057, Switzerland
| | - Dominik R Bach
- Computational Psychiatry Research, Department of Psychiatry Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, 8032, Switzerland
- Zurich, Neuroscience Center Zurich, University of Zurich, Zurich, 8057, Switzerland
- Wellcome Centre for Human Neuroimaging and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, WC1N 3BG, United Kingdom
| |
Collapse
|
20
|
Liu KC, Guo Y, Zhang J, Chen L, Liu YW, Lv SX, Xie W, Wang HS, Zhang YM, Zhang L. Activation and blockade of dorsal hippocampal Serotonin6 receptors regulate anxiety-like behaviors in a unilateral 6-hydroxydopamine rat model of Parkinson’s disease. Neurol Res 2019; 41:791-801. [PMID: 31056008 DOI: 10.1080/01616412.2019.1611204] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Kun Cheng Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Department of Neurology, West China Hospital, SiChuan University, Chengdu, China
| | - Yuan Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Jin Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Li Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yi Wei Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Shu Xuan Lv
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Wen Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Hui Sheng Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yu Ming Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Department of Anesthesiology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Li Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| |
Collapse
|
21
|
Berg L, Eckardt J, Masseck OA. Enhanced activity of pyramidal neurons in the infralimbic cortex drives anxiety behavior. PLoS One 2019; 14:e0210949. [PMID: 30677060 PMCID: PMC6345483 DOI: 10.1371/journal.pone.0210949] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/06/2019] [Indexed: 01/17/2023] Open
Abstract
We show that in an animal model of anxiety the overall excitation, particularly in the infralimbic region of the medial prefrontal cortex (IL), is increased and that the activity ratio between excitatory pyramidal neurons and inhibitory interneurons (AR PN/IN) is shifted towards excitation. The same change in AR PN/IN is evident for wildtype mice, which have been exposed to an anxiety stimulus. We hypothesize, that an elevated activity and the imbalance of excitation (PN) and inhibition (IN) within the neuronal microcircuitry of the prefrontal cortex is responsible for anxiety behaviour and employed optogenetic methods in freely moving mice to verify our findings. Consistent with our hypothesis elevation of pyramidal neuron activity in the infralimbic region of the prefrontal cortex significantly enhanced anxiety levels in several behavioural tasks by shifting the AR PN/IN to excitation, without affecting motor behaviour, thus revealing a novel mechanism by which anxiety is facilitated.
Collapse
Affiliation(s)
- Laura Berg
- Advanced Fluorescence Microscopy, Ruhr University Bochum, Bochum, Germany
| | - Josephine Eckardt
- Department of Systems Neuroscience Ruhr University Bochum, Bochum, Germany
| | - Olivia Andrea Masseck
- Advanced Fluorescence Microscopy, Ruhr University Bochum, Bochum, Germany
- University of Bremen, Synthetic Biology, Bremen, Germany
- * E-mail:
| |
Collapse
|
22
|
Çalışkan G, Stork O. Hippocampal network oscillations at the interplay between innate anxiety and learned fear. Psychopharmacology (Berl) 2019; 236:321-338. [PMID: 30417233 DOI: 10.1007/s00213-018-5109-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 11/05/2018] [Indexed: 12/14/2022]
Abstract
The hippocampus plays a central role as a hub for episodic memory and as an integrator of multimodal sensory information in time and space. Thereby, it critically determines contextual setting and specificity of episodic memories. It is also a key site for the control of innate anxiety states and involved in psychiatric diseases with heightened anxiety and generalized fear memory such as post-traumatic stress disorder (PTSD). Expression of both innate "unlearned" anxiety and "learned" fear requires contextual processing and engagement of a brain-wide network including the hippocampus together with the amygdala and medial prefrontal cortex. Strikingly, the hippocampus is also the site of emergence of oscillatory rhythms that coordinate information processing and filtering in this network. Here, we review data on how the hippocampal network oscillations and their coordination with amygdalar and prefrontal oscillations are engaged in innate threat evaluation. We further explore how such innate oscillatory communication might have an impact on contextualization and specificity of "learned" fear. We illustrate the partial overlap of fear and anxiety networks that are built by the hippocampus in conjunction with amygdala and prefrontal cortex. We further propose that (mal)-adaptive interplay via (dis)-balanced oscillatory communication between the anxiety network and the fear network may determine the strength of fear memories and their resistance to extinction.
Collapse
Affiliation(s)
- Gürsel Çalışkan
- Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany. .,Center for Behavioral Brain Sciences, Universitätsplatz 2, 39106, Magdeburg, Germany.
| | - Oliver Stork
- Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Universitätsplatz 2, 39106, Magdeburg, Germany
| |
Collapse
|
23
|
Wells CE, O'Connor AR, Moulin CJA. Déjà vu experiences in anxiety. Memory 2018; 29:895-903. [PMID: 30384798 DOI: 10.1080/09658211.2018.1538418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Déjà vu occurs when a novel event is experienced with an erroneous sense of familiarity. Memory researchers theorise that this arises due to an error in the processes underlying the recognition memory system. Research has indicated that there may be a link between high levels of anxiety and increased frequency and intensity of déjà vu, however, there has been a comparatively little characterisation of déjà vu as experienced by individuals with clinical anxiety. We used an online questionnaire to collect data from individuals self-reporting a clinical diagnosis of anxiety, as well as from age-matched controls. The Anxiety Group reported a significantly higher frequency of déjà vu episodes over the previous month than controls. They also reported experiencing déjà vu more frequently and with higher intensity during periods of high anxiety. In addition, the Anxiety Group reported finding déjà vu episodes significantly more distressing than the Control Group. The findings indicate that there are differences in déjà vu experienced by people reporting high levels of anxiety compared to healthy controls without an anxiety diagnosis. We discuss structural and neural mechanisms thought to underpin déjà vu in relation to these results.
Collapse
Affiliation(s)
- Christine E Wells
- School of Social and Health Sciences, Leeds Trinity University, Leeds, UK
| | - Akira R O'Connor
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Chris J A Moulin
- Laboratoire de Psychologie et Neurocognition, LPNC CNRS 5105, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
24
|
Sang K, Bao C, Xin Y, Hu S, Gao X, Wang Y, Bodner M, Zhou YD, Dong XW. Plastic change of prefrontal cortex mediates anxiety-like behaviors associated with chronic pain in neuropathic rats. Mol Pain 2018; 14:1744806918783931. [PMID: 29871537 PMCID: PMC6077894 DOI: 10.1177/1744806918783931] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Clinical studies show that anxiety and chronic pain are concomitant. The neural
basis for the comorbidity is unclear. The prefrontal cortex (PFC) has been
recognized as a critical area for affective disorders and chronic pain
modulation. In this study, we examined the role of the PFC in the pathogenesis
of anxiety associated with chronic pain in a rat model of neuropathic pain with
spare nerve injury (SNI). The SNI rats showed apparent anxiety-like behaviors in
both open field (OF) test and elevated-plus maze (EPM) test eight weeks after
surgery. Thus, the number of entries to the central area in the OF decreased to
45% (±5%, n = 15) of sham control (n = 17), while the overall motor activity
(i.e., total distance) was unaffected. In the EPM, the percentage of entries
into the open arms significantly (p < 0.001) decreased in SNI rats (SNI:
12.58 ± 2.7%, n = 15; sham: 30.75 ± 2.82%, n = 17), so did the time spent in the
open arms (SNI: 4.35 ± 1.45%, n = 15; Sham: 11.65 ± 2.18%, n = 17). To explore
the neural basis for the association between anxiety and chronic pain, local
field potentials (LFPs) were recorded from the medial PFC (mPFC) and ventral
hippocampus. In SNI rats, there were significantly greater increases in both
theta-frequency power in the mPFC and theta-frequency synchronization between
the mPFC and ventral hippocampus, when animals were displaying elevated
anxiety-like behaviors in avoiding anxiogenic regions in EPM and OF chamber.
Western blot analyses showed a significant elevation of serotonin transporter
expression in the anxious SNI rats. Inhibition of serotonin transporter
effectively alleviated anxiety-like behaviors following sub-chronic (15 days)
treatment with systemic citalopram (10 mg/kg/day, intraperitoneally). Moreover,
the anxiety-like behaviors in the SNI rats were also suppressed by direct mPFC
application of serotonin. Taken together, we conclude that the plasticity of
serotonin transmission in the mPFC likely contribute to the promotion of anxiety
state associated with neuropathic pain.
Collapse
Affiliation(s)
- Kangning Sang
- 1 Key Laboratory of Brain Functional Genomics (MOE&STCSM), Shanghai Changning-ECNU Mental Health Center, Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Chaofei Bao
- 1 Key Laboratory of Brain Functional Genomics (MOE&STCSM), Shanghai Changning-ECNU Mental Health Center, Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Yushi Xin
- 1 Key Laboratory of Brain Functional Genomics (MOE&STCSM), Shanghai Changning-ECNU Mental Health Center, Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Shunan Hu
- 1 Key Laboratory of Brain Functional Genomics (MOE&STCSM), Shanghai Changning-ECNU Mental Health Center, Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Xian Gao
- 1 Key Laboratory of Brain Functional Genomics (MOE&STCSM), Shanghai Changning-ECNU Mental Health Center, Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Yongsheng Wang
- 2 School of Life Sciences, East China Normal University, Shanghai, China
| | | | - Yong-Di Zhou
- 4 Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA.,5 Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Xiao-Wei Dong
- 1 Key Laboratory of Brain Functional Genomics (MOE&STCSM), Shanghai Changning-ECNU Mental Health Center, Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China.,6 NYU-ECNU Institute of Brain and Cognitive Science at New York University Shanghai, Shanghai, China
| |
Collapse
|
25
|
Fasano C, Rocchetti J, Pietrajtis K, Zander JF, Manseau F, Sakae DY, Marcus-Sells M, Ramet L, Morel LJ, Carrel D, Dumas S, Bolte S, Bernard V, Vigneault E, Goutagny R, Ahnert-Hilger G, Giros B, Daumas S, Williams S, El Mestikawy S. Regulation of the Hippocampal Network by VGLUT3-Positive CCK- GABAergic Basket Cells. Front Cell Neurosci 2017; 11:140. [PMID: 28559797 PMCID: PMC5432579 DOI: 10.3389/fncel.2017.00140] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/26/2017] [Indexed: 01/29/2023] Open
Abstract
Hippocampal interneurons release the inhibitory transmitter GABA to regulate excitation, rhythm generation and synaptic plasticity. A subpopulation of GABAergic basket cells co-expresses the GABA/glycine vesicular transporters (VIAAT) and the atypical type III vesicular glutamate transporter (VGLUT3); therefore, these cells have the ability to signal with both GABA and glutamate. GABAergic transmission by basket cells has been extensively characterized but nothing is known about the functional implications of VGLUT3-dependent glutamate released by these cells. Here, using VGLUT3-null mice we observed that the loss of VGLUT3 results in a metaplastic shift in synaptic plasticity at Shaeffer's collaterals - CA1 synapses and an altered theta oscillation. These changes were paralleled by the loss of a VGLUT3-dependent inhibition of GABAergic current in CA1 pyramidal layer. Therefore presynaptic type III metabotropic could be activated by glutamate released from VGLUT3-positive interneurons. This putative presynaptic heterologous feedback mechanism inhibits local GABAergic tone and regulates the hippocampal neuronal network.
Collapse
Affiliation(s)
- Caroline Fasano
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, MontrealQC, Canada
| | - Jill Rocchetti
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, MontrealQC, Canada
| | - Katarzyna Pietrajtis
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, MontrealQC, Canada
| | | | - Frédéric Manseau
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, MontrealQC, Canada
| | - Diana Y Sakae
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Medicale, Institut de Biologie Paris Seine, Neuroscience Paris Seine (NPS)Paris, France
| | - Maya Marcus-Sells
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, MontrealQC, Canada
| | - Lauriane Ramet
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Medicale, Institut de Biologie Paris Seine, Neuroscience Paris Seine (NPS)Paris, France
| | - Lydie J Morel
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Medicale, Institut de Biologie Paris Seine, Neuroscience Paris Seine (NPS)Paris, France
| | - Damien Carrel
- Université Paris Descartes, Sorbonne Paris Cité, Centre National de la Recherche Scientifique, UMR 8250Paris, France
| | | | - Susanne Bolte
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Core Facilities - Institut de Biologie Paris SeineParis, France
| | - Véronique Bernard
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Medicale, Institut de Biologie Paris Seine, Neuroscience Paris Seine (NPS)Paris, France
| | - Erika Vigneault
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, MontrealQC, Canada
| | - Romain Goutagny
- CNRS UMR 7364, Team NCD, Université de StrasbourgStrasbourg, France
| | | | - Bruno Giros
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, MontrealQC, Canada.,Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Medicale, Institut de Biologie Paris Seine, Neuroscience Paris Seine (NPS)Paris, France
| | - Stéphanie Daumas
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Medicale, Institut de Biologie Paris Seine, Neuroscience Paris Seine (NPS)Paris, France
| | - Sylvain Williams
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, MontrealQC, Canada
| | - Salah El Mestikawy
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, MontrealQC, Canada.,Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Medicale, Institut de Biologie Paris Seine, Neuroscience Paris Seine (NPS)Paris, France
| |
Collapse
|
26
|
Jacinto LR, Cerqueira JJ, Sousa N. Patterns of Theta Activity in Limbic Anxiety Circuit Preceding Exploratory Behavior in Approach-Avoidance Conflict. Front Behav Neurosci 2016; 10:171. [PMID: 27713693 PMCID: PMC5031779 DOI: 10.3389/fnbeh.2016.00171] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 08/24/2016] [Indexed: 12/31/2022] Open
Abstract
Theta oscillations within the hippocampus-amygdala-medial prefrontal cortex (HPC-AMY-mPFC) circuit have been consistently implicated in the regulation of anxiety behaviors, including risk-assessment. To study if theta activity during risk-assessment was correlated with exploratory behavior in an approach/avoidance paradigm we recorded simultaneous local field potentials from this circuit in rats exploring the elevated-plus maze (EPM). Opposing patterns of power variations in the ventral hippocampus (vHPC), basolateral amygdala (BLA), and prelimbic (PrL) mPFC, but not in the dorsal hippocampus (dHPC), during exploratory risk-assessment of the open arms preceded further exploration of the open arms or retreat back to the safer closed arms. The same patterns of theta power variations in the HPC-BLA-mPFC(PrL) circuit were also displayed by animals submitted to chronic unpredictable stress protocol known to induce an anxious state. Diverging patterns of vHPC-mPFC(PrL) theta coherence were also significantly correlated with forthcoming approach or avoidance behavior in the conflict situation in both controls and stressed animals; interestingly, vHPC-BLA, and BLA-mPFC(PrL) theta coherence correlated with future behavior only in stressed animals, underlying the pivotal role of the amygdala on the stress response.
Collapse
Affiliation(s)
- Luis R Jacinto
- Life and Health Sciences Research Institute, University of MinhoBraga, Portugal; ICVS/3B's - PT Government Associate LaboratoryBraga/Guimarães, Portugal
| | - João J Cerqueira
- Life and Health Sciences Research Institute, University of MinhoBraga, Portugal; ICVS/3B's - PT Government Associate LaboratoryBraga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute, University of MinhoBraga, Portugal; ICVS/3B's - PT Government Associate LaboratoryBraga/Guimarães, Portugal
| |
Collapse
|
27
|
Effects of Dopamine and Serotonin Systems on Modulating Neural Oscillations in Hippocampus-Prefrontal Cortex Pathway in Rats. Brain Topogr 2016; 29:539-51. [PMID: 26969669 DOI: 10.1007/s10548-016-0485-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/07/2016] [Indexed: 10/22/2022]
Abstract
Theta and gamma oscillations are believed to play an important role in cognition and memory, and their phase coupling facilitates the information transmission in hippocampal-cortex network. In a rat model of chronic stress, the phase coupling of both theta and gamma oscillations between ventral hippocampal CA1 (vCA1) and medial prefrontal cortex (mPFC) was found to be disrupted, which was associated with the impaired synaptic plasticity in the pathway. However, little was known about the mechanisms underlying the process. In order to address this issue, both dopamine and serotonin as monoaminergic neurotransmitters were involved in this study, since they were crucial factors in pathological basis of depressive disorder. Local field potentials (LFPs) were recorded simultaneously at both vCA1 and mPFC regions under anesthesia, before and after the injection of dopamine D1 receptor antagonist and 5-HT1A receptor agonist, respectively. The results showed that the blockage of D1 receptor could lead to depression-like decrement on theta phase coupling. In addition, the activation of 5-HT1A receptor enhanced vCA1-mPFC coupling on gamma oscillations, and attenuated CA1 theta-fast gamma cross frequency coupling. These data suggest that the theta phase coupling between vCA1 and mPFC may be modulated by dopamine system that is an underlying mechanism of the cognitive dysfunction in depression. Besides, the serotonergic system is probably involved in the regulation of gamma oscillations coupling in vCA1-mPFC network.
Collapse
|
28
|
Anxious and nonanxious mice show similar hippocampal sensory evoked oscillations under urethane anesthesia: difference in the effect of buspirone. Neural Plast 2015; 2015:186323. [PMID: 25949829 PMCID: PMC4408632 DOI: 10.1155/2015/186323] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 03/17/2015] [Accepted: 03/17/2015] [Indexed: 11/18/2022] Open
Abstract
Hippocampal oscillations recorded under urethane anesthesia are proposed to be modulated by anxiolytics. All classes of clinically effective anxiolytics were reported to decrease the frequency of urethane theta; however, recent findings raise concerns about the direct correlation of anxiolysis and the frequency of hippocampal theta. Here, we took advantage of our two inbred mouse strains displaying extremes of anxiety (anxious (AX) and nonanxious (nAX)) to compare the properties of hippocampal activity and to test the effect of an anxiolytic drugs. No difference was observed in the peak frequency or in the peak power between AX and nAX strains. Buspirone (Bus) applied in 2.5 mg/kg decreased anxiety of AX but did not have any effect on nAX as was tested by elevated plus maze and open field. Interestingly, Bus treatment increased hippocampal oscillatory frequency in the AX but left it unaltered in nAX mice. Saline injection did not have any effect on the oscillation. Paired-pulse facilitation was enhanced by Bus in the nAX, but not in the AX strain. Collectively, these results do not support the hypothesis that hippocampal activity under urethane may serve as a marker for potential anxiolytic drugs. Moreover, we could not confirm the decrease of frequency after anxiolytic treatment.
Collapse
|
29
|
Schoenfeld TJ, Kloth AD, Hsueh B, Runkle MB, Kane GA, Wang SSH, Gould E. Gap junctions in the ventral hippocampal-medial prefrontal pathway are involved in anxiety regulation. J Neurosci 2014; 34:15679-88. [PMID: 25411496 PMCID: PMC4236399 DOI: 10.1523/jneurosci.3234-13.2014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/09/2014] [Accepted: 09/11/2014] [Indexed: 01/03/2023] Open
Abstract
Anxiety disorders are highly prevalent but little is known about their underlying mechanisms. Gap junctions exist in brain regions important for anxiety regulation, such as the ventral hippocampus (vHIP) and mPFC, but their functions in these areas have not been investigated. Using pharmacological blockade of neuronal gap junctions combined with electrophysiological recordings, we found that gap junctions play a role in theta rhythm in the vHIP and mPFC of adult mice. Bilateral infusion of neuronal gap junction blockers into the vHIP decreased anxiety-like behavior on the elevated plus maze and open field. Similar anxiolytic effects were observed with unilateral infusion of these drugs into the vHIP combined with contralateral infusion into the mPFC. No change in anxious behavior was observed with gap junction blockade in the unilateral vHIP alone or in the bilateral dorsal HIP. Since physical exercise is known to reduce anxiety, we examined the effects of long-term running on the expression of the neuronal gap junction protein connexin-36 among inhibitory interneurons and found a reduction in the vHIP. Despite this change, we observed no alteration in theta frequency or power in long-term runners. Collectively, these findings suggest that neuronal gap junctions in the vHIP-mPFC pathway are important for theta rhythm and anxiety regulation under sedentary conditions but that additional mechanisms are likely involved in running-induced reduction in anxiety.
Collapse
Affiliation(s)
| | - Alexander D Kloth
- Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544
| | | | | | | | - Samuel S-H Wang
- Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544
| | | |
Collapse
|
30
|
Le Dantec Y, Hache G, Guilloux JP, Guiard BP, David DJ, Adrien J, Escourrou P. NREM sleep hypersomnia and reduced sleep/wake continuity in a neuroendocrine mouse model of anxiety/depression based on chronic corticosterone administration. Neuroscience 2014; 274:357-68. [PMID: 24909899 DOI: 10.1016/j.neuroscience.2014.05.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 01/01/2023]
Abstract
Sleep/wake disorders are frequently associated with anxiety and depression and to elevated levels of cortisol. Even though these alterations are increasingly sought in animal models, no study has investigated the specific effects of chronic corticosterone (CORT) administration on sleep. We characterized sleep/wake disorders in a neuroendocrine mouse model of anxiety/depression, based on chronic CORT administration in the drinking water (35 μg/ml for 4 weeks, "CORT model"). The CORT model was markedly affected during the dark phase by non-rapid eye movement sleep (NREM) increase without consistent alteration of rapid eye movement (REM) sleep. Total sleep duration (SD) and sleep efficiency (SE) increased concomitantly during both the 24h and the dark phase, due to the increase in the number of NREM sleep episodes without a change in their mean duration. Conversely, the total duration of wake decreased due to a decrease in the mean duration of wake episodes despite an increase in their number. These results reflect hypersomnia by intrusion of NREM sleep during the active period as well as a decrease in sleep/wake continuity. In addition, NREM sleep was lighter, with an increased electroencephalogram (EEG) theta activity. With regard to REM sleep, the number and the duration of episodes decreased, specifically during the first part of the light period. REM and NREM sleep changes correlated respectively with the anxiety and the anxiety/depressive-like phenotypes, supporting the notion that studying sleep could be of predictive value for altered emotional behavior. The chronic CORT model in mice that displays hallmark characteristics of anxiety and depression provides an insight into understanding the changes in overall sleep architecture that occur under pathological conditions.
Collapse
Affiliation(s)
- Y Le Dantec
- Univ Paris-Sud, EA3544, Faculté de Pharmacie, 92296 Châtenay-Malabry cedex, France.
| | - G Hache
- Univ Paris-Sud, EA3544, Faculté de Pharmacie, 92296 Châtenay-Malabry cedex, France
| | - J P Guilloux
- Univ Paris-Sud, EA3544, Faculté de Pharmacie, 92296 Châtenay-Malabry cedex, France
| | - B P Guiard
- Univ Paris-Sud, EA3544, Faculté de Pharmacie, 92296 Châtenay-Malabry cedex, France
| | - D J David
- Univ Paris-Sud, EA3544, Faculté de Pharmacie, 92296 Châtenay-Malabry cedex, France
| | - J Adrien
- UMR975, CRicm - INSERM/CNRS/UPMC, Neurotransmetteurs et Sommeil, Faculté de Médecine Pitié-Salpêtrière, Université Pierre et Marie Curie - Paris VI, 91 boulevard de l'Hôpital, 75013 Paris, France
| | - P Escourrou
- Univ Paris-Sud, EA3544, Faculté de Pharmacie, 92296 Châtenay-Malabry cedex, France; Assistance Publique-Hôpitaux de Paris, Hôpital Antoine Béclère, Département de Physiologie, Centre de Médecine du Sommeil, 92141 Clamart cedex, France
| |
Collapse
|
31
|
Likhtik E, Stujenske JM, Topiwala MA, Harris AZ, Gordon JA. Prefrontal entrainment of amygdala activity signals safety in learned fear and innate anxiety. Nat Neurosci 2014; 17:106-13. [PMID: 24241397 PMCID: PMC4035371 DOI: 10.1038/nn.3582] [Citation(s) in RCA: 399] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 10/23/2013] [Indexed: 12/11/2022]
Abstract
Successfully differentiating safety from danger is an essential skill for survival. While decreased activity in the medial prefrontal cortex (mPFC) is associated with fear generalization in animals and humans, the circuit-level mechanisms used by the mPFC to discern safety are not clear. To answer this question, we recorded activity in the mPFC, basolateral amygdala (BLA) and dorsal and ventral hippocampus in mice during exposure to learned (differential fear conditioning) and innate (open field) anxiety. We found increased synchrony between the mPFC and BLA in the theta frequency range (4-12 Hz) only in animals that differentiated between averseness and safety. Moreover, during recognized safety across learned and innate protocols, BLA firing became entrained to theta input from the mPFC. These data suggest that selective tuning of BLA firing to mPFC input provides a safety-signaling mechanism whereby the mPFC taps into the microcircuitry of the amygdala to diminish fear.
Collapse
Affiliation(s)
- Ekaterina Likhtik
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Joseph M Stujenske
- Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Mihir A Topiwala
- 1] Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York, USA. [2] Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York, USA
| | - Alexander Z Harris
- 1] Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York, USA. [2] Department of Psychiatry, Weill Cornell Medical College, New York, New York, USA. [3] Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York, USA
| | - Joshua A Gordon
- 1] Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York, USA. [2] Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York, USA
| |
Collapse
|
32
|
Jacinto LR, Reis JS, Dias NS, Cerqueira JJ, Correia JH, Sousa N. Stress affects theta activity in limbic networks and impairs novelty-induced exploration and familiarization. Front Behav Neurosci 2013; 7:127. [PMID: 24137113 PMCID: PMC3797543 DOI: 10.3389/fnbeh.2013.00127] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/08/2013] [Indexed: 11/16/2022] Open
Abstract
Exposure to a novel environment triggers the response of several brain areas that regulate emotional behaviors. Here, we studied theta oscillations within the hippocampus (HPC)-amygdala (AMY)-medial prefrontal cortex (mPFC) network in exploration of a novel environment and subsequent familiarization through repeated exposures to that same environment; in addition, we assessed how concomitant stress exposure could disrupt this activity and impair both behavioral processes. Local field potentials (LFP) were simultaneously recorded from dorsal and ventral hippocampus (dHPC and vHPC, respectively), basolateral amygdala (BLA) and mPFC in freely behaving rats while they were exposed to a novel environment, then repeatedly re-exposed over the course of 3 weeks to that same environment and, finally, on re-exposure to a novel unfamiliar environment. A longitudinal analysis of theta activity within this circuit revealed a reduction of vHPC and BLA theta power and vHPC-BLA theta coherence through familiarization which was correlated with a return to normal exploratory behavior in control rats. In contrast, a persistent over-activation of the same brain regions was observed in stressed rats that displayed impairments in novel exploration and familiarization processes. Importantly, we show that stress also affected intra-hippocampal synchrony and heightened the coherence between vHPC and BLA. In summary, we demonstrate that modulatory theta activity in the aforementioned circuit, namely in the vHPC and BLA, is correlated with the expression of anxiety in novelty-induced exploration and familiarization in both normal and pathological conditions.
Collapse
Affiliation(s)
- Luis R Jacinto
- Life and Health Sciences Research Institute, University of Minho, Campus de Gualtar Braga, Portugal ; ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal ; Department of Industrial Electronics, University of Minho, Campus de Azurém Braga, Portugal
| | | | | | | | | | | |
Collapse
|
33
|
Serotonin 5-HT1A receptors as targets for agents to treat psychiatric disorders: rationale and current status of research. CNS Drugs 2013; 27:703-16. [PMID: 23757185 DOI: 10.1007/s40263-013-0071-0] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Psychiatric disorders represent a large economic burden in modern societies. However, pharmacological treatments are still far from optimal. Drugs used in the treatment of major depressive disorder (MDD) and anxiety disorders (selective serotonin [5-HT] reuptake inhibitors [SSRIs] and serotonin-noradrenaline reuptake inhibitors [SNRIs]) are pharmacological refinements of first-generation tricyclic drugs, discovered by serendipity, and show low efficacy and slowness of onset. Moreover, antipsychotic drugs are partly effective in positive symptoms of schizophrenia, yet they poorly treat negative symptoms and cognitive deficits. The present article reviews the neurobiological basis of 5-HT1A receptor (5-HT1A-R) function and the role of pre- and postsynaptic 5-HT1A-Rs in the treatment of MDD, anxiety and psychotic disorders. The activation of postsynaptic 5-HT1A-Rs in corticolimbic areas appears beneficial for the therapeutic action of antidepressant drugs. However, presynaptic 5-HT1A-Rs play a detrimental role in MDD, since individuals with high density or function of presynaptic 5-HT1A-Rs are more susceptible to mood disorders and suicide, and respond poorly to antidepressant drugs. Moreover, the indirect activation of presynaptic 5-HT1A-Rs by SSRIs/SNRIs reduces 5-HT neuron activity and terminal 5-HT release, thus opposing the elevation of extracellular 5-HT produced by blockade of the serotonin transporter (SERT) in the forebrain. Chronic antidepressant treatment desensitizes presynaptic 5-HT1A-Rs, thus reducing the effectiveness of the 5-HT1A autoreceptor-mediated negative feedback. The prevention of this process by the non-selective partial agonist pindolol accelerates clinical antidepressant effects. Two new antidepressant drugs, vilazodone (marketed in the USA) and vortioxetine (in development) incorporate partial 5-HT1A-R agonist properties with SERT blockade. Several studies with transgenic mice have also established the respective role of pre- and postsynaptic 5-HT1A-Rs in MDD and anxiety. In agreement with pharmacological studies, presynaptic and postsynaptic 5-HT1A-R activation appears necessary for anxiolytic and antidepressant effects, respectively, yet, neurodevelopmental roles for 5-HT1A-Rs are also involved. Likewise, the use of small interference RNA has enabled the showing of robust antidepressant-like effects in mice after selective knock-down of 5-HT1A autoreceptors. Postsynaptic 5-HT1A-Rs in the prefrontal cortex (PFC) also appear important for the superior clinical effects of clozapine and other second-generation (atypical) antipsychotic drugs in the treatment of schizophrenia and related psychotic disorders. Despite showing a moderate in vitro affinity for 5-HT1A-Rs in binding assays, clozapine displays functional agonist properties at this receptor type in vivo. The stimulation of 5-HT1A-Rs in the PFC leads to the distal activation of the mesocortical pathway and to an increased dopamine release in PFC, an effect likely involved in the clinical actions of clozapine in negative symptoms and cognitive deficits in schizophrenia. The anxiolytic/antidepressant properties of 5-HT1A-R agonists in preclinical tests raised expectations enormously. However, these agents have achieved little clinical success, possibly due to their partial agonist character at postsynaptic 5-HT1A-Rs, together with full agonist properties at presynaptic 5-HT1A autoreceptors, as well as their gastrointestinal side effects. The partial 5-HT1A-R agonists buspirone, gepirone, and tandospirone are marketed as anxiolytic drugs, and buspirone is also used as an augmentation strategy in MDD. The development of new 5-HT1A-R agonists with selectivity for postsynaptic 5-HT1A-Rs may open new perspectives in the field.
Collapse
|
34
|
Novelty and anxiolytic drugs dissociate two components of hippocampal theta in behaving rats. J Neurosci 2013; 33:8650-67. [PMID: 23678110 DOI: 10.1523/jneurosci.5040-12.2013] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hippocampal processing is strongly implicated in both spatial cognition and anxiety and is temporally organized by the theta rhythm. However, there has been little attempt to understand how each type of processing relates to the other in behaving animals, despite their common substrate. In freely moving rats, there is a broadly linear relationship between hippocampal theta frequency and running speed over the normal range of speeds used during foraging. A recent model predicts that spatial-translation-related and arousal/anxiety-related mechanisms of hippocampal theta generation underlie dissociable aspects of the theta frequency-running speed relationship (the slope and intercept, respectively). Here we provide the first confirmatory evidence: environmental novelty decreases slope, whereas anxiolytic drugs reduce intercept. Variation in slope predicted changes in spatial representation by CA1 place cells and novelty-responsive behavior. Variation in intercept predicted anxiety-like behavior. Our findings isolate and doubly dissociate two components of theta generation that operate in parallel in behaving animals and link them to anxiolytic drug action, novelty, and the metric for self-motion.
Collapse
|
35
|
Yeung M, Lu L, Hughes AM, Treit D, Dickson CT. FG7142, yohimbine, and βCCE produce anxiogenic-like effects in the elevated plus-maze but do not affect brainstem activated hippocampal theta. Neuropharmacology 2013; 75:47-52. [PMID: 23851259 DOI: 10.1016/j.neuropharm.2013.06.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/20/2013] [Accepted: 06/27/2013] [Indexed: 01/08/2023]
Abstract
The neurobiological underpinnings of anxiety are of paramount importance to selective and efficacious pharmaceutical intervention. Hippocampal theta frequency in urethane anaesthetized rats is suppressed by all known (and some previously unknown) anti-anxiety (anxiolytic) drugs. Although these findings support the predictive validity of this assay, its construct validity (i.e., whether theta frequency actually indexes anxiety per se) has not been a subject of systematic investigation. We reasoned that if anxiolytic drugs suppress hippocampal theta frequency, then drugs that increase anxiety (i.e., anxiogenic agents) should increase theta frequency, thus providing evidence of construct validity. We used three proven anxiogenic drugs--two benzodiazepine receptor inverse agonists, N-methyl-β-carboline-3-carboxamide (FG7142) and β-carboline-3-carboxylate ethyl ester (βCCE), and one α2 noradrenergic receptor antagonist, 17α-hydroxy-yohimban-16α-carboxylic acid methyl ester (yohimbine) as pharmacological probes to assess the construct validity of the theta model. Although all three anxiogenic drugs significantly increased behavioural measures of anxiety in the elevated plus-maze, none of the three increased the frequency of hippocampal theta oscillations in the neurophysiological model. As a positive control, we demonstrated that diazepam, a proven anxiolytic drug, decreased the frequency of hippocampal theta, as in all other studies using this model. Given this discrepancy between the significant effects of anxiogenic drugs in the behavioural model and the null effects of these drugs in the neurophysiological model, we conclude that the construct validity of the hippocampal theta model of anxiety is questionable.
Collapse
Affiliation(s)
- Michelle Yeung
- Department of Psychology, University of Alberta, P-449 Biological Sciences Building, Edmonton, AB, Canada T6G 2E9
| | - Lily Lu
- Department of Psychology, University of Alberta, P-449 Biological Sciences Building, Edmonton, AB, Canada T6G 2E9
| | - Adam M Hughes
- Department of Psychology, University of Alberta, P-449 Biological Sciences Building, Edmonton, AB, Canada T6G 2E9
| | - Dallas Treit
- Department of Psychology, University of Alberta, P-449 Biological Sciences Building, Edmonton, AB, Canada T6G 2E9; Centre for Neuroscience, 513 Heritage Medical Research Center, University of Alberta, Edmonton, AB, Canada T6G 2R3.
| | - Clayton T Dickson
- Department of Psychology, University of Alberta, P-449 Biological Sciences Building, Edmonton, AB, Canada T6G 2E9; Centre for Neuroscience, 513 Heritage Medical Research Center, University of Alberta, Edmonton, AB, Canada T6G 2R3; Department of Physiology, 7-55 Medical Sciences Building, University of Alberta, Edmonton, AB, Canada T6G 2H7
| |
Collapse
|
36
|
Balkenhol T, Wallhäusser-Franke E, Delb W. Psychoacoustic tinnitus loudness and tinnitus-related distress show different associations with oscillatory brain activity. PLoS One 2013; 8:e53180. [PMID: 23326394 PMCID: PMC3542397 DOI: 10.1371/journal.pone.0053180] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 11/26/2012] [Indexed: 01/07/2023] Open
Abstract
Background The phantom auditory perception of subjective tinnitus is associated with aberrant brain activity as evidenced by magneto- and electroencephalographic studies. We tested the hypotheses (1) that psychoacoustically measured tinnitus loudness is related to gamma oscillatory band power, and (2) that tinnitus loudness and tinnitus-related distress are related to distinct brain activity patterns as suggested by the distinction between loudness and distress experienced by tinnitus patients. Furthermore, we explored (3) how hearing impairment, minimum masking level, and (4) psychological comorbidities are related to spontaneous oscillatory brain activity in tinnitus patients. Methods and Findings Resting state oscillatory brain activity recorded electroencephalographically from 46 male tinnitus patients showed a positive correlation between gamma band oscillations and psychoacoustic tinnitus loudness determined with the reconstructed tinnitus sound, but not with the other psychoacoustic loudness measures that were used. Tinnitus-related distress did also correlate with delta band activity, but at electrode positions different from those associated with tinnitus loudness. Furthermore, highly distressed tinnitus patients exhibited a higher level of theta band activity. Moreover, mean hearing loss between 0.125 kHz and 16 kHz was associated with a decrease in gamma activity, whereas minimum masking levels correlated positively with delta band power. In contrast, psychological comorbidities did not express significant correlations with oscillatory brain activity. Conclusion Different clinically relevant tinnitus characteristics show distinctive associations with spontaneous brain oscillatory power. Results support hypothesis (1), but exclusively for the tinnitus loudness derived from matching to the reconstructed tinnitus sound. This suggests to preferably use the reconstructed tinnitus spectrum to determine psychoacoustic tinnitus loudness. Results also support hypothesis (2). Moreover, hearing loss and minimum masking level correlate with oscillatory power in distinctive frequency bands. The lack of an association between psychological comorbidities and oscillatory power may be attributed to the overall low level of mental health problems in the present sample.
Collapse
Affiliation(s)
- Tobias Balkenhol
- Department of Phoniatrics and Audiology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Wolfgang Delb
- Department of Phoniatrics and Audiology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- * E-mail:
| |
Collapse
|
37
|
Cornwell BR, Arkin N, Overstreet C, Carver FW, Grillon C. Distinct contributions of human hippocampal theta to spatial cognition and anxiety. Hippocampus 2012; 22:1848-59. [PMID: 22467298 PMCID: PMC3390451 DOI: 10.1002/hipo.22019] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2012] [Indexed: 11/06/2022]
Abstract
Current views of the hippocampus assign this structure, and its prominent theta rhythms, a key role in both cognition and affect. We studied this duality of function in humans, where no direct evidence exists. Whole-head magnetoencephalographic (MEG) data were recorded to measure theta activity while healthy participants (N = 25) navigated two virtual Morris water mazes, one in which they risked receiving aversive shocks without warning to induce anxiety and one in which they were safe from shocks. Results showed that threat of shock elevated anxiety level and enhanced navigation performance as compared to the safe condition. MEG source analyses revealed that improved navigation performance during threat was preferentially associated with increased left septal (posterior) hippocampal theta (specifically 4-8 Hz activity), replicating previous research that emphasizes a predominant role of the septal third of the hippocampus in spatial cognition. Moreover, increased self-reported anxiety during threat was preferentially associated with increased left temporal (anterior) hippocampal theta (specifically 2-6 Hz activity), consistent with this region's involvement in mediating conditioned and innate fear. Supporting contemporary theory, these findings highlight simultaneous involvement of the human hippocampus in spatial cognition and anxiety, and clarify their distinct correlates.
Collapse
Affiliation(s)
- Brian R Cornwell
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
38
|
Hazra R, Guo JD, Dabrowska J, Rainnie DG. Differential distribution of serotonin receptor subtypes in BNST(ALG) neurons: modulation by unpredictable shock stress. Neuroscience 2012; 225:9-21. [PMID: 22922122 DOI: 10.1016/j.neuroscience.2012.08.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/30/2012] [Accepted: 08/09/2012] [Indexed: 11/17/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) plays a critical role in regulating the behavioral response to stress. Stressors that activate the BNST also activate serotonergic (5-HT) systems. Hence, maladaptive changes of 5-HT receptor expression may contribute to stress-induced anxiety disorders. The BNST contains three neuronal types, Type I-III neurons. However, little is known about 5-HT receptor subtypes mRNA expression in these neurons, or whether it can be modulated by stress. Whole-cell patch clamp recording from Type I-III neurons was used in conjunction with single cell reverse transcriptase polymerase chain reaction (RT-PCR) to characterize 5-HT receptor mRNA expression, and examine the effects of stress on this expression. We report that Type I neurons expressed mRNA transcripts predominantly for 5-HT(1A) and 5-HT(7) receptors. Type II neurons expressed transcripts for every 5-HT receptor except the 5-HT(2C) receptor. Type II neurons were divided into three sub-populations: Type IIA in which transcripts for 5-HT(3) and 5-HT(7) receptors predominate, Type IIB that mainly express 5-HT(1B) and 5-HT(4) receptor transcripts, and Type IIC in which transcripts for 5-HT(1A) and 5-HT(2A) receptors predominate. Type III neurons were also subdivided into two sub-populations; one that predominantly expressed transcripts for 5-HT(1A), 5-HT(1B) and 5-HT(2A) receptors, and another that mainly expressed transcripts for 5-HT(2C) receptor. Unpredictable shock stress (USS) caused a long-lasting increase in anxiety-like behavior, and a concomitant decrease in 5-HT(1A) transcript expression in Type I-III neurons, as well as an up-regulation of a transcriptional repressor of 5-HT(1A) gene expression, deformed epidermal autoregulatory factor 1 (Deaf-1). Significantly USS decreased 5-HT(1A) protein level, and increased the level of Deaf-1. USS also increased 5-HT(1B) transcript expression in Type III neurons, as well as 5-HT(7) expression in Type I and II neurons. These data suggest that cell type-specific disruption of 5-HT receptor expression in BNST(ALG) neurons may contribute to stress-induced anxiety disorders.
Collapse
Affiliation(s)
- R Hazra
- Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Atlanta, GA, USA
| | | | | | | |
Collapse
|
39
|
Sohal VS. Insights into cortical oscillations arising from optogenetic studies. Biol Psychiatry 2012; 71:1039-45. [PMID: 22381731 PMCID: PMC3361599 DOI: 10.1016/j.biopsych.2012.01.024] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 12/16/2011] [Accepted: 01/19/2012] [Indexed: 01/14/2023]
Abstract
Cortical oscillations in the theta (4-10 Hz) and gamma (30-100 Hz) frequency range have been hypothesized to play important roles in numerous cognitive processes and may be involved in psychiatric conditions including anxiety, schizophrenia, and autism. This review provides background information about these oscillations and their possible roles in psychiatric illness. Findings from recent studies that used optogenetic tools to demonstrate that 1) a particular class of inhibitory interneurons expressing the calcium binding protein parvalbumin plays a central role in gamma oscillations, 2) gamma oscillations can entrain rhythmic firing in pyramidal neurons, and 3) rhythmic firing at theta and gamma frequencies can enhance communication between neurons are described. Finally, how these findings may relate to the pathophysiology of psychiatric conditions, as well as questions for future studies, are discussed.
Collapse
Affiliation(s)
- Vikaas S. Sohal
- Department of Psychiatry, Keck Center for Integrative Neuroscience and Sloan Swartz Center for Theoretical Neurobiology, University of California, San Francisco, San Francisco, CA 94143,
| |
Collapse
|
40
|
Jain A, Dvorkin A, Fonio E, Golani I, Gross CT. Validation of the dimensionality emergence assay for the measurement of innate anxiety in laboratory mice. Eur Neuropsychopharmacol 2012; 22:153-63. [PMID: 21788118 DOI: 10.1016/j.euroneuro.2011.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 06/29/2011] [Accepted: 07/04/2011] [Indexed: 11/16/2022]
Abstract
The open field test is a common tool to measure innate anxiety in rodents. In the usual configuration of this test the animal is forced to explore the open arena and its behavior includes both anxiety and non-anxiety responses. However, the open arena is generally small and allows only limited expression of exploratory behavior. The recently developed dimensionality emergence assay in which an animal is housed in a home cage with free access to a large circular arena elicits graded exploration and promises to serve as a more ethological test of anxiety. Here we examined the predictive validity of this assay for anxiety-related measures in mice. First, we compared their behavior in the presence or absence of access to the home cage and found that mice with access to the home cage exhibited a gradual build-up in exploration of the arena while those without did not. Then we identified behavioral measures that responded to treatment with the anxiolytic drug diazepam. Diazepam altered several classical measures of innate anxiety, such as distance traveled and thigmotaxis, but also led to a dose-dependent acceleration of the build-up as reflected in a significantly reduced latency to attain several exploratory landmarks. Finally, we tested the utility of the dimensionality emergence assay in assessing alterations in innate anxiety reported in mice carrying a knockout allele for the serotonin 1A receptor (Htr1a). Our findings support the validity of the dimensionality emergence assay as a method to extract an expanded repertoire of behavioral measures for the assessment of anxiety in laboratory mice.
Collapse
Affiliation(s)
- Apar Jain
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), Italy
| | | | | | | | | |
Collapse
|
41
|
Siok CJ, Cogan SM, Shifflett LB, Doran AC, Kocsis B, Hajós M. Comparative analysis of the neurophysiological profile of group II metabotropic glutamate receptor activators and diazepam: effects on hippocampal and cortical EEG patterns in rats. Neuropharmacology 2011; 62:226-36. [PMID: 21791219 DOI: 10.1016/j.neuropharm.2011.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/06/2011] [Accepted: 07/09/2011] [Indexed: 10/17/2022]
Abstract
Selective activation of the Group II metabotropic glutamate receptors 2/3 (mGlu2/3) by either full agonists or positive allosteric modulators (PAMs) show anxiolytic activity. In the present study the anxiolytic profile of mGlu2/3 receptor agonists LY-354740 and LY-404039 and the mGlu2 receptor PAM 1-methyl-2-((cis-3-methyl-4-(4-trifluoromethyl-2-methoxy)-phenyl)piperidin-1-yl)-1H-imidazo[4,5-b]pyridine (MTFIP) were evaluated using neurophysiology-based assays. Activation of mGlu2/3 receptors by these compounds, as well as the positive control diazepam, significantly decreased the frequency of hippocampal theta oscillation elicited by stimulation of the brainstem nucleus pontis oralis (nPO), a characteristic action of anxiolytic compounds. Since the nPO is a critical region involved in regulation of rapid eye movement sleep, mGlu2/3 receptor activators were also tested on sleep parameters, as well as on cortical and hippocampal encephalography (EEG) activity. Both mGlu2/3 agonists and the mGlu2 PAM significantly prolonged REM sleep latency and reduced total REM sleep duration while during the active awake state all compounds lowered hippocampal peak theta frequency. However, diazepam and mGlu2/3 agonists/PAM elicited opposite changes in cortical EEG delta and beta bands. Delta power significantly increased after any of the mGlu2/3 compounds but decreased after diazepam. In the beta band, mGlu2/3 receptor agonists dose-dependently decreased beta power in contrast to the well-known beta activation by diazepam. These effects lasted 3-4h and could not be explained by modest, transient changes (<1h) in waking and slow wave sleep. The current observations support the role of mGlu2/3 receptor activators as potential anxiolytic compounds, but indicate a distinct action on cortical EEG activity which is different from the effects of GABA(A) PAMs. This article is part of a Special Issue entitled 'Anxiety and Depression'.
Collapse
Affiliation(s)
- Chester J Siok
- Department of Neuroscience, Pfizer Global Research and Development, Eastern Point Road, MS 8220-4366, Groton, CT 06340, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Impaired limbic gamma oscillatory synchrony during anxiety-related behavior in a genetic mouse model of bipolar mania. J Neurosci 2011; 31:6449-56. [PMID: 21525286 DOI: 10.1523/jneurosci.6144-10.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Alterations in anxiety-related processing are observed across many neuropsychiatric disorders, including bipolar disorder. Though polymorphisms in a number of circadian genes confer risk for this disorder, little is known about how changes in circadian gene function disrupt brain circuits critical for anxiety-related processing. Here we characterize neurophysiological activity simultaneously across five limbic brain areas (nucleus accumbens, amygdala, prelimbic cortex, ventral hippocampus, and ventral tegmental area) as wild-type (WT) mice and mice with a mutation in the circadian gene, CLOCK (Clock-Δ19 mice) perform an elevated zero maze task. In WT mice, basal limbic gamma oscillatory synchrony observed before task performance predicted future anxiety-related behaviors. Additionally, dynamic changes in limbic gamma oscillatory synchrony were observed based on the position of WT mice in the zero maze. Clock-Δ19 mice, which displayed an increased propensity to enter the open section of the elevated maze, showed profound deficits in these anxiety-related circuit processes. Thus, our findings link the anxiety-related behavioral deficits observed in Clock-Δ19 mice with dysfunctional gamma oscillatory tuning across limbic circuits and suggest that alterations in limbic oscillatory circuit function induced by circadian gene polymorphisms may contribute to the behavioral manifestations seen in bipolar mania.
Collapse
|
43
|
Freeman-Daniels E, Beck SG, Kirby LG. Cellular correlates of anxiety in CA1 hippocampal pyramidal cells of 5-HT1A receptor knockout mice. Psychopharmacology (Berl) 2011; 213:453-63. [PMID: 20981413 PMCID: PMC3110650 DOI: 10.1007/s00213-010-2030-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 09/16/2010] [Indexed: 10/18/2022]
Abstract
RATIONALE 5-HT(1A) receptor knockout (1AKO) mice have a robust anxiety phenotype. Tissue-specific "rescue" strategies and electrophysiology have implicated a critical role for postsynaptic 5-HT(1A) receptors, particularly in the CA1 region of the hippocampus. OBJECTIVES In this study, we evaluated differences in membrane properties and synaptic activity in CA1 hippocampal pyramidal cells between 1AKOs and wild-type (WT) controls to better understand the cellular correlates of anxiety in this mouse model. METHODS Whole-cell patch-clamp recordings were conducted in CA1 pyramidal cells in hippocampal brain slices from 1AKOs and WTs that had previously been screened for anxiety with the elevated-plus maze. Spontaneous miniature inhibitory and excitatory postsynaptic currents (IPSCs and EPSCs) and stimulus-evoked eIPSCs and eEPSCs were recorded in addition to the effect of the benzodiazepine agonist diazepam or the inverse agonist FG 7142 on γ-aminobutyric acid (GABA)ergic eIPSCs. RESULTS Evoked EPSC amplitude was greater in 1AKOs than WTs. When subjects were pooled across genotypes, anxiety measures correlated with eEPSC amplitude, indicating enhanced postsynaptic glutamate synaptic activity under conditions of synaptic activation in anxious subjects. While GABA synaptic activity and sensitivity to diazepam were not affected by genotype or correlated with anxiety, sensitivity to the anxiogenic FG 7142 was smaller in anxious subjects. CONCLUSIONS These data indicate enhanced postsynaptic glutamate receptor sensitivity and decreased GABAergic inhibition by a benzodiazepine inverse agonist in CA1 hippocampal neurons of anxious mice are produced by deletion of the 5-HT(1A) receptor. These data provide new information about interactions between 5-HT, GABA, and glutamate systems during the expression of chronic anxiety.
Collapse
|
44
|
Escitalopram enhances the association of serotonin-1A autoreceptors to heteroreceptors in anxiety disorders. J Neurosci 2010; 30:14482-9. [PMID: 20980606 DOI: 10.1523/jneurosci.2409-10.2010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) represent one of the most common treatment options in major depression and anxiety disorders. By blocking the serotonin transporter, SSRIs modulate serotonergic neurotransmission as well as the function of autoreceptors and heteroreceptors. However, treatment-induced changes on a network level primarily remain unknown. Thus, we evaluated the association between serotonin-1A (5-HT1A) autoreceptors and heteroreceptors before and after SSRIs. Twenty-one patients with anxiety disorders underwent positron emission tomography using [carbonyl-11C]WAY-100635 before and after 12 weeks of escitalopram treatment; 15 of them completed the study protocol. Additionally, 36 drug-naive healthy controls were measured once. The 5-HT1A receptor binding potential (BPND) was quantified for the dorsal raphe nucleus (DRN) using a region-of-interest approach and for the entire brain by calculating parametric maps. Voxel-wise linear regression was applied between DRN autoreceptor and whole-brain heteroreceptor 5-HT1A BPND. Consistent with previous observations, healthy subjects showed widespread positive correlations of 5-HT1A BPND between autoreceptors and heteroreceptors. Comparing patients before versus after escitalopram treatment revealed enhanced associations of autoreceptor-to-heteroreceptor 5-HT1A BPND within the amygdala and hippocampus (R2=0.21-0.28 vs 0.49-0.81; p<0.05-0.001). In contrast, no significant SSRI-induced changes were found for correlations of heteroreceptor-to-heteroreceptor 5-HT1A BPND between several limbic regions. This interregional approach suggests a treatment-induced reinforcement of the association of 5-HT1A binding between autoreceptors and heteroreceptors specifically in areas involved in anxiety disorders. These findings provide complementary information about treatment effects on a network level and confirm the central role of the DRN as a prime regulatory area.
Collapse
|
45
|
Dzirasa K, Fuentes R, Kumar S, Potes JM, Nicolelis MAL. Chronic in vivo multi-circuit neurophysiological recordings in mice. J Neurosci Methods 2010; 195:36-46. [PMID: 21115042 DOI: 10.1016/j.jneumeth.2010.11.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 11/18/2010] [Accepted: 11/20/2010] [Indexed: 11/30/2022]
Abstract
While genetically modified mice have become a widely accepted tool for modeling the influence of gene function on the manifestation of neurological and psychiatric endophenotypes, only modest headway has been made in characterizing the functional circuit changes that underlie the disruption of complex behavioral processes in various models. This challenge partially arises from the fact that even simple behaviors require the coordination of many neural circuits vastly distributed across multiple brain areas. As such, many independent neurophysiological alterations are likely to yield overlapping circuit disruptions and ultimately lead to the manifestation of similar behavioral deficits. Here we describe the expansion of our neurophysiological recording approach in an effort to quantify neurophysiological activity across many large scale brain circuits simultaneously in freely behaving genetically modified mice. Using this expanded approach we were able to isolate up to 70 single neurons and record local field potential (LFP) activity simultaneously across 11 brain areas. Moreover, we found that these neurophysiological signals remained viable up to 16 months after implantation. Thus, our approach provides a powerful tool that will aid in dissecting the central brain network changes that underlie the complex behavioral deficits displayed by various genetically modified mice.
Collapse
Affiliation(s)
- Kafui Dzirasa
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | |
Collapse
|
46
|
Synchronized activity between the ventral hippocampus and the medial prefrontal cortex during anxiety. Neuron 2010; 65:257-69. [PMID: 20152131 DOI: 10.1016/j.neuron.2009.12.002] [Citation(s) in RCA: 507] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2009] [Indexed: 11/22/2022]
Abstract
The ventral hippocampus, unlike its dorsal counterpart, is required for anxiety-like behavior. The means by which it acts are unknown. We hypothesized that the hippocampus synchronizes with downstream targets that influence anxiety, such as the medial prefrontal cortex (mPFC). To test this hypothesis, we recorded mPFC and hippocampal activity in mice exposed to two anxiogenic arenas. Theta-frequency activity in the mPFC and ventral, but not dorsal, hippocampus was highly correlated at baseline, and this correlation increased in both anxiogenic environments. Increases in mPFC theta power predicted avoidance of the aversive compartments of each arena and were larger in serotonin 1A receptor knockout mice, a genetic model of increased anxiety-like behavior. These results suggest a role for theta-frequency synchronization between the ventral hippocampus and the mPFC in anxiety. They are consistent with the notion that such synchronization is a general mechanism by which the hippocampus communicates with downstream structures of behavioral relevance.
Collapse
|
47
|
Abstract
Although anatomical, lesion, and imaging studies of the hippocampus indicate qualitatively different information processing along its septo-temporal axis, physiological mechanisms supporting such distinction are missing. We found fundamental differences between the dorsal (dCA3) and the ventral-most parts (vCA3) of the hippocampus in both environmental representation and temporal dynamics. Discrete place fields of dCA3 neurons evenly covered all parts of the testing environments. In contrast, vCA3 neurons (1) rarely showed continuous two-dimensional place fields, (2) differentiated open and closed arms of a radial maze, and (3) discharged similar firing patterns with respect to the goals, both on multiple arms of a radial maze and during opposite journeys in a zigzag maze. In addition, theta power and the fraction of theta-rhythmic neurons were substantially reduced in the ventral compared with dorsal hippocampus. We hypothesize that the spatial representation in the septo-temporal axis of the hippocampus is progressively decreased. This change is paralleled with a reduction of theta rhythm and an increased representation of nonspatial information.
Collapse
|
48
|
Phospholipase C beta 4 in the medial septum controls cholinergic theta oscillations and anxiety behaviors. J Neurosci 2010; 29:15375-85. [PMID: 20007462 DOI: 10.1523/jneurosci.3126-09.2009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Anxiety is among the most prevalent and costly diseases of the CNS, but its underlying mechanisms are not fully understood. Although attenuated theta rhythms have been observed in human subjects with increased anxiety, no study has been done on the possible physiological link between these two manifestations. We found that the mutant mouse for phospholipase C beta 4 (PLC-beta 4(-/-)) showed attenuated theta rhythm and increased anxiety, presenting the first animal model for the human condition. PLC-beta 4 is abundantly expressed in the medial septum, a region implicated in anxiety behavior. RNA interference-mediated PLC-beta 4 knockdown in the medial septum produced a phenotype similar to that of PLC-beta 4(-/-) mice. Furthermore, increasing cholinergic signaling by administering an acetylcholinesterase inhibitor cured the anomalies in both cholinergic theta rhythm and anxiety behavior observed in PLC-beta 4(-/-) mice. These findings suggest that (1) PLC-beta 4 in the medial septum is involved in controlling cholinergic theta oscillation and (2) cholinergic theta rhythm plays a critical role in suppressing anxiety. We propose that defining the cholinergic theta rhythm profile may provide guidance in subtyping anxiety disorders in humans for more effective diagnosis and treatments.
Collapse
|
49
|
An unexpected role for TASK-3 potassium channels in network oscillations with implications for sleep mechanisms and anesthetic action. Proc Natl Acad Sci U S A 2009; 106:17546-51. [PMID: 19805135 DOI: 10.1073/pnas.0907228106] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
TASK channels are acid-sensitive and anesthetic-activated members of the family of two-pore-domain potassium channels. We have made the surprising discovery that the genetic ablation of TASK-3 channels eliminates a specific type of theta oscillation in the cortical electroencephalogram (EEG) resembling type II theta (4-9 Hz), which is thought to be important in processing sensory stimuli before initiating motor activity. In contrast, ablation of TASK-1 channels has no effect on theta oscillations. Despite the absence of type II theta oscillations in the TASK-3 knockout (KO) mice, the related type I theta, which has certain neuronal pathways in common and is involved in exploratory behavior, is unaffected. In addition to the absence of type II theta oscillations, the TASK-3 KO animals show marked alterations in both anesthetic sensitivity and natural sleep behavior. Their sensitivity to halothane, a potent activator of TASK channels, is greatly reduced, whereas their sensitivity to cyclopropane, which does not activate TASK-3 channels, is unchanged. The TASK-3 KO animals exhibit a slower progression from their waking to sleeping states and, during their sleeping period, their sleep episodes as well as their REM theta oscillations are more fragmented. These results imply a previously unexpected role for TASK-3 channels in the cellular mechanisms underlying these behaviors and suggest that endogenous modulators of these channels may regulate theta oscillations.
Collapse
|
50
|
Behavioural and electroencephalographic effects of systemic injections of 8-OH-DPAT in the pigeon (Columba livia). Behav Brain Res 2009; 201:244-56. [DOI: 10.1016/j.bbr.2009.02.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 02/11/2009] [Accepted: 02/13/2009] [Indexed: 01/16/2023]
|