1
|
Tripathi K, Hazra S, Hazra JD, Mandel S, Anunu R, Kriebel M, Volkmer H, Richter-Levin G. Selective knockdown of GABAA-α2 subunit in the dorsal dentate gyrus in adulthood induces anxiety, learning and memory deficits and impairs synaptic plasticity. Eur J Neurosci 2024; 60:4393-4408. [PMID: 38858171 DOI: 10.1111/ejn.16441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 04/13/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024]
Abstract
Animal studies and clinical trials suggest that maintenance of gamma-aminobutyric acid (GABA)-ergic activity may be crucial in coping with stressful conditions, anxiety and mood disorders. Drugs highly efficient in promoting anxiolysis were shown to activate this system, particularly via the α2-subunit of type A receptors (GABAA α2). Given the high expression of GABAA α2 in the dentate gyrus (DG) sub-field of the hippocampus, we sought to examine whether manipulation of the α2 subunit in this area will evoke changes in emotional behaviour, memory and learning as well as in synaptic plasticity. We found that knockdown of GABAAα2 receptor specifically in the dorsal DG of rats caused increased anxiety without affecting locomotor activity. Spatial memory and learning in the Morris water maze were also impaired in GABAAα2 receptor knocked down rats, an effect accompanied by alterations in synaptic plasticity, as assessed by long-term potentiation in the DG. Our findings provide further support to the notion that emotional information processing in the hippocampus may be controlled, at least in part, via the inhibitory GABAA α2 receptor subunit, opening a potential avenue for early interventions from pre- puberty into adulthood, as a strategy for controlling anxiety-related psychopathology.
Collapse
Affiliation(s)
- Kuldeep Tripathi
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel
- Psychology Department, University of Haifa, Haifa, Israel
| | - Somoday Hazra
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel
- Psychology Department, University of Haifa, Haifa, Israel
| | - Joyeeta Dutta Hazra
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel
- Psychology Department, University of Haifa, Haifa, Israel
| | - Silvia Mandel
- The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel
| | - Ruchi Anunu
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel
- Psychology Department, University of Haifa, Haifa, Israel
| | - Martin Kriebel
- Department of Molecular Biology, Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany
| | - Hansjurgen Volkmer
- Department of Molecular Biology, Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany
| | - Gal Richter-Levin
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel
- Psychology Department, University of Haifa, Haifa, Israel
| |
Collapse
|
2
|
Campbell BFN, Cruz-Ochoa N, Otomo K, Lukacsovich D, Espinosa P, Abegg A, Luo W, Bellone C, Földy C, Tyagarajan SK. Gephyrin phosphorylation facilitates sexually dimorphic development and function of parvalbumin interneurons in the mouse hippocampus. Mol Psychiatry 2024; 29:2510-2526. [PMID: 38503929 PMCID: PMC11412903 DOI: 10.1038/s41380-024-02517-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024]
Abstract
The precise function of specialized GABAergic interneuron subtypes is required to provide appropriate synaptic inhibition for regulating principal neuron excitability and synchronization within brain circuits. Of these, parvalbumin-type (PV neuron) dysfunction is a feature of several sex-biased psychiatric and brain disorders, although, the underlying developmental mechanisms are unclear. While the transcriptional action of sex hormones generates sexual dimorphism during brain development, whether kinase signaling contributes to sex differences in PV neuron function remains unexplored. In the hippocampus, we report that gephyrin, the main inhibitory post-synaptic scaffolding protein, is phosphorylated at serine S268 and S270 in a developmentally-dependent manner in both males and females. When examining GphnS268A/S270A mice in which site-specific phosphorylation is constitutively blocked, we found that sex differences in PV neuron density in the hippocampal CA1 present in WT mice were abolished, coincident with a female-specific increase in PV neuron-derived terminals and increased inhibitory input onto principal cells. Electrophysiological analysis of CA1 PV neurons indicated that gephyrin phosphorylation is required for sexually dimorphic function. Moreover, while male and female WT mice showed no difference in hippocampus-dependent memory tasks, GphnS268A/S270A mice exhibited sex- and task-specific deficits, indicating that gephyrin phosphorylation is differentially required by males and females for convergent cognitive function. In fate mapping experiments, we uncovered that gephyrin phosphorylation at S268 and S270 establishes sex differences in putative PV neuron density during early postnatal development. Furthermore, patch-sequencing of putative PV neurons at postnatal day 4 revealed that gephyrin phosphorylation contributes to sex differences in the transcriptomic profile of developing interneurons. Therefore, these early shifts in male-female interneuron development may drive adult sex differences in PV neuron function and connectivity. Our results identify gephyrin phosphorylation as a new substrate organizing PV neuron development at the anatomical, functional, and transcriptional levels in a sex-dependent manner, thus implicating kinase signaling disruption as a new mechanism contributing to the sex-dependent etiology of brain disorders.
Collapse
Affiliation(s)
- Benjamin F N Campbell
- Institute of Pharmacology and Toxicology, University of Zürich, 8057, Zürich, Switzerland
| | - Natalia Cruz-Ochoa
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, 8057, Zürich, Switzerland
- Adaptive Brain Circuits in Development and Learning (AdaBD), University Research Priority Program (URPP), University of Zürich, 8057, Zürich, Switzerland
| | - Kanako Otomo
- Institute of Pharmacology and Toxicology, University of Zürich, 8057, Zürich, Switzerland
| | - David Lukacsovich
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, 8057, Zürich, Switzerland
| | - Pedro Espinosa
- Department of Basic Neuroscience, University of Geneva, 1211, Geneva, Switzerland
| | - Andrin Abegg
- Institute of Pharmacology and Toxicology, University of Zürich, 8057, Zürich, Switzerland
| | - Wenshu Luo
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, 8057, Zürich, Switzerland
| | - Camilla Bellone
- Department of Basic Neuroscience, University of Geneva, 1211, Geneva, Switzerland
| | - Csaba Földy
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, 8057, Zürich, Switzerland
- Adaptive Brain Circuits in Development and Learning (AdaBD), University Research Priority Program (URPP), University of Zürich, 8057, Zürich, Switzerland
| | - Shiva K Tyagarajan
- Institute of Pharmacology and Toxicology, University of Zürich, 8057, Zürich, Switzerland.
| |
Collapse
|
3
|
Mitre M, Saadipour K, Williams K, Khatri L, Froemke RC, Chao MV. Transactivation of TrkB Receptors by Oxytocin and Its G Protein-Coupled Receptor. Front Mol Neurosci 2022; 15:891537. [PMID: 35721318 PMCID: PMC9201241 DOI: 10.3389/fnmol.2022.891537] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/11/2022] [Indexed: 12/28/2022] Open
Abstract
Brain-derived Neurotrophic Factor (BDNF) binds to the TrkB tyrosine kinase receptor, which dictates the sensitivity of neurons to BDNF. A unique feature of TrkB is the ability to be activated by small molecules in a process called transactivation. Here we report that the brain neuropeptide oxytocin increases BDNF TrkB activity in primary cortical neurons and in the mammalian neocortex during postnatal development. Oxytocin produces its effects through a G protein-coupled receptor (GPCR), however, the receptor signaling events that account for its actions have not been fully defined. We find oxytocin rapidly transactivates TrkB receptors in bath application of acute brain slices of 2-week-old mice and in primary cortical culture by increasing TrkB receptor tyrosine phosphorylation. The effects of oxytocin signaling could be distinguished from the related vasopressin receptor. The transactivation of TrkB receptors by oxytocin enhances the clustering of gephyrin, a scaffold protein responsible to coordinate inhibitory responses. Because oxytocin displays pro-social functions in maternal care, cognition, and social attachment, it is currently a focus of therapeutic strategies in autism spectrum disorders. Interestingly, oxytocin and BDNF are both implicated in the pathophysiology of depression, schizophrenia, anxiety, and cognition. These results imply that oxytocin may rely upon crosstalk with BDNF signaling to facilitate its actions through receptor transactivation.
Collapse
Affiliation(s)
- Mariela Mitre
- Departments of Cell Biology, Neuroscience & Physiology, and Psychiatry, Skirball Institute for Biomolecular Medicine, New York, NY, United States
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, United States
- Departments of Cell Biology, Psychiatry, New York University Langone Medical Center, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Langone Medical Center, New York, NY, United States
- Department of Otolaryngology, New York University Langone Medical Center, New York, NY, United States
- Center for Neural Science, New York University, New York, NY, United States
| | - Khalil Saadipour
- Departments of Cell Biology, Neuroscience & Physiology, and Psychiatry, Skirball Institute for Biomolecular Medicine, New York, NY, United States
| | - Kevin Williams
- Departments of Biology and Psychology, University of Georgia, Athens, GA, United States
| | - Latika Khatri
- Departments of Cell Biology, Neuroscience & Physiology, and Psychiatry, Skirball Institute for Biomolecular Medicine, New York, NY, United States
| | - Robert C. Froemke
- Departments of Cell Biology, Neuroscience & Physiology, and Psychiatry, Skirball Institute for Biomolecular Medicine, New York, NY, United States
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Langone Medical Center, New York, NY, United States
- Department of Otolaryngology, New York University Langone Medical Center, New York, NY, United States
- Center for Neural Science, New York University, New York, NY, United States
| | - Moses V. Chao
- Departments of Cell Biology, Neuroscience & Physiology, and Psychiatry, Skirball Institute for Biomolecular Medicine, New York, NY, United States
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, United States
- Departments of Cell Biology, Psychiatry, New York University Langone Medical Center, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Langone Medical Center, New York, NY, United States
- Center for Neural Science, New York University, New York, NY, United States
- *Correspondence: Moses V. Chao
| |
Collapse
|
4
|
Kim D, Jung H, Shirai Y, Kim H, Kim J, Lim D, Mori T, Lee H, Park D, Kim HY, Guo Q, Pang B, Qiu W, Cao X, Kouyama-Suzuki E, Uemura T, Kasem E, Fu Y, Kim S, Tokunaga A, Yoshizawa T, Suzuki T, Sakagami H, Lee KJ, Ko J, Tabuchi K, Um JW. IQSEC3 Deletion Impairs Fear Memory Through Upregulation of Ribosomal S6K1 Signaling in the Hippocampus. Biol Psychiatry 2022; 91:821-831. [PMID: 35219498 DOI: 10.1016/j.biopsych.2021.12.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/29/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND IQSEC3, a gephyrin-binding GABAergic (gamma-aminobutyric acidergic) synapse-specific guanine nucleotide exchange factor, was recently reported to regulate activity-dependent GABAergic synapse maturation, but the underlying signaling mechanisms remain incompletely understood. METHODS We generated mice with conditional knockout (cKO) of Iqsec3 to examine whether altered synaptic inhibition influences hippocampus-dependent fear memory formation. In addition, electrophysiological recordings, immunohistochemistry, and behavioral assays were used to address our question. RESULTS We found that Iqsec3-cKO induces a specific reduction in GABAergic synapse density, GABAergic synaptic transmission, and maintenance of long-term potentiation in the hippocampal CA1 region. In addition, Iqsec3-cKO mice exhibited impaired fear memory formation. Strikingly, Iqsec3-cKO caused abnormally enhanced activation of ribosomal P70-S6K1-mediated signaling in the hippocampus but not in the cortex. Furthermore, inhibiting upregulated S6K1 signaling by expressing dominant-negative S6K1 in the hippocampal CA1 of Iqsec3-cKO mice completely rescued impaired fear learning and inhibitory synapse density but not deficits in long-term potentiation maintenance. Finally, upregulated S6K1 signaling was rescued by IQSEC3 wild-type, but not by an ARF-GEF (adenosine diphosphate ribosylation factor-guanine nucleotide exchange factor) inactive IQSEC3 mutant. CONCLUSIONS Our results suggest that IQSEC3-mediated balanced synaptic inhibition in hippocampal CA1 is critical for the proper formation of hippocampus-dependent fear memory.
Collapse
Affiliation(s)
- Dongwook Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Hyeji Jung
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Yoshinori Shirai
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan
| | - Hyeonho Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Jinhu Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Dongseok Lim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Takuma Mori
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan; Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, Japan
| | - Hyojeong Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Dongseok Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Hee Young Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Qi Guo
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan
| | - Bo Pang
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan
| | - Wen Qiu
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan
| | - Xueshan Cao
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan
| | - Emi Kouyama-Suzuki
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan
| | - Takeshi Uemura
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan
| | - Enas Kasem
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan; Department of Zoology, Faculty of Science, Kafrelsheikh University, Kafr el-Sheikh, Egypt
| | - Yu Fu
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan
| | - Seungjoon Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Akinori Tokunaga
- Division of Laboratory Animal Resources, Life Science Research Laboratory, University of Fukui, Fukui, Japan
| | - Takahiro Yoshizawa
- Research Center for Supports to Advanced Science, Shinshu University, Nagano, Japan
| | - Tatsuo Suzuki
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Kanagawa, Japan
| | - Kea Joo Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea; Neural Circuits Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Katsuhiko Tabuchi
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan; Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, Japan.
| | - Ji Won Um
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea.
| |
Collapse
|
5
|
Jeckel P, Kriebel M, Volkmer H. Autism Spectrum Disorder Risk Factor Met Regulates the Organization of Inhibitory Synapses. Front Mol Neurosci 2021; 14:659856. [PMID: 34054427 PMCID: PMC8155383 DOI: 10.3389/fnmol.2021.659856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/09/2021] [Indexed: 12/27/2022] Open
Abstract
A common hypothesis explains autism spectrum disorder (ASD) as a neurodevelopmental disorder linked to excitatory/inhibitory (E/I) imbalance in neuronal network connectivity. Mutation of genes including Met and downstream signaling components, e.g., PTEN, Tsc2 and, Rheb are involved in the control of synapse formation and stabilization and were all considered as risk genes for ASD. While the impact of Met on glutamatergic synapses was widely appreciated, its contribution to the stability of inhibitory, GABAergic synapses is poorly understood. The stabilization of GABAergic synapses depends on clustering of the postsynaptic scaffolding protein gephyrin. Here, we show in vivo and in vitro that Met is necessary and sufficient for the stabilization of GABAergic synapses via induction of gephyrin clustering. Likewise, we provide evidence for Met-dependent gephyrin clustering via activation of mTOR. Our results support the notion that deficient GABAergic signaling represents a pathomechanism for ASD.
Collapse
Affiliation(s)
- Pauline Jeckel
- Department of Pharma and Biotech, NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Martin Kriebel
- Department of Pharma and Biotech, NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Hansjürgen Volkmer
- Department of Pharma and Biotech, NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| |
Collapse
|
6
|
Keable R, Leshchyns'ka I, Sytnyk V. Trafficking and Activity of Glutamate and GABA Receptors: Regulation by Cell Adhesion Molecules. Neuroscientist 2020; 26:415-437. [PMID: 32449484 DOI: 10.1177/1073858420921117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The efficient targeting of ionotropic receptors to postsynaptic sites is essential for the function of chemical excitatory and inhibitory synapses, constituting the majority of synapses in the brain. A growing body of evidence indicates that cell adhesion molecules (CAMs), which accumulate at synapses at the earliest stages of synaptogenesis, are critical for this process. A diverse variety of CAMs assemble into complexes with glutamate and GABA receptors and regulate the targeting of these receptors to the cell surface and synapses. Presynaptically localized CAMs provide an additional level of regulation, sending a trans-synaptic signal that can regulate synaptic strength at the level of receptor trafficking. Apart from controlling the numbers of receptors present at postsynaptic sites, CAMs can also influence synaptic strength by modulating the conductivity of single receptor channels. CAMs thus act to maintain basal synaptic transmission and are essential for many forms of activity dependent synaptic plasticity. These activities of CAMs may underlie the association between CAM gene mutations and synaptic pathology and represent fundamental mechanisms by which synaptic strength is dynamically tuned at both excitatory and inhibitory synapses.
Collapse
Affiliation(s)
- Ryan Keable
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Iryna Leshchyns'ka
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Celebi-Birand D, Ardic NI, Karoglu-Eravsar ET, Sengul GF, Kafaligonul H, Adams MM. Dietary and Pharmacological Interventions That Inhibit Mammalian Target of Rapamycin Activity Alter the Brain Expression Levels of Neurogenic and Glial Markers in an Age-and Treatment-Dependent Manner. Rejuvenation Res 2020; 23:485-497. [PMID: 32279604 DOI: 10.1089/rej.2019.2297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Intermittent fasting (IF) and its mimetic, rapamycin extend lifespan and healthspan through mechanisms that are not fully understood. We investigated different short-term durations of IF and rapamycin on cellular and molecular changes in the brains of young (6-10 months) and old (26-31 months) zebrafish. Interestingly, our results showed that IF significantly lowered glucose levels while increasing DCAMKL1 in both young and old animals. This proliferative effect of IF was supported by the upregulation of foxm1 transcript in old animals. Rapamycin did not change glucose levels in young and old animals but had differential effects depending on age. In young zebrafish, proliferating cell nuclear antigen and the LC3-II/LC3-I ratio was decreased, whereas glial fibrillary acidic protein and gephyrin were decreased in old animals. The changes in proliferative markers and a marker of autophagic flux suggest an age-dependent interplay between autophagy and cell proliferation. Additionally, changes in glia and inhibitory tone suggest a suppressive effect on neuroinflammation but may push the brain toward a more excitable state. Mammalian target of rapamycin (mTOR) activity in the brain following the IF and rapamycin treatment was differentially regulated by age. Interestingly, rapamycin inhibited mTOR more potently in young animals than IF. Principal component analysis supported our conclusion that the regulatory effects of IF and rapamycin were age-specific, since we observed different patterns in the expression levels and clustering of young and old animals. Taken together, our results suggest that even a short-term duration of IF and rapamycin have significant effects in the brain at young and old ages, and that these are age and treatment dependent.
Collapse
Affiliation(s)
- Dilan Celebi-Birand
- Interdisciplinary Graduate Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey.,UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey.,Zebrafish Facility, Bilkent University Molecular Biology and Genetics, Ankara, Turkey
| | - Narin Ilgim Ardic
- Interdisciplinary Graduate Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey.,UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey.,Zebrafish Facility, Bilkent University Molecular Biology and Genetics, Ankara, Turkey
| | - Elif Tugce Karoglu-Eravsar
- Interdisciplinary Graduate Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey.,UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey.,Zebrafish Facility, Bilkent University Molecular Biology and Genetics, Ankara, Turkey
| | - Goksemin Fatma Sengul
- Interdisciplinary Graduate Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey.,UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey.,Zebrafish Facility, Bilkent University Molecular Biology and Genetics, Ankara, Turkey.,Department of Cellular Biochemistry, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Hulusi Kafaligonul
- Interdisciplinary Graduate Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey.,Zebrafish Facility, Bilkent University Molecular Biology and Genetics, Ankara, Turkey.,National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Michelle M Adams
- Interdisciplinary Graduate Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey.,UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey.,Zebrafish Facility, Bilkent University Molecular Biology and Genetics, Ankara, Turkey.,Department of Psychology, Bilkent University, Ankara, Turkey
| |
Collapse
|
8
|
Antidepressant mechanisms of ketamine: Focus on GABAergic inhibition. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2020; 89:43-78. [PMID: 32616214 DOI: 10.1016/bs.apha.2020.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There has been much recent progress in understanding of the mechanism of ketamine's rapid and enduring antidepressant effects. Here we review recent insights from clinical and preclinical studies, with special emphasis of ketamine-induced changes in GABAergic synaptic transmission that are considered essential for its antidepressant therapeutic effects. Subanesthetic ketamine is now understood to exert its initial action by selectively blocking a subset of NMDA receptors on GABAergic interneurons, which results in disinhibition of glutamatergic target neurons, a surge in extracellular glutamate and correspondingly elevated glutamatergic synaptic transmission. This surge in glutamate appears to be corroborated by the rapid metabolism of ketamine into hydroxynorketamine, which acts at presynaptic sites to disinhibit the release of glutamate. Preclinical studies indicate that glutamate-induced activity triggers the release of BDNF, followed by transient activation of the mTOR pathway and increased expression of synaptic proteins, along with functional strengthening of glutamatergic synapses. This drug-on phase lasts for approximately 2h and is followed by a period of days characterized by structural maturation of newly formed glutamatergic synapses and prominently enhanced GABAergic synaptic inhibition. Evidence from mouse models with constitutive antidepressant-like phenotypes suggests that this phase involves strengthened inhibition of dendrites by somatostatin-positive GABAergic interneurons and correspondingly reduced NMDA receptor-mediated Ca2+ entry into dendrites, which activates an intracellular signaling cascade that converges with the mTOR pathway onto increased activity of the eukaryotic elongation factor eEF2 and enhanced translation of dendritic mRNAs. Newly synthesized proteins such as BDNF may be important for the prolonged therapeutic effects of ketamine.
Collapse
|
9
|
Kriebel M, Ebel J, Battke F, Griesbach S, Volkmer H. Interference With Complex IV as a Model of Age-Related Decline in Synaptic Connectivity. Front Mol Neurosci 2020; 13:43. [PMID: 32265651 PMCID: PMC7105595 DOI: 10.3389/fnmol.2020.00043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/04/2020] [Indexed: 12/30/2022] Open
Abstract
Age-related impairment of mitochondrial function may negatively impact energy-demanding processes such as synaptic transmission thereby triggering cognitive decline and processes of neurodegeneration. Here, we present a novel model for age-related mitochondrial impairment based on partial inhibition of cytochrome c oxidase subunit 4 (Cox4) of complex IV of the respiratory chain. miRNA-mediated knockdown of Cox4 correlated with a marked reduction in excitatory and inhibitory synaptic marker densities in vitro and in vivo as well as an impairment of neuronal network activity in primary neuronal cultures. Transcriptome analysis identified the deregulation of gene clusters, which link induced mitochondrial perturbation to impaired synaptic function and plasticity as well as processes of aging. In conclusion, the model of Cox4 deficiency reflects aspects of age-related dementia and might, therefore, serve as a novel test system for drug development.
Collapse
Affiliation(s)
- Martin Kriebel
- Department of Molecular Biology and Neurobiology, NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Julia Ebel
- Department of Molecular Biology and Neurobiology, NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | | | | | - Hansjürgen Volkmer
- Department of Molecular Biology and Neurobiology, NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| |
Collapse
|
10
|
Caldow MK, Ham DJ, Trieu J, Chung JD, Lynch GS, Koopman R. Glycine Protects Muscle Cells From Wasting in vitro via mTORC1 Signaling. Front Nutr 2019; 6:172. [PMID: 31803749 PMCID: PMC6871541 DOI: 10.3389/fnut.2019.00172] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/25/2019] [Indexed: 12/25/2022] Open
Abstract
Glycine supplementation can protect skeletal muscles of mice from cancer-induced wasting, but the mechanisms underlying this protection are not well-understood. The aim of this study was to determine whether exogenous glycine directly protects skeletal muscle cells from wasting. C2C12 muscle cells were exposed to non-inflammatory catabolic stimuli via two models: serum withdrawal (SF) for 48 h; or incubation in HEPES buffered saline (HBS) for up to 5 h. Cells were supplemented with glycine or equimolar concentrations of L-alanine. SF- and HBS-treated myotubes (with or without L-alanine) were ~20% and ~30% smaller than control myotubes. Glycine-treated myotubes were up to 20% larger (P < 0.01) compared to cells treated with L-alanine in both models of muscle cell atrophy. The mTORC1 inhibitor rapamycin prevented the glycine-stimulated protection of myotube diameter, and glycine-stimulated S6 phosphorylation, suggesting that mTORC1 signaling may be necessary for glycine's protective effects in vitro. Increasing glycine availability may be beneficial for muscle wasting conditions associated with inadequate nutrient intake.
Collapse
Affiliation(s)
- Marissa K Caldow
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Daniel J Ham
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Jennifer Trieu
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Jin Dylan Chung
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - René Koopman
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Xenos D, Kamceva M, Tomasi S, Cardin JA, Schwartz ML, Vaccarino FM. Loss of TrkB Signaling in Parvalbumin-Expressing Basket Cells Results in Network Activity Disruption and Abnormal Behavior. Cereb Cortex 2019; 28:3399-3413. [PMID: 28968898 DOI: 10.1093/cercor/bhx173] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Indexed: 12/11/2022] Open
Abstract
The GABAergic system is regulated by the brain-derived neurotrophic factor (BDNF)/Tropomyosin-related kinase B (TrkB) pathway, but the cell-intrinsic role of TrkB signaling in parvalbumin cortical interneuron development and function is unclear. We performed conditional ablation of the TrkB receptor in parvalbumin-expressing (PV) interneurons to study whether postnatal loss of TrkB in parvalbumin cells affects their survival, connectivity, spontaneous and evoked neuronal activity and behavior. Using in vivo recordings of local field potentials, we found reduced gamma oscillations in the sensory cortex of PVcre+; TrkBF/F conditional knockout mice (TrkB cKO), along with increased firing of putative excitatory neurons. There was a significant downregulation in parvalbumin neuron number in cerebral and cerebellar cortices of TrkB cKO mice. In addition, inhibitory synaptic connections between basket cells and pyramidal neurons were profoundly reduced in the neocortex of TrkB cKO mice and there was a loss of cortical volume. TrkB cKO mice also showed profound hyperactivity, stereotypies, motor deficits and learning/memory defects. Our findings demonstrate that the targeting and/or synapse formation of PV-expressing basket cells with principal excitatory neurons require TrkB signaling in parvalbumin cells. Disruption of this signaling has major consequences for parvalbumin interneuron connectivity, network dynamics, cognitive and motor behavior.
Collapse
Affiliation(s)
| | | | | | - Jessica A Cardin
- Department of Neuroscience.,Kavli Institute for Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, USA
| | | | - Flora M Vaccarino
- Child Study Center.,Department of Neuroscience.,Kavli Institute for Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, USA
| |
Collapse
|
12
|
Phosphorylation of Gephyrin in Zebrafish Mauthner Cells Governs Glycine Receptor Clustering and Behavioral Desensitization to Sound. J Neurosci 2019; 39:8988-8997. [PMID: 31558619 DOI: 10.1523/jneurosci.1315-19.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 01/01/2023] Open
Abstract
The process by which future behavioral responses are shaped by past experiences is one of the central questions in neuroscience. To gain insight into this process at the molecular and cellular levels, we have applied zebrafish larvae to explore behavioral desensitization to sound. A sudden loud noise often evokes a defensive response known as the acoustic startle response (ASR), which is triggered by firing Mauthner cells in teleosts and amphibians. The probability of evoking ASR by suprathreshold sound is reduced after exposure to repetitive auditory stimuli insufficient in amplitude to evoke the ASR (subthreshold). Although it has been suggested that the potentiation of inhibitory glycinergic inputs into Mauthner cell is involved in this desensitization of the ASR, the molecular basis for the potentiation of glycinergic transmission has been unclear. Through the in vivo monitoring of fluorescently-tagged glycine receptors (GlyRs), we here showed that behavioral desensitization to sound in zebrafish is governed by GlyR clustering in Mauthner cells. We further revealed that CaMKII-dependent phosphorylation of the scaffolding protein gephyrin at serine 325 promoted the synaptic accumulation of GlyR on Mauthner neurons through the enhancement of the gephyrin-GlyR binding, which was indispensable for and could induce desensitization of the ASR. Our study demonstrates an essential molecular and cellular basis of sound-induced receptor dynamics and thus of behavioral desensitization to sound.SIGNIFICANCE STATEMENT Behavioral desensitization in the acoustic startle response of fish is known to involve the potentiation of inhibitory glycinergic input to the Mauthner cell, which is a command neuron for the acoustic startle response. However, the molecular and cellular basis for this potentiation has been unknown. Here we show that an increase in glycine receptor (GlyR) clustering at synaptic sites on zebrafish Mauthner cells is indispensable for and could induce desensitization. Furthermore, we demonstrate that CaMKII-mediated phosphorylation of the scaffolding protein gephyrin promotes GlyR clustering by increasing the binding between the β-loop of GlyRs and gephyrin. Thus, the phosphorylation of gephyrin is a key event which accounts for the potentiation of inhibitory glycinergic inputs observed during sound-evoked behavioral desensitization.
Collapse
|
13
|
Groeneweg FL, Trattnig C, Kuhse J, Nawrotzki RA, Kirsch J. Gephyrin: a key regulatory protein of inhibitory synapses and beyond. Histochem Cell Biol 2018; 150:489-508. [DOI: 10.1007/s00418-018-1725-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2018] [Indexed: 12/26/2022]
|
14
|
Chandrasekar A, Olde Heuvel F, Wepler M, Rehman R, Palmer A, Catanese A, Linkus B, Ludolph A, Boeckers T, Huber-Lang M, Radermacher P, Roselli F. The Neuroprotective Effect of Ethanol Intoxication in Traumatic Brain Injury Is Associated with the Suppression of ErbB Signaling in Parvalbumin-Positive Interneurons. J Neurotrauma 2018; 35:2718-2735. [PMID: 29774782 DOI: 10.1089/neu.2017.5270] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ethanol intoxication (EI) is a frequent comorbidity of traumatic brain injury (TBI), but the impact of EI on TBI pathogenic cascades and prognosis is unclear. Although clinical evidence suggests that EI may have neuroprotective effects, experimental support is, to date, inconclusive. We aimed at elucidating the impact of EI on TBI-associated neurological deficits, signaling pathways, and pathogenic cascades in order to identify new modifiers of TBI pathophysiology. We have shown that ethanol administration (5 g/kg) before trauma enhances behavioral recovery in a weight-drop TBI model. Neuronal survival in the injured somatosensory cortex was also enhanced by EI. We have used phospho-receptor tyrosine kinase (RTK) arrays to screen the impact of ethanol on TBI-induced activation of RTK in somatosensory cortex, identifying ErbB2/ErbB3 among the RTKs activated by TBI and suppressed by ethanol. Phosphorylation of ErbB2/3/4 RTKs were upregulated in vGlut2+ excitatory synapses in the injured cortex, including excitatory synapses located on parvalbumin (PV)-positive interneurons. Administration of selective ErbB inhibitors was able to recapitulate, to a significant extent, the neuroprotective effects of ethanol both in sensorimotor performance and structural integrity. Further, suppression of PV interneurons in somatosensory cortex before TBI, by engineered receptors with orthogonal pharmacology, could mimic the beneficial effects of ErbB inhibitors. Thus, we have shown that EI interferes with TBI-induced pathogenic cascades at multiple levels, with one prominent pathway, involving ErbB-dependent modulation of PV interneurons.
Collapse
Affiliation(s)
| | | | - Martin Wepler
- 2 Institute of Anesthesiological Pathophysiology and Process Engineering, Ulm University , Ulm, Germany
| | - Rida Rehman
- 1 Department of Neurology, Ulm University , Ulm, Germany
| | - Annette Palmer
- 3 Institute of Clinical and Experimental Trauma-Immunology, Ulm University , Ulm, Germany
| | - Alberto Catanese
- 4 Department of Anatomy and Cell Biology, Ulm University , Ulm, Germany
| | - Birgit Linkus
- 1 Department of Neurology, Ulm University , Ulm, Germany
| | - Albert Ludolph
- 1 Department of Neurology, Ulm University , Ulm, Germany
| | - Tobias Boeckers
- 4 Department of Anatomy and Cell Biology, Ulm University , Ulm, Germany
| | - Markus Huber-Lang
- 3 Institute of Clinical and Experimental Trauma-Immunology, Ulm University , Ulm, Germany
| | - Peter Radermacher
- 2 Institute of Anesthesiological Pathophysiology and Process Engineering, Ulm University , Ulm, Germany
| | - Francesco Roselli
- 1 Department of Neurology, Ulm University , Ulm, Germany .,4 Department of Anatomy and Cell Biology, Ulm University , Ulm, Germany
| |
Collapse
|
15
|
Lorenz-Guertin JM, Jacob TC. GABA type a receptor trafficking and the architecture of synaptic inhibition. Dev Neurobiol 2018; 78:238-270. [PMID: 28901728 PMCID: PMC6589839 DOI: 10.1002/dneu.22536] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 12/21/2022]
Abstract
Ubiquitous expression of GABA type A receptors (GABAA R) in the central nervous system establishes their central role in coordinating most aspects of neural function and development. Dysregulation of GABAergic neurotransmission manifests in a number of human health disorders and conditions that in certain cases can be alleviated by drugs targeting these receptors. Precise changes in the quantity or activity of GABAA Rs localized at the cell surface and at GABAergic postsynaptic sites directly impact the strength of inhibition. The molecular mechanisms constituting receptor trafficking to and from these compartments therefore dictate the efficacy of GABAA R function. Here we review the current understanding of how GABAA Rs traffic through biogenesis, plasma membrane transport, and degradation. Emphasis is placed on discussing novel GABAergic synaptic proteins, receptor and scaffolding post-translational modifications, activity-dependent changes in GABAA R confinement, and neuropeptide and neurosteroid mediated changes. We further highlight modern techniques currently advancing the knowledge of GABAA R trafficking and clinically relevant neurodevelopmental diseases connected to GABAergic dysfunction. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 238-270, 2018.
Collapse
Affiliation(s)
- Joshua M Lorenz-Guertin
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| | - Tija C Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| |
Collapse
|
16
|
Zeck G, Jetter F, Channappa L, Bertotti G, Thewes R. Electrical Imaging: Investigating Cellular Function at High Resolution. ACTA ACUST UNITED AC 2017; 1:e1700107. [DOI: 10.1002/adbi.201700107] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/27/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Günther Zeck
- Neurophysics, Natural and Medical Sciences Institute at the University Tübingen; 72770 Reutlingen Germany
| | - Florian Jetter
- Neurophysics, Natural and Medical Sciences Institute at the University Tübingen; 72770 Reutlingen Germany
| | - Lakshmi Channappa
- Neurophysics, Natural and Medical Sciences Institute at the University Tübingen; 72770 Reutlingen Germany
| | - Gabriel Bertotti
- Chair of Sensor and Actuator Systems; Technical University of Berlin; 10587 Berlin Germany
| | - Roland Thewes
- Chair of Sensor and Actuator Systems; Technical University of Berlin; 10587 Berlin Germany
| |
Collapse
|
17
|
Koopman R, Caldow MK, Ham DJ, Lynch GS. Glycine metabolism in skeletal muscle: implications for metabolic homeostasis. Curr Opin Clin Nutr Metab Care 2017; 20:237-242. [PMID: 28375879 DOI: 10.1097/mco.0000000000000383] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW The review summarizes the recent literature on the role of glycine in skeletal muscle during times of stress. RECENT FINDINGS Supplemental glycine protects muscle mass and function under pathological conditions. In addition, mitochondrial dysfunction in skeletal muscle leads to increased cellular serine and glycine production and activation of NADPH-generating pathways and glutathione metabolism. These studies highlight how glycine availability modulates cellular homeostasis and redox status. SUMMARY Recent studies demonstrate that supplemental glycine effectively protects muscles in a variety of wasting models, including cancer cachexia, sepsis, and reduced caloric intake. The underlying mechanisms responsible for the effects of glycine remain unclear but likely involve receptor-mediated responses and modulation of intracellular metabolism. Future research to understand these mechanisms will provide insight into glycine's therapeutic potential. Our view is that glycine holds considerable promise for improving health by protecting muscles during different wasting conditions.
Collapse
Affiliation(s)
- René Koopman
- Basic and Clinical Myology Laboratory, Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
18
|
Papadopoulos T, Rhee HJ, Subramanian D, Paraskevopoulou F, Mueller R, Schultz C, Brose N, Rhee JS, Betz H. Endosomal Phosphatidylinositol 3-Phosphate Promotes Gephyrin Clustering and GABAergic Neurotransmission at Inhibitory Postsynapses. J Biol Chem 2016; 292:1160-1177. [PMID: 27941024 DOI: 10.1074/jbc.m116.771592] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Indexed: 11/06/2022] Open
Abstract
The formation of neuronal synapses and the dynamic regulation of their efficacy depend on the proper assembly of the postsynaptic neurotransmitter receptor apparatus. Receptor recruitment to inhibitory GABAergic postsynapses requires the scaffold protein gephyrin and the guanine nucleotide exchange factor collybistin (Cb). In vitro, the pleckstrin homology domain of Cb binds phosphoinositides, specifically phosphatidylinositol 3-phosphate (PI3P). However, whether PI3P is required for inhibitory postsynapse formation is currently unknown. Here, we investigated the role of PI3P at developing GABAergic postsynapses by using a membrane-permeant PI3P derivative, time-lapse confocal imaging, electrophysiology, as well as knockdown and overexpression of PI3P-metabolizing enzymes. Our results provide the first in cellula evidence that PI3P located at early/sorting endosomes regulates the postsynaptic clustering of gephyrin and GABAA receptors and the strength of inhibitory, but not excitatory, postsynapses in cultured hippocampal neurons. In human embryonic kidney 293 cells, stimulation of gephyrin cluster formation by PI3P depends on Cb. We therefore conclude that the endosomal pool of PI3P, generated by the class III phosphatidylinositol 3-kinase, is important for the Cb-mediated recruitment of gephyrin and GABAA receptors to developing inhibitory postsynapses and thus the formation of postsynaptic membrane specializations.
Collapse
Affiliation(s)
- Theofilos Papadopoulos
- From the Department of Molecular Biology, Center of Biochemistry and Molecular Cell Biology, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany,
| | - Hong Jun Rhee
- the Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Devaraj Subramanian
- the European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Foteini Paraskevopoulou
- From the Department of Molecular Biology, Center of Biochemistry and Molecular Cell Biology, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Rainer Mueller
- the European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Carsten Schultz
- the European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany.,the Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon 97239-3098
| | - Nils Brose
- the Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Jeong-Seop Rhee
- the Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Heinrich Betz
- the Department of Neurochemistry, Max Planck Institute for Brain Research, Deutschordenstrasse 46, 60528 Frankfurt am Main, Germany, and.,the Max Planck Institute of Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| |
Collapse
|
19
|
Alvarez FJ. Gephyrin and the regulation of synaptic strength and dynamics at glycinergic inhibitory synapses. Brain Res Bull 2016; 129:50-65. [PMID: 27612963 DOI: 10.1016/j.brainresbull.2016.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/23/2016] [Accepted: 09/05/2016] [Indexed: 01/23/2023]
Abstract
Glycinergic synapses predominate in brainstem and spinal cord where they modulate motor and sensory processing. Their postsynaptic mechanisms have been considered rather simple because they lack a large variety of glycine receptor isoforms and have relatively simple postsynaptic densities at the ultrastructural level. However, this simplicity is misleading being their postsynaptic regions regulated by a variety of complex mechanisms controlling the efficacy of synaptic inhibition. Early studies suggested that glycinergic inhibitory strength and dynamics depend largely on structural features rather than on molecular complexity. These include regulation of the number of postsynaptic glycine receptors, their localization and the amount of co-localized GABAA receptors and GABA-glycine co-transmission. These properties we now know are under the control of gephyrin. Gephyrin is the first postsynaptic scaffolding protein ever discovered and it was recently found to display a large degree of variation and regulation by splice variants, posttranslational modifications, intracellular trafficking and interactions with the underlying cytoskeleton. Many of these mechanisms are governed by converging excitatory activity and regulate gephyrin oligomerization and receptor binding, the architecture of the postsynaptic density (and by extension the whole synaptic complex), receptor retention and stability. These newly uncovered molecular mechanisms define the size and number of gephyrin postsynaptic regions and the numbers and proportions of glycine and GABAA receptors contained within. All together, they control the emergence of glycinergic synapses of different strength and temporal properties to best match the excitatory drive received by each individual neuron or local dendritic compartment.
Collapse
Affiliation(s)
- Francisco J Alvarez
- Department of Physiology, Emory University, Atlanta, GA 30322-3110, United States.
| |
Collapse
|
20
|
Receptor tyrosine kinase EphA7 is required for interneuron connectivity at specific subcellular compartments of granule cells. Sci Rep 2016; 6:29710. [PMID: 27405707 PMCID: PMC4942821 DOI: 10.1038/srep29710] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/21/2016] [Indexed: 01/12/2023] Open
Abstract
Neuronal transmission is regulated by the local circuitry which is composed of principal neurons targeted at different subcellular compartments by a variety of interneurons. However, mechanisms that contribute to the subcellular localisation and maintenance of GABAergic interneuron terminals are poorly understood. Stabilization of GABAergic synapses depends on clustering of the postsynaptic scaffolding protein gephyrin and its interaction with the guanine nucleotide exchange factor collybistin. Lentiviral knockdown experiments in adult rats indicated that the receptor tyrosine kinase EphA7 is required for the stabilisation of basket cell terminals on proximal dendritic and somatic compartments of granular cells of the dentate gyrus. EphA7 deficiency and concomitant destabilisation of GABAergic synapses correlated with impaired long-term potentiation and reduced hippocampal learning. Reduced GABAergic innervation may be explained by an impact of EphA7 on gephyrin clustering. Overexpression or ephrin stimulation of EphA7 induced gephyrin clustering dependent on the mechanistic target of rapamycin (mTOR) which is an interaction partner of gephyrin. Gephyrin interactions with mTOR become released after mTOR activation while enhanced interaction with the guanine nucleotide exchange factor collybistin was observed in parallel. In conclusion, EphA7 regulates gephyrin clustering and the maintenance of inhibitory synaptic connectivity via mTOR signalling.
Collapse
|
21
|
Ko J, Choii G, Um JW. The balancing act of GABAergic synapse organizers. Trends Mol Med 2016; 21:256-68. [PMID: 25824541 DOI: 10.1016/j.molmed.2015.01.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/25/2015] [Accepted: 01/27/2015] [Indexed: 12/14/2022]
Abstract
GABA (γ-aminobutyric acid) is the main neurotransmitter at inhibitory synapses in the mammalian brain. It is essential for maintaining the excitation and inhibition (E/I) ratio, whose imbalance underlies various brain diseases. Emerging information about inhibitory synapse organizers provides a novel molecular framework for understanding E/I balance at the synapse, circuit, and systems levels. This review highlights recent advances in deciphering these components of the inhibitory synapse and their roles in the development, transmission, and circuit properties of inhibitory synapses. We also discuss how their dysfunction may lead to a variety of brain disorders, suggesting new therapeutic strategies based on balancing the E/I ratio.
Collapse
|
22
|
Abstract
Electroencephalography (EEG) studies in patients with bipolar disorder have revealed lower amplitudes in brain oscillations. The aim of this review is to describe lithium-induced EEG changes in bipolar disorder and to discuss potential underlying factors. A literature survey about lithium-induced EEG changes in bipolar disorder was performed. Lithium consistently enhances magnitudes of brain oscillations in slow frequencies (delta and theta) in both resting-state EEG studies as well as event-related oscillations studies. Enhancement of magnitudes of beta oscillations is specific to event-related oscillations. Correlation between serum lithium levels and brain oscillations has been reported. Lithium-induced changes in brain oscillations might correspond to lithium-induced alterations in neurotransmitters, signaling cascades, plasticity, brain structure, or biophysical properties of lithium. Therefore, lithium-induced changes in brain oscillations could be promising biomarkers to assess the molecular mechanisms leading to variability in efficacy. Since the variability of lithium response in bipolar disorder is due to the genetic differences in the mechanisms involving lithium, it would be highly promising to assess the lithium-induced EEG changes as biomarkers in genetic studies.
Collapse
Affiliation(s)
- Murat İlhan Atagün
- Department of Psychiatry, Yıldırım Beyazıt University Medical School, Cankaya, Ankara, Turkey
| |
Collapse
|
23
|
Angliker N, Burri M, Zaichuk M, Fritschy JM, Rüegg MA. mTORC1 and mTORC2 have largely distinct functions in Purkinje cells. Eur J Neurosci 2015; 42:2595-612. [DOI: 10.1111/ejn.13051] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 08/13/2015] [Accepted: 08/14/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Nico Angliker
- Biozentrum; University of Basel; Klingelbergstrasse 70 CH-4056 Basel Switzerland
| | - Michael Burri
- Biozentrum; University of Basel; Klingelbergstrasse 70 CH-4056 Basel Switzerland
| | - Mariana Zaichuk
- Institute of Pharmacology and Toxicology; University of Zürich; Zürich Switzerland
| | - Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology; University of Zürich; Zürich Switzerland
| | - Markus A. Rüegg
- Biozentrum; University of Basel; Klingelbergstrasse 70 CH-4056 Basel Switzerland
| |
Collapse
|
24
|
Collybistin binds and inhibits mTORC1 signaling: a potential novel mechanism contributing to intellectual disability and autism. Eur J Hum Genet 2015; 24:59-65. [PMID: 25898924 DOI: 10.1038/ejhg.2015.69] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 01/27/2015] [Accepted: 03/10/2015] [Indexed: 12/19/2022] Open
Abstract
Protein synthesis regulation via mammalian target of rapamycin complex 1 (mTORC1) signaling pathway has key roles in neural development and function, and its dysregulation is involved in neurodevelopmental disorders associated with autism and intellectual disability. mTOR regulates assembly of the translation initiation machinery by interacting with the eukaryotic initiation factor eIF3 complex and by controlling phosphorylation of key translational regulators. Collybistin (CB), a neuron-specific Rho-GEF responsible for X-linked intellectual disability with epilepsy, also interacts with eIF3, and its binding partner gephyrin associates with mTOR. Therefore, we hypothesized that CB also binds mTOR and affects mTORC1 signaling activity in neuronal cells. Here, by using induced pluripotent stem cell-derived neural progenitor cells from a male patient with a deletion of entire CB gene and from control individuals, as well as a heterologous expression system, we describe that CB physically interacts with mTOR and inhibits mTORC1 signaling pathway and protein synthesis. These findings suggest that disinhibited mTORC1 signaling may also contribute to the pathological process in patients with loss-of-function variants in CB.
Collapse
|
25
|
Climer S, Templeton AR, Zhang W. Human gephyrin is encompassed within giant functional noncoding yin-yang sequences. Nat Commun 2015; 6:6534. [PMID: 25813846 PMCID: PMC4380243 DOI: 10.1038/ncomms7534] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/06/2015] [Indexed: 12/31/2022] Open
Abstract
Gephyrin is a highly-conserved gene that is vital for the organization of proteins at inhibitory receptors, molybdenum cofactor biosynthesis, and other diverse functions. Its specific function is intricately regulated and its aberrant activities have been observed for a number of human diseases. Here we report a remarkable yin-yang haplotype pattern encompassing gephyrin. Yin-yang haplotypes arise when a stretch of DNA evolves to present two disparate forms that bear differing states for nucleotide variations along their lengths. The gephyrin yin-yang pair consists of 284 divergent nucleotide states and both variants vary drastically from their mutual ancestral haplotype, suggesting rapid evolution. Several independent lines of evidence indicate strong positive selection on the region and suggest these high-frequency haplotypes represent two distinct functional mechanisms. This discovery holds potential to deepen our understanding of variable human-specific regulation of gephyrin while providing clues for rapid evolutionary events and allelic migrations buried within human history.
Collapse
Affiliation(s)
- Sharlee Climer
- Department of Computer Science and Engineering, Washington University, St Louis, Missouri 63130, USA
| | - Alan R Templeton
- 1] Department of Biology, Washington University, St Louis, Missouri 63130, USA [2] Department of Genetics, Washington University, St Louis, Missouri 63110, USA [3] Department of Evolutionary and Environmental Biology, University of Haifa, Haifa 31905, Israel
| | - Weixiong Zhang
- 1] Department of Computer Science and Engineering, Washington University, St Louis, Missouri 63130, USA [2] Department of Genetics, Washington University, St Louis, Missouri 63110, USA [3] Institute for Systems Biology, Jianghan University, Wuhan, Hubei 430056, China
| |
Collapse
|
26
|
Hoefer MM, Sanchez AB, Maung R, de Rozieres CM, Catalan IC, Dowling CC, Thaney VE, Piña-Crespo J, Zhang D, Roberts AJ, Kaul M. Combination of methamphetamine and HIV-1 gp120 causes distinct long-term alterations of behavior, gene expression, and injury in the central nervous system. Exp Neurol 2014; 263:221-34. [PMID: 25246228 DOI: 10.1016/j.expneurol.2014.09.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/27/2014] [Accepted: 09/06/2014] [Indexed: 01/18/2023]
Abstract
Methamphetamine (METH) abuse is frequent in individuals infected with human immunodeficiency virus type-1 (HIV-1) and is suspected to aggravate HIV-associated neurocognitive disorders (HAND). METH is a psychostimulant that compromises several neurotransmitter systems and HIV proteins trigger neuronal injury but the combined effects of viral infection and METH abuse are incompletely understood. In this study we treated transgenic mice expressing the HIV envelope protein gp120 in the brain (HIV-1 gp120tg) at 3-4 months of age with an escalating-dose, multiple-binge METH regimen. The long-term effects were analyzed after 6-7 months of drug abstinence employing behavioral tests and analysis of neuropathology, electrophysiology and gene expression. Behavioral testing showed that both HIV-1 gp120tg and WT animals treated with METH displayed impaired learning and memory. Neuropathological analysis revealed that METH similar to HIV-1 gp120 caused a significant loss of neuronal dendrites and pre-synaptic terminals in hippocampus and cerebral cortex of WT animals. Electrophysiological studies in hippocampal slices showed that METH exposed HIV-1 gp120tg animals displayed reduced post-tetanic potentiation, whereas both gp120 expression and METH lead to reduced long-term potentiation. A quantitative reverse transcription-polymerase chain reaction array showed that gp120 expression, METH and their combination each caused a significant dysregulation of specific components of GABAergic and glutamatergic neurotransmission systems, providing a possible mechanism for synaptic dysfunction and behavioral impairment. In conclusion, both HIV-1 gp120 and METH caused lasting behavioral impairment in association with neuropathology and altered gene expression. However, combined METH exposure and HIV-1 gp120 expression resulted in the most pronounced, long lasting pre- and post-synaptic alterations coinciding with impaired learning and memory.
Collapse
Affiliation(s)
- Melanie M Hoefer
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Ana B Sanchez
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Ricky Maung
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Cyrus M de Rozieres
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Irene C Catalan
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Cari C Dowling
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Victoria E Thaney
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Juan Piña-Crespo
- Del E. Webb Center for Neuroscience & Aging Research, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Dongxian Zhang
- Del E. Webb Center for Neuroscience & Aging Research, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Amanda J Roberts
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, MB6, La Jolla, CA 92037, USA.
| | - Marcus Kaul
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA.
| |
Collapse
|
27
|
Kalbouneh H, Schlicksupp A, Kirsch J, Kuhse J. Cyclin-dependent kinase 5 is involved in the phosphorylation of gephyrin and clustering of GABAA receptors at inhibitory synapses of hippocampal neurons. PLoS One 2014; 9:e104256. [PMID: 25093719 PMCID: PMC4122414 DOI: 10.1371/journal.pone.0104256] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 07/10/2014] [Indexed: 11/19/2022] Open
Abstract
CDK5 has been implicated in neural functions including growth, neuronal migration, synaptic transmission and plasticity of excitatory chemical synapses. Here we report robust effects of CDK5 on phosphorylation of the postsynaptic scaffold protein gephyrin and clustering of inhibitory GABAA receptors in hippocampal neurons. shRNA-mediated knockdown of CDK5 and pharmacological inhibition of cyclin-dependent kinases reduced phosphorylated gephyrin clusters and postsynaptic γ2-containing GABAA receptors. Phosphorylation of S270 is antagonized by PP1/PP2a phosphatase and site-directed mutagenesis and in vitro phosphorylation experiments indicate that S270 is a putative CDK5 phosphorylation site of gephyrin. Our data suggest that CDK5 plays an essential role for the stability of gephyrin-dependent GABAA receptor clusters in hippocampal neurons.
Collapse
Affiliation(s)
- Heba Kalbouneh
- Department of Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Andrea Schlicksupp
- Department of Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Joachim Kirsch
- Department of Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Jochen Kuhse
- Department of Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
28
|
Thongthae N, Payungporn S, Poovorawan Y, T-Thienprasert NP. A rational study for identification of highly effective siRNAs against hepatitis B virus. Exp Mol Pathol 2014; 97:120-7. [PMID: 24953337 DOI: 10.1016/j.yexmp.2014.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/07/2014] [Accepted: 06/18/2014] [Indexed: 02/07/2023]
Abstract
RNA interference (RNAi) is a powerful gene knockdown technique used for study gene function. It also potentially provides effective agents for inhibiting infectious and genetic diseases. Most of RNAi studies employ a single siRNA designing program and then require large-scale screening experiments to identify functional siRNAs. In this study, we demonstrate that an assembly of results generated from different siRNA designing programs could provide clusters of predicting sites that aided selection of potent siRNAs. Based on the clusters, three siRNA target sites were selected on a conserved RNA region of hepatitis B virus (HBV), known as HBV post-transcriptional regulatory element (HBV PRE) at nucleotide positions 1317-1337, 1357-1377 and 1644-1664. All three chosen siRNAs driven by H1 promoter were highly effective and could drastically decrease expression of HBV transcripts (core, surface and X) and surface protein without induction of interferon response and cell cytotoxicity in liver cancer cell line (HepG2). Based on prediction of secondary structures, the silencing effects of siRNAs were less effective against a loop sequence of the mRNA target with hairpin structure. In summary, we demonstrate an effectual approach for identification of functional siRNAs. Moreover, highly potent siRNAs identified here may serve as novel agents for development of nucleic acid-based HBV therapy.
Collapse
Affiliation(s)
- Nuttkawee Thongthae
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Sunchai Payungporn
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | |
Collapse
|
29
|
Petrini EM, Ravasenga T, Hausrat TJ, Iurilli G, Olcese U, Racine V, Sibarita JB, Jacob TC, Moss SJ, Benfenati F, Medini P, Kneussel M, Barberis A. Synaptic recruitment of gephyrin regulates surface GABAA receptor dynamics for the expression of inhibitory LTP. Nat Commun 2014; 5:3921. [PMID: 24894704 PMCID: PMC4059940 DOI: 10.1038/ncomms4921] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/17/2014] [Indexed: 11/09/2022] Open
Abstract
Postsynaptic long-term potentiation of inhibition (iLTP) can rely on increased GABAA receptors (GABA(A)Rs) at synapses by promoted exocytosis. However, the molecular mechanisms that enhance the clustering of postsynaptic GABA(A)Rs during iLTP remain obscure. Here we demonstrate that during chemically induced iLTP (chem-iLTP), GABA(A)Rs are immobilized and confined at synapses, as revealed by single-particle tracking of individual GABA(A)Rs in cultured hippocampal neurons. Chem-iLTP expression requires synaptic recruitment of the scaffold protein gephyrin from extrasynaptic areas, which in turn is promoted by CaMKII-dependent phosphorylation of GABA(A)R-β3-Ser(383). Impairment of gephyrin assembly prevents chem-iLTP and, in parallel, blocks the accumulation and immobilization of GABA(A)Rs at synapses. Importantly, an increase of gephyrin and GABA(A)R similar to those observed during chem-iLTP in cultures were found in the rat visual cortex following an experience-dependent plasticity protocol that potentiates inhibitory transmission in vivo. Thus, phospho-GABA(A)R-β3-dependent accumulation of gephyrin at synapses and receptor immobilization are crucial for iLTP expression and are likely to modulate network excitability.
Collapse
Affiliation(s)
- Enrica Maria Petrini
- Department of Neuroscience and Brain Technologies, The Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | - Tiziana Ravasenga
- Department of Neuroscience and Brain Technologies, The Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | - Torben J Hausrat
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg Eppendorf, D-20251 Hamburg, Germany
| | - Giuliano Iurilli
- Department of Neuroscience and Brain Technologies, The Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | - Umberto Olcese
- Department of Neuroscience and Brain Technologies, The Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | - Victor Racine
- Institute of Molecular and Cell Biology, Proteos, Singapore 138673, Singapore
| | - Jean-Baptiste Sibarita
- 1] Interdisciplinary Institute for Neuroscience, University of Bordeaux, F-33000 Bordeaux, France [2] CNRS UMR 5297, F-33000 Bordeaux, France
| | - Tija C Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Stephen J Moss
- Department of Neuroscience, Tufts University, 136 Harrison Avenue, Arnold 207 Boston, Massachusetts 0211, USA
| | - Fabio Benfenati
- 1] Department of Neuroscience and Brain Technologies, The Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy [2] Department of Experimental Medicine, University of Genova, 16163 Genova, Italy
| | - Paolo Medini
- Department of Neuroscience and Brain Technologies, The Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | - Matthias Kneussel
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg Eppendorf, D-20251 Hamburg, Germany
| | - Andrea Barberis
- Department of Neuroscience and Brain Technologies, The Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
30
|
Abstract
The neurotransmitters GABA and glycine mediate fast synaptic inhibition by activating ligand-gated chloride channels--namely, type A GABA (GABA(A)) and glycine receptors. Both types of receptors are anchored postsynaptically by gephyrin, which self-assembles into a scaffold and interacts with the cytoskeleton. Current research indicates that postsynaptic gephyrin clusters are dynamic assemblies that are held together and regulated by multiple protein-protein interactions. Moreover, post-translational modifications of gephyrin regulate the formation and plasticity of GABAergic synapses by altering the clustering properties of postsynaptic scaffolds and thereby the availability and function of receptors and other signalling molecules. Here, we discuss the formation and regulation of the gephyrin scaffold, its role in GABAergic and glycinergic synaptic function and the implications for the pathophysiology of brain disorders caused by abnormal inhibitory neurotransmission.
Collapse
|
31
|
Brain-derived neurotrophic factor promotes gephyrin protein expression and GABAA receptor clustering in immature cultured hippocampal cells. Neurochem Int 2014; 72:14-21. [PMID: 24747341 DOI: 10.1016/j.neuint.2014.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 12/31/2022]
Abstract
Fast synaptic inhibition in the adult brain is largely mediated by GABAA receptors (GABAAR). GABAAR are anchored to synaptic sites by gephyrin, a scaffolding protein that appears to be assembled as a hexagonal lattice beneath the plasma membrane. Brain derived neurotrophic factor (BDNF) alters the clustering and synaptic distribution of GABAAR but mechanisms behind this regulation are just starting to emerge. The current study was aimed to examine if BDNF alters the protein levels and/or clustering of gephyrin and to investigate whether the modulation of gephyrin is accompanied by changes in the distribution and/or clustering of GABAAR. Exogenous application of BDNF to immature neuronal cultures from rat hippocampus increased the protein levels and clustering of gephyrin. BDNF also augmented the association of gephyrin with GABAAR and promoted the formation of GABAAR clusters. Together, these observations indicate that BDNF might regulate the assembly of GABAergic synapses by promoting the association of GABAAR with gephyrin.
Collapse
|
32
|
Zacchi P, Antonelli R, Cherubini E. Gephyrin phosphorylation in the functional organization and plasticity of GABAergic synapses. Front Cell Neurosci 2014; 8:103. [PMID: 24782709 PMCID: PMC3988358 DOI: 10.3389/fncel.2014.00103] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 03/22/2014] [Indexed: 11/13/2022] Open
Abstract
Gephyrin is a multifunctional scaffold protein essential for accumulation of inhibitory glycine and GABAA receptors at post-synaptic sites. The molecular events involved in gephyrin-dependent GABAA receptor clustering are still unclear. Evidence has been recently provided that gephyrin phosphorylation plays a key role in these processes. Gephyrin post-translational modifications have been shown to influence the structural remodeling of GABAergic synapses and synaptic plasticity by acting on post-synaptic scaffolding properties as well as stability. In addition, gephyrin phosphorylation and the subsequent phosphorylation-dependent recruitment of the chaperone molecule Pin1 provide a mechanism for the regulation of GABAergic signaling. Extensively characterized as pivotal enzyme controlling cell proliferation and differentiation, the prolyl-isomerase activity of Pin1 has been shown to regulate protein synthesis necessary to sustain the late phase of long-term potentiation at excitatory synapses, which suggests its involvement at synaptic sites. In this review we summarize the current state of knowledge of the signaling pathways responsible for gephyrin post-translational modifications. We will also outline future lines of research that might contribute to a better understanding of molecular mechanisms by which gephyrin regulates synaptic plasticity at GABAergic synapses.
Collapse
Affiliation(s)
- Paola Zacchi
- Department of Neurosciences, Scuola Internazionale Superiore di Studi Avanzati Trieste, Italy
| | - Roberta Antonelli
- Department of Neurosciences, Scuola Internazionale Superiore di Studi Avanzati Trieste, Italy
| | - Enrico Cherubini
- Department of Neurosciences, Scuola Internazionale Superiore di Studi Avanzati Trieste, Italy ; European Brain Research Institute Roma, Italy
| |
Collapse
|
33
|
Tyagarajan SK, Ghosh H, Yévenes GE, Imanishi SY, Zeilhofer HU, Gerrits B, Fritschy JM. Extracellular signal-regulated kinase and glycogen synthase kinase 3β regulate gephyrin postsynaptic aggregation and GABAergic synaptic function in a calpain-dependent mechanism. J Biol Chem 2013; 288:9634-9647. [PMID: 23408424 DOI: 10.1074/jbc.m112.442616] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Molecular mechanisms of plasticity at GABAergic synapses are currently poorly understood. To identify signaling cascades that converge onto GABAergic postsynaptic density proteins, we performed MS analysis using gephyrin isolated from rat brain and identified multiple novel phosphorylation and acetylation residues on gephyrin. Here, we report the characterization of one of these phosphoresidues, Ser-268, which when dephosphorylated leads to the formation of larger postsynaptic scaffolds. Using a combination of mutagenesis, pharmacological treatment, and biochemical assays, we identify ERK as the kinase phosphorylating Ser-268 and describe a functional interaction between residues Ser-268 and Ser-270. We further demonstrate that alterations in gephyrin clustering via ERK modulation are reflected by amplitude and frequency changes in miniature GABAergic postsynaptic currents. We unravel novel mechanisms for activity- and ERK-dependent calpain action on gephyrin, which are likely relevant in the context of cellular signaling affecting GABAergic transmission and homeostatic synaptic plasticity in pathology.
Collapse
Affiliation(s)
- Shiva K Tyagarajan
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, Zurich, 8057 Switzerland.
| | - Himanish Ghosh
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, Zurich, 8057 Switzerland
| | - Gonzalo E Yévenes
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland
| | - Susumu Y Imanishi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, Zurich, 8057 Switzerland; Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, 8093 Switzerland
| | | | - Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, Zurich, 8057 Switzerland
| |
Collapse
|