1
|
Kim JA, Schimpf S, Yano ST, Nordli D, Phitsanuwong C. Categorizing Monogenic Epilepsies by Genetic Mechanisms May Predict Efficacy of the Ketogenic Diet. Pediatr Neurol 2024; 160:11-17. [PMID: 39173306 DOI: 10.1016/j.pediatrneurol.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/19/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND The ketogenic diet (KD) is an effective treatment for epilepsy. In recent years, studies have shown favorable efficacy of KD in epilepsy from genetic disorders. In this study, we propose an approach to KD in monogenic epilepsy: we evaluate the utility of categorizing genetic variants based on rational associations with the known mechanisms of KD. METHODS Patients with monogenic epilepsy treated with KD were reviewed. The genetic etiologies were categorized into five groups: (1) conditions causing cellular energy impairment, (2) GABA-pathies, (3) mToR-pathies, (4) ion channelopathies, and (5) no known mechanisms associated with KD mechanisms. Treatment response was defined as a median reduction in seizure frequency of greater than 50%. RESULTS Of 35 patients, 24 (69%) were responders at three months. Based on categories, Group 1 had the highest response rate with seven of seven (100%), followed by Group 2, six of seven (86%), and Group 3, two of three (67%). Patients in Groups 4 and 5 had poorer responses with three of seven (43%) and four of 11 (36%) response rates, respectively (P < 0.01). Median percentage of seizure reduction showed Group 1 with the highest reduction of 97.5%, Group 2 at 94%, and Groups 3, 4, and 5 at 62.5%, 30%, and 40%, respectively (P = 0.036). CONCLUSION Our findings show a favorable response to KD in patients with monogenic epilepsy (69% at three months) with the highest response in patients with conditions involving cellular energy impairment and GABA-pathies. The KD, therefore, should be considered early in patients with monogenic epilepsy, especially those involving genes associated with cellular energy impairment or GABA-pathies.
Collapse
Affiliation(s)
- Jeong-A Kim
- Section of Child Neurology, The University of Chicago Medicine, Chicago, Illinois
| | - Stephanie Schimpf
- Section of Child Neurology, The University of Chicago Medicine, Chicago, Illinois; Ketogenic Diet Program, The University of Chicago Comer Children's Hospital, Chicago, Illinois
| | - Sho T Yano
- Section of Child Neurology, The University of Chicago Medicine, Chicago, Illinois
| | - Douglas Nordli
- Section of Child Neurology, The University of Chicago Medicine, Chicago, Illinois
| | - Chalongchai Phitsanuwong
- Section of Child Neurology, The University of Chicago Medicine, Chicago, Illinois; Ketogenic Diet Program, The University of Chicago Comer Children's Hospital, Chicago, Illinois.
| |
Collapse
|
2
|
Sangree AK, Angireddy R, Bryant LM, Layo-Carris DE, Lubin EE, Wang XM, Clark KJ, Durham EE, Bhoj EJ. A novel iPSC model of Bryant-Li-Bhoj neurodevelopmental syndrome demonstrates the role of histone H3.3 in neuronal differentiation and maturation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609745. [PMID: 39253491 PMCID: PMC11382994 DOI: 10.1101/2024.08.26.609745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Background Bryant-Li-Bhoj neurodevelopmental syndrome (BLBS) is neurogenetic disorder caused by variants in H3-3A and H3-3B, the two genes that encode the histone H3.3 protein. Ninety-nine percent of individuals with BLBS show developmental delay/intellectual disability, but the mechanism by which variants in H3.3 result in these phenotypes is not yet understood. As a result, only palliative interventions are available to individuals living with BLBS. Methods Here, we investigate how one BLBS-causative variant, H3-3B p.Leu48Arg (L48R), affects neurodevelopment using an induced pluripotent stem cell (iPSC) model differentiated to 2D neural progenitor cells (NPCs), 2D forebrain neurons (FBNs), and 3D dorsal forebrain organoids (DFBOs). We employ a multi-omic approach in the 2D models to quantify the resulting changes in gene expression and chromatin accessibility. We used immunofluorescence (IF) staining to define the identities of cells in the 3D DFBOs. Results In the 2D systems, we found dysregulation of both gene expression and chromatin accessibility of genes important for neuronal fate, maturation, and function in H3.3 L48R compared to control. Our work in 3D organoids corroborates these findings, demonstrating altered proportions of radial glia and mature neuronal cells. Conclusions These data provide the first mechanistic insights into the pathogenesis of BLBS from a human-derived model of neurodevelopment, which suggest that the L48R increases H3-3B expression, resulting in the hyper-deposition of H3.3 into the nucleosome which underlies changes in gene expression and chromatin accessibility. Functionally, this causes dysregulation of cell adhesion, neurotransmission, and the balance between excitatory and inhibitory signaling. These results are a crucial step towards preclinical development and testing of targeted therapies for this and related disorders.
Collapse
|
3
|
Zhao T, Huang C, Zhang Y, Zhu Y, Chen X, Wang T, Shao J, Meng X, Huang Y, Wang H, Wang H, Wang B, Xu D. Prenatal 1-Nitropyrene Exposure Causes Autism-Like Behavior Partially by Altering DNA Hydroxymethylation in Developing Brain. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306294. [PMID: 38757379 PMCID: PMC11267330 DOI: 10.1002/advs.202306294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/13/2024] [Indexed: 05/18/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder, characterized by social communication disability and stereotypic behavior. This study aims to investigate the impact of prenatal exposure to 1-nitropyrene (1-NP), a key component of motor vehicle exhaust, on autism-like behaviors in a mouse model. Three-chamber test finds that prenatal 1-NP exposure causes autism-like behaviors during the weaning period. Patch clamp shows that inhibitory synaptic transmission is reduced in medial prefrontal cortex of 1-NP-exposed weaning pups. Immunofluorescence finds that prenatal 1-NP exposure reduces the number of prefrontal glutamate decarboxylase 67 (GAD67) positive interneurons in fetuses and weaning pups. Moreover, prenatal 1-NP exposure retards tangential migration of GAD67-positive interneurons and downregulates interneuron migration-related genes, such as Nrg1, Erbb4, and Sema3F, in fetal forebrain. Mechanistically, prenatal 1-NP exposure reduces hydroxymethylation of interneuron migration-related genes through inhibiting ten-eleven translocation (TET) activity in fetal forebrain. Supplement with alpha-ketoglutarate (α-KG), a cofactor of TET enzyme, reverses 1-NP-induced hypohydroxymethylation at specific sites of interneuron migration-related genes. Moreover, α-KG supplement alleviates 1-NP-induced migration retardation of interneurons in fetal forebrain. Finally, maternal α-KG supplement improves 1-NP-induced autism-like behaviors in weaning offspring. In conclusion, prenatal 1-NP exposure causes autism-like behavior partially by altering DNA hydroxymethylation of interneuron migration-related genes in developing brain.
Collapse
Affiliation(s)
- Ting Zhao
- Department of ToxicologySchool of Public HealthAnhui Medical UniversityHefei230022China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - Cheng‐Qing Huang
- School of Food and BioengineeringHefei University of TechnologyHefei230009China
| | - Yi‐Hao Zhang
- Department of ToxicologySchool of Public HealthAnhui Medical UniversityHefei230022China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - Yan‐Yan Zhu
- Department of ToxicologySchool of Public HealthAnhui Medical UniversityHefei230022China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - Xiao‐Xi Chen
- Department of ToxicologySchool of Public HealthAnhui Medical UniversityHefei230022China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - Tao Wang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - Jing Shao
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - Xiu‐Hong Meng
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - Yichao Huang
- Department of ToxicologySchool of Public HealthAnhui Medical UniversityHefei230022China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - Hua Wang
- Department of ToxicologySchool of Public HealthAnhui Medical UniversityHefei230022China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - Hui‐Li Wang
- School of Food and BioengineeringHefei University of TechnologyHefei230009China
| | - Bo Wang
- Department of ToxicologySchool of Public HealthAnhui Medical UniversityHefei230022China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - De‐Xiang Xu
- Department of ToxicologySchool of Public HealthAnhui Medical UniversityHefei230022China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| |
Collapse
|
4
|
Altbürger C, Rath M, Wehrle J, Driever W. The proneural factors Ascl1a and Ascl1b contribute to the terminal differentiation of dopaminergic GABAergic dual transmitter neurons in zebrafish. Dev Biol 2024; 505:58-74. [PMID: 37931393 DOI: 10.1016/j.ydbio.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/06/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023]
Abstract
The proneural factor Ascl1 is involved in several steps of neurogenesis, from neural progenitor maintenance to initiation of terminal differentiation and neuronal subtype specification. In neural progenitor cells, Ascl1 initiates the cell-cycle exit of progenitors, and contributes to their differentiation into mainly GABAergic neurons. Several catecholaminergic neuron groups in the forebrain of zebrafish use GABA as co-transmitter, but a potential role of the two paralogues Ascl1a and Ascl1b in their neurogenesis is not understood. Here, we show that ascl1a, ascl1b double mutant embryos develop a significantly reduced number of neurons in all GABAergic and catecholaminergic dual transmitter neuron anatomical clusters in the fore- and hindbrain, while glutamatergic catecholaminergic clusters develop normally. However, none of the affected catecholaminergic cell clusters are lost completely, suggesting an impairment in progenitor pools, or a requirement of Ascl1a/b for differentiation of a subset of neurons in each cluster. Early progenitors which are dlx2a+, fezf2 + or emx2 + are not reduced whereas late progenitors and differentiating neurons marked by the expression of dlx5a, isl1 and arxa are severely reduced in ascl1a, ascl1b double mutant embryos. This suggests that Ascl1a and Ascl1b play only a minor or no role in the maintenance of their progenitor pools, but rather contribute to the initiation of terminal differentiation of GABAergic catecholaminergic neurons.
Collapse
Affiliation(s)
- Christian Altbürger
- Department of Developmental Biology, Faculty of Biology, Institute Biology 1, Albert Ludwigs University, Freiburg, Hauptstrasse 1, 79104, Freiburg, Germany; CIBSS and BIOSS - Centres for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany
| | - Meta Rath
- Department of Developmental Biology, Faculty of Biology, Institute Biology 1, Albert Ludwigs University, Freiburg, Hauptstrasse 1, 79104, Freiburg, Germany
| | - Johanna Wehrle
- Department of Developmental Biology, Faculty of Biology, Institute Biology 1, Albert Ludwigs University, Freiburg, Hauptstrasse 1, 79104, Freiburg, Germany; MeInBio Research Training Group, University of Freiburg, 79104, Freiburg, Germany
| | - Wolfgang Driever
- Department of Developmental Biology, Faculty of Biology, Institute Biology 1, Albert Ludwigs University, Freiburg, Hauptstrasse 1, 79104, Freiburg, Germany; CIBSS and BIOSS - Centres for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany.
| |
Collapse
|
5
|
Toudji I, Toumi A, Chamberland É, Rossignol E. Interneuron odyssey: molecular mechanisms of tangential migration. Front Neural Circuits 2023; 17:1256455. [PMID: 37779671 PMCID: PMC10538647 DOI: 10.3389/fncir.2023.1256455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023] Open
Abstract
Cortical GABAergic interneurons are critical components of neural networks. They provide local and long-range inhibition and help coordinate network activities involved in various brain functions, including signal processing, learning, memory and adaptative responses. Disruption of cortical GABAergic interneuron migration thus induces profound deficits in neural network organization and function, and results in a variety of neurodevelopmental and neuropsychiatric disorders including epilepsy, intellectual disability, autism spectrum disorders and schizophrenia. It is thus of paramount importance to elucidate the specific mechanisms that govern the migration of interneurons to clarify some of the underlying disease mechanisms. GABAergic interneurons destined to populate the cortex arise from multipotent ventral progenitor cells located in the ganglionic eminences and pre-optic area. Post-mitotic interneurons exit their place of origin in the ventral forebrain and migrate dorsally using defined migratory streams to reach the cortical plate, which they enter through radial migration before dispersing to settle in their final laminar allocation. While migrating, cortical interneurons constantly change their morphology through the dynamic remodeling of actomyosin and microtubule cytoskeleton as they detect and integrate extracellular guidance cues generated by neuronal and non-neuronal sources distributed along their migratory routes. These processes ensure proper distribution of GABAergic interneurons across cortical areas and lamina, supporting the development of adequate network connectivity and brain function. This short review summarizes current knowledge on the cellular and molecular mechanisms controlling cortical GABAergic interneuron migration, with a focus on tangential migration, and addresses potential avenues for cell-based interneuron progenitor transplants in the treatment of neurodevelopmental disorders and epilepsy.
Collapse
Affiliation(s)
- Ikram Toudji
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Asmaa Toumi
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada
| | - Émile Chamberland
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Elsa Rossignol
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
- Department of Pediatrics, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
6
|
Cortical interneuron specification and diversification in the era of big data. Curr Opin Neurobiol 2023; 80:102703. [PMID: 36933450 DOI: 10.1016/j.conb.2023.102703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 03/18/2023]
Abstract
Inhibition in the mammalian cerebral cortex is mediated by a small population of highly diverse GABAergic interneurons. These largely local neurons are interspersed among excitatory projection neurons and exert pivotal regulation on the formation and function of cortical circuits. We are beginning to understand the extent of GABAergic neuron diversity and how this is generated and shaped during brain development in mice and humans. In this review, we summarise recent findings and discuss how new technologies are being used to further advance our knowledge. Understanding how inhibitory neurons are generated in the embryo is an essential pre-requisite of stem cell therapy, an evolving area of research, aimed at correcting human disorders that result in inhibitory dysfunction.
Collapse
|
7
|
The P-body protein 4E-T represses translation to regulate the balance between cell genesis and establishment of the postnatal NSC pool. Cell Rep 2023; 42:112242. [PMID: 36924490 DOI: 10.1016/j.celrep.2023.112242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/19/2023] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
Here, we ask how developing precursors maintain the balance between cell genesis for tissue growth and establishment of adult stem cell pools, focusing on postnatal forebrain neural precursor cells (NPCs). We show that these NPCs are transcriptionally primed to differentiate and that the primed mRNAs are associated with the translational repressor 4E-T. 4E-T also broadly associates with other NPC mRNAs encoding transcriptional regulators, and these are preferentially depleted from ribosomes, consistent with repression. By contrast, a second translational regulator, Cpeb4, associates with diverse target mRNAs that are largely ribosome associated. The 4E-T-dependent mRNA association is functionally important because 4E-T knockdown or conditional knockout derepresses proneurogenic mRNA translation and perturbs maintenance versus differentiation of early postnatal NPCs in culture and in vivo. Thus, early postnatal NPCs are primed to differentiate, and 4E-T regulates the balance between cell genesis and stem cell expansion by sequestering and repressing mRNAs encoding transcriptional regulators.
Collapse
|
8
|
Cheng B, Sharma DR, Kumar A, Sheth H, Agyemang A, Aschner M, Zhang X, Ballabh P. Shh activation restores interneurons and cognitive function in newborns with intraventricular haemorrhage. Brain 2023; 146:629-644. [PMID: 35867870 PMCID: PMC10169407 DOI: 10.1093/brain/awac271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/27/2022] [Accepted: 07/05/2022] [Indexed: 11/14/2022] Open
Abstract
Premature infants with germinal matrix haemorrhage-intraventricular haemorrhage (GMH-IVH) suffer from neurobehavioural deficits as they enter childhood and adolescence. Yet the underlying mechanisms remain unclear. Impaired development and function of interneurons contribute to neuropsychiatric disorders. Therefore, we hypothesized that the occurrence of IVH would reduce interneuron neurogenesis in the medial ganglionic eminence and diminish the population of parvalbumin+ and somatostatin+ cortical interneurons. Because Sonic Hedgehog promotes the production of cortical interneurons, we also postulated that the activation of Sonic Hedgehog signalling might restore neurogenesis, cortical interneuron population, and neurobehavioural function in premature newborns with IVH. These hypotheses were tested in a preterm rabbit model of IVH and autopsy samples from human preterm infants. We compared premature newborns with and without IVH for intraneuronal progenitors, cortical interneurons, transcription factors regulating neurogenesis, single-cell transcriptome of medial ganglionic eminence and neurobehavioural functions. We treated premature rabbit kits with adenovirus expressing Sonic Hedgehog (Ad-Shh) or green fluorescence protein gene to determine the effect of Sonic Hedgehog activation on the interneuron production, cortical interneuron population and neurobehaviour. We discovered that IVH reduced the number of Nkx2.1+ and Dlx2+ progenitors in the medial ganglionic eminence of both humans and rabbits by attenuating their proliferation and inducing apoptosis. Moreover, IVH decreased the population of parvalbumin+ and somatostatin+ neurons in the frontal cortex of both preterm infants and kits relative to controls. Sonic Hedgehog expression and the downstream transcription factors, including Nkx2.1, Mash1, Lhx6 and Sox6, were also reduced in kits with IVH. Consistent with these findings, single-cell transcriptomic analyses of medial ganglionic eminence identified a distinct subpopulation of cells exhibiting perturbation in genes regulating neurogenesis, ciliogenesis, mitochondrial function and MAPK signalling in rabbits with IVH. More importantly, restoration of Sonic Hedgehog level by Ad-Shh treatment ameliorated neurogenesis, cortical interneuron population and neurobehavioural function in kits with IVH. Additionally, Sonic Hedgehog activation alleviated IVH-induced inflammation and several transcriptomic changes in the medial ganglionic eminence. Taken together, IVH reduced intraneuronal production and cortical interneuron population by downregulating Sonic Hedgehog signalling in both preterm rabbits and humans. Notably, activation of Sonic Hedgehog signalling restored interneuron neurogenesis, cortical interneurons and cognitive function in rabbit kits with IVH. These findings highlight disruption in cortical interneurons in IVH and identify a novel therapeutic strategy to restore cortical interneurons and cognitive function in infants with IVH. These studies can accelerate the development of new therapies to enhance the neurodevelopmental outcome of survivors with IVH.
Collapse
Affiliation(s)
- Bokun Cheng
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Deep R Sharma
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ajeet Kumar
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hardik Sheth
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alex Agyemang
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Michael Aschner
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xusheng Zhang
- Computational Genomics Core, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Praveen Ballabh
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
9
|
Gao M, Wang K, Zhao H. GABAergic neurons maturation is regulated by a delicate network. Int J Dev Neurosci 2023; 83:3-15. [PMID: 36401305 DOI: 10.1002/jdn.10242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/25/2022] [Accepted: 11/13/2022] [Indexed: 11/21/2022] Open
Abstract
Gamma-aminobutyric acid-expressing (GABAergic) neurons are implicated in a variety of neuropsychiatric disorders, such as epilepsy, anxiety, autism, and other pathological processes, including cerebral ischemia injury and drug addiction. Therefore, GABAergic neuronal processes warrant further research. The development of GABAergic neurons is a tightly controlled process involving the activity of multiple transcription and growth factors. Here, we focus on the gene expression pathways and the molecular modulatory networks that are engaged during the development of GABAergic neurons with the goal of exploring regulatory mechanisms that influence GABAergic neuron fate (i.e., maturation). Overall, we hope to provide a basis for clarifying the pathogenesis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Mingxing Gao
- Department of Histology and Embryology, School of Basic Medical Science, Jilin University, Changchun, Jilin, China
| | - Kaizhong Wang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Hui Zhao
- Department of Histology and Embryology, School of Basic Medical Science, Jilin University, Changchun, Jilin, China
| |
Collapse
|
10
|
Nieto-Estévez V, Donegan JJ, McMahon CL, Elam HB, Chavera TA, Varma P, Berg KA, Lodge DJ, Hsieh J. Buprenorphine Exposure Alters the Development and Migration of Interneurons in the Cortex. Front Mol Neurosci 2022; 15:889922. [PMID: 35600077 PMCID: PMC9115473 DOI: 10.3389/fnmol.2022.889922] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
The misuse of opioids has reached epidemic proportions over the last decade, with over 2.1 million people in the United States suffering from substance use disorders related to prescription opioid pain relievers. This increase in opioid misuse affects all demographics of society, including women of child-bearing age, which has led to a rise in opioid use during pregnancy. Opioid use during pregnancy has been associated with increased risk of obstetric complications and adverse neonatal outcomes, including neonatal abstinence syndrome. Currently, opioid use disorder in pregnant women is treated with long-acting opioid agonists, including buprenorphine. Although buprenorphine reduces illicit opioid use during pregnancy and improves infant outcomes at birth, few long-term studies of the neurodevelopmental consequences have been conducted. The goal of the current experiments was to examine the effects of buprenorphine on the development of the cortex using fetal brain tissue, 3D brain cultures, and rodent models. First, we demonstrated that we can grow cortical and subpallial spheroids, which model the cellular diversity, connectivity, and activity of the developing human brain. Next, we show that cells in the developing human cortex express the nociceptin opioid (NOP) receptor and that buprenorphine can signal through this receptor in cortical spheroids. Using subpallial spheroids to grow inhibitory interneurons, we show that buprenorphine can alter interneuron development and migration into the cortex. Finally, using a rodent model of prenatal buprenorphine exposure, we demonstrate that alterations in interneuron distribution can persist into adulthood. Together, these results suggest that more research is needed into the long-lasting consequences of buprenorphine exposure on the developing human brain.
Collapse
Affiliation(s)
- Vanesa Nieto-Estévez
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Jennifer J. Donegan
- Department of Pharmacology and Center for Biomedical Neuroscience, The University of Texas Health Science Center, San Antonio, TX, United States
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Courtney L. McMahon
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Hannah B. Elam
- Department of Pharmacology and Center for Biomedical Neuroscience, The University of Texas Health Science Center, San Antonio, TX, United States
| | - Teresa A. Chavera
- Department of Pharmacology and Center for Biomedical Neuroscience, The University of Texas Health Science Center, San Antonio, TX, United States
| | - Parul Varma
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Kelly A. Berg
- Department of Pharmacology and Center for Biomedical Neuroscience, The University of Texas Health Science Center, San Antonio, TX, United States
| | - Daniel J. Lodge
- Department of Pharmacology and Center for Biomedical Neuroscience, The University of Texas Health Science Center, San Antonio, TX, United States
- Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, United States
| | - Jenny Hsieh
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
11
|
Nisar S, Bhat AA, Masoodi T, Hashem S, Akhtar S, Ali TA, Amjad S, Chawla S, Bagga P, Frenneaux MP, Reddy R, Fakhro K, Haris M. Genetics of glutamate and its receptors in autism spectrum disorder. Mol Psychiatry 2022; 27:2380-2392. [PMID: 35296811 PMCID: PMC9135628 DOI: 10.1038/s41380-022-01506-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 12/11/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental impairment characterized by deficits in social interaction skills, impaired communication, and repetitive and restricted behaviors that are thought to be due to altered neurotransmission processes. The amino acid glutamate is an essential excitatory neurotransmitter in the human brain that regulates cognitive functions such as learning and memory, which are usually impaired in ASD. Over the last several years, increasing evidence from genetics, neuroimaging, protein expression, and animal model studies supporting the notion of altered glutamate metabolism has heightened the interest in evaluating glutamatergic dysfunction in ASD. Numerous pharmacological, behavioral, and imaging studies have demonstrated the imbalance in excitatory and inhibitory neurotransmitters, thus revealing the involvement of the glutamatergic system in ASD pathology. Here, we review the effects of genetic alterations on glutamate and its receptors in ASD and the role of non-invasive imaging modalities in detecting these changes. We also highlight the potential therapeutic targets associated with impaired glutamatergic pathways.
Collapse
Affiliation(s)
- Sabah Nisar
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Ajaz A Bhat
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Tariq Masoodi
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Sheema Hashem
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Sabah Akhtar
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Tayyiba Akbar Ali
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Sara Amjad
- Shibli National College, Azamgarh, Uttar Pradesh, 276001, India
| | - Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Puneet Bagga
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Michael P Frenneaux
- Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Ravinder Reddy
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Khalid Fakhro
- Department of Human Genetics, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medical College, P.O. Box 24144, Doha, Qatar
| | - Mohammad Haris
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999, Doha, Qatar.
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Laboratory of Animal Research, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
12
|
Leung RF, George AM, Roussel EM, Faux MC, Wigle JT, Eisenstat DD. Genetic Regulation of Vertebrate Forebrain Development by Homeobox Genes. Front Neurosci 2022; 16:843794. [PMID: 35546872 PMCID: PMC9081933 DOI: 10.3389/fnins.2022.843794] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/14/2022] [Indexed: 01/19/2023] Open
Abstract
Forebrain development in vertebrates is regulated by transcription factors encoded by homeobox, bHLH and forkhead gene families throughout the progressive and overlapping stages of neural induction and patterning, regional specification and generation of neurons and glia from central nervous system (CNS) progenitor cells. Moreover, cell fate decisions, differentiation and migration of these committed CNS progenitors are controlled by the gene regulatory networks that are regulated by various homeodomain-containing transcription factors, including but not limited to those of the Pax (paired), Nkx, Otx (orthodenticle), Gsx/Gsh (genetic screened), and Dlx (distal-less) homeobox gene families. This comprehensive review outlines the integral role of key homeobox transcription factors and their target genes on forebrain development, focused primarily on the telencephalon. Furthermore, links of these transcription factors to human diseases, such as neurodevelopmental disorders and brain tumors are provided.
Collapse
Affiliation(s)
- Ryan F. Leung
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Ankita M. George
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
| | - Enola M. Roussel
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
| | - Maree C. Faux
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Jeffrey T. Wigle
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - David D. Eisenstat
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
13
|
Rasheed M, Khan V, Harripaul R, Siddiqui M, Malik MA, Ullah Z, Zahid M, Vincent JB, Ansar M. Exome sequencing identifies novel and known mutations in families with intellectual disability. BMC Med Genomics 2021; 14:211. [PMID: 34452636 PMCID: PMC8399827 DOI: 10.1186/s12920-021-01066-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/25/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Intellectual disability (ID) is a phenotypically and genetically heterogeneous disorder. METHODS In this study, genome wide SNP microarray and whole exome sequencing are used for the variant identification in eight Pakistani families with ID. Beside ID, most of the affected individuals had speech delay, facial dysmorphism and impaired cognitive abilities. Repetitive behavior was observed in MRID143, while seizures were reported in affected individuals belonging to MRID137 and MRID175. RESULTS In two families (MRID137b and MRID175), we identified variants in the genes CCS and ELFN1, which have not previously been reported to cause ID. In four families, variants were identified in ARX, C5orf42, GNE and METTL4. A copy number variation (CNV) was identified in IL1RAPL1 gene in MRID165. CONCLUSION These findings expand the existing knowledge of variants and genes implicated in autosomal recessive and X linked ID.
Collapse
Affiliation(s)
- Memoona Rasheed
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Valeed Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Ricardo Harripaul
- Molecular Neuropsychiatry and Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Maimoona Siddiqui
- Division of Neurology, Shifa College of Medicine, H-8/1, Islamabad, Pakistan
| | - Madiha Amin Malik
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Zahid Ullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Zahid
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - John B Vincent
- Molecular Neuropsychiatry and Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8, Canada
| | - Muhammad Ansar
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
14
|
Legault LM, Doiron K, Breton-Larrivée M, Langford-Avelar A, Lemieux A, Caron M, Jerome-Majewska LA, Sinnett D, McGraw S. Pre-implantation alcohol exposure induces lasting sex-specific DNA methylation programming errors in the developing forebrain. Clin Epigenetics 2021; 13:164. [PMID: 34425890 PMCID: PMC8381495 DOI: 10.1186/s13148-021-01151-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 08/11/2021] [Indexed: 12/26/2022] Open
Abstract
Background Prenatal alcohol exposure is recognized for altering DNA methylation profiles of brain cells during development, and to be part of the molecular basis underpinning Fetal Alcohol Spectrum Disorder (FASD) etiology. However, we have negligible information on the effects of alcohol exposure during pre-implantation, the early embryonic window marked with dynamic DNA methylation reprogramming, and on how this may rewire the brain developmental program. Results Using a pre-clinical in vivo mouse model, we show that a binge-like alcohol exposure during pre-implantation at the 8-cell stage leads to surge in morphological brain defects and adverse developmental outcomes during fetal life. Genome-wide DNA methylation analyses of fetal forebrains uncovered sex-specific alterations, including partial loss of DNA methylation maintenance at imprinting control regions, and abnormal de novo DNA methylation profiles in various biological pathways (e.g., neural/brain development). Conclusion These findings support that alcohol-induced DNA methylation programming deviations during pre-implantation could contribute to the manifestation of neurodevelopmental phenotypes associated with FASD. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01151-0.
Collapse
Affiliation(s)
- L M Legault
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - K Doiron
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada
| | - M Breton-Larrivée
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - A Langford-Avelar
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - A Lemieux
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - M Caron
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada
| | - L A Jerome-Majewska
- McGill University Health Centre Glen Site, 1001 Boulevard Décarie, Montréal, QC, H4A 3J1, Canada.,Department of Pediatrics, McGill University, 1001 Boulevard Décarie, Montréal, QC, H4A 3J1, Canada
| | - D Sinnett
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada.,Department of Pediatrics, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - S McGraw
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada. .,Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada. .,Department of Obstetrics and Gynecology, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada.
| |
Collapse
|
15
|
Yang J, Yang X, Tang K. Interneuron development and dysfunction. FEBS J 2021; 289:2318-2336. [PMID: 33844440 DOI: 10.1111/febs.15872] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
Understanding excitation and inhibition balance in the brain begins with the tale of two basic types of neurons, glutamatergic projection neurons and GABAergic interneurons. The diversity of cortical interneurons is contributed by multiple origins in the ventral forebrain, various tangential migration routes, and complicated regulations of intrinsic factors, extrinsic signals, and activities. Abnormalities of interneuron development lead to dysfunction of interneurons and inhibitory circuits, which are highly associated with neurodevelopmental disorders including schizophrenia, autism spectrum disorders, and intellectual disability. In this review, we mainly discuss recent findings on the development of cortical interneuron and on neurodevelopmental disorders related to interneuron dysfunction.
Collapse
Affiliation(s)
- Jiaxin Yang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, China
| | - Xiong Yang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, China
| | - Ke Tang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, China
| |
Collapse
|
16
|
Kim DW, Liu K, Wang ZQ, Zhang YS, Bathini A, Brown MP, Lin SH, Washington PW, Sun C, Lindtner S, Lee B, Wang H, Shimogori T, Rubenstein JLR, Blackshaw S. Gene regulatory networks controlling differentiation, survival, and diversification of hypothalamic Lhx6-expressing GABAergic neurons. Commun Biol 2021; 4:95. [PMID: 33479483 PMCID: PMC7820013 DOI: 10.1038/s42003-020-01616-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/17/2020] [Indexed: 01/29/2023] Open
Abstract
GABAergic neurons of the hypothalamus regulate many innate behaviors, but little is known about the mechanisms that control their development. We previously identified hypothalamic neurons that express the LIM homeodomain transcription factor Lhx6, a master regulator of cortical interneuron development, as sleep-promoting. In contrast to telencephalic interneurons, hypothalamic Lhx6 neurons do not undergo long-distance tangential migration and do not express cortical interneuronal markers such as Pvalb. Here, we show that Lhx6 is necessary for the survival of hypothalamic neurons. Dlx1/2, Nkx2-2, and Nkx2-1 are each required for specification of spatially distinct subsets of hypothalamic Lhx6 neurons, and that Nkx2-2+/Lhx6+ neurons of the zona incerta are responsive to sleep pressure. We further identify multiple neuropeptides that are enriched in spatially segregated subsets of hypothalamic Lhx6 neurons, and that are distinct from those seen in cortical neurons. These findings identify common and divergent molecular mechanisms by which Lhx6 controls the development of GABAergic neurons in the hypothalamus.
Collapse
Affiliation(s)
- Dong Won Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Kai Liu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Genentech, South San Francisco, CA, 94080, USA
| | - Zoe Qianyi Wang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yi Stephanie Zhang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Abhijith Bathini
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Matthew P Brown
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Sonia Hao Lin
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Parris Whitney Washington
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Changyu Sun
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Susan Lindtner
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - Bora Lee
- Center for Neuroscience, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Hong Wang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Tomomi Shimogori
- RIKEN Center for Brain Science, Laboratory for Molecular Mechanisms of Brain Development, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - John L R Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Center for Human Systems Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
17
|
Regulatory Elements Inserted into AAVs Confer Preferential Activity in Cortical Interneurons. eNeuro 2020; 7:ENEURO.0211-20.2020. [PMID: 33199411 PMCID: PMC7768279 DOI: 10.1523/eneuro.0211-20.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 11/21/2022] Open
Abstract
Cortical interneuron (CIN) dysfunction is thought to play a major role in neuropsychiatric conditions like epilepsy, schizophrenia and autism. It is therefore essential to understand how the development, physiology, and functions of CINs influence cortical circuit activity and behavior in model organisms such as mice and primates. While transgenic driver lines are powerful tools for studying CINs in mice, this technology is limited in other species. An alternative approach is to use viral vectors such as AAV, which can be used in multiple species including primates and also have potential for therapeutic use in humans. Thus, we sought to discover gene regulatory enhancer elements (REs) that can be used in viral vectors to drive expression in specific cell types. The present study describes the systematic genome-wide identification of putative REs (pREs) that are preferentially active in immature CINs by histone modification chromatin immunoprecipitation and sequencing (ChIP-seq). We evaluated two novel pREs in AAV vectors, alongside the well-established Dlx I12b enhancer, and found that they drove CIN-specific reporter expression in adult mice. We also showed that the identified Arl4d pRE could drive sufficient expression of channelrhodopsin for optogenetic rescue of behavioral deficits in the Dlx5/6+/- mouse model of fast-spiking CIN dysfunction.
Collapse
|
18
|
Lindtner S, Catta-Preta R, Tian H, Su-Feher L, Price JD, Dickel DE, Greiner V, Silberberg SN, McKinsey GL, McManus MT, Pennacchio LA, Visel A, Nord AS, Rubenstein JLR. Genomic Resolution of DLX-Orchestrated Transcriptional Circuits Driving Development of Forebrain GABAergic Neurons. Cell Rep 2020; 28:2048-2063.e8. [PMID: 31433982 PMCID: PMC6750766 DOI: 10.1016/j.celrep.2019.07.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/29/2019] [Accepted: 07/08/2019] [Indexed: 11/24/2022] Open
Abstract
DLX transcription factors (TFs) are master regulators of the developing vertebrate brain, driving forebrain GABAergic neuronal differentiation. Ablation of Dlx1&2 alters expression of genes that are critical for forebrain GABAergic development. We integrated epigenomic and transcriptomic analyses, complemented with in situ hybridization (ISH), and in vivo and in vitro studies of regulatory element (RE) function. This revealed the DLX-organized gene regulatory network at genomic, cellular, and spatial levels in mouse embryonic basal ganglia. DLX TFs perform dual activating and repressing functions; the consequences of their binding were determined by the sequence and genomic context of target loci. Our results reveal and, in part, explain the paradox of widespread DLX binding contrasted with a limited subset of target loci that are sensitive at the epigenomic and transcriptomic level to Dlx1&2 ablation. The regulatory properties identified here for DLX TFs suggest general mechanisms by which TFs orchestrate dynamic expression programs underlying neurodevelopment. Lindtner et al. reveal the regulatory wiring organized by DLX transcription factors in forebrain GABAergic neuronal specification, by integrating functional genomic, epigenomic, and genetic data on a transgenic mouse model. This network determines key sequence-encoded regulatory elements and implicates a combination of histone modifications and biophysical interactions.
Collapse
Affiliation(s)
- Susan Lindtner
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Rinaldo Catta-Preta
- Department of Neurobiology, Physiology and Behavior, and Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, CA 95618, USA
| | - Hua Tian
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Linda Su-Feher
- Department of Neurobiology, Physiology and Behavior, and Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, CA 95618, USA
| | - James D Price
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Development and Stem Cell Biology Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Diane E Dickel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Vanille Greiner
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Shanni N Silberberg
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gabriel L McKinsey
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael T McManus
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Len A Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA; Comparative Biochemistry Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA; School of Natural Sciences, University of California, Merced, Merced, CA 95343, USA
| | - Alex S Nord
- Department of Neurobiology, Physiology and Behavior, and Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, CA 95618, USA.
| | - John L R Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Development and Stem Cell Biology Program, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
19
|
Velíšek L, Velíšková J. Modeling epileptic spasms during infancy: Are we heading for the treatment yet? Pharmacol Ther 2020; 212:107578. [PMID: 32417271 PMCID: PMC7299814 DOI: 10.1016/j.pharmthera.2020.107578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 05/07/2020] [Indexed: 12/22/2022]
Abstract
Infantile spasms (IS or epileptic spasms during infancy) were first described by Dr. William James West (aka West syndrome) in his own son in 1841. While rare by definition (occurring in 1 per 3200-3400 live births), IS represent a major social and treatment burden. The etiology of IS varies - there are many (>200) different known pathologies resulting in IS and still in about one third of cases there is no obvious reason. With the advancement of genetic analysis, role of certain genes (such as ARX or CDKL5 and others) in IS appears to be important. Current treatment strategies with incomplete efficacy and serious potential adverse effects include adrenocorticotropin (ACTH), corticosteroids (prednisone, prednisolone) and vigabatrin, more recently also a combination of hormones and vigabatrin. Second line treatments include pyridoxine (vitamin B6) and ketogenic diet. Additional treatment approaches use rapamycin, cannabidiol, valproic acid and other anti-seizure medications. Efficacy of these second line medications is variable but usually inferior to hormonal treatments and vigabatrin. Thus, new and effective models of this devastating condition are required for the search of additional treatment options as well as for better understanding the mechanisms of IS. Currently, eight models of IS are reviewed along with the ideas and mechanisms behind these models, drugs tested using the models and their efficacy and usefulness. Etiological variety of IS is somewhat reflected in the variety of the models. However, it seems that for finding precise personalized approaches, this variety is necessary as there is no "one-size-fits-all" approach possible for both IS in particular and epilepsy in general.
Collapse
Affiliation(s)
- Libor Velíšek
- Departments of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA; Departments of Pediatrics, New York Medical College, Valhalla, NY, USA; Departments of Neurology, New York Medical College, Valhalla, NY, USA.
| | - Jana Velíšková
- Departments of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA; Departments of Neurology, New York Medical College, Valhalla, NY, USA; Departments of Obstetrics & Gynecology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
20
|
Siehr MS, Massey CA, Noebels JL. Arx expansion mutation perturbs cortical development by augmenting apoptosis without activating innate immunity in a mouse model of X-linked infantile spasms syndrome. Dis Model Mech 2020; 13:dmm042515. [PMID: 32033960 PMCID: PMC7132796 DOI: 10.1242/dmm.042515] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/27/2020] [Indexed: 01/12/2023] Open
Abstract
X-linked infantile spasms syndrome (ISSX) is a clinically devastating developmental epileptic encephalopathy with life-long impact. Arx(GCG)10+7 , a mouse model of the most common triplet-repeat expansion mutation of ARX, exhibits neonatal spasms, electrographic phenotypes and abnormal migration of GABAergic interneuron subtypes. Neonatal presymptomatic treatment with 17β-estradiol (E2) in Arx(GCG)10+7 reduces spasms and modifies progression of epilepsy. Cortical pathology during this period, a crucial point for clinical intervention in ISSX, has largely been unexplored, and the pathogenic cellular defects that are targeted by early interventions are unknown. In the first postnatal week, we identified a transient wave of elevated apoptosis in Arx(GCG)10+7 mouse cortex that is non-Arx cell autonomous, since mutant Arx-immunoreactive (Arx+) cells are not preferentially impacted by cell death. NeuN+ (also known as Rbfox3) survival was also not impacted, suggesting a vulnerable subpopulation in the immature Arx(GCG)10+7 cortex. Inflammatory processes during this period might explain this transient elevation in apoptosis; however, transcriptomic and immunohistochemical profiling of several markers of inflammation revealed no innate immune activation in Arx(GCG)10+7 cortex. Neither neonatal E2 hormone therapy, nor ACTH(1-24), the frontline clinical therapy for ISSX, diminished the augmented apoptosis in Arx(GCG)10+7 , but both rescued neocortical Arx+ cell density. Since early E2 treatment effectively prevents seizures in this model, enhanced apoptosis does not solely account for the seizure phenotype, but may contribute to other aberrant brain function in ISSX. However, since both hormone therapies, E2 and ACTH(1-24), elevate the density of cortical Arx+-interneurons, their early therapeutic role in other neurological disorders hallmarked by interneuronopathy should be explored.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Meagan S Siehr
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Cory A Massey
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jeffrey L Noebels
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
21
|
Guo T, Liu G, Du H, Wen Y, Wei S, Li Z, Tao G, Shang Z, Song X, Zhang Z, Xu Z, You Y, Chen B, Rubenstein JL, Yang Z. Dlx1/2 are Central and Essential Components in the Transcriptional Code for Generating Olfactory Bulb Interneurons. Cereb Cortex 2019; 29:4831-4849. [PMID: 30796806 PMCID: PMC6917526 DOI: 10.1093/cercor/bhz018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/03/2019] [Accepted: 01/26/2019] [Indexed: 12/22/2022] Open
Abstract
Generation of olfactory bulb (OB) interneurons requires neural stem/progenitor cell specification, proliferation, differentiation, and young interneuron migration and maturation. Here, we show that the homeobox transcription factors Dlx1/2 are central and essential components in the transcriptional code for generating OB interneurons. In Dlx1/2 constitutive null mutants, the differentiation of GSX2+ and ASCL1+ neural stem/progenitor cells in the dorsal lateral ganglionic eminence is blocked, resulting in a failure of OB interneuron generation. In Dlx1/2 conditional mutants (hGFAP-Cre; Dlx1/2F/- mice), GSX2+ and ASCL1+ neural stem/progenitor cells in the postnatal subventricular zone also fail to differentiate into OB interneurons. In contrast, overexpression of Dlx1&2 in embryonic mouse cortex led to ectopic production of OB-like interneurons that expressed Gad1, Sp8, Sp9, Arx, Pbx3, Etv1, Tshz1, and Prokr2. Pax6 mutants generate cortical ectopia with OB-like interneurons, but do not do so in compound Pax6; Dlx1/2 mutants. We propose that DLX1/2 promote OB interneuron development mainly through activating the expression of Sp8/9, which further promote Tshz1 and Prokr2 expression. Based on this study, in combination with earlier ones, we propose a transcriptional network for the process of OB interneuron development.
Collapse
Affiliation(s)
- Teng Guo
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Guoping Liu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Heng Du
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Yan Wen
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Song Wei
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Zhenmeiyu Li
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Guangxu Tao
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Zicong Shang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Xiaolei Song
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Zhuangzhi Zhang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Zhejun Xu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Yan You
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Bin Chen
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - John L Rubenstein
- Department of Psychiatry, Nina Ireland Laboratory of Developmental Neurobiology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Zhengang Yang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| |
Collapse
|
22
|
Sohal VS, Rubenstein JLR. Excitation-inhibition balance as a framework for investigating mechanisms in neuropsychiatric disorders. Mol Psychiatry 2019; 24:1248-1257. [PMID: 31089192 PMCID: PMC6742424 DOI: 10.1038/s41380-019-0426-0] [Citation(s) in RCA: 496] [Impact Index Per Article: 82.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 04/01/2019] [Accepted: 04/11/2019] [Indexed: 12/21/2022]
Abstract
In 2003 Rubenstein and Merzenich hypothesized that some forms of Autism (ASD) might be caused by a reduction in signal-to-noise in key neural circuits, which could be the result of changes in excitatory-inhibitory (E-I) balance. Here, we have clarified the concept of E-I balance, and updated the original hypothesis in light of the field's increasingly sophisticated understanding of neuronal circuits. We discuss how specific developmental mechanisms, which reduce inhibition, affect cortical and hippocampal functions. After describing how mutations of some ASD genes disrupt inhibition in mice, we close by suggesting that E-I balance represents an organizing framework for understanding findings related to pathophysiology and for identifying appropriate treatments.
Collapse
Affiliation(s)
- Vikaas S. Sohal
- Department of Psychiatry, Weill Institute for Neurosciences, and Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA 94143, USA
| | - John L. R. Rubenstein
- Department of Psychiatry, Weill Institute for Neurosciences, and Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
23
|
Raina A, Mahajani S, Bähr M, Kügler S. Neuronal Trans-differentiation by Transcription Factors Ascl1 and Nurr1: Induction of a Dopaminergic Neurotransmitter Phenotype in Cortical GABAergic Neurons. Mol Neurobiol 2019; 57:249-260. [PMID: 31317490 DOI: 10.1007/s12035-019-01701-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022]
Abstract
Neurons with a desired neurotransmitter phenotype can be differentiated from induced pluripotent stem cells or from somatic cells only through tedious protocols with relatively low yield. Readily available cortical neurons isolated from embryonic rat brain, which have already undergone a complete neuronal differentiation process, might serve as alternative template source. These cultures consist of 85% glutamatergic and 15% GABAergic neurons, and we attempted to trans-differentiate them into dopaminergic neurons. Transcription factors Nurr1, Lmx1A and Pitx3, essential determinants of a dopaminergic cell fate during CNS development, were not sufficient to induce tyrosine hydroxylase expression in a significant number of cells. Combining Nurr1 with the generic neuronal differentiator and re-programming factor Ascl1, however, resulted in generation of neurons which express dopaminergic markers TH, AADC, VMAT2 and DAT. Only neurons of GABAergic phenotype could be trans-differentiated towards a dopaminergic neurotransmitter phenotype, while for glutamatergic neurons, this process proved to be neurotoxic. Intriguingly, GABAergic neurons isolated from embryonal midbrain could not be trans-differentiated into dopaminergic neurons by Ascl1 and Nurr1. Thus, in principle, post-mitotic embryonal neurons can serve as templates for neurons with a desired neurotransmitter phenotype. However, neurotransmitter phenotype plasticity critically depends on the differentiation history of the template neurons, which can result in relatively low yields of dopaminergic neurons.
Collapse
Affiliation(s)
- Anupam Raina
- Department of Neurology, University Medicine Göttingen, Waldweg 33, 37073, Göttingen, Germany.,Center Nanoscale Microscopy and Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Sameehan Mahajani
- Department of Neurology, University Medicine Göttingen, Waldweg 33, 37073, Göttingen, Germany.,Center Nanoscale Microscopy and Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medicine Göttingen, Waldweg 33, 37073, Göttingen, Germany.,Center Nanoscale Microscopy and Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Sebastian Kügler
- Department of Neurology, University Medicine Göttingen, Waldweg 33, 37073, Göttingen, Germany. .,Center Nanoscale Microscopy and Physiology of the Brain (CNMPB), Göttingen, Germany.
| |
Collapse
|
24
|
Welch JD, Kozareva V, Ferreira A, Vanderburg C, Martin C, Macosko EZ. Single-Cell Multi-omic Integration Compares and Contrasts Features of Brain Cell Identity. Cell 2019; 177:1873-1887.e17. [PMID: 31178122 PMCID: PMC6716797 DOI: 10.1016/j.cell.2019.05.006] [Citation(s) in RCA: 666] [Impact Index Per Article: 111.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/21/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023]
Abstract
Defining cell types requires integrating diverse single-cell measurements from multiple experiments and biological contexts. To flexibly model single-cell datasets, we developed LIGER, an algorithm that delineates shared and dataset-specific features of cell identity. We applied it to four diverse and challenging analyses of human and mouse brain cells. First, we defined region-specific and sexually dimorphic gene expression in the mouse bed nucleus of the stria terminalis. Second, we analyzed expression in the human substantia nigra, comparing cell states in specific donors and relating cell types to those in the mouse. Third, we integrated in situ and single-cell expression data to spatially locate fine subtypes of cells present in the mouse frontal cortex. Finally, we jointly defined mouse cortical cell types using single-cell RNA-seq and DNA methylation profiles, revealing putative mechanisms of cell-type-specific epigenomic regulation. Integrative analyses using LIGER promise to accelerate investigations of cell-type definition, gene regulation, and disease states.
Collapse
Affiliation(s)
- Joshua D Welch
- Broad Institute of Harvard and MIT, Stanley Center for Psychiatric Research, 450 Main Street, Cambridge, MA, USA.
| | - Velina Kozareva
- Broad Institute of Harvard and MIT, Stanley Center for Psychiatric Research, 450 Main Street, Cambridge, MA, USA
| | - Ashley Ferreira
- Broad Institute of Harvard and MIT, Stanley Center for Psychiatric Research, 450 Main Street, Cambridge, MA, USA
| | - Charles Vanderburg
- Broad Institute of Harvard and MIT, Stanley Center for Psychiatric Research, 450 Main Street, Cambridge, MA, USA
| | - Carly Martin
- Broad Institute of Harvard and MIT, Stanley Center for Psychiatric Research, 450 Main Street, Cambridge, MA, USA
| | - Evan Z Macosko
- Broad Institute of Harvard and MIT, Stanley Center for Psychiatric Research, 450 Main Street, Cambridge, MA, USA; Massachusetts General Hospital, Department of Psychiatry, 55 Fruit Street, Boston, MA, USA.
| |
Collapse
|
25
|
Ma NX, Yin JC, Chen G. Transcriptome Analysis of Small Molecule-Mediated Astrocyte-to-Neuron Reprogramming. Front Cell Dev Biol 2019; 7:82. [PMID: 31231645 PMCID: PMC6558402 DOI: 10.3389/fcell.2019.00082] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/01/2019] [Indexed: 12/21/2022] Open
Abstract
Chemical reprogramming of astrocytes into neurons represents a promising approach to regenerate new neurons for brain repair, but the underlying mechanisms driving this trans-differentiation process are not well understood. We have recently identified four small molecules – CHIR99021, DAPT, LDN193189, and SB431542 – that can efficiently reprogram cultured human fetal astrocytes into functional neurons. Here we employ the next generation of RNA-sequencing technology to investigate the transcriptome changes during the astrocyte-to-neuron (AtN) conversion process. We found that the four small molecules can rapidly activate the hedgehog signaling pathway while downregulating many glial genes such as FN1 and MYL9 within 24 h of treatment. Chemical reprogramming is mediated by several waves of differential gene expression, including upregulation of hedgehog, Wnt/β-catenin, and Notch signaling pathways, together with downregulation of TGF-β and JAK/STAT signaling pathways. Our gene network analyses reveal many well-connected hub genes such as repulsive guidance molecule A (RGMA), neuronatin (NNAT), neurogenin 2 (NEUROG2), NPTX2, MOXD1, JAG1, and GAP43, which may coordinate the chemical reprogramming process. Together, these findings provide critical insights into the molecular cascades triggered by a combination of small molecules that eventually leads to chemical conversion of astrocytes into neurons.
Collapse
Affiliation(s)
- Ning-Xin Ma
- Department of Biology, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Jiu-Chao Yin
- Department of Biology, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Gong Chen
- Department of Biology, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
26
|
Xu R, Brawner AT, Li S, Liu JJ, Kim H, Xue H, Pang ZP, Kim WY, Hart RP, Liu Y, Jiang P. OLIG2 Drives Abnormal Neurodevelopmental Phenotypes in Human iPSC-Based Organoid and Chimeric Mouse Models of Down Syndrome. Cell Stem Cell 2019; 24:908-926.e8. [PMID: 31130512 DOI: 10.1016/j.stem.2019.04.014] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 10/05/2018] [Accepted: 04/17/2019] [Indexed: 02/06/2023]
Abstract
Down syndrome (DS) is a common neurodevelopmental disorder, and cognitive defects in DS patients may arise from imbalances in excitatory and inhibitory neurotransmission. Understanding the mechanisms underlying such imbalances may provide opportunities for therapeutic intervention. Here, we show that human induced pluripotent stem cells (hiPSCs) derived from DS patients overproduce OLIG2+ ventral forebrain neural progenitors. As a result, DS hiPSC-derived cerebral organoids excessively produce specific subclasses of GABAergic interneurons and cause impaired recognition memory in neuronal chimeric mice. Increased OLIG2 expression in DS cells directly upregulates interneuron lineage-determining transcription factors. shRNA-mediated knockdown of OLIG2 largely reverses abnormal gene expression in early-stage DS neural progenitors, reduces interneuron production in DS organoids and chimeric mouse brains, and improves behavioral deficits in DS chimeric mice. Thus, altered OLIG2 expression may underlie neurodevelopmental abnormalities and cognitive defects in DS patients.
Collapse
Affiliation(s)
- Ranjie Xu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA; Department of Developmental Neuroscience, Munroe-Meyer Institute and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Andrew T Brawner
- Department of Developmental Neuroscience, Munroe-Meyer Institute and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shenglan Li
- Department of Neurosurgery and Center for Stem Cell and Regenerative Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jing-Jing Liu
- Department of Neuroscience and Cell Biology and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Hyosung Kim
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Haipeng Xue
- Department of Neurosurgery and Center for Stem Cell and Regenerative Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhiping P Pang
- Department of Neuroscience and Cell Biology and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Woo-Yang Kim
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Ying Liu
- Department of Neurosurgery and Center for Stem Cell and Regenerative Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Peng Jiang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA; Department of Developmental Neuroscience, Munroe-Meyer Institute and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
27
|
Fico A, Fiorenzano A, Pascale E, Patriarca EJ, Minchiotti G. Long non-coding RNA in stem cell pluripotency and lineage commitment: functions and evolutionary conservation. Cell Mol Life Sci 2019; 76:1459-1471. [PMID: 30607432 PMCID: PMC6439142 DOI: 10.1007/s00018-018-3000-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/13/2018] [Accepted: 12/17/2018] [Indexed: 02/07/2023]
Abstract
LncRNAs have recently emerged as new and fundamental transcriptional and post-transcriptional regulators acting at multiple levels of gene expression. Indeed, lncRNAs participate in a wide variety of stem cell and developmental processes, acting in cis and/or in trans in the nuclear and/or in the cytoplasmic compartments, and generating an intricate network of interactions with RNAs, enhancers, and chromatin-modifier complexes. Given the versatility of these molecules to operate in different subcellular compartments, via different modes of action and with different target specificity, the interest in this research field is rapidly growing. Here, we review recent progress in defining the functional role of lncRNAs in stem cell biology with a specific focus on the underlying mechanisms. We also discuss recent findings on a new family of evolutionary conserved lncRNAs transcribed from ultraconserved elements, which show perfect conservation between human, mouse, and rat genomes, and that are emerging as new player in this complex scenario.
Collapse
Affiliation(s)
- Annalisa Fico
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy.
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy.
| | - Alessandro Fiorenzano
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, and Lund Stem Cell Centre, Department of Experimental Medical Science, Lund University, 22184, Lund, Sweden
| | - Emilia Pascale
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy
| | - Eduardo Jorge Patriarca
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy
| | - Gabriella Minchiotti
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy
| |
Collapse
|
28
|
Dubos A, Meziane H, Iacono G, Curie A, Riet F, Martin C, Loaëc N, Birling MC, Selloum M, Normand E, Pavlovic G, Sorg T, Stunnenberg HG, Chelly J, Humeau Y, Friocourt G, Hérault Y. A new mouse model of ARX dup24 recapitulates the patients' behavioral and fine motor alterations. Hum Mol Genet 2019; 27:2138-2153. [PMID: 29659809 PMCID: PMC5985730 DOI: 10.1093/hmg/ddy122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 03/26/2018] [Indexed: 01/27/2023] Open
Abstract
The aristaless-related homeobox (ARX) transcription factor is involved in the development of GABAergic and cholinergic neurons in the forebrain. ARX mutations have been associated with a wide spectrum of neurodevelopmental disorders in humans, among which the most frequent, a 24 bp duplication in the polyalanine tract 2 (c.428_451dup24), gives rise to intellectual disability, fine motor defects with or without epilepsy. To understand the functional consequences of this mutation, we generated a partially humanized mouse model carrying the c.428_451dup24 duplication (Arxdup24/0) that we characterized at the behavior, neurological and molecular level. Arxdup24/0 males presented with hyperactivity, enhanced stereotypies and altered contextual fear memory. In addition, Arxdup24/0 males had fine motor defects with alteration of reaching and grasping abilities. Transcriptome analysis of Arxdup24/0 forebrains at E15.5 showed a down-regulation of genes specific to interneurons and an up-regulation of genes normally not expressed in this cell type, suggesting abnormal interneuron development. Accordingly, interneuron migration was altered in the cortex and striatum between E15.5 and P0 with consequences in adults, illustrated by the defect in the inhibitory/excitatory balance in Arxdup24/0 basolateral amygdala. Altogether, we showed that the c.428_451dup24 mutation disrupts Arx function with a direct consequence on interneuron development, leading to hyperactivity and defects in precise motor movement control and associative memory. Interestingly, we highlighted striking similarities between the mouse phenotype and a cohort of 33 male patients with ARX c.428_451dup24, suggesting that this new mutant mouse line is a good model for understanding the pathophysiology and evaluation of treatment.
Collapse
Affiliation(s)
- Aline Dubos
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France.,CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 67404 Illkirch, France
| | - Hamid Meziane
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 67404 Illkirch, France
| | - Giovanni Iacono
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, The Netherlands
| | - Aurore Curie
- Centre de Référence Déficiences Intellectuelles de Causes Rares, Hôpital Femmes Mères Enfants, Hospices Civils de Lyon, Institut des Sciences Cognitives, CNRS UMR5304, Université Claude Bernard Lyon1, 69675 Bron, France
| | - Fabrice Riet
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 67404 Illkirch, France
| | - Christelle Martin
- Team Synapse in Cognition, Institut Interdisciplinaire de NeuroScience, Centre National de la Recherche Scientifique CNRS UMR5297, Université de Bordeaux, 33077 Bordeaux, France
| | - Nadège Loaëc
- Inserm UMR 1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé, Etablissement Français du Sang (EFS) Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 29200 Brest, France
| | | | - Mohammed Selloum
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 67404 Illkirch, France
| | - Elisabeth Normand
- Team Synapse in Cognition, Institut Interdisciplinaire de NeuroScience, Centre National de la Recherche Scientifique CNRS UMR5297, Université de Bordeaux, 33077 Bordeaux, France.,Pole In Vivo, Institut Interdisciplinaire de NeuroScience, Centre National de la Recherche Scientifique CNRS UMR5297, Université de Bordeaux, 33077 Bordeaux, France
| | - Guillaume Pavlovic
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 67404 Illkirch, France
| | - Tania Sorg
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 67404 Illkirch, France
| | - Henk G Stunnenberg
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, The Netherlands
| | - Jamel Chelly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France.,Service de Diagnostic Génétique, Hôpital Civil de Strasbourg, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France
| | - Yann Humeau
- Team Synapse in Cognition, Institut Interdisciplinaire de NeuroScience, Centre National de la Recherche Scientifique CNRS UMR5297, Université de Bordeaux, 33077 Bordeaux, France
| | - Gaëlle Friocourt
- Inserm UMR 1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé, Etablissement Français du Sang (EFS) Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 29200 Brest, France
| | - Yann Hérault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France.,CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 67404 Illkirch, France
| |
Collapse
|
29
|
Juric-Sekhar G, Hevner RF. Malformations of Cerebral Cortex Development: Molecules and Mechanisms. ANNUAL REVIEW OF PATHOLOGY 2019; 14:293-318. [PMID: 30677308 PMCID: PMC6938687 DOI: 10.1146/annurev-pathmechdis-012418-012927] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Malformations of cortical development encompass heterogeneous groups of structural brain anomalies associated with complex neurodevelopmental disorders and diverse genetic and nongenetic etiologies. Recent progress in understanding the genetic basis of brain malformations has been driven by extraordinary advances in DNA sequencing technologies. For example, somatic mosaic mutations that activate mammalian target of rapamycin signaling in cortical progenitor cells during development are now recognized as the cause of hemimegalencephaly and some types of focal cortical dysplasia. In addition, research on brain development has begun to reveal the cellular and molecular bases of cortical gyrification and axon pathway formation, providing better understanding of disorders involving these processes. New neuroimaging techniques with improved resolution have enhanced our ability to characterize subtle malformations, such as those associated with intellectual disability and autism. In this review, we broadly discuss cortical malformations and focus on several for which genetic etiologies have elucidated pathogenesis.
Collapse
Affiliation(s)
- Gordana Juric-Sekhar
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98195, USA; ,
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Robert F Hevner
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98195, USA; ,
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington 98195, USA
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington 98105, USA
- Current affiliation: Department of Pathology, University of California, San Diego, California 92093, USA
| |
Collapse
|
30
|
Cortical interneuron function in autism spectrum condition. Pediatr Res 2019; 85:146-154. [PMID: 30367159 DOI: 10.1038/s41390-018-0214-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 12/28/2022]
Abstract
Cortical interneurons (INs) are a diverse group of neurons that project locally and shape the function of neural networks throughout the brain. Multiple lines of evidence suggest that a proper balance of glutamate and GABA signaling is essential for both the proper function and development of the brain. Dysregulation of this system may lead to neurodevelopmental disorders, including autism spectrum condition (ASC). We evaluate the development and function of INs in rodent and human models and examine how neurodevelopmental dysfunction may produce core symptoms of ASC. Finding common physiological mechanisms that underlie neurodevelopmental disorders may lead to novel pharmacological targets and candidates that could improve the cognitive and emotional symptoms associated with ASC.
Collapse
|
31
|
Lim L, Mi D, Llorca A, Marín O. Development and Functional Diversification of Cortical Interneurons. Neuron 2018; 100:294-313. [PMID: 30359598 PMCID: PMC6290988 DOI: 10.1016/j.neuron.2018.10.009] [Citation(s) in RCA: 416] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 12/18/2022]
Abstract
In the cerebral cortex, GABAergic interneurons have evolved as a highly heterogeneous collection of cell types that are characterized by their unique spatial and temporal capabilities to influence neuronal circuits. Current estimates suggest that up to 50 different types of GABAergic neurons may populate the cerebral cortex, all derived from progenitor cells in the subpallium, the ventral aspect of the embryonic telencephalon. In this review, we provide an overview of the mechanisms underlying the generation of the distinct types of interneurons and their integration in cortical circuits. Interneuron diversity seems to emerge through the implementation of cell-intrinsic genetic programs in progenitor cells, which unfold over a protracted period of time until interneurons acquire mature characteristics. The developmental trajectory of interneurons is also modulated by activity-dependent, non-cell-autonomous mechanisms that influence their ability to integrate in nascent circuits and sculpt their final distribution in the adult cerebral cortex.
Collapse
Affiliation(s)
- Lynette Lim
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Da Mi
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Alfredo Llorca
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Oscar Marín
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK.
| |
Collapse
|
32
|
Wei CW, Luo T, Zou SS, Wu AS. The Role of Long Noncoding RNAs in Central Nervous System and Neurodegenerative Diseases. Front Behav Neurosci 2018; 12:175. [PMID: 30323747 PMCID: PMC6172704 DOI: 10.3389/fnbeh.2018.00175] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/27/2018] [Indexed: 11/13/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) refer to a group of noncoding RNAs (ncRNAs) that has a transcript of more than 200 nucleotides in length in eukaryotic cells. The lncRNAs regulate gene expression at epigenetic, transcriptional, and post-transcriptional levels by multiple action modes. In this review, we describe the diverse roles reported for lncRNAs, and discuss how they could mechanistically be involved in the development of central nervous system (CNS) and neurodegenerative diseases. Further studies on the function of lncRNAs and their mechanism will help deepen our understanding of the development, function, and diseases of the CNS, and provide new ideas for the design and development of some therapeutic drugs.
Collapse
Affiliation(s)
- Chang-Wei Wei
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ting Luo
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shan-Shan Zou
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - An-Shi Wu
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
33
|
Estrogen Treatment Reverses Prematurity-Induced Disruption in Cortical Interneuron Population. J Neurosci 2018; 38:7378-7391. [PMID: 30037831 DOI: 10.1523/jneurosci.0478-18.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 05/22/2018] [Accepted: 06/17/2018] [Indexed: 01/21/2023] Open
Abstract
Development of cortical interneurons continues until the end of human pregnancy. Premature birth deprives the newborns from the supply of maternal estrogen and a secure intrauterine environment. Indeed, preterm infants suffer from neurobehavioral disorders. This can result from both preterm birth and associated postnatal complications, which might disrupt recruitment and maturation of cortical interneurons. We hypothesized that interneuron subtypes, including parvalbumin-positive (PV+), somatostatin-positive (SST+), calretinin-positive (CalR+), and neuropeptide Y-positive (NPY+) interneurons, were recruited in the upper and lower cortical layers in a distinct manner with advancing gestational age. In addition, preterm birth would disrupt the heterogeneity of cortical interneurons, which might be reversed by estrogen treatment. These hypotheses were tested by analyzing autopsy samples from premature infants and evaluating the effect of estrogen supplementation in prematurely delivered rabbits. The PV+ and CalR+ neurons were abundant, whereas SST+ and NPY+ neurons were few in cortical layers of preterm human infants. Premature birth of infants reduced the density of PV+ or GAD67+ neurons and increased SST+ interneurons in the upper cortical layers. Importantly, 17 β-estradiol treatment in preterm rabbits increased the number of PV+ neurons in the upper cortical layers relative to controls at postnatal day 14 (P14) and P21 and transiently reduced SST population at P14. Moreover, protein and mRNA levels of Arx, a key regulator of cortical interneuron maturation and migration, were higher in estrogen-treated rabbits relative to controls. Therefore, deficits in PV+ and excess of SST+ neurons in premature newborns are ameliorated by estrogen replacement, which can be attributed to elevated Arx levels. Estrogen replacement might enhance neurodevelopmental outcomes in extremely preterm infants.SIGNIFICANCE STATEMENT Premature birth often leads to neurodevelopmental delays and behavioral disorders, which may be ascribed to disturbances in the development and maturation of cortical interneurons. Here, we show that preterm birth in humans is associated with reduced population of parvalbumin-positive (PV+) neurons and an excess of somatostatin-expressing interneurons in the cerebral cortex. More importantly, 17 β-estradiol treatment increased the number of PV+ neurons in preterm-born rabbits, which appears to be mediated by an elevation in the expression of Arx transcription factor. Hence the present study highlights prematurity-induced reduction in PV+ neurons in human infants and reversal in their population by estrogen replacement in preterm rabbits. Because preterm birth drops plasma estrogen level 100-fold, estrogen replacement in extremely preterm infants might improve their developmental outcome and minimize neurobehavioral disorders.
Collapse
|
34
|
Dickel DE, Ypsilanti AR, Pla R, Zhu Y, Barozzi I, Mannion BJ, Khin YS, Fukuda-Yuzawa Y, Plajzer-Frick I, Pickle CS, Lee EA, Harrington AN, Pham QT, Garvin TH, Kato M, Osterwalder M, Akiyama JA, Afzal V, Rubenstein JLR, Pennacchio LA, Visel A. Ultraconserved Enhancers Are Required for Normal Development. Cell 2018; 172:491-499.e15. [PMID: 29358049 PMCID: PMC5786478 DOI: 10.1016/j.cell.2017.12.017] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/27/2017] [Accepted: 12/11/2017] [Indexed: 01/26/2023]
Abstract
Non-coding "ultraconserved" regions containing hundreds of consecutive bases of perfect sequence conservation across mammalian genomes can function as distant-acting enhancers. However, initial deletion studies in mice revealed that loss of such extraordinarily constrained sequences had no immediate impact on viability. Here, we show that ultraconserved enhancers are required for normal development. Focusing on some of the longest ultraconserved sites genome wide, located near the essential neuronal transcription factor Arx, we used genome editing to create an expanded series of knockout mice lacking individual or combinations of ultraconserved enhancers. Mice with single or pairwise deletions of ultraconserved enhancers were viable and fertile but in nearly all cases showed neurological or growth abnormalities, including substantial alterations of neuron populations and structural brain defects. Our results demonstrate the functional importance of ultraconserved enhancers and indicate that remarkably strong sequence conservation likely results from fitness deficits that appear subtle in a laboratory setting.
Collapse
Affiliation(s)
- Diane E Dickel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA.
| | - Athena R Ypsilanti
- Department of Psychiatry, Neuroscience Program, UCSF Weill Institute for Neurosciences and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Ramón Pla
- Department of Psychiatry, Neuroscience Program, UCSF Weill Institute for Neurosciences and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Yiwen Zhu
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Iros Barozzi
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Brandon J Mannion
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Yupar S Khin
- Department of Psychiatry, Neuroscience Program, UCSF Weill Institute for Neurosciences and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Yoko Fukuda-Yuzawa
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Ingrid Plajzer-Frick
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Catherine S Pickle
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Elizabeth A Lee
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Anne N Harrington
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Quan T Pham
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Tyler H Garvin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Momoe Kato
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Marco Osterwalder
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Jennifer A Akiyama
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Veena Afzal
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - John L R Rubenstein
- Department of Psychiatry, Neuroscience Program, UCSF Weill Institute for Neurosciences and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Len A Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA; U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA; Comparative Biochemistry Program, University of California Berkeley, Berkeley, CA 94720, USA.
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA; U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA; School of Natural Sciences, University of California Merced, Merced, CA 95343, USA.
| |
Collapse
|
35
|
Benítez-Burraco A, Barcos-Martínez M, Espejo-Portero I, Fernández-Urquiza M, Torres-Ruiz R, Rodríguez-Perales S, Jiménez-Romero MS. Narrowing the Genetic Causes of Language Dysfunction in the 1q21.1 Microduplication Syndrome. Front Pediatr 2018; 6:163. [PMID: 29922639 PMCID: PMC5996825 DOI: 10.3389/fped.2018.00163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/15/2018] [Indexed: 12/22/2022] Open
Abstract
The chromosome 1q21.1 duplication syndrome (OMIM# 612475) is characterized by head anomalies, mild facial dysmorphisms, and cognitive problems, including autistic features, mental retardation, developmental delay, and learning disabilities. Speech and language development are sometimes impaired, but no detailed characterization of language problems in this condition has been provided to date. We report in detail on the cognitive and language phenotype of a child who presents with a duplication in 1q21.1 (arr[hg19] 1q21.1q21.2(145,764,455-147,824,207) × 3), and who exhibits cognitive delay and behavioral disturbances. Language is significantly perturbed, being the expressive domain the most impaired area (with significant dysphemic features in absence of pure motor speech deficits), although language comprehension and use (pragmatics) are also affected. Among the genes found duplicated in the child, CDH1L is upregulated in the blood of the proband. ROBO1, a candidate for dyslexia, is also highly upregulated, whereas, TLE3, a target of FOXP2, is significantly downregulated. These changes might explain language, and particularly speech dysfunction in the proband.
Collapse
Affiliation(s)
- Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature, University of Seville, Seville, Spain
| | - Montserrat Barcos-Martínez
- Laboratory of Molecular Genetics, University Hospital "Reina Sofía", Córdoba, Spain.,Maimónides Institute of Biomedical Research, Córdoba, Spain
| | - Isabel Espejo-Portero
- Laboratory of Molecular Genetics, University Hospital "Reina Sofía", Córdoba, Spain.,Maimónides Institute of Biomedical Research, Córdoba, Spain
| | | | - Raúl Torres-Ruiz
- Molecular Cytogenetics Group, Centro Nacional Investigaciones Oncológicas, Madrid, Spain
| | | | | |
Collapse
|
36
|
Gilbert J, Man HY. Fundamental Elements in Autism: From Neurogenesis and Neurite Growth to Synaptic Plasticity. Front Cell Neurosci 2017; 11:359. [PMID: 29209173 PMCID: PMC5701944 DOI: 10.3389/fncel.2017.00359] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/31/2017] [Indexed: 01/12/2023] Open
Abstract
Autism spectrum disorder (ASD) is a set of neurodevelopmental disorders with a high prevalence and impact on society. ASDs are characterized by deficits in both social behavior and cognitive function. There is a strong genetic basis underlying ASDs that is highly heterogeneous; however, multiple studies have highlighted the involvement of key processes, including neurogenesis, neurite growth, synaptogenesis and synaptic plasticity in the pathophysiology of neurodevelopmental disorders. In this review article, we focus on the major genes and signaling pathways implicated in ASD and discuss the cellular, molecular and functional studies that have shed light on common dysregulated pathways using in vitro, in vivo and human evidence. HighlightsAutism spectrum disorder (ASD) has a prevalence of 1 in 68 children in the United States. ASDs are highly heterogeneous in their genetic basis. ASDs share common features at the cellular and molecular levels in the brain. Most ASD genes are implicated in neurogenesis, structural maturation, synaptogenesis and function.
Collapse
Affiliation(s)
- James Gilbert
- Department of Biology, Boston University, Boston, MA, United States
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA, United States.,Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
37
|
Hu JS, Vogt D, Lindtner S, Sandberg M, Silberberg SN, Rubenstein JLR. Coup-TF1 and Coup-TF2 control subtype and laminar identity of MGE-derived neocortical interneurons. Development 2017; 144:2837-2851. [PMID: 28694260 DOI: 10.1242/dev.150664] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/29/2017] [Indexed: 12/23/2022]
Abstract
Distinct cortical interneuron (CIN) subtypes have unique circuit functions; dysfunction in specific subtypes is implicated in neuropsychiatric disorders. Somatostatin- and parvalbumin-expressing (SST+ and PV+) interneurons are the two major subtypes generated by medial ganglionic eminence (MGE) progenitors. Spatial and temporal mechanisms governing their cell-fate specification and differential integration into cortical layers are largely unknown. We provide evidence that Coup-TF1 and Coup-TF2 (Nr2f1 and Nr2f2) transcription factor expression in an arc-shaped progenitor domain within the MGE promotes time-dependent survival of this neuroepithelium and the time-dependent specification of layer V SST+ CINs. Coup-TF1 and Coup-TF2 autonomously repress PV+ fate in MGE progenitors, in part through directly driving Sox6 expression. These results have identified, in mouse, a transcriptional pathway that controls SST-PV fate.
Collapse
Affiliation(s)
- Jia Sheng Hu
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Daniel Vogt
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Susan Lindtner
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Magnus Sandberg
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Shanni N Silberberg
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA
| | - John L R Rubenstein
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
38
|
ARX polyalanine expansion mutations lead to migration impediment in the rostral cortex coupled with a developmental deficit of calbindin-positive cortical GABAergic interneurons. Neuroscience 2017. [PMID: 28627419 DOI: 10.1016/j.neuroscience.2017.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Aristaless-related homeobox gene (ARX) is indispensable for interneuron development. Patients with ARX polyalanine expansion mutations of the first two tracts (namely PA1 and PA2) suffer from intellectual disability of varying severity, with seizures a frequent comorbidity. The impact of PA1 and PA2 mutations on the brain development is unknown, hindering the search for therapeutic interventions. Here, we characterized the disturbances to cortical interneuron development in mice modeling the two most common ARX polyalanine expansion mutations in human. We found a consistent ∼40-50% reduction of calbindin-positive interneurons, but not Stt+ or Cr+ interneurons, within the cortex of newborn hemizygous mice (p=0.024) for both mutant strains compared to wildtype (p=0.011). We demonstrate that this was a consequence of calbindin precursor cells being arrested or delayed at the ventral subpallium en route of tangential migration. Ex-vivo assay validated this migration deficit in PA1 cells (p=0.0002) suggesting that the defect is contributed by intrinsic loss of Arx function within migrating cells. Both humans and mice with PA1 mutations present with severe clinical features, including intellectual disability and infantile spasms. Our data further demonstrated the pathogenic mechanism was robustly shared between PA1 and PA2 mutations, as previously reported including Arx protein reduction and overlapping transcriptome profiles within the developing mouse brains. Data from our study demonstrated that cortical calbindin interneuron development and migration is negatively affected by ARX polyalanine expansion mutations. Understanding the cellular pathogenesis contributing to disease manifestation is necessary to screen efficacy of potential therapeutic interventions.
Collapse
|
39
|
Ascl1 promotes tangential migration and confines migratory routes by induction of Ephb2 in the telencephalon. Sci Rep 2017; 7:42895. [PMID: 28276447 PMCID: PMC5343589 DOI: 10.1038/srep42895] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/18/2017] [Indexed: 01/13/2023] Open
Abstract
During development, cortical interneurons generated from the ventral telencephalon migrate tangentially into the dorsal telencephalon. Although Achaete-scute family bHLH transcription factor 1 (Ascl1) plays important roles in the developing telencephalon, whether Ascl1 regulates tangential migration remains unclear. Here, we found that Ascl1 promoted tangential migration along the ventricular zone/subventricular zone (VZ/SVZ) and intermediate zone (IZ) of the dorsal telencephalon. Distal-less homeobox 2 (Dlx2) acted downstream of Ascl1 in promoting tangential migration along the VZ/SVZ but not IZ. We further identified Eph receptor B2 (Ephb2) as a direct target of Ascl1. Knockdown of EphB2 disrupted the separation of the VZ/SVZ and IZ migratory routes. Ephrin-A5, a ligand of EphB2, was sufficient to repel both Ascl1-expressing cells in vitro and tangentially migrating cortical interneurons in vivo. Together, our results demonstrate that Ascl1 induces expression of Dlx2 and Ephb2 to maintain distinct tangential migratory routes in the dorsal telencephalon.
Collapse
|
40
|
Cho IT, Lim Y, Golden JA, Cho G. Aristaless Related Homeobox (ARX) Interacts with β-Catenin, BCL9, and P300 to Regulate Canonical Wnt Signaling. PLoS One 2017; 12:e0170282. [PMID: 28103279 PMCID: PMC5245867 DOI: 10.1371/journal.pone.0170282] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 01/03/2017] [Indexed: 01/09/2023] Open
Abstract
Mutations in the Aristaless Related Homeobox (ARX) gene are associated with a spectrum of structural (lissencephaly) and functional (epilepsy and intellectual disabilities) neurodevelopmental disorders. How mutations in this single transcription factor can result in such a broad range of phenotypes remains poorly understood. We hypothesized that ARX functions through distinct interactions with specific transcription factors/cofactors to regulate unique target genes in different cell types. To identify ARX interacting proteins, we performed an unbiased proteomics screen and identified several components of the Wnt/β-catenin signaling pathway, including β-catenin (CTNNB1), B-cell CLL/lymphoma 9 (BCL9) and leucine rich repeat flightless interacting protein 2 (LRRFIP2), in cortical progenitor cells. Our data show that ARX positively regulates Wnt/ β-catenin signaling and that the C-terminal domain of ARX interacts with the armadillo repeats in β-catenin to promote Wnt/β-catenin signaling. In addition, we found BCL9 and P300 also interact with ARX to modulate Wnt/β-catenin signaling. These data provide new insights into how ARX can uniquely regulate cortical neurogenesis, and connect the function of ARX with Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Il-Taeg Cho
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School Boston, Massachusetts, United States of America
| | - Youngshin Lim
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School Boston, Massachusetts, United States of America
| | - Jeffrey A. Golden
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School Boston, Massachusetts, United States of America
| | - Ginam Cho
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
41
|
Abstract
The epileptic encephalopathies are severe and often treatment-resistant conditions that are associated with a progressive disturbance of brain function, resulting in a broad range of neurological and non-neurological comorbidities. The concept of epileptic encephalopathies entails that the encephalopathy aspect of the overall condition is primarily driven by the epileptic activity of the disease, which often manifests as specific and pathological features on the electroencephalogram. Genetic factors in epileptic encephalopathies are increasingly recognized. As of 2016, more than 30 genes have been securely implicated as causative genes for genetic epileptic encephalopathies. Even though the traditional concept of epileptic encephalopathies entails that the progressive disturbance of brain dysfunction is primarily due to the abnormal hypersynchronous activity that underlies the seizure disorders, this strict concept rarely holds true for patients with identified genetic etiologies. More commonly, an underlying genetic etiology is thought to predispose both to the neurodevelopmental comorbidities and to the seizure phenotype with a complex interaction between both. In this chapter, we will elucidate to what extent neurodegeneration rather than epilepsy-related regression is a feature of the common epileptic encephalopathies, drawing parallels between two relatively separate fields of neurogenetic research.
Collapse
|
42
|
Tectal-derived interneurons contribute to phasic and tonic inhibition in the visual thalamus. Nat Commun 2016; 7:13579. [PMID: 27929058 PMCID: PMC5155147 DOI: 10.1038/ncomms13579] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 10/17/2016] [Indexed: 12/14/2022] Open
Abstract
The release of GABA from local interneurons in the dorsal lateral geniculate nucleus (dLGN-INs) provides inhibitory control during visual processing within the thalamus. It is commonly assumed that this important class of interneurons originates from within the thalamic complex, but we now show that during early postnatal development Sox14/Otx2-expressing precursor cells migrate from the dorsal midbrain to generate dLGN-INs. The unexpected extra-diencephalic origin of dLGN-INs sets them apart from GABAergic neurons of the reticular thalamic nucleus. Using optogenetics we show that at increased firing rates tectal-derived dLGN-INs generate a powerful form of tonic inhibition that regulates the gain of thalamic relay neurons through recruitment of extrasynaptic high-affinity GABAA receptors. Therefore, by revising the conventional view of thalamic interneuron ontogeny we demonstrate how a previously unappreciated mesencephalic population controls thalamic relay neuron excitability.
Collapse
|
43
|
Desikan RS, Barkovich AJ. Malformations of cortical development. Ann Neurol 2016; 80:797-810. [PMID: 27862206 PMCID: PMC5177533 DOI: 10.1002/ana.24793] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/26/2016] [Accepted: 09/26/2016] [Indexed: 01/05/2023]
Abstract
Malformations of cortical development (MCDs) compose a diverse range of disorders that are common causes of neurodevelopmental delay and epilepsy. With improved imaging and genetic methodologies, the underlying molecular and pathobiological characteristics of several MCDs have been recently elucidated. In this review, we discuss genetic and molecular alterations that disrupt normal cortical development, with emphasis on recent discoveries, and provide detailed radiological features of the most common and important MCDs. Ann Neurol 2016;80:797-810.
Collapse
Affiliation(s)
- Rahul S. Desikan
- Neuroradiology Section, Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - A. James Barkovich
- Neuroradiology Section, Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
44
|
Currie KW, Molinaro AM, Pearson BJ. Neuronal sources of hedgehog modulate neurogenesis in the adult planarian brain. eLife 2016; 5:19735. [PMID: 27864883 PMCID: PMC5153250 DOI: 10.7554/elife.19735] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 11/18/2016] [Indexed: 12/13/2022] Open
Abstract
The asexual freshwater planarian is a constitutive adult, whose central nervous system (CNS) is in a state of constant homeostatic neurogenesis. However, very little is known about the extrinsic signals that act on planarian stem cells to modulate rates of neurogenesis. We have identified two planarian homeobox transcription factors, Smed-nkx2.1 and Smed-arx, which are required for the maintenance of cholinergic, GABAergic, and octopaminergic neurons in the planarian CNS. These very same neurons also produce the planarian hedgehog ligand (Smed-hh), which appears to communicate with brain-adjacent stem cells to promote normal levels of neurogenesis. Planarian stem cells nearby the brain express core hh signal transduction genes, and consistent hh signaling levels are required to maintain normal production of neural progenitor cells and new mature cholinergic neurons, revealing an important mitogenic role for the planarian hh signaling molecule in the adult CNS. DOI:http://dx.doi.org/10.7554/eLife.19735.001 Most animals can continue to generate and add new neurons in their nervous system into adulthood, though the process is often tightly regulated. In adult humans, only a small number of neurons are made or lost, such that the fewer than 2% of the neurons in the nervous will change over, or “turnover”, the course of a year. The turnover of neurons in some other animals is much higher than it is in humans. A freshwater flatworm, called Schmidtea mediterranea, is one example of such an animal that can even regenerate an entirely new brain if its head is decapitated. These flatworms have a large population of adult stem cells, which makes these high rates of neuron production and regeneration possible. However, it is largely unknown if this population contains stem cells that can only become new neurons, in other words “dedicated neuronal stem cells”. Moreover, it is also not clear what kinds of signals communicate with these stem cells to promote the production of new neurons. In animals from flies to humans, a signaling molecule encoded by a gene called hedgehog forms part of a signaling pathway that can promote neuron production during development. Therefore, Currie et al. asked if the hedgehog signaling molecule might communicate with the stem cells in adult flatworms to control how many new neurons they produce. The experiments revealed that the hedgehog signaling molecule is almost exclusively produced by the flatworm’s brain and the pair of nerve cords that run the length of the flatworm. Currie et al. then found a smaller group of cells close to the flatworm’s brain that looked like dedicated neural stem cells. These cells can receive the hedgehog signals, and further experiments showed that flatworm’s brain requires hedgehog signaling to be able to produce new neurons at its normal level. The hedgehog signaling molecule is likely only one of many signaling molecules that regulate the production of new neurons in flatworms. It will be important to uncover these additional signals and understand how they work in concert. In the future, a better understanding of this process will help efforts to devise ways to induce humans to replace neurons that are lost following injury or neurodegenerative diseases. DOI:http://dx.doi.org/10.7554/eLife.19735.002
Collapse
Affiliation(s)
- Ko W Currie
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Alyssa M Molinaro
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Bret J Pearson
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Ontario Institute for Cancer Research, Toronto, Canada
| |
Collapse
|
45
|
Volk DW, Edelson JR, Lewis DA. Altered expression of developmental regulators of parvalbumin and somatostatin neurons in the prefrontal cortex in schizophrenia. Schizophr Res 2016; 177:3-9. [PMID: 26972474 PMCID: PMC5018248 DOI: 10.1016/j.schres.2016.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 02/29/2016] [Accepted: 03/02/2016] [Indexed: 10/22/2022]
Abstract
Dysfunction of prefrontal cortex (PFC) inhibitory neurons that express the calcium-binding protein parvalbumin or the neuropeptide somatostatin in schizophrenia may be related to disturbances in the migration, phenotypic specification, and/or maturation of these neurons. These pre- and postnatal developmental stages are regulated in a cell type-specific manner by various transcription factors and co-activators, fibroblast growth factor receptors (FgfR), and other molecular markers. Consequently, we used quantitative PCR to quantify mRNA levels for these developmental regulators in the PFC of 62 schizophrenia subjects in whom parvalbumin and somatostatin neuron disturbances were previously reported, and in antipsychotic-exposed monkeys. Relative to unaffected comparison subjects, subjects with schizophrenia exhibited elevated mRNA levels for 1) the transcription factor MafB, which is expressed by parvalbumin and somatostatin neurons as they migrate from the medial ganglionic eminence to the cortex, 2) the transcriptional coactivator PGC-1α, which is expressed postnatally by parvalbumin neurons to maintain parvalbumin levels and inhibitory function, and 3) FgfR1, which is required for the migration and phenotypic specification of parvalbumin and somatostatin neurons. Elevations in these markers were most prominent in younger schizophrenia subjects and were not present in antipsychotic-exposed monkeys. Finally, expression levels of other important developmental regulators (i.e. Dlx1, Dlx5, Dlx6, SATB1, Sip1/Zeb2, ST8SIA4, cMaf, Nkx6.2, and Arx) were not altered in schizophrenia. The over-expression of a subset of molecular markers with distinct roles in the pre- and postnatal development of parvalbumin and somatostatin neurons might reflect compensatory mechanisms to sustain the development of these neurons in the face of other insults.
Collapse
Affiliation(s)
- David W. Volk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213,Corresponding Author: David W. Volk, MD, PhD, W1655 BST, 3811 O'Hara St, Pittsburgh, PA 15213, Tel: 412-648-9617,
| | - Jessica R. Edelson
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213
| | - David A. Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213,Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
46
|
Current understanding and neurobiology of epileptic encephalopathies. Neurobiol Dis 2016; 92:72-89. [PMID: 26992889 DOI: 10.1016/j.nbd.2016.03.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 03/01/2016] [Accepted: 03/09/2016] [Indexed: 12/25/2022] Open
|
47
|
Marsh ED, Nasrallah MP, Walsh C, Murray KA, Nicole Sunnen C, McCoy A, Golden JA. Developmental interneuron subtype deficits after targeted loss of Arx. BMC Neurosci 2016; 17:35. [PMID: 27287386 PMCID: PMC4902966 DOI: 10.1186/s12868-016-0265-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 06/03/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aristaless-related homeobox (ARX) is a paired-like homeodomain transcription factor that functions primarily as a transcriptional repressor and has been implicated in neocortical interneuron specification and migration. Given the role interneurons appear to play in numerous human conditions including those associated with ARX mutations, it is essential to understand the consequences of mutations in this gene on neocortical interneurons. Previous studies have examined the effect of germline loss of Arx, or targeted mutations in Arx, on interneuron development. We now present the effect of conditional loss of Arx on interneuron development. RESULTS To further elucidate the role of Arx in forebrain development we performed a series of anatomical and developmental studies to determine the effect of conditional loss of Arx specifically from developing interneurons in the neocortex and hippocampus. Analysis and cell counts were performed from mouse brains using immunohistochemical and in situ hybridization assays at 4 times points across development. Our data indicate that early in development, instead of a loss of ventral precursors, there is a shift of these precursors to more ventral locations, a deficit that persists in the adult nervous system. The result of this developmental shift is a reduced number of interneurons (all subtypes) at early postnatal and later time periods. In addition, we find that X inactivation is stochastic, and occurs at the level of the neural progenitors. CONCLUSION These data provide further support that the role of Arx in interneuron development is to direct appropriate migration of ventral neuronal precursors into the dorsal cortex and that the loss of Arx results in a failure of interneurons to reach the cortex and thus a deficiency in interneurons.
Collapse
Affiliation(s)
- Eric D Marsh
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA. .,Division of Child Neurology, Children's Hospital of Philadelphia, Room 502E, Abramson Research Building, 3615 Civic Center Boulevard, Philadelphia, PA, 19014, USA. .,Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - MacLean Pancoast Nasrallah
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pathology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Caroline Walsh
- Division of Child Neurology, Children's Hospital of Philadelphia, Room 502E, Abramson Research Building, 3615 Civic Center Boulevard, Philadelphia, PA, 19014, USA
| | - Kaitlin A Murray
- Division of Child Neurology, Children's Hospital of Philadelphia, Room 502E, Abramson Research Building, 3615 Civic Center Boulevard, Philadelphia, PA, 19014, USA
| | - C Nicole Sunnen
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Almedia McCoy
- Division of Child Neurology, Children's Hospital of Philadelphia, Room 502E, Abramson Research Building, 3615 Civic Center Boulevard, Philadelphia, PA, 19014, USA
| | - Jeffrey A Golden
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA, USA. .,Department of Pathology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA. .,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA, 02115, USA.
| |
Collapse
|
48
|
Jiang X, Lachance M, Rossignol E. Involvement of cortical fast-spiking parvalbumin-positive basket cells in epilepsy. PROGRESS IN BRAIN RESEARCH 2016; 226:81-126. [PMID: 27323940 DOI: 10.1016/bs.pbr.2016.04.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
GABAergic interneurons of the parvalbumin-positive fast-spiking basket cells subtype (PV INs) are important regulators of cortical network excitability and of gamma oscillations, involved in signal processing and cognition. Impaired development or function of PV INs has been associated with epilepsy in various animal models of epilepsy, as well as in some genetic forms of epilepsy in humans. In this review, we provide an overview of some of the experimental data linking PV INs dysfunction with epilepsy, focusing on disorders of the specification, migration, maturation, synaptic function, or connectivity of PV INs. Furthermore, we reflect on the potential therapeutic use of cell-type specific stimulation of PV INs within active networks and on the transplantation of PV INs precursors in the treatment of epilepsy and its comorbidities.
Collapse
Affiliation(s)
- X Jiang
- Université de Montréal, Montréal, QC, Canada; CHU Ste-Justine Research Center, Montréal, QC, Canada
| | - M Lachance
- CHU Ste-Justine Research Center, Montréal, QC, Canada
| | - E Rossignol
- Université de Montréal, Montréal, QC, Canada; CHU Ste-Justine Research Center, Montréal, QC, Canada.
| |
Collapse
|
49
|
Li Q, Guo S, Jiang X, Bryk J, Naumann R, Enard W, Tomita M, Sugimoto M, Khaitovich P, Pääbo S. Mice carrying a human GLUD2 gene recapitulate aspects of human transcriptome and metabolome development. Proc Natl Acad Sci U S A 2016; 113:5358-63. [PMID: 27118840 PMCID: PMC4868425 DOI: 10.1073/pnas.1519261113] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Whereas all mammals have one glutamate dehydrogenase gene (GLUD1), humans and apes carry an additional gene (GLUD2), which encodes an enzyme with distinct biochemical properties. We inserted a bacterial artificial chromosome containing the human GLUD2 gene into mice and analyzed the resulting changes in the transcriptome and metabolome during postnatal brain development. Effects were most pronounced early postnatally, and predominantly genes involved in neuronal development were affected. Remarkably, the effects in the transgenic mice partially parallel the transcriptome and metabolome differences seen between humans and macaques analyzed. Notably, the introduction of GLUD2 did not affect glutamate levels in mice, consistent with observations in the primates. Instead, the metabolic effects of GLUD2 center on the tricarboxylic acid cycle, suggesting that GLUD2 affects carbon flux during early brain development, possibly supporting lipid biosynthesis.
Collapse
Affiliation(s)
- Qian Li
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Song Guo
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Xi Jiang
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Jaroslaw Bryk
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Ronald Naumann
- Max Planck Institute of Molecular Cell Biology and Genetics, D-01307 Dresden, Germany
| | - Wolfgang Enard
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, 997-0035 Tsuruoka, Yamagata, Japan
| | - Masahiro Sugimoto
- Institute for Advanced Biosciences, Keio University, 997-0035 Tsuruoka, Yamagata, Japan
| | - Philipp Khaitovich
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China; Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany; Skolkovo Institute for Science and Technology, 143025 Skolkovo, Russia
| | - Svante Pääbo
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany;
| |
Collapse
|
50
|
Prox1 Regulates the Subtype-Specific Development of Caudal Ganglionic Eminence-Derived GABAergic Cortical Interneurons. J Neurosci 2016; 35:12869-89. [PMID: 26377473 DOI: 10.1523/jneurosci.1164-15.2015] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Neurogliaform (RELN+) and bipolar (VIP+) GABAergic interneurons of the mammalian cerebral cortex provide critical inhibition locally within the superficial layers. While these subtypes are known to originate from the embryonic caudal ganglionic eminence (CGE), the specific genetic programs that direct their positioning, maturation, and integration into the cortical network have not been elucidated. Here, we report that in mice expression of the transcription factor Prox1 is selectively maintained in postmitotic CGE-derived cortical interneuron precursors and that loss of Prox1 impairs the integration of these cells into superficial layers. Moreover, Prox1 differentially regulates the postnatal maturation of each specific subtype originating from the CGE (RELN, Calb2/VIP, and VIP). Interestingly, Prox1 promotes the maturation of CGE-derived interneuron subtypes through intrinsic differentiation programs that operate in tandem with extrinsically driven neuronal activity-dependent pathways. Thus Prox1 represents the first identified transcription factor specifically required for the embryonic and postnatal acquisition of CGE-derived cortical interneuron properties. SIGNIFICANCE STATEMENT Despite the recognition that 30% of GABAergic cortical interneurons originate from the caudal ganglionic eminence (CGE), to date, a specific transcriptional program that selectively regulates the development of these populations has not yet been identified. Moreover, while CGE-derived interneurons display unique patterns of tangential and radial migration and preferentially populate the superficial layers of the cortex, identification of a molecular program that controls these events is lacking.Here, we demonstrate that the homeodomain transcription factor Prox1 is expressed in postmitotic CGE-derived cortical interneuron precursors and is maintained into adulthood. We found that Prox1 function is differentially required during both embryonic and postnatal stages of development to direct the migration, differentiation, circuit integration, and maintenance programs within distinct subtypes of CGE-derived interneurons.
Collapse
|