1
|
Anjum R, Clarke VRJ, Nagasawa Y, Murakoshi H, Paradis S. Rem2 interacts with CaMKII at synapses and restricts long-term potentiation in hippocampus. PLoS One 2024; 19:e0301063. [PMID: 38995900 PMCID: PMC11244776 DOI: 10.1371/journal.pone.0301063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/11/2024] [Indexed: 07/14/2024] Open
Abstract
Synaptic plasticity, the process whereby neuronal connections are either strengthened or weakened in response to stereotyped forms of stimulation, is widely believed to represent the molecular mechanism that underlies learning and memory. The holoenzyme calcium/calmodulin-dependent protein kinase II (CaMKII) plays a well-established and critical role in the induction of a variety of forms of synaptic plasticity such as long-term potentiation (LTP), long-term depression (LTD) and depotentiation. Previously, we identified the GTPase Rem2 as a potent, endogenous inhibitor of CaMKII. Here, we report that knock out of Rem2 enhances LTP at the Schaffer collateral to CA1 synapse in hippocampus, consistent with an inhibitory action of Rem2 on CaMKII in vivo. Further, re-expression of WT Rem2 rescues the enhanced LTP observed in slices obtained from Rem2 conditional knock out (cKO) mice, while expression of a mutant Rem2 construct that is unable to inhibit CaMKII in vitro fails to rescue increased LTP. In addition, we demonstrate that CaMKII and Rem2 interact in dendritic spines using a 2pFLIM-FRET approach. Taken together, our data lead us to propose that Rem2 serves as a brake on synaptic potentiation via inhibition of CaMKII activity. Further, the enhanced LTP phenotype we observe in Rem2 cKO slices reveals a previously unknown role for Rem2 in the negative regulation of CaMKII function.
Collapse
Affiliation(s)
- Rabia Anjum
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts, United States of America
| | - Vernon R. J. Clarke
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Yutaro Nagasawa
- Department of Physiological Sciences, The Graduate University for Advanced Studies; Hayama, Kanagawa, Japan
- Supportive Center for Brain Research, National Institute for Physiological Sciences; Okazaki, Aichi, Japan
| | - Hideji Murakoshi
- Department of Physiological Sciences, The Graduate University for Advanced Studies; Hayama, Kanagawa, Japan
- Supportive Center for Brain Research, National Institute for Physiological Sciences; Okazaki, Aichi, Japan
| | - Suzanne Paradis
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts, United States of America
| |
Collapse
|
2
|
Lucaci AG, Brew WE, Lamanna J, Selberg A, Carnevale V, Moore AR, Kosakovsky Pond SL. The evolution of mammalian Rem2: unraveling the impact of purifying selection and coevolution on protein function, and implications for human disorders. FRONTIERS IN BIOINFORMATICS 2024; 4:1381540. [PMID: 38978817 PMCID: PMC11228553 DOI: 10.3389/fbinf.2024.1381540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/28/2024] [Indexed: 07/10/2024] Open
Abstract
Rad And Gem-Like GTP-Binding Protein 2 (Rem2), a member of the RGK family of Ras-like GTPases, is implicated in Huntington's disease and Long QT Syndrome and is highly expressed in the brain and endocrine cells. We examine the evolutionary history of Rem2 identified in various mammalian species, focusing on the role of purifying selection and coevolution in shaping its sequence and protein structural constraints. Our analysis of Rem2 sequences across 175 mammalian species found evidence for strong purifying selection in 70% of non-invariant codon sites which is characteristic of essential proteins that play critical roles in biological processes and is consistent with Rem2's role in the regulation of neuronal development and function. We inferred epistatic effects in 50 pairs of codon sites in Rem2, some of which are predicted to have deleterious effects on human health. Additionally, we reconstructed the ancestral evolutionary history of mammalian Rem2 using protein structure prediction of extinct and extant sequences which revealed the dynamics of how substitutions that change the gene sequence of Rem2 can impact protein structure in variable regions while maintaining core functional mechanisms. By understanding the selective pressures, protein- and gene - interactions that have shaped the sequence and structure of the Rem2 protein, we gain a stronger understanding of its biological and functional constraints.
Collapse
Affiliation(s)
- Alexander G Lucaci
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States
- Weill Cornell Medicine, The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, NY, United States
| | - William E Brew
- Department of Biology, Temple University, Philadelphia, PA, United States
| | - Jason Lamanna
- Department of Biology, Temple University, Philadelphia, PA, United States
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA, United States
| | - Avery Selberg
- Department of Biology, Temple University, Philadelphia, PA, United States
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, United States
| | - Vincenzo Carnevale
- Department of Biology, Temple University, Philadelphia, PA, United States
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA, United States
| | - Anna R Moore
- Department of Biology, Temple University, Philadelphia, PA, United States
| | - Sergei L Kosakovsky Pond
- Department of Biology, Temple University, Philadelphia, PA, United States
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
3
|
Anjum R, Clarke VRJ, Nagasawa Y, Murakoshi H, Paradis S. Rem2 interacts with CaMKII at synapses and restricts long-term potentiation in hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584540. [PMID: 38558974 PMCID: PMC10979978 DOI: 10.1101/2024.03.11.584540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Synaptic plasticity, the process whereby neuronal connections are either strengthened or weakened in response to stereotyped forms of stimulation, is widely believed to represent the molecular mechanism that underlies learning and memory. The holoenzyme CaMKII plays a well-established and critical role in the induction of a variety of forms of synaptic plasticity such as long-term potentiation (LTP), long-term depression (LTD) and depotentiation. Previously, we identified the GTPase Rem2 as a potent, endogenous inhibitor of CaMKII. Here, we report that knock out of Rem2 enhances LTP at the Schaffer collateral to CA1 synapse in hippocampus, consistent with an inhibitory action of Rem2 on CaMKII in vivo. Further, re-expression of WT Rem2 rescues the enhanced LTP observed in slices obtained from Rem2 conditional knock out (cKO) mice, while expression of a mutant Rem2 construct that is unable to inhibit CaMKII in vitro fails to rescue increased LTP. In addition, we demonstrate that CaMKII and Rem2 interact in dendritic spines using a 2pFLIM-FRET approach. Taken together, our data lead us to propose that Rem2 serves as a brake on runaway synaptic potentiation via inhibition of CaMKII activity. Further, the enhanced LTP phenotype we observe in Rem2 cKO slices reveals a previously unknown role for Rem2 in the negative regulation of CaMKII function.
Collapse
Affiliation(s)
- Rabia Anjum
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454, United States of America
| | - Vernon R J Clarke
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Yutaro Nagasawa
- Department of Physiological Sciences, The Graduate University for Advanced Studies; Hayama, Kanagawa 240-0193, Japan
- Supportive Center for Brain Research, National Institute for Physiological Sciences; Okazaki, Aichi 444-8585, Japan
| | - Hideji Murakoshi
- Department of Physiological Sciences, The Graduate University for Advanced Studies; Hayama, Kanagawa 240-0193, Japan
- Supportive Center for Brain Research, National Institute for Physiological Sciences; Okazaki, Aichi 444-8585, Japan
| | - Suzanne Paradis
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454, United States of America
| |
Collapse
|
4
|
Dai Y, Cheng Y, Ge R, Chen K, Yang L. Exercise-induced adaptation of neurons in the vertebrate locomotor system. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:160-171. [PMID: 37914153 PMCID: PMC10980905 DOI: 10.1016/j.jshs.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/20/2023] [Accepted: 10/07/2023] [Indexed: 11/03/2023]
Abstract
Vertebrate neurons are highly dynamic cells that undergo several alterations in their functioning and physiologies in adaptation to various external stimuli. In particular, how these neurons respond to physical exercise has long been an area of active research. Studies of the vertebrate locomotor system's adaptability suggest multiple mechanisms are involved in the regulation of neuronal activity and properties during exercise. In this brief review, we highlight recent results and insights from the field with a focus on the following mechanisms: (a) alterations in neuronal excitability during acute exercise; (b) alterations in neuronal excitability after chronic exercise; (c) exercise-induced changes in neuronal membrane properties via modulation of ion channel activity; (d) exercise-enhanced dendritic plasticity; and (e) exercise-induced alterations in neuronal gene expression and protein synthesis. Our hope is to update the community with a cellular and molecular understanding of the recent mechanisms underlying the adaptability of the vertebrate locomotor system in response to both acute and chronic physical exercise.
Collapse
Affiliation(s)
- Yue Dai
- Key Lab of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health Care, East China Normal University, Shanghai 200241, China; Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai 200241, China.
| | - Yi Cheng
- Key Lab of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health Care, East China Normal University, Shanghai 200241, China
| | - Renkai Ge
- School of Physical Education and Health Care, East China Jiaotong University, Nanchang 330013, China
| | - Ke Chen
- Key Laboratory of High Confidence Software Technologies of Ministry of Education, School of Computer Science, Peking University, Beijing 100871, China
| | - Liming Yang
- Key Lab of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health Care, East China Normal University, Shanghai 200241, China
| |
Collapse
|
5
|
Santiago C, Sharma N, Africawala N, Siegrist J, Handler A, Tasnim A, Anjum R, Turecek J, Lehnert BP, Renauld S, Nolan-Tamariz M, Iskols M, Magee AR, Paradis S, Ginty DD. Activity-dependent development of the body's touch receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.23.559109. [PMID: 37790437 PMCID: PMC10542488 DOI: 10.1101/2023.09.23.559109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
We report a role for activity in the development of the primary sensory neurons that detect touch. Genetic deletion of Piezo2, the principal mechanosensitive ion channel in somatosensory neurons, caused profound changes in the formation of mechanosensory end organ structures and altered somatosensory neuron central targeting. Single cell RNA sequencing of Piezo2 conditional mutants revealed changes in gene expression in the sensory neurons activated by light mechanical forces, whereas other neuronal classes were less affected. To further test the role of activity in mechanosensory end organ development, we genetically deleted the voltage-gated sodium channel Nav1.6 (Scn8a) in somatosensory neurons throughout development and found that Scn8a mutants also have disrupted somatosensory neuron morphologies and altered electrophysiological responses to mechanical stimuli. Together, these findings indicate that mechanically evoked neuronal activity acts early in life to shape the maturation of the mechanosensory end organs that underlie our sense of gentle touch.
Collapse
Affiliation(s)
- Celine Santiago
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Nikhil Sharma
- Department of Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Nusrat Africawala
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Julianna Siegrist
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Annie Handler
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Aniqa Tasnim
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Rabia Anjum
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA, 02453, USA
| | - Josef Turecek
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Brendan P. Lehnert
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Sophia Renauld
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Michael Nolan-Tamariz
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Michael Iskols
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Alexandra R. Magee
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Suzanne Paradis
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA, 02453, USA
| | - David D. Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
- Lead Contact
| |
Collapse
|
6
|
Czech VL, O'Connor LC, Philippon B, Norman E, Byrne AB. TIR-1/SARM1 inhibits axon regeneration and promotes axon degeneration. eLife 2023; 12:80856. [PMID: 37083456 PMCID: PMC10121217 DOI: 10.7554/elife.80856] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 01/31/2023] [Indexed: 03/03/2023] Open
Abstract
Growth and destruction are central components of the neuronal injury response. Injured axons that are capable of repair, including axons in the mammalian peripheral nervous system and in many invertebrate animals, often regenerate and degenerate on either side of the injury. Here we show that TIR-1/dSarm/SARM1, a key regulator of axon degeneration, also inhibits regeneration of injured motor axons. The increased regeneration in tir-1 mutants is not a secondary consequence of its effects on degeneration, nor is it determined by the NADase activity of TIR-1. Rather, we found that TIR-1 functions cell-autonomously to regulate each of the seemingly opposite processes through distinct interactions with two MAP kinase pathways. On one side of the injury, TIR-1 inhibits axon regeneration by activating the NSY-1/ASK1 MAPK signaling cascade, while on the other side of the injury, TIR-1 simultaneously promotes axon degeneration by interacting with the DLK-1 mitogen-activated protein kinase (MAPK) signaling cascade. In parallel, we found that the ability to cell-intrinsically inhibit axon regeneration is conserved in human SARM1. Our finding that TIR-1/SARM1 regulates axon regeneration provides critical insight into how axons coordinate a multidimensional response to injury, consequently informing approaches to manipulate the response toward repair.
Collapse
Affiliation(s)
- Victoria L Czech
- Department of Neurobiology, UMass Chan Massachusetts Medical School
| | | | | | - Emily Norman
- Department of Neurobiology, UMass Chan Massachusetts Medical School
| | | |
Collapse
|
7
|
Takahashi H, Yamamoto T, Tsuboi A. Molecular mechanisms underlying activity-dependent ischemic tolerance in the brain. Neurosci Res 2023; 186:3-9. [PMID: 36244569 DOI: 10.1016/j.neures.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Ischemic stroke is one of the leading causes of death and disability worldwide. The inhibition of cerebral blood flow triggers intertwined pathological events, resulting in cell death and loss of brain function. Interestingly, animals pre-exposed to short-term ischemia can tolerate subsequent severe ischemia. This phenomenon is called ischemic tolerance and is also triggered by other noxious stimuli. However, whether short-term exposure to non-noxious stimuli can induce ischemic tolerance remains unknown. Recently, we found that pre-exposing mice to an enriched environment for 40 min is sufficient to facilitate cell survival after a subsequent stroke. The neuroprotective process depends on the neuronal activity soon before stroke, of which the activity-dependent transcription factor Npas4 is essential. Excessive Ca2+ influx triggers Npas4 expression in ischemic neurons, leading to the activation of neuroprotective programs. Pre-induction of Npas4 in the normal brain effectively supports cell survival after stroke. Furthermore, our study revealed that Npas4 regulates L-type voltage-gated Ca2+ channels through expression of the small Ras-like GTPase Gem in ischemic neurons. Ischemic tolerance is a good model for understanding how to promote neuroprotective mechanisms in the normal and injured brain. Here, we highlight activity-dependent ischemic tolerance and discuss its role in promoting neuroprotection against stroke.
Collapse
Affiliation(s)
- Hiroo Takahashi
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan.
| | - Tohru Yamamoto
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Akio Tsuboi
- Dynamic Brain Network Laboratory, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
8
|
Takahashi H, Asahina R, Fujioka M, Matsui TK, Kato S, Mori E, Hioki H, Yamamoto T, Kobayashi K, Tsuboi A. Ras-like Gem GTPase induced by Npas4 promotes activity-dependent neuronal tolerance for ischemic stroke. Proc Natl Acad Sci U S A 2021; 118:e2018850118. [PMID: 34349016 PMCID: PMC8364162 DOI: 10.1073/pnas.2018850118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Ischemic stroke, which results in loss of neurological function, initiates a complex cascade of pathological events in the brain, largely driven by excitotoxic Ca2+ influx in neurons. This leads to cortical spreading depolarization, which induces expression of genes involved in both neuronal death and survival; yet, the functions of these genes remain poorly understood. Here, we profiled gene expression changes that are common to ischemia (modeled by middle cerebral artery occlusion [MCAO]) and to experience-dependent activation (modeled by exposure to an enriched environment [EE]), which also induces Ca2+ transients that trigger transcriptional programs. We found that the activity-dependent transcription factor Npas4 was up-regulated under MCAO and EE conditions and that transient activation of cortical neurons in the healthy brain by the EE decreased cell death after stroke. Furthermore, both MCAO in vivo and oxygen-glucose deprivation in vitro revealed that Npas4 is necessary and sufficient for neuroprotection. We also found that this protection involves the inhibition of L-type voltage-gated Ca2+ channels (VGCCs). Next, our systematic search for Npas4-downstream genes identified Gem, which encodes a Ras-related small GTPase that mediates neuroprotective effects of Npas4. Gem suppresses the membrane localization of L-type VGCCs to inhibit excess Ca2+ influx, thereby protecting neurons from excitotoxic death after in vitro and in vivo ischemia. Collectively, our findings indicate that Gem expression via Npas4 is necessary and sufficient to promote neuroprotection in the injured brain. Importantly, Gem is also induced in human cerebral organoids cultured under an ischemic condition, revealing Gem as a new target for drug discovery.
Collapse
Affiliation(s)
- Hiroo Takahashi
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan;
- Laboratory for Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University, Nara 634-8521, Japan
| | - Ryo Asahina
- Laboratory for Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University, Nara 634-8521, Japan
| | - Masayuki Fujioka
- Laboratory for Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University, Nara 634-8521, Japan
| | - Takeshi K Matsui
- Department of Future Basic Medicine, School of Medicine, Nara Medical University, Nara 634-8521, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Eiichiro Mori
- Department of Future Basic Medicine, School of Medicine, Nara Medical University, Nara 634-8521, Japan
| | - Hiroyuki Hioki
- Department of Cell Biology and Neuroscience, School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Tohru Yamamoto
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Akio Tsuboi
- Laboratory for Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University, Nara 634-8521, Japan;
- Laboratory for Cellular and Molecular Neurobiology, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
9
|
Experience-Dependent Development of Dendritic Arbors in Mouse Visual Cortex. J Neurosci 2020; 40:6536-6556. [PMID: 32669356 DOI: 10.1523/jneurosci.2910-19.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/27/2022] Open
Abstract
The dendritic arbor of neurons constrains the pool of available synaptic partners and influences the electrical integration of synaptic currents. Despite these critical functions, our knowledge of the dendritic structure of cortical neurons during early postnatal development and how these dendritic structures are modified by visual experience is incomplete. Here, we present a large-scale dataset of 849 3D reconstructions of the basal arbor of pyramidal neurons collected across early postnatal development in visual cortex of mice of either sex. We found that the basal arbor grew substantially between postnatal day 7 (P7) and P30, undergoing a 45% increase in total length. However, the gross number of primary neurites and dendritic segments was largely determined by P7. Growth from P7 to P30 occurred primarily through extension of dendritic segments. Surprisingly, comparisons of dark-reared and typically reared mice revealed that a net gain of only 15% arbor length could be attributed to visual experience; most growth was independent of experience. To examine molecular contributions, we characterized the role of the activity-regulated small GTPase Rem2 in both arbor development and the maintenance of established basal arbors. We showed that Rem2 is an experience-dependent negative regulator of dendritic segment number during the visual critical period. Acute deletion of Rem2 reduced directionality of dendritic arbors. The data presented here establish a highly detailed, quantitative analysis of basal arbor development that we believe has high utility both in understanding circuit development as well as providing a framework for computationalists wishing to generate anatomically accurate neuronal models.SIGNIFICANCE STATEMENT Dendrites are the sites of the synaptic connections among neurons. Despite their importance for neural circuit function, only a little is known about the postnatal development of dendritic arbors of cortical pyramidal neurons and the influence of experience. Here we show that the number of primary basal dendritic arbors is already established before eye opening, and that these arbors primarily grow through lengthening of dendritic segments and not through addition of dendritic segments. Surprisingly, visual experience has a modest net impact on overall arbor length (15%). Experiments in KO animals revealed that the gene Rem2 is positive regulator of dendritic length and a negative regulator of dendritic segments.
Collapse
|
10
|
Chen LF, Lin YT, Gallegos DA, Hazlett MF, Gómez-Schiavon M, Yang MG, Kalmeta B, Zhou AS, Holtzman L, Gersbach CA, Grandl J, Buchler NE, West AE. Enhancer Histone Acetylation Modulates Transcriptional Bursting Dynamics of Neuronal Activity-Inducible Genes. Cell Rep 2019; 26:1174-1188.e5. [PMID: 30699347 PMCID: PMC6376993 DOI: 10.1016/j.celrep.2019.01.032] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/13/2018] [Accepted: 01/09/2019] [Indexed: 12/16/2022] Open
Abstract
Neuronal activity-inducible gene transcription correlates with rapid and transient increases in histone acetylation at promoters and enhancers of activity-regulated genes. Exactly how histone acetylation modulates transcription of these genes has remained unknown. We used single-cell in situ transcriptional analysis to show that Fos and Npas4 are transcribed in stochastic bursts in mouse neurons and that membrane depolarization increases mRNA expression by increasing burst frequency. We then expressed dCas9-p300 or dCas9-HDAC8 fusion proteins to mimic or block activity-induced histone acetylation locally at enhancers. Adding histone acetylation increased Fos transcription by prolonging burst duration and resulted in higher Fos protein levels and an elevation of resting membrane potential. Inhibiting histone acetylation reduced Fos transcription by reducing burst frequency and impaired experience-dependent Fos protein induction in the hippocampus in vivo. Thus, activity-inducible histone acetylation tunes the transcriptional dynamics of experience-regulated genes to affect selective changes in neuronal gene expression and cellular function.
Collapse
Affiliation(s)
- Liang-Fu Chen
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | - Yen Ting Lin
- Center for Nonlinear Studies (T-CNLS) and Theoretical Biology and Biophysics Group (T-6), Theoretical Division, Los Alamos National Laboratory, NM 87545, USA
| | - David A Gallegos
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | - Mariah F Hazlett
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | - Mariana Gómez-Schiavon
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC 27710, USA; Center for Genomic and Computational Biology, Duke University, Durham, NC 27710, USA; Department of Biology, Duke University, Durham, NC 27710, USA
| | - Marty G Yang
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | - Breanna Kalmeta
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | - Allen S Zhou
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | - Liad Holtzman
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Charles A Gersbach
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA; Department of Orthopaedic Surgery, Duke University, Durham, NC 27710, USA
| | - Jörg Grandl
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | - Nicolas E Buchler
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27710, USA; Department of Biology, Duke University, Durham, NC 27710, USA; Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27606, USA.
| | - Anne E West
- Department of Neurobiology, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
11
|
Seelke AMH, Bond JM, Simmons TC, Joshi N, Settles ML, Stolzenberg D, Rhemtulla M, Bales KL. Fatherhood alters gene expression within the MPOA. ENVIRONMENTAL EPIGENETICS 2018; 4:dvy026. [PMID: 30568805 PMCID: PMC6305489 DOI: 10.1093/eep/dvy026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/03/2018] [Accepted: 10/19/2018] [Indexed: 06/09/2023]
Abstract
Female parenting is obligate in mammals, but fathering behavior among mammals is rare. Only 3-5% of mammalian species exhibit biparental care, including humans, and mechanisms of fathering behavior remain sparsely studied. However, in species where it does exist, paternal care is often crucial to the survivorship of offspring. The present study is the first to identify new gene targets linked to the experience of fathering behavior in a biparental species using RNA sequencing. In order to determine the pattern of gene expression within the medial preoptic area that is specifically associated with fathering behavior, we identified genes in male prairie voles (Microtus ochrogaster) that experienced one of three social conditions: virgin males, pair bonded males, and males with fathering experience. A list of genes exhibiting different expression patterns in each comparison (i.e. Virgin vs Paired, Virgin vs Fathers, and Paired vs Fathers) was evaluated using the gene ontology enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes pathways analysis to reveal metabolic pathways associated with specific genes. Using these tools, we generated a filtered list of genes that exhibited altered patterns of expression in voles with different amounts of social experience. Finally, we used NanoString to quantify differences in the expression of these selected genes. These genes are involved in a variety of processes, with enrichment in genes associated with immune function, metabolism, synaptic plasticity, and the remodeling of dendritic spines. The identification of these genes and processes will lead to novel insights into the biological basis of fathering behavior.
Collapse
Affiliation(s)
- Adele M H Seelke
- Department of Psychology, University of California, Davis, Davis, USA
| | - Jessica M Bond
- Department of Psychology, University of California, Davis, Davis, USA
| | - Trent C Simmons
- Department of Psychology, University of California, Davis, Davis, USA
| | - Nikhil Joshi
- Bioinformatics Core Facility, University of California, Davis, Davis, USA
| | - Matthew L Settles
- Bioinformatics Core Facility, University of California, Davis, Davis, USA
| | | | - Mijke Rhemtulla
- Department of Psychology, University of California, Davis, Davis, USA
| | - Karen L Bales
- Department of Psychology, University of California, Davis, Davis, USA
- California National Primate Research Center, University of California, Davis, Davis, USA
| |
Collapse
|
12
|
Royer L, Herzog JJ, Kenny K, Tzvetkova B, Cochrane JC, Marr MT, Paradis S. The Ras-like GTPase Rem2 is a potent inhibitor of calcium/calmodulin-dependent kinase II activity. J Biol Chem 2018; 293:14798-14811. [PMID: 30072381 DOI: 10.1074/jbc.ra118.003560] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/20/2018] [Indexed: 02/05/2023] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a well-characterized, abundant protein kinase that regulates a diverse set of functions in a tissue-specific manner. For example, in heart muscle, CaMKII regulates Ca2+ homeostasis, whereas in neurons, CaMKII regulates activity-dependent dendritic remodeling and long-term potentiation (LTP), a neurobiological correlate of learning and memory. Previously, we identified the GTPase Rem2 as a critical regulator of dendrite branching and homeostatic plasticity in the vertebrate nervous system. Here, we report that Rem2 directly interacts with CaMKII and potently inhibits the activity of the intact holoenzyme, a previously unknown Rem2 function. Our results suggest that Rem2 inhibition involves interaction with both the CaMKII hub domain and substrate recognition domain. Moreover, we found that Rem2-mediated inhibition of CaMKII regulates dendritic branching in cultured hippocampal neurons. Lastly, we report that substitution of two key amino acid residues in the Rem2 N terminus (Arg-79 and Arg-80) completely abolishes its ability to inhibit CaMKII. We propose that our biochemical findings will enable further studies unraveling the functional significance of Rem2 inhibition of CaMKII in cells.
Collapse
Affiliation(s)
| | | | | | | | - Jesse C Cochrane
- Department of Molecular Biology and Genetics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | - Michael T Marr
- From the Department of Biology, .,Rosenstiel Basic Medical Sciences Research Center
| | - Suzanne Paradis
- From the Department of Biology, .,Volen Center for Complex Systems, and.,National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454 and
| |
Collapse
|
13
|
Moore AR, Richards SE, Kenny K, Royer L, Chan U, Flavahan K, Van Hooser SD, Paradis S. Rem2 stabilizes intrinsic excitability and spontaneous firing in visual circuits. eLife 2018; 7:e33092. [PMID: 29809135 PMCID: PMC6010341 DOI: 10.7554/elife.33092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 05/28/2018] [Indexed: 12/20/2022] Open
Abstract
Sensory experience plays an important role in shaping neural circuitry by affecting the synaptic connectivity and intrinsic properties of individual neurons. Identifying the molecular players responsible for converting external stimuli into altered neuronal output remains a crucial step in understanding experience-dependent plasticity and circuit function. Here, we investigate the role of the activity-regulated, non-canonical Ras-like GTPase Rem2 in visual circuit plasticity. We demonstrate that Rem2-/- mice fail to exhibit normal ocular dominance plasticity during the critical period. At the cellular level, our data establish a cell-autonomous role for Rem2 in regulating intrinsic excitability of layer 2/3 pyramidal neurons, prior to changes in synaptic function. Consistent with these findings, both in vitro and in vivo recordings reveal increased spontaneous firing rates in the absence of Rem2. Taken together, our data demonstrate that Rem2 is a key molecule that regulates neuronal excitability and circuit function in the context of changing sensory experience.
Collapse
Affiliation(s)
- Anna R Moore
- Department of BiologyBrandeis UniversityWalthamUnited States
| | - Sarah E Richards
- Department of BiologyBrandeis UniversityWalthamUnited States
- Volen Center for Complex SystemsBrandeis UniversityWalthamUnited States
| | - Katelyn Kenny
- National Center for Behavioral GenomicsBrandeis UniversityWalthamUnited States
| | - Leandro Royer
- Department of BiologyBrandeis UniversityWalthamUnited States
| | - Urann Chan
- Department of BiologyBrandeis UniversityWalthamUnited States
| | - Kelly Flavahan
- Department of BiologyBrandeis UniversityWalthamUnited States
| | - Stephen D Van Hooser
- Department of BiologyBrandeis UniversityWalthamUnited States
- Volen Center for Complex SystemsBrandeis UniversityWalthamUnited States
| | - Suzanne Paradis
- Department of BiologyBrandeis UniversityWalthamUnited States
- Volen Center for Complex SystemsBrandeis UniversityWalthamUnited States
- National Center for Behavioral GenomicsBrandeis UniversityWalthamUnited States
| |
Collapse
|
14
|
Abstract
Circuit operations are determined jointly by the properties of the circuit elements and the properties of the connections among these elements. In the nervous system, neurons exhibit diverse morphologies and branching patterns, allowing rich compartmentalization within individual cells and complex synaptic interactions among groups of cells. In this review, we summarize work detailing how neuronal morphology impacts neural circuit function. In particular, we consider example neurons in the retina, cerebral cortex, and the stomatogastric ganglion of crustaceans. We also explore molecular coregulators of morphology and circuit function to begin bridging the gap between molecular and systems approaches. By identifying motifs in different systems, we move closer to understanding the structure-function relationships that are present in neural circuits.
Collapse
Affiliation(s)
| | - Stephen D Van Hooser
- Department of Biology, Brandeis University , Waltham, Massachusetts.,Volen Center for Complex Systems, Brandeis University , Waltham, Massachusetts.,Sloan-Swartz Center for Theoretical Neurobiology, Brandeis University , Waltham, Massachusetts
| |
Collapse
|
15
|
Kenny K, Royer L, Moore AR, Chen X, Marr MT, Paradis S. Rem2 signaling affects neuronal structure and function in part by regulation of gene expression. Mol Cell Neurosci 2017; 85:190-201. [PMID: 29066292 DOI: 10.1016/j.mcn.2017.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/27/2017] [Accepted: 10/11/2017] [Indexed: 12/12/2022] Open
Abstract
The central nervous system has the remarkable ability to convert changes in the environment in the form of sensory experience into long-term alterations in synaptic connections and dendritic arborization, in part through changes in gene expression. Surprisingly, the molecular mechanisms that translate neuronal activity into changes in neuronal connectivity and morphology remain elusive. Rem2, a member of the Rad/Rem/Rem2/Gem/Kir (RGK) subfamily of small Ras-like GTPases, is a positive regulator of synapse formation and negative regulator of dendritic arborization. Here we identify that one output of Rem2 signaling is the regulation of gene expression. Specifically, we demonstrate that Rem2 signaling modulates the expression of genes required for a variety of cellular processes from neurite extension to synapse formation and synaptic function. Our results highlight Rem2 as a unique molecule that transduces changes in neuronal activity detected at the cell membrane to morphologically relevant changes in gene expression in the nucleus.
Collapse
Affiliation(s)
- Katelyn Kenny
- Department of Biology, Brandeis University, Waltham, MA 02454, United States
| | - Leandro Royer
- Department of Biology, Brandeis University, Waltham, MA 02454, United States
| | - Anna R Moore
- Department of Biology, Brandeis University, Waltham, MA 02454, United States; Volen Center for Complex Systems, Brandeis University, Waltham, MA 02454, United States; National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, United States
| | - Xiao Chen
- Department of Biology, Brandeis University, Waltham, MA 02454, United States; National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, United States
| | - Michael T Marr
- Department of Biology, Brandeis University, Waltham, MA 02454, United States; Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, United States
| | - Suzanne Paradis
- Department of Biology, Brandeis University, Waltham, MA 02454, United States; Volen Center for Complex Systems, Brandeis University, Waltham, MA 02454, United States; National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, United States.
| |
Collapse
|
16
|
Agbu SO, Liang Y, Liu A, Anderson KV. The small GTPase RSG1 controls a final step in primary cilia initiation. J Cell Biol 2017; 217:413-427. [PMID: 29038301 PMCID: PMC5748968 DOI: 10.1083/jcb.201604048] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/18/2016] [Accepted: 09/21/2017] [Indexed: 12/11/2022] Open
Abstract
Primary cilia are essential for normal development and tissue homeostasis, but the mechanisms that remodel the centriole to promote cilia initiation are not well understood. Agbu et al. report that mouse RSG1, a small GTPase, regulates a late step in cilia initiation, downstream of TTBK2 and the CPLANE protein INTU. Primary cilia, which are essential for normal development and tissue homeostasis, are extensions of the mother centriole, but the mechanisms that remodel the centriole to promote cilia initiation are poorly understood. Here we show that mouse embryos that lack the small guanosine triphosphatase RSG1 die at embryonic day 12.5, with developmental abnormalities characteristic of decreased cilia-dependent Hedgehog signaling. Rsg1 mutant embryos have fewer primary cilia than wild-type embryos, but the cilia that form are of normal length and traffic Hedgehog pathway proteins within the cilium correctly. Rsg1 mother centrioles recruit proteins required for cilia initiation and dock onto ciliary vesicles, but axonemal microtubules fail to elongate normally. RSG1 localizes to the mother centriole in a process that depends on tau tubulin kinase 2 (TTBK2), the CPLANE complex protein Inturned (INTU), and its own GTPase activity. The data suggest a specific role for RSG1 in the final maturation of the mother centriole and ciliary vesicle that allows extension of the ciliary axoneme.
Collapse
Affiliation(s)
- Stephanie O Agbu
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY.,Biochemistry, Cell and Molecular Biology Program, Weill Graduate School of Medical Sciences of Cornell University, New York, NY
| | - Yinwen Liang
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Aimin Liu
- Department of Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA
| | - Kathryn V Anderson
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
17
|
Chen LF, Zhou AS, West AE. Transcribing the connectome: roles for transcription factors and chromatin regulators in activity-dependent synapse development. J Neurophysiol 2017; 118:755-770. [PMID: 28490640 DOI: 10.1152/jn.00067.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/09/2017] [Accepted: 05/09/2017] [Indexed: 12/21/2022] Open
Abstract
The wiring of synaptic connections in the developing mammalian brain is shaped by both intrinsic and extrinsic signals. One point where these regulatory pathways converge is via the sensory experience-dependent regulation of new gene transcription. Recent studies have elucidated a number of molecular mechanisms that allow nuclear transcription factors and chromatin regulatory proteins to encode aspects of specificity in experience-dependent synapse development. Here we review the evidence for the transcriptional mechanisms that sculpt activity-dependent aspects of synaptic connectivity during postnatal development and discuss how disruption of these processes is associated with aberrant brain development in autism and intellectual disability.
Collapse
Affiliation(s)
- Liang-Fu Chen
- Department of Neurobiology, Duke University, Durham, North Carolina
| | - Allen S Zhou
- Department of Neurobiology, Duke University, Durham, North Carolina
| | - Anne E West
- Department of Neurobiology, Duke University, Durham, North Carolina
| |
Collapse
|
18
|
Two Components of Aversive Memory in Drosophila, Anesthesia-Sensitive and Anesthesia-Resistant Memory, Require Distinct Domains Within the Rgk1 Small GTPase. J Neurosci 2017; 37:5496-5510. [PMID: 28416593 DOI: 10.1523/jneurosci.3648-16.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 03/12/2017] [Accepted: 04/12/2017] [Indexed: 12/17/2022] Open
Abstract
Multiple components have been identified that exhibit different stabilities for aversive olfactory memory in Drosophila These components have been defined by behavioral and genetic studies and genes specifically required for a specific component have also been identified. Intermediate-term memory generated after single cycle conditioning is divided into anesthesia-sensitive memory (ASM) and anesthesia-resistant memory (ARM), with the latter being more stable. We determined that the ASM and ARM pathways converged on the Rgk1 small GTPase and that the N-terminal domain-deleted Rgk1 was sufficient for ASM formation, whereas the full-length form was required for ARM formation. Rgk1 is specifically accumulated at the synaptic site of the Kenyon cells (KCs), the intrinsic neurons of the mushroom bodies, which play a pivotal role in olfactory memory formation. A higher than normal Rgk1 level enhanced memory retention, which is consistent with the result that Rgk1 suppressed Rac-dependent memory decay; these findings suggest that rgk1 bolsters ASM via the suppression of forgetting. We propose that Rgk1 plays a pivotal role in the regulation of memory stabilization by serving as a molecular node that resides at KC synapses, where the ASM and ARM pathway may interact.SIGNIFICANCE STATEMENT Memory consists of multiple components. Drosophila olfactory memory serves as a fundamental model with which to investigate the mechanisms that underlie memory formation and has provided genetic and molecular means to identify the components of memory, namely short-term, intermediate-term, and long-term memory, depending on how long the memory lasts. Intermediate memory is further divided into anesthesia-sensitive memory (ASM) and anesthesia-resistant memory (ARM), with the latter being more stable. We have identified a small GTPase in Drosophila, Rgk1, which plays a pivotal role in the regulation of olfactory memory stability. Rgk1 is required for both ASM and ARM. Moreover, N-terminal domain-deleted Rgk1 was sufficient for ASM formation, whereas the full-length form was required for ARM formation.
Collapse
|
19
|
Rocca DL, Wilkinson KA, Henley JM. SUMOylation of FOXP1 regulates transcriptional repression via CtBP1 to drive dendritic morphogenesis. Sci Rep 2017; 7:877. [PMID: 28408745 PMCID: PMC5429823 DOI: 10.1038/s41598-017-00707-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/08/2017] [Indexed: 12/13/2022] Open
Abstract
Forkhead Box P (FOXP) transcriptional repressors play a major role in brain development and their dysfunction leads to human cognitive disorders. However, little is known about how the activity of these proteins is regulated. Here, we show that FOXP1 SUMOylation at lysine 670 is required for recruiting the co-repressor CtBP1 and transcriptional repression. FOXP1 SUMOylation is tightly controlled by neuronal activity, in which synapse to nucleus signalling, mediated via NMDAR and L-type calcium channels, results in rapid FOXP1 deSUMOylation. Knockdown of FOXP1 in cultured cortical neurons stunts dendritic outgrowth and this phenotype cannot be rescued by replacement with a non-SUMOylatable FOXP1-K670R mutant, indicating that SUMOylation of FOXP1 is essential for regulation of proper neuronal morphogenesis. These results suggest that activity-dependent SUMOylation of FOXP1 may be an important mediator of early cortical development and neuronal network formation in the brain.
Collapse
Affiliation(s)
- Daniel L Rocca
- School of Biochemistry, Centre for Synaptic Plasticity, Medical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Kevin A Wilkinson
- School of Biochemistry, Centre for Synaptic Plasticity, Medical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Jeremy M Henley
- School of Biochemistry, Centre for Synaptic Plasticity, Medical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
20
|
Parent C, Wen X, Dhir SK, Ryan R, Diorio J, Zhang TY. Maternal care associates with differences in morphological complexity in the medial preoptic area. Behav Brain Res 2017; 326:22-32. [PMID: 28259675 DOI: 10.1016/j.bbr.2017.02.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/10/2017] [Accepted: 02/28/2017] [Indexed: 10/20/2022]
Abstract
The medial preoptic area (MPOA) is implicated in the expression of maternal behavior including the frequency of pup licking/grooming (LG) in the rat. Cyclic adenosine monophosphate (cAMP) responsive element-binding protein (CREB) is a transcription factor that regulates the expression of many genes. We found that lactating rats that are more maternal towards their pups showing increased licking/grooming (i.e. high-LG mothers) had increased levels of phosphorylated CREB (pCREB) in the MPOA following a nursing bout and they displayed a reduced population of greater dendritic complexity index (DCI) neurons compared to less maternal rats showing decreased licking/grooming (i.e. low-LG mothers). CREB overexpression in MPOA neuronal cultures associated with a decrease in dendritic complexity and an increase in the expression of Rem2 and brain-derived neurotrophic factor (BDNF), genes implicated in dendritic pruning. While there were no differences in Rem2 expression in virgin high and low-LG female rats, Rem2 was significantly increased in the MPOA of high-LG compared to low-LG lactating rats. CREB activity in the MPOA associates with maternal behavior and reduced dendritic complexity possibly by increasing Rem2 expression.
Collapse
Affiliation(s)
- Carine Parent
- Sackler Program for Epigenetics and Developmental Psychobiology at McGill University, Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Quebec H4H 1R3, Canada
| | - Xianglan Wen
- Sackler Program for Epigenetics and Developmental Psychobiology at McGill University, Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Quebec H4H 1R3, Canada
| | - Sabine K Dhir
- Sackler Program for Epigenetics and Developmental Psychobiology at McGill University, Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Quebec H4H 1R3, Canada
| | - Richard Ryan
- Sackler Program for Epigenetics and Developmental Psychobiology at McGill University, Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Quebec H4H 1R3, Canada
| | - Josie Diorio
- Sackler Program for Epigenetics and Developmental Psychobiology at McGill University, Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Quebec H4H 1R3, Canada
| | - Tie-Yuan Zhang
- Sackler Program for Epigenetics and Developmental Psychobiology at McGill University, Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Quebec H4H 1R3, Canada; Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada.
| |
Collapse
|
21
|
Pratt KG, Hiramoto M, Cline HT. An Evolutionarily Conserved Mechanism for Activity-Dependent Visual Circuit Development. Front Neural Circuits 2016; 10:79. [PMID: 27818623 PMCID: PMC5073143 DOI: 10.3389/fncir.2016.00079] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/26/2016] [Indexed: 12/01/2022] Open
Abstract
Neural circuit development is an activity-dependent process. This activity can be spontaneous, such as the retinal waves that course across the mammalian embryonic retina, or it can be sensory-driven, such as the activation of retinal ganglion cells (RGCs) by visual stimuli. Whichever the source, neural activity provides essential instruction to the developing circuit. Indeed, experimentally altering activity has been shown to impact circuit development and function in many different ways and in many different model systems. In this review, we contemplate the idea that retinal waves in amniotes, the animals that develop either in ovo or utero (namely reptiles, birds and mammals) could be an evolutionary adaptation to life on land, and that the anamniotes, animals whose development is entirely external (namely the aquatic amphibians and fish), do not display retinal waves, most likely because they simply don’t need them. We then review what is known about the function of both retinal waves and visual stimuli on their respective downstream targets, and predict that the experience-dependent development of the tadpole visual system is a blueprint of what will be found in future studies of the effects of spontaneous retinal waves on instructing development of retinorecipient targets such as the superior colliculus (SC) and the lateral geniculate nucleus.
Collapse
Affiliation(s)
- Kara G Pratt
- Program in Neuroscience, Department of Zoology and Physiology, University of Wyoming Laramie, WY, USA
| | - Masaki Hiramoto
- Department of Molecular and Cellular Neuroscience and The Dorris Neuroscience Center, The Scripps Research Institute La Jolla, CA, USA
| | - Hollis T Cline
- Department of Molecular and Cellular Neuroscience and The Dorris Neuroscience Center, The Scripps Research Institute La Jolla, CA, USA
| |
Collapse
|
22
|
Downs AG, Scholles KR, Hollis DM. Localization of rem2 in the central nervous system of the adult rainbow trout (Oncorhynchus mykiss). J Chem Neuroanat 2016; 78:87-95. [PMID: 27600327 DOI: 10.1016/j.jchemneu.2016.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/14/2016] [Accepted: 09/02/2016] [Indexed: 11/20/2022]
Abstract
Rem2 is member of the RGK (Rem, Rad, and Gem/Kir) subfamily of the Ras superfamily of GTP binding proteins known to influence Ca2+ entry into the cell. In addition, Rem2, which is found at high levels in the vertebrate brain, is also implicated in cell proliferation and synapse formation. Though the specific, regional localization of Rem2 in the adult mammalian central nervous system has been well-described, such information is lacking in other vertebrates. Rem2 is involved in neuronal processes where the capacities between adults of different vertebrate classes vary. Thus, we sought to localize the rem2 gene in the central nervous system of an adult anamniotic vertebrate, the rainbow trout (Oncorhynchus mykiss). In situ hybridization using a digoxigenin (DIG)-labeled RNA probe was used to identify the regional distribution of rem2 expression throughout the trout central nervous system, while real-time polymerase chain reaction (rtPCR) further supported these findings. Based on in situ hybridization, the regional distribution of rem2 occurred within each major subdivision of the brain and included large populations of rem2 expressing cells in the dorsal telencephalon of the cerebrum, the internal cellular layer of the olfactory bulb, and the optic tectum of the midbrain. In contrast, no rem2 expressing cells were resolved within the cerebellum. These results were corroborated by rtPCR, where differential rem2 expression occurred between the major subdivisions assayed with the highest levels being found in the cerebrum, while it was nearly absent in the cerebellum. These data indicate that rem2 gene expression is broadly distributed and likely influences diverse functions in the adult fish central nervous system.
Collapse
|
23
|
Liu Z, Hamodi AS, Pratt KG. Early development and function of the Xenopus tadpole retinotectal circuit. Curr Opin Neurobiol 2016; 41:17-23. [PMID: 27475307 DOI: 10.1016/j.conb.2016.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/28/2016] [Accepted: 07/10/2016] [Indexed: 01/14/2023]
Abstract
The retinotectal circuit is the major component of the amphibian visual system. It is comprised of the retinal ganglion cells (RGCs) in the eye, which project their axons to the optic tectum and form synapses onto postsynaptic tectal neurons. The retinotectal circuit is relatively simple, and develops quickly: Xenopus tadpoles begin displaying retinotectal-dependent visual avoidance behaviors by approximately 7-8 days post-fertilization, early larval stage. In this review we first provide a summary of the dynamic development of the retinotectal circuit, including the microcircuitry formed by local tectal-tectal connections within the tectum. Second, we discuss the basic visual avoidance behavior generated specifically by this circuit, and how this behavior is being used as an assay to test visual system function.
Collapse
Affiliation(s)
- Zhenyu Liu
- Department of Zoology and Physiology and Program in Neuroscience, University of Wyoming, Laramie, WY 82071, United States
| | - Ali S Hamodi
- Department of Zoology and Physiology and Program in Neuroscience, University of Wyoming, Laramie, WY 82071, United States
| | - Kara G Pratt
- Department of Zoology and Physiology and Program in Neuroscience, University of Wyoming, Laramie, WY 82071, United States.
| |
Collapse
|
24
|
Liput DJ, Lu VB, Davis MI, Puhl HL, Ikeda SR. Rem2, a member of the RGK family of small GTPases, is enriched in nuclei of the basal ganglia. Sci Rep 2016; 6:25137. [PMID: 27118437 PMCID: PMC4846870 DOI: 10.1038/srep25137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/11/2016] [Indexed: 11/09/2022] Open
Abstract
Rem2 is a member of the RGK subfamily of RAS small GTPases. Rem2 inhibits high voltage activated calcium channels, is involved in synaptogenesis, and regulates dendritic morphology. Rem2 is the primary RGK protein expressed in the nervous system, but to date, the precise expression patterns of this protein are unknown. In this study, we characterized Rem2 expression in the mouse nervous system. In the CNS, Rem2 mRNA was detected in all regions examined, but was enriched in the striatum. An antibody specific for Rem2 was validated using a Rem2 knockout mouse model and used to show abundant expression in striatonigral and striatopallidal medium spiny neurons but not in several interneuron populations. In the PNS, Rem2 was abundant in a subpopulation of neurons in the trigeminal and dorsal root ganglia, but was absent in sympathetic neurons of superior cervical ganglia. Under basal conditions, Rem2 was subject to post-translational phosphorylation, likely at multiple residues. Further, Rem2 mRNA and protein expression peaked at postnatal week two, which corresponds to the period of robust neuronal maturation in rodents. This study will be useful for elucidating the functions of Rem2 in basal ganglia physiology.
Collapse
Affiliation(s)
- Daniel J. Liput
- Laboratories of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, 20892-9411, USA
| | - Van B. Lu
- Laboratories of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, 20892-9411, USA
| | - Margaret I. Davis
- Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, 20892-9411, USA
| | - Henry L. Puhl
- Laboratories of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, 20892-9411, USA
| | - Stephen R. Ikeda
- Laboratories of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, 20892-9411, USA
| |
Collapse
|
25
|
Novel DLK-independent neuronal regeneration in Caenorhabditis elegans shares links with activity-dependent ectopic outgrowth. Proc Natl Acad Sci U S A 2016; 113:E2852-60. [PMID: 27078101 DOI: 10.1073/pnas.1600564113] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
During development, a neuron transitions from a state of rapid growth to a stable morphology, and neurons within the adult mammalian CNS lose their ability to effectively regenerate in response to injury. Here, we identify a novel form of neuronal regeneration, which is remarkably independent of DLK-1/DLK, KGB-1/JNK, and other MAPK signaling factors known to mediate regeneration in Caenorhabditis elegans, Drosophila, and mammals. This DLK-independent regeneration in C. elegans has direct genetic and molecular links to a well-studied form of endogenous activity-dependent ectopic axon outgrowth in the same neuron type. Both neuron outgrowth types are triggered by physical lesion of the sensory dendrite or mutations disrupting sensory activity, calcium signaling, or genes that restrict outgrowth during neuronal maturation, such as SAX-1/NDR kinase or UNC-43/CaMKII. These connections suggest that ectopic outgrowth represents a powerful platform for gene discovery in neuronal regeneration. Moreover, we note numerous similarities between C. elegans DLK-independent regeneration and lesion conditioning, a phenomenon producing robust regeneration in the mammalian CNS. Both regeneration types are triggered by lesion of a sensory neurite via reduction of neuronal activity and enhanced by disrupting L-type calcium channels or elevating cAMP. Taken as a whole, our study unites disparate forms of neuronal outgrowth to uncover fresh molecular insights into activity-dependent control of the adult nervous system's intrinsic regenerative capacity.
Collapse
|
26
|
Lyons MR, Chen LF, Deng JV, Finn C, Pfenning AR, Sabhlok A, Wilson KM, West AE. The transcription factor calcium-response factor limits NMDA receptor-dependent transcription in the developing brain. J Neurochem 2016; 137:164-76. [PMID: 26826701 DOI: 10.1111/jnc.13556] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/31/2015] [Accepted: 01/20/2016] [Indexed: 12/21/2022]
Abstract
Neuronal activity sculpts brain development by inducing the transcription of genes such as brain-derived neurotrophic factor (Bdnf) that modulate the function of synapses. Sensory experience is transduced into changes in gene transcription via the activation of calcium signaling pathways downstream of both L-type voltage-gated calcium channels (L-VGCCs) and NMDA-type glutamate receptors (NMDARs). These signaling pathways converge on the regulation of transcription factors including calcium-response factor (CaRF). Although CaRF is dispensable for the transcriptional induction of Bdnf following the activation of L-VGCCs, here we show that the loss of CaRF leads to enhanced NMDAR-dependent transcription of Bdnf as well as Arc. We identify the NMDAR subunit-encoding gene Grin3a as a regulatory target of CaRF, and we show that expression of both Carf and Grin3a is depressed by the elevation of intracellular calcium, linking the function of this transcriptional regulatory pathway to neuronal activity. We find that light-dependent activation of Bdnf and Arc transcription is enhanced in the visual cortex of young CaRF knockout mice, suggesting a role for CaRF-dependent dampening of NMDAR-dependent transcription in the developing brain. Finally, we demonstrate that enhanced Bdnf expression in CaRF-lacking neurons increases inhibitory synapse formation. Taken together, these data reveal a novel role for CaRF as an upstream regulator of NMDAR-dependent gene transcription and synapse formation in the developing brain. NMDARs promote brain development by inducing the transcription of genes, including brain-derived neurotrophic factor (BDNF). We show that the transcription factor calcium-response factor (CaRF) limits NMDAR-dependent BDNF induction by regulating expression of the NMDAR subunit GluN3A. Loss of CaRF leads to enhanced BDNF-dependent GABAergic synapse formation indicating the importance of this process for brain development. Our observation that both CaRF and GluN3A are down-regulated by intracellular calcium suggests that this may be a mechanism for experience-dependent modulation of synapse formation.
Collapse
Affiliation(s)
- Michelle R Lyons
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Liang-Fu Chen
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Jie V Deng
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Caitlin Finn
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Andreas R Pfenning
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Aditi Sabhlok
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Kelli M Wilson
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Anne E West
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
27
|
Li Q, Zhang Y, Zou J, Qi F, Yang J, Yuan Q, Yao Z. Neonatal vaccination with bacille Calmette-Guérin promotes the dendritic development of hippocampal neurons. Hum Vaccin Immunother 2015; 12:140-9. [PMID: 26375414 DOI: 10.1080/21645515.2015.1056954] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Dendritic structure is sensitive to changes in the environment during brain development. Accumulating evidence has demonstrated that early immune activation can significantly affect neuronal development. Our study concentrated on the morphological study of neural dendrites and spines in the hippocampal CA1 area using Diolistic labeling with Sholl analysis and fractal analysis. The results revealed that Bacille Calmette-Guérin (BCG) vaccination enhanced dendritic complexity, as reflected by the increased number of intersections, number of branch points and fractal dimension, and promoted neurite outgrowth. In addition, BCG increased the density and promoted the maturation of dendritic spines. The alterations in dendritic structure and spine morphology were observed at 2 and 4 w, but the differences were more apparent at 4 w than at 2 w. However, no significant difference was observed at 8 w. Furthermore, we observed that BCG increased the expression of hippocampal brain derived neurotrophic factor (BDNF) and insulin-like growth factor 1 (IGF-1). Hippocampal BDNF/IGF-1 was positively correlated with apical dendritic length, fractal dimension, and spine density. Taken together, we show in this study that neonatal BCG vaccination promotes dendritic development in developing hippocampal CA1 neurons, most likely by increasing the expression of BDNF and IGF-1 in the hippocampus.
Collapse
Affiliation(s)
- Qingqing Li
- a Department of Anatomy and Neurobiology ; Zhongshan School of Medicine; Sun Yat-sen University ; Guangzhou , PR China
| | - Yuwei Zhang
- a Department of Anatomy and Neurobiology ; Zhongshan School of Medicine; Sun Yat-sen University ; Guangzhou , PR China
| | - Juntao Zou
- a Department of Anatomy and Neurobiology ; Zhongshan School of Medicine; Sun Yat-sen University ; Guangzhou , PR China
| | - Fangfang Qi
- a Department of Anatomy and Neurobiology ; Zhongshan School of Medicine; Sun Yat-sen University ; Guangzhou , PR China
| | - Junhua Yang
- a Department of Anatomy and Neurobiology ; Zhongshan School of Medicine; Sun Yat-sen University ; Guangzhou , PR China
| | - Qunfang Yuan
- a Department of Anatomy and Neurobiology ; Zhongshan School of Medicine; Sun Yat-sen University ; Guangzhou , PR China
| | - Zhibin Yao
- a Department of Anatomy and Neurobiology ; Zhongshan School of Medicine; Sun Yat-sen University ; Guangzhou , PR China
| |
Collapse
|
28
|
Buraei Z, Lumen E, Kaur S, Yang J. RGK regulation of voltage-gated calcium channels. SCIENCE CHINA-LIFE SCIENCES 2015; 58:28-38. [PMID: 25576452 PMCID: PMC9074095 DOI: 10.1007/s11427-014-4788-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 09/02/2014] [Indexed: 01/01/2023]
Abstract
Voltage-gated calcium channels (VGCCs) play critical roles in cardiac and skeletal muscle contractions, hormone and neurotransmitter release, as well as slower processes such as cell proliferation, differentiation, migration and death. Mutations in VGCCs lead to numerous cardiac, muscle and neurological disease, and their physiological function is tightly regulated by kinases, phosphatases, G-proteins, calmodulin and many other proteins. Fifteen years ago, RGK proteins were discovered as the most potent endogenous regulators of VGCCs. They are a family of monomeric GTPases (Rad, Rem, Rem2, and Gem/Kir), in the superfamily of Ras GTPases, and they have two known functions: regulation of cytoskeletal dynamics including dendritic arborization and inhibition of VGCCs. Here we review the mechanisms and molecular determinants of RGK-mediated VGCC inhibition, the physiological impact of this inhibition, and recent evidence linking the two known RGK functions.
Collapse
Affiliation(s)
- Zafir Buraei
- Department of Biology, Pace University, New York, NY, 10038, USA,
| | | | | | | |
Collapse
|
29
|
Xu X, Zhang F, Zamponi GW, Horne WA. Solution NMR and calorimetric analysis of Rem2 binding to the Ca2+ channel β4 subunit: a low affinity interaction is required for inhibition of Cav2.1 Ca2+ currents. FASEB J 2015; 29:1794-804. [PMID: 25563298 DOI: 10.1096/fj.14-264499] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/22/2014] [Indexed: 12/20/2022]
Abstract
Rem, Rad, Kir/Gem (RGK) proteins, including Rem2, mediate profound inhibition of high-voltage activated Ca(2+) channels containing intracellular regulatory β subunits. All RGK proteins bind to voltage-gated Ca(2+) channel β subunit (Cavβ) subunits in vitro, but the necessity of the interaction for current inhibition remains controversial. This study applies NMR and calorimetric techniques to map the binding site for Rem2 on human Cavβ4a and measure its binding affinity. Our experiments revealed 2 binding surfaces on the β4 guanylate kinase domain contributing to a 156 ± 18 µM Kd interaction: a hydrophobic pocket lined by 4 critical residues (L173, N261, H262, and V303), mutation of any of which completely disrupted binding, and a nearby surface containing 3 residues (D206, L209, and D258) that when individually mutated decreased affinity. Voltage-gated Ca(2+) channel α1A subunit (Cav2.1) Ca(2+) currents were completely inhibited by Rem2 when co-expressed with wild-type Cavβ4a, but were unaffected by Rem2 when coexpressed with a Cavβ4a site 1 (L173A/V303A) or site 2 (D258A) mutant. These results provide direct evidence for a low-affinity Rem2/Cavβ4 interaction and show definitively that the interaction is required for Cav2.1 inhibition.
Collapse
Affiliation(s)
- Xingfu Xu
- *Department of Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA; and Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Fangxiong Zhang
- *Department of Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA; and Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gerald W Zamponi
- *Department of Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA; and Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - William A Horne
- *Department of Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA; and Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
30
|
Abstract
Fragile X Syndrome (FXS) is commonly thought to arise from dysfunction of the synapse, the site of communication between neurons. However, loss of the protein that results in FXS occurs early in embryonic development, while synapses are formed relatively late. Fragile X Syndrome (FXS) is the leading known monogenic form of autism and the most common form of inherited intellectual disability. FXS results from silencing the FMR1 gene during embryonic development, leading to loss of Fragile X Mental Retardation Protein (FMRP), an RNA-binding protein that regulates mRNA transport, stability, and translation. FXS is commonly thought of as a disease of synaptic dysfunction; however, FMRP expression is lost early in embryonic development, well before most synaptogenesis occurs. Recent studies suggest that loss of FMRP results in aberrant neurogenesis, but neurogenic defects have been variable. We investigated whether FMRP affects neurogenesis in Xenopus laevis tadpoles that express a homolog of FMR1. We used in vivo time-lapse imaging of neural progenitor cells and their neuronal progeny to evaluate the effect of acute loss or overexpression of FMRP on neurogenesis in the developing optic tectum. We complimented the time-lapse studies with SYTOX labeling to quantify apoptosis and CldU labeling to measure cell proliferation. Animals with increased or decreased levels of FMRP have significantly decreased neuronal proliferation and survival. They also have increased neuronal differentiation, but deficient dendritic arbor elaboration. The presence and severity of these defects was highly sensitive to FMRP levels. These data demonstrate that FMRP plays an important role in neurogenesis and suggest that endogenous FMRP levels are carefully regulated. These studies show promise in using Xenopus as an experimental system to study fundamental deficits in brain development with loss of FMRP and give new insight into the pathophysiology of FXS.
Collapse
|
31
|
Ghiretti AE, Paradis S. Molecular mechanisms of activity-dependent changes in dendritic morphology: role of RGK proteins. Trends Neurosci 2014; 37:399-407. [PMID: 24910262 PMCID: PMC4113564 DOI: 10.1016/j.tins.2014.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/09/2014] [Accepted: 05/13/2014] [Indexed: 01/10/2023]
Abstract
The nervous system has the amazing capacity to transform sensory experience from the environment into changes in neuronal activity that, in turn, cause long-lasting alterations in neuronal morphology. Recent findings indicate that, surprisingly, sensory experience concurrently activates molecular signaling pathways that both promote and inhibit dendritic complexity. Historically, a number of positive regulators of activity-dependent dendritic complexity have been described, whereas the list of identified negative regulators of this process is much shorter. In recent years, there has been an emerging appreciation of the importance of the Rad/Rem/Rem2/Gem/Kir (RGK) GTPases as mediators of activity-dependent structural plasticity. In the following review, we discuss the traditional view of RGK proteins, as well as our evolving understanding of the role of these proteins in instructing structural plasticity.
Collapse
Affiliation(s)
- Amy E Ghiretti
- Department of Biology, National Center for Behavioral Genomics, and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02454, USA
| | - Suzanne Paradis
- Department of Biology, National Center for Behavioral Genomics, and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
32
|
DeRocher MM, Armaly FH, Lepore CJ, Hollis DM. Rem2 in the bullfrog (Rana catesbeiana): Patterns of expression within the central nervous system and brain expression at different ontogenetic stages. Gene 2014; 540:37-45. [PMID: 24576576 DOI: 10.1016/j.gene.2014.02.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/13/2014] [Accepted: 02/18/2014] [Indexed: 12/12/2022]
Abstract
Rem2 is a member of the RGK (Rem, Rad, and Gem/Kir) subfamily of the Ras superfamily of GTP binding proteins. In mammals, Rem2 has been found to be unique in not only its structure, but also its tissue specificity, as it is the first member to be found at high levels in neuronal tissue. Because Rem2 has previously been implicated in neuronal cell proliferation, and amphibians maintain relatively high neuronal proliferative activity as adults, we sought to isolate and acquire the full-length sequence of the rem2 gene from the brain of the bullfrog (Rana catesbeiana). Furthermore, we used real time PCR (rtPCR) to characterize its tissue specificity, regional brain expression, and brain expression levels at different stages of development. Deduced amino acid sequence analysis showed that the bullfrog Rem2 protein possesses the unique 5' extension characteristic of mammalian Rem2 and the RGK subfamily to which it belongs. Tissue specificity of the bullfrog rem2 gene showed that the bullfrog is similar to both mammals and fish in that the levels of rem2 gene expression were significantly greater in the brain than all other tissues assayed. In the brain itself, differential rem2 expression patterns were observed between six major brain areas assayed and the spinal cord, with expression significantly high in the cerebrum and low in the cerebellum. Finally, examination of whole brain rem2 expression levels in bullfrogs at different stages of development revealed greater expression after metamorphic climax.
Collapse
|