1
|
Jiao D, Xu L, Gu Z, Yan H, Shen D, Gu X. Pathogenesis, diagnosis, and treatment of epilepsy: electromagnetic stimulation-mediated neuromodulation therapy and new technologies. Neural Regen Res 2025; 20:917-935. [PMID: 38989927 PMCID: PMC11438347 DOI: 10.4103/nrr.nrr-d-23-01444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/31/2023] [Accepted: 01/18/2024] [Indexed: 07/12/2024] Open
Abstract
Epilepsy is a severe, relapsing, and multifactorial neurological disorder. Studies regarding the accurate diagnosis, prognosis, and in-depth pathogenesis are crucial for the precise and effective treatment of epilepsy. The pathogenesis of epilepsy is complex and involves alterations in variables such as gene expression, protein expression, ion channel activity, energy metabolites, and gut microbiota composition. Satisfactory results are lacking for conventional treatments for epilepsy. Surgical resection of lesions, drug therapy, and non-drug interventions are mainly used in clinical practice to treat pain associated with epilepsy. Non-pharmacological treatments, such as a ketogenic diet, gene therapy for nerve regeneration, and neural regulation, are currently areas of research focus. This review provides a comprehensive overview of the pathogenesis, diagnostic methods, and treatments of epilepsy. It also elaborates on the theoretical basis, treatment modes, and effects of invasive nerve stimulation in neurotherapy, including percutaneous vagus nerve stimulation, deep brain electrical stimulation, repetitive nerve electrical stimulation, in addition to non-invasive transcranial magnetic stimulation and transcranial direct current stimulation. Numerous studies have shown that electromagnetic stimulation-mediated neuromodulation therapy can markedly improve neurological function and reduce the frequency of epileptic seizures. Additionally, many new technologies for the diagnosis and treatment of epilepsy are being explored. However, current research is mainly focused on analyzing patients' clinical manifestations and exploring relevant diagnostic and treatment methods to study the pathogenesis at a molecular level, which has led to a lack of consensus regarding the mechanisms related to the disease.
Collapse
Affiliation(s)
- Dian Jiao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Lai Xu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Hua Yan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Dingding Shen
- Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Xiaosong Gu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| |
Collapse
|
2
|
Tan G, Huguenard AL, Donovan KM, Demarest P, Liu X, Li Z, Adamek M, Lavine K, Vellimana AK, Kummer TT, Osbun JW, Zipfel GJ, Brunner P, Leuthardt EC. The effect of transcutaneous auricular vagus nerve stimulation on cardiovascular function in subarachnoid hemorrhage patients: A randomized trial. eLife 2025; 13:RP100088. [PMID: 39786346 PMCID: PMC11717364 DOI: 10.7554/elife.100088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Background Subarachnoid hemorrhage (SAH) is characterized by intense central inflammation, leading to substantial post-hemorrhagic complications such as vasospasm and delayed cerebral ischemia. Given the anti-inflammatory effect of transcutaneous auricular vagus nerve stimulation (taVNS) and its ability to promote brain plasticity, taVNS has emerged as a promising therapeutic option for SAH patients. However, the effects of taVNS on cardiovascular dynamics in critically ill patients, like those with SAH, have not yet been investigated. Given the association between cardiac complications and elevated risk of poor clinical outcomes after SAH, it is essential to characterize the cardiovascular effects of taVNS to ensure this approach is safe in this fragile population. Therefore, this study assessed the impact of both acute and repetitive taVNS on cardiovascular function. Methods In this randomized clinical trial, 24 SAH patients were assigned to either a taVNS treatment or a sham treatment group. During their stay in the intensive care unit, we monitored patient electrocardiogram readings and vital signs. We compared long-term changes in heart rate, heart rate variability (HRV), QT interval, and blood pressure between the two groups. Additionally, we assessed the effects of acute taVNS by comparing cardiovascular metrics before, during, and after the intervention. We also explored acute cardiovascular biomarkers in patients exhibiting clinical improvement. Results We found that repetitive taVNS did not significantly alter heart rate, QT interval, blood pressure, or intracranial pressure (ICP). However, repetitive taVNS increased overall HRV and parasympathetic activity compared to the sham treatment. The increase in parasympathetic activity was most pronounced from 2 to 4 days after initial treatment (Cohen's d = 0.50). Acutely, taVNS increased heart rate, blood pressure, and peripheral perfusion index without affecting the corrected QT interval, ICP, or HRV. The acute post-treatment elevation in heart rate was more pronounced in patients who experienced a decrease of more than one point in their modified Rankin Score at the time of discharge. Conclusions Our study found that taVNS treatment did not induce adverse cardiovascular effects, such as bradycardia or QT prolongation, supporting its development as a safe immunomodulatory treatment approach for SAH patients. The observed acute increase in heart rate after taVNS treatment may serve as a biomarker for SAH patients who could derive greater benefit from this treatment. Funding The American Association of Neurological Surgeons (ALH), The Aneurysm and AVM Foundation (ALH), The National Institutes of Health R01-EB026439, P41-EB018783, U24-NS109103, R21-NS128307 (ECL, PB), McDonnell Center for Systems Neuroscience (ECL, PB), and Fondazione Neurone (PB). Clinical trial number NCT04557618.
Collapse
Affiliation(s)
- Gansheng Tan
- Department of Neurosurgery, Washington University School of MedicineSpringfieldUnited States
- Department of Biomedical Engineering, Washington University in St. LouisSt LouisUnited States
| | - Anna L Huguenard
- Department of Neurosurgery, Washington University School of MedicineSpringfieldUnited States
| | - Kara M Donovan
- Department of Neurosurgery, Washington University School of MedicineSpringfieldUnited States
- Department of Biomedical Engineering, Washington University in St. LouisSt LouisUnited States
| | - Phillip Demarest
- Department of Neurosurgery, Washington University School of MedicineSpringfieldUnited States
- Department of Biomedical Engineering, Washington University in St. LouisSt LouisUnited States
| | - Xiaoxuan Liu
- Department of Neurosurgery, Washington University School of MedicineSpringfieldUnited States
- Department of Biomedical Engineering, Washington University in St. LouisSt LouisUnited States
| | - Ziwei Li
- Department of Neurosurgery, Washington University School of MedicineSpringfieldUnited States
- Department of Biomedical Engineering, Washington University in St. LouisSt LouisUnited States
| | - Markus Adamek
- Department of Neuroscience, Washington University in St. LouisSt LouisUnited States
| | - Kory Lavine
- Department of Neurosurgery, Washington University School of MedicineSpringfieldUnited States
| | - Ananthv K Vellimana
- Department of Neurosurgery, Washington University School of MedicineSpringfieldUnited States
- Department of Neurology, Washington University in St. LouisSt LouisUnited States
| | - Terrance T Kummer
- Department of Neurology, Washington University in St. LouisSt LouisUnited States
| | - Joshua W Osbun
- Department of Neurosurgery, Washington University School of MedicineSpringfieldUnited States
- Department of Neurology, Washington University in St. LouisSt LouisUnited States
| | - Gregory J Zipfel
- Department of Neurosurgery, Washington University School of MedicineSpringfieldUnited States
| | - Peter Brunner
- Department of Neurosurgery, Washington University School of MedicineSpringfieldUnited States
- Department of Biomedical Engineering, Washington University in St. LouisSt LouisUnited States
| | - Eric C Leuthardt
- Department of Neurosurgery, Washington University School of MedicineSpringfieldUnited States
- Department of Biomedical Engineering, Washington University in St. LouisSt LouisUnited States
| |
Collapse
|
3
|
Yun YJ, Myong Y, Oh BM, Song JJ, Kim CK, Seo HG. Effects of Transcutaneous Auricular Vagus Nerve Stimulation on Cortical Excitability in Healthy Adults. Neuromodulation 2025; 28:115-122. [PMID: 38878053 DOI: 10.1016/j.neurom.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 01/06/2025]
Abstract
OBJECTIVE Vagus nerve stimulation (VNS) has recently been reported to exert additional benefits for functional recovery in patients with brain injury. However, the mechanisms underlying these effects have not yet been elucidated. This study examined the effects of transcutaneous auricular VNS (taVNS) on cortical excitability in healthy adults. MATERIALS AND METHODS We recorded subthreshold and suprathreshold single- and paired-pulse motor-evoked potentials (MEPs) in the right-hand muscles of 16 healthy adults by stimulating the left primary motor cortex. Interstimulus intervals were set at 2 milliseconds and 3 milliseconds for intracortical inhibition (ICI), and 10 milliseconds and 15 milliseconds for intracortical facilitation (ICF). taVNS was applied to the cymba conchae of both ears for 30 minutes. The intensity of taVNS was set to a maximum tolerable level of 1.95 mA. MEPs were measured before stimulation, 20 minutes after the beginning of the stimulation, and 10 minutes after the cessation of stimulation. RESULTS The participants' age was 33.25 ± 7.08 years, and nine of 16 were male. No statistically significant changes were observed in the mean values of the single-pulse MEPs before, during, or after stimulation. Although the ICF showed an increasing trend after stimulation, the changes in ICI and ICF were not significant, primarily because of the substantial interindividual variability. CONCLUSIONS The effect of taVNS on cortical excitability varied in healthy adults. An increase in ICF was observed after taVNS, although the difference was not statistically significant. Our findings contribute to the understanding of the mechanisms by which taVNS is effective in patients with brain disorders.
Collapse
Affiliation(s)
- Yeo Joon Yun
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Youho Myong
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea; Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Korea
| | - Byung-Mo Oh
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea; Institute on Aging, Seoul National University, Seoul, Korea
| | - Jae-Jun Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Medical Center, Seoul, Korea; Neurive Co, Ltd, Gimhae, Korea
| | - Chi Kyung Kim
- Department of Neurology, Korea University Guro Hospital and College of Medicine, Seoul, Korea
| | - Han Gil Seo
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea.
| |
Collapse
|
4
|
Nobukawa S, Shirama A, Takahashi T, Toda S. Recent trends in multiple metrics and multimodal analysis for neural activity and pupillometry. Front Neurol 2024; 15:1489822. [PMID: 39687402 PMCID: PMC11646859 DOI: 10.3389/fneur.2024.1489822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024] Open
Abstract
Recent studies focusing on neural activity captured by neuroimaging modalities have provided various metrics for elucidating the functional networks and dynamics of the entire brain. Functional magnetic resonance imaging (fMRI) can depict spatiotemporal functional neural networks and dynamic characteristics due to its excellent spatial resolution. However, its temporal resolution is limited. Neuroimaging modalities such as electroencephalography (EEG) and magnetoencephalography (MEG), which have higher temporal resolutions, are utilized for multi-temporal scale and multi-frequency-band analyzes. With this advantage, numerous EEG/MEG-bases studies have revealed the frequency-band specific functional networks involving dynamic functional connectivity and multiple temporal-scale time-series patterns of neural activity. In addition to analyzing neural data, the examination of behavioral data can unveil additional aspects of brain activity through unimodal and multimodal data analyzes performed using appropriate integration techniques. Among the behavioral data assessments, pupillometry can provide comprehensive spatial-temporal-specific features of neural activity. In this perspective, we summarize the recent progress in the development of metrics for analyzing neural data obtained from neuroimaging modalities such as fMRI, EEG, and MEG, as well as behavioral data, with a special focus on pupillometry data. First, we review the typical metrics of neural activity, emphasizing functional connectivity, complexity, dynamic functional connectivity, and dynamic state transitions of whole-brain activity. Second, we examine the metrics related to the time-series data of pupillary diameters and discuss the possibility of multimodal metrics that combine neural and pupillometry data. Finally, we discuss future perspectives on these multiple and multimodal metrics.
Collapse
Affiliation(s)
- Sou Nobukawa
- Department of Computer Science, Chiba Institute of Technology, Narashino, Chiba, Japan
- Graduate School of Information and Computer Science, Chiba Institute of Technology, Narashino, Chiba, Japan
- Research Center for Mathematical Engineering, Chiba Institute of Technology, Narashino, Chiba, Japan
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Aya Shirama
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tetsuya Takahashi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Department of Neuropsychiatry, University of Fukui, Fukui, Japan
- Uozu Shinkei Sanatorium, Uozu, Toyama, Japan
| | - Shigenobu Toda
- Department of Psychiatry, Shizuoka Psychiatric Medical Center, Shizuoka, Japan
- Department of Psychiatry and Behavioral Science, Kanazawa University, Kanazawa, Japan
- Department of Psychiatry, Showa University, Tokyo, Japan
| |
Collapse
|
5
|
Ludwig M, Pereira C, Keute M, Düzel E, Betts MJ, Hämmerer D. Evaluating phasic transcutaneous vagus nerve stimulation (taVNS) with pupil dilation: the importance of stimulation intensity and sensory perception. Sci Rep 2024; 14:24391. [PMID: 39420188 PMCID: PMC11487125 DOI: 10.1038/s41598-024-72179-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 09/04/2024] [Indexed: 10/19/2024] Open
Abstract
The efficacy of transcutaneous auricular vagus nerve stimulation (taVNS) as a non-invasive method to modulate physiological markers of noradrenergic activity of the Locus Coeruleus (LC), such as pupil dilation, is increasingly more discussed. However, taVNS studies show high heterogeneity of stimulation effects. Therefore, a taVNS setup was established here to test different frequencies (10 Hz and 25 Hz) and intensities (3 mA and 5 mA) during phasic stimulation (3 s) with time-synchronous recording of pupil dilation in younger adults. Specifically, phasic real taVNS and higher intensity led to increased pupil dilation, which is consistent with phasic invasive VNS studies in animals. The results also suggest that the influence of intensity on pupil dilation may be stronger than that of frequency. However, there was an attenuation of taVNS-induced pupil dilation when differences in perception of sensations were considered. Specifically, pupil dilation during phasic stimulation increased with perceived stimulation intensity. The extent to which the effect of taVNS induces pupil dilation and the involvement of sensory perception in the stimulation process are discussed here and require more extensive research. Additionally, it is crucial to strive for comparable stimulation sensations during systematic parameter testing in order to investigate possible effects of phasic taVNS on pupil dilation in more detail.
Collapse
Grants
- R01 MH126971 NIMH NIH HHS
- federal state of Saxony-Anhalt and the European Regional Development Fund (ERDF) in the Center for Behavioral Brain Sciences (CBBS, ZS/2016/04/78113)
- Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – ProjectID 425899994 – Sonderforschungsbereiche 1436 (SFB 1436)
- Human Brain Project, Specific Grant Agreement 3 (SGA3), Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Sonderforschungsbereiche 1315 (SFB 1315).
- Center for Behavioral Brain Sciences (CBBS) NeuroNetzwerk 17
- the German Federal Ministry of Education and Research (BMBF, funding code 01ED2102B) under the aegis of the EU Joint Programme – Neurodegenerative Disease Research (JPND)
- Sonderforschungsbereich 1315, Project B06, Sonderforschungsbereich 1436
- Project A08, ARUK SRF2018B-004
- CBBS Neural Network (CBBS, ZS/2016/04/78113)
- NIH R01MH126971
- Otto-von-Guericke-Universität Magdeburg (3121)
Collapse
Affiliation(s)
- Mareike Ludwig
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany.
- CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Otto-Von-Guericke University Magdeburg, Magdeburg, Germany.
| | - Calida Pereira
- Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
| | - Marius Keute
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tuebingen, Tuebingen, Germany
| | - Emrah Düzel
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Matthew J Betts
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
- CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
| | - Dorothea Hämmerer
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
- CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, UK
- The Wellcome Trust Centre for Neuroimaging, University College London, London, UK
- Department of Psychology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
6
|
Torres AS, Robison MK, McClure SM, Brewer GA. The influence of transcranial direct current stimulation to the trigeminal nerve on attention and arousal. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:860-880. [PMID: 39107465 DOI: 10.3758/s13415-024-01205-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 09/13/2024]
Abstract
One mechanism by which transcranial direct current stimulation (tDCS) has been proposed to improve attention is by transcutaneous stimulation of cranial nerves, thereby activating the locus coeruleus (LC). Specifically, placement of the electrodes over the frontal bone and mastoid is thought to facilitate current flow across the face as a path of least resistance. The face is innervated by the trigeminal nerve, and the trigeminal nerve is interconnected with the LC. In this study, we tested whether stimulating the trigeminal nerve impacts indices of LC activity and performance on a sustained attention task. We replicated previous research that shows deterioration in task performance, increases in the rate of task-unrelated thoughts, and reduced pupil responses due to time on task irrespective of tDCS condition (sham, anodal, and cathodal stimulation). Importantly, tDCS did not influence pupil dynamics (pretrial or stimulus-evoked), self-reported attention state, nor task performance in active versus sham stimulation conditions. The findings reported here are consistent with theories about arousal centered on a hypothesized link between LC activity indexed by pupil size, task performance, and self-reported attention state but fail to support hypotheses that tDCS over the trigeminal nerve influences indices of LC function.
Collapse
Affiliation(s)
- Alexis S Torres
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| | - Matthew K Robison
- Department of Psychology, University of Texas at Arlington, Arlington, TX, USA
| | - Samuel M McClure
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| | - Gene A Brewer
- Department of Psychology, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
7
|
Bömmer T, Schmidt LM, Meier K, Kricheldorff J, Stecher H, Herrmann CS, Thiel CM, Janitzky K, Witt K. Impact of Stimulation Duration in taVNS-Exploring Multiple Physiological and Cognitive Outcomes. Brain Sci 2024; 14:875. [PMID: 39335371 PMCID: PMC11430400 DOI: 10.3390/brainsci14090875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Transcutaneous auricular vagus nerve stimulation (taVNS) is a non-invasive neuromodulation technique that modulates the noradrenergic activity of the locus coeruleus (LC). Yet, there is still uncertainty about the most effective stimulation and reliable outcome parameters. In a double blind, sham-controlled study including a sample of healthy young individuals (N = 29), we compared a shorter (3.4 s) and a longer (30 s) stimulation duration and investigated the effects of taVNS (real vs. sham) on saliva samples (alpha amylase and cortisol concentration), pupil (pupillary light reflex and pupil size at rest) and EEG data (alpha and theta activity at rest, ERPs for No-Go signals), and cognitive tasks (Go/No-Go and Stop Signal Tasks). Salivary alpha amylase concentration was significantly increased in the real as compared to sham stimulation for the 30 s stimulation condition. In the 3.4 s stimulation condition, we found prolonged reaction times and increased error rates in the Go/No-Go task and increased maximum acceleration in the pupillary light reflex. For the other outcomes, no significant differences were found. Our results show that prolonged stimulation increases salivary alpha-amylase, which was expected from the functional properties of the LC. The finding of longer response times to short taVNS stimulation was not expected and cannot be explained by an increase in LC activity. We also discuss the difficulties in assessing pupil size as an expression of taVNS-mediated LC functional changes.
Collapse
Affiliation(s)
- Till Bömmer
- Department of Neurology, Carl von Ossietzky University, 26121 Oldenburg, Germany
- University Clinic for Neurology at the Evangelical Hospital, 26121 Oldenburg, Germany
| | - Luisa M Schmidt
- Department of Neurology, Carl von Ossietzky University, 26121 Oldenburg, Germany
- University Clinic for Neurology at the Evangelical Hospital, 26121 Oldenburg, Germany
| | - Katharina Meier
- Department of Neurology, Carl von Ossietzky University, 26121 Oldenburg, Germany
| | - Julius Kricheldorff
- Department of Neurology, Carl von Ossietzky University, 26121 Oldenburg, Germany
| | - Heiko Stecher
- Experimental Psychology Lab, Department of Psychology, Carl von Ossietzky University, 26129 Oldenburg, Germany
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, Carl von Ossietzky University, 26129 Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky University, 26129 Oldenburg, Germany
| | - Christiane M Thiel
- Biological Psychology Lab, Department of Psychology, Carl von Ossietzky University, 26129 Oldenburg, Germany
| | - Kathrin Janitzky
- Department of Neurology, Carl von Ossietzky University, 26121 Oldenburg, Germany
- University Clinic for Neurology at the Evangelical Hospital, 26121 Oldenburg, Germany
| | - Karsten Witt
- Department of Neurology, Carl von Ossietzky University, 26121 Oldenburg, Germany
- University Clinic for Neurology at the Evangelical Hospital, 26121 Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky University, 26129 Oldenburg, Germany
| |
Collapse
|
8
|
Ben Barak-Dror O, Hadad B, Barhum H, Haggiag D, Tepper M, Gannot I, Nir Y. Touchless short-wave infrared imaging for dynamic rapid pupillometry and gaze estimation in closed eyes. COMMUNICATIONS MEDICINE 2024; 4:157. [PMID: 39107497 PMCID: PMC11303404 DOI: 10.1038/s43856-024-00572-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 07/04/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Assessments of gaze direction (eye movements), pupil size, and the pupillary light reflex (PLR) are critical for neurological examination and neuroscience research and constitute a powerful tool in diverse clinical settings ranging from critical care through endocrinology and drug addiction to cardiology and psychiatry. However, current bedside pupillometry is typically intermittent, qualitative, manual, and limited to open-eye cases, restricting its use in sleep medicine, anesthesia, and intensive care. METHODS We combined short-wave infrared (SWIR, ~0.9-1.7μm) imaging with image processing algorithms to perform rapid (~30 ms) pupillometry and eye tracking behind closed eyelids. Forty-three healthy volunteers participated in two experiments with PLR evoked by visible light stimuli or directing eye movements towards screen targets. Imaging was performed simultaneously on one eye closed, and the other open eye serving as ground truth. Data analysis was performed with a custom approach quantifying changes in brightness around the pupil area or with a deep learning U-NET-based procedure. RESULTS Here we show that analysis of SWIR imaging data can successfully measure stimulus-evoked PLR in closed-eye conditions, revealing PLR events in single trials and significant PLRs in nearly all individual subjects, as well as estimating gaze direction. The neural net-based analysis could successfully use closed-eye SWIR data to recreate estimates of open-eye images and assess pupil size. CONCLUSIONS Continuous touchless monitoring of rapid dynamics in pupil size and gaze direction through closed eyes paves the way for developing devices with wide-ranging applications, fulfilling long-standing goals in clinical and research fields.
Collapse
Affiliation(s)
- Omer Ben Barak-Dror
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Barak Hadad
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Hani Barhum
- School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
- Triangle Regional Research and Development Center, Kfar Qara, 3007500, Israel
| | - David Haggiag
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Michal Tepper
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Israel Gannot
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel.
| | - Yuval Nir
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel.
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
9
|
Ludwig M, Pereira C, Keute M, Düzel E, Betts MJ, Hämmerer D. Evaluating phasic transcutaneous vagus nerve stimulation (taVNS) with pupil dilation: the importance of stimulation intensity and sensory perception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.27.605407. [PMID: 39131302 PMCID: PMC11312456 DOI: 10.1101/2024.07.27.605407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The efficacy of transcutaneous auricular vagus nerve stimulation (taVNS) as a non-invasive method to modulate physiological markers of noradrenergic activity of the Locus Coeruleus (LC), such as pupil dilation, is increasingly more discussed. However, taVNS studies show high heterogeneity of stimulation effects. Therefore, a taVNS setup was established here to test different frequencies (10 Hz and 25 Hz) and intensities (3 mA and 5 mA) during phasic stimulation (3 s) with time-synchronous recording of pupil dilation in younger adults. Specifically, phasic real taVNS and higher intensity led to increased pupil dilation, which is consistent with phasic invasive VNS studies in animals. The results also suggest that the influence of intensity on pupil dilation may be stronger than that of frequency. However, there was an attenuation of taVNS-induced pupil dilation when differences in perception of sensations were considered. Specifically, pupil dilation during phasic stimulation increased with perceived stimulation intensity. The extent to which the effect of taVNS induces pupil dilation and the involvement of sensory perception in the stimulation process are discussed here and require more extensive research. Additionally, it is crucial to strive for comparable stimulation sensations during systematic parameter testing in order to investigate possible effects of phasic taVNS on pupil dilation in more detail.
Collapse
Affiliation(s)
- Mareike Ludwig
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Calida Pereira
- Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Marius Keute
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tuebingen, Tuebingen, Germany
| | - Emrah Düzel
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Matthew J. Betts
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Dorothea Hämmerer
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, UK
- The Wellcome Trust Centre for Neuroimaging, University College London, London, UK
- Department of Psychology, University of Innsbruck
| |
Collapse
|
10
|
Miyatsu T, Oviedo V, Reynaga J, Karuzis VP, Martinez D, O'Rourke P, Key M, McIntire L, Aue W, McKinley R, Pirolli P, Broderick T. Transcutaneous cervical vagus nerve stimulation enhances second-language vocabulary acquisition while simultaneously mitigating fatigue and promoting focus. Sci Rep 2024; 14:17177. [PMID: 39060415 PMCID: PMC11282064 DOI: 10.1038/s41598-024-68015-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Transcutaneous vagus nerve stimulation (tVNS) is a promising technique for enhancing cognitive performance and skill acquisition. Yet, its efficacy for enhancing learning rate and long-term retention in an ecologically valid learning environment has not been demonstrated. We conducted two double-blind sham-controlled experiments examining the efficacy of auricular tVNS (taVNS: Experiment (1) and cervical tVNS (tcVNS: Experiment (2), on a 5 day second-language vocabulary acquisition protocol among highly selected career linguists at the US Department of Defense's premier language school. tcVNS produced accelerated recall performance during training (Day 2-4), benefits of which were maintained across a 24 h retention interval with no stimulation at the final test. Consistent with prior work, tcVNS also produced fatigue-mitigating and focus-promoting effects as measured by the Air Force Research Laboratory Mood Questionnaire. Based on the current and the previous findings supporting tVNS' efficacy on performance, training enhancement, and fatigue mitigation, we believe tcVNS to be an effective learning acceleration tool that can be utilized at language-teaching and other institutions focused on intensive training of cognitive skills.
Collapse
Affiliation(s)
- Toshiya Miyatsu
- Florida Institute for Human and Machine Cognition, Pensacola, USA.
| | - Vanessa Oviedo
- Florida Institute for Human and Machine Cognition, Pensacola, USA
- University of California Santa Cruz, Santa Cruz, USA
| | - Jajaira Reynaga
- Florida Institute for Human and Machine Cognition, Pensacola, USA
- University of California Santa Cruz, Santa Cruz, USA
| | - Valerie P Karuzis
- University of Maryland Applied Research Lab for Intelligence & Security, College Park, USA
| | - David Martinez
- University of Maryland Applied Research Lab for Intelligence & Security, College Park, USA
| | - Polly O'Rourke
- University of Maryland Applied Research Lab for Intelligence & Security, College Park, USA
| | - Melissa Key
- Air Force Research Laboratory, Wright-Patterson AFB, USA
- DCS Corp., Alexandria, USA
| | - Lindsey McIntire
- Air Force Research Laboratory, Wright-Patterson AFB, USA
- DCS Corp., Alexandria, USA
| | - William Aue
- Air Force Research Laboratory, Wright-Patterson AFB, USA
| | | | - Peter Pirolli
- Florida Institute for Human and Machine Cognition, Pensacola, USA
| | | |
Collapse
|
11
|
Jung JY, Kang CK. Effects of head alignment devices on working memory and postural support during computer work. PLoS One 2024; 19:e0306966. [PMID: 38990907 PMCID: PMC11239027 DOI: 10.1371/journal.pone.0306966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/25/2024] [Indexed: 07/13/2024] Open
Abstract
The most common risk factor of computer workers is poor head and neck posture. Therefore, upright seated posture has been recommended repeatedly. However, maintaining an upright seated posture is challenging during computer work and induces various complaints, such as fatigue and discomfort, which can interfere working performance. Therefore, it is necessary to maintain an upright posture without complaints or intentional efforts during long-term computer work. Alignment devices are an appropriate maneuver to support postural control for maintaining head-neck orientation and reduce head weight. This study aimed to demonstrate the effects of workstations combined with alignment device on head-neck alignment, muscle properties, comfort and working memory ability in computer workers. Computer workers (n = 37) participated in a total of three sessions (upright computer (CPT_U), upright support computer (CPT_US), traction computer (CPT_T) workstations). The craniovertebral angle, muscles tone and stiffness, visual analog discomfort scale score, 2-back working memory performance, and electroencephalogram signals were measured. All three workstations had a substantial effect on maintaining head-neck alignment (p< 0.001), but only CPT_US showed significant improvement on psychological comfort (p = 0.04) and working memory performance (p = 0.024), which is consistent with an increase in delta power. CPT_U showed the increased beta 2 activity, discomfort, and false rates compared to CPT_US. CPT_T showed increased alpha and beta 2 activity and decreased delta activity, which are not conductive to working memory performance. In conclusion, CPT_US can effectively induce efficient neural oscillations without causing any discomfort by increasing delta and decreasing beta 2 activity for working memory tasks.
Collapse
Affiliation(s)
- Ju-Yeon Jung
- Institute for Human Health and Science Convergence, Gachon University, Incheon, Republic of Korea
| | - Chang-Ki Kang
- Institute for Human Health and Science Convergence, Gachon University, Incheon, Republic of Korea
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea
- Department of Radiological Science, College of Health Science, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
12
|
Kang D, Choi Y, Lee J, Park E, Kim IY. Analysis of taVNS effects on autonomic and central nervous systems in healthy young adults based on HRV, EEG parameters. J Neural Eng 2024; 21:046012. [PMID: 38941990 DOI: 10.1088/1741-2552/ad5d16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/28/2024] [Indexed: 06/30/2024]
Abstract
Objective.Transcutaneous auricular vagus nerve stimulation (taVNS), a non-invasive method of stimulating the vagus nerve, simultaneously affects the autonomic nervous system (ANS) and central nervous system (CNS) through efferent and afferent pathways. The purpose of this study is to analyze the effect of taVNS on the ANS and CNS through heart rate variability (HRV) and electroencephalography (EEG) parameters of identified responders.Approach.Two sets of data were collected from each of 10 healthy adult male subjects in their 20 s, and five HRV parameters from the time domain (RMSSD, pNN50, pNN30, pNN20, ppNNx) and two EEG parameters (power of alpha band, power of delta band) were extracted.Main results.Based on pNN50, responders to taVNS were identified; among them, pNN50 (p= 0.0041) and ppNNx (p= 0.0037) showed significant differences before and after taVNS. At the same time, for alpha power and delta power of EEG, significant difference (p< 0.05) was observed in most channels after taVNS compared to before stimulation.Significance.This study demonstrated the validity of identifying responders using pNN50 and the influence of taVNS on both the ANS and CNS. We conclude that taVNS can be used to treat a variety of diseases and as a tool to help control the ANS and CNS.
Collapse
Affiliation(s)
- Donghun Kang
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Youngseok Choi
- Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea
| | - Jongshill Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Eunkyoung Park
- Department of Biomedical Engineering, Soonchunhyang University, Asan, Republic of Korea
| | - In Young Kim
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Giraudier M, Ventura-Bort C, Weymar M. Effects of Transcutaneous Auricular Vagus Nerve Stimulation on the P300: Do Stimulation Duration and Stimulation Type Matter? Brain Sci 2024; 14:690. [PMID: 39061430 PMCID: PMC11274684 DOI: 10.3390/brainsci14070690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Non-invasive transcutaneous auricular vagus nerve stimulation (taVNS) has attracted increasing interest as a neurostimulation tool with potential applications in modulating cognitive processes such as attention and memory, possibly through the modulation of the locus-coeruleus noradrenaline system. Studies examining the P300 brain-related component as a correlate of noradrenergic activity, however, have yielded inconsistent findings, possibly due to differences in stimulation parameters, thus necessitating further investigation. In this event-related potential study involving 61 participants, therefore, we examined how changes in taVNS parameters, specifically stimulation type (interval vs. continuous stimulation) and duration, influence P300 amplitudes during a visual novelty oddball task. Although no effects of stimulation were found over the whole cluster and time window of the P300, cluster-based permutation tests revealed a distinct impact of taVNS on the P300 response for a small electrode cluster, characterized by larger amplitudes observed for easy targets (i.e., stimuli that are easily discernible from standards) following taVNS compared to sham stimulation. Notably, our findings suggested that the type of stimulation significantly modulated taVNS effects on the P300, with continuous stimulation showing larger P300 differences (taVNS vs. sham) for hard targets and standards compared to interval stimulation. We observed no interaction effects of stimulation duration on the target-related P300. While our findings align with previous research, further investigation is warranted to fully elucidate the influence of taVNS on the P300 component and its potential utility as a reliable marker for neuromodulation in this field.
Collapse
Affiliation(s)
- Manon Giraudier
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Campus Golm, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany; (C.V.-B.); (M.W.)
| | | | | |
Collapse
|
14
|
Dong HW, Weiss K, Baugh K, Meadows MJ, Niswender CM, Neul JL. Potentiation of the muscarinic acetylcholine receptor 1 modulates neurophysiological features in a mouse model of Rett syndrome. Neurotherapeutics 2024; 21:e00384. [PMID: 38880672 PMCID: PMC11284553 DOI: 10.1016/j.neurot.2024.e00384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/18/2024] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder primarily caused by mutations in the X chromosome-linked gene Methyl-CpG Binding Protein 2 (MECP2). Restoring MeCP2 expression after disease onset in a mouse model of RTT reverses phenotypes, providing hope for development of treatments for RTT. Translatable biomarkers of improvement and treatment responses have the potential to accelerate both preclinical and clinical evaluation of targeted therapies in RTT. Studies in people with and mouse models of RTT have identified neurophysiological features, such as auditory event-related potentials, that correlate with disease severity, suggesting that they could be useful as biomarkers of disease improvement or early treatment response. We recently demonstrated that treatment of RTT mice with a positive allosteric modulator (PAM) of muscarinic acetylcholine subtype 1 receptor (M1) improved phenotypes, suggesting that modulation of M1 activity is a potential therapy in RTT. To evaluate whether neurophysiological features could be useful biomarkers to assess the effects of M1 PAM treatment, we acutely administered the M1 PAM VU0486846 (VU846) at doses of 1, 3, 10 and 30 mg/kg in wildtype and RTT mice. This resulted in an inverted U-shaped dose response with maximal improvement of AEP features at 3 mg/kg but with no marked effect on basal EEG power or epileptiform discharges in RTT mice and no significant changes in wildtype mice. These findings suggest that M1 potentiation can improve neural circuit synchrony to auditory stimuli in RTT mice and that neurophysiological features have potential as pharmacodynamic or treatment-responsive biomarkers for preclinical and clinical evaluation of putative therapies in RTT.
Collapse
Affiliation(s)
- Hong-Wei Dong
- Department of Pediatrics, Division of Neurology, Vanderbilt University Medical Center, USA; Vanderbilt University Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kelly Weiss
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, USA; Warren Center for Neuroscience Drug Discovery, School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Kathryn Baugh
- Department of Pediatrics, Division of Neurology, Vanderbilt University Medical Center, USA
| | - Mac J Meadows
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, USA; Warren Center for Neuroscience Drug Discovery, School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Colleen M Niswender
- Vanderbilt University Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, USA; Warren Center for Neuroscience Drug Discovery, School of Medicine, Vanderbilt University, Nashville, TN, USA; Vanderbilt Institute for Chemical Biology, Nashville, TN, USA; Vanderbilt Brain Institute, Nashville, TN, USA.
| | - Jeffrey L Neul
- Department of Pediatrics, Division of Neurology, Vanderbilt University Medical Center, USA; Vanderbilt University Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, USA; Vanderbilt Brain Institute, Nashville, TN, USA.
| |
Collapse
|
15
|
Lee YS, Kim WJ, Shim M, Hong KH, Choi H, Song JJ, Hwang HJ. Investigating neuromodulatory effect of transauricular vagus nerve stimulation on resting-state electroencephalography. Biomed Eng Lett 2024; 14:677-687. [PMID: 38946812 PMCID: PMC11208373 DOI: 10.1007/s13534-024-00361-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/19/2024] [Accepted: 02/04/2024] [Indexed: 07/02/2024] Open
Abstract
Purpose: The purpose of this study was to investigate the neuromodulatory effects of transauricular vagus nerve stimulation (taVNS) and determine optimal taVNS duration to induce the meaningful neuromodulatroty effects using resting-state electroencephalography (EEG). Method: Fifteen participants participated in this study and taVNS was applied to the cymba conchae for a duration of 40 min. Resting-state EEG was measured before and during taVNS application. EEG power spectral density (PSD) and brain network indices (clustering coefficient and path length) were calculated across five frequency bands (delta, theta, alpha, beta and gamma), respectively, to assess the neuromodulatory effect of taVNS. Moreover, we divided the whole brain region into the five regions of interest (frontal, central, left temporal, right temporal, and occipital) to confirm the neuromodulation effect on each specific brain region. Result: Our results demonstrated a significant increase in EEG frequency powers across all five frequency bands during taVNS. Furthermore, significant changes in network indices were observed in the theta and gamma bands compared to the pre-taVNS measurements. These effects were particularly pronounced after approximately 10 min of stimulation, with a more dominant impact observed after approximately 20-30 min of taVNS application. Conclusion: The findings of this study indicate that taVNS can effectively modulate the brain activity, thereby exerting significant effects on brain characteristics. Moreover, taVNS duration of approximately 20-30 min was considered appropriate for inducing a stable and efficient neuromodulatory effects. Consequently, these findings have the potential to contribute to research aimed at enhancing cognitive and motor functions through the modulation of EEG using taVNS. Supplementary Information The online version contains supplementary material available at 10.1007/s13534-024-00361-8.
Collapse
Affiliation(s)
- Yun-Sung Lee
- Department of Electronics and Information, Korea University, Sejong, 30019 Republic of Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, Republic of Korea
| | - Woo-Jin Kim
- Department of Electronics and Information, Korea University, Sejong, 30019 Republic of Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, Republic of Korea
| | - Miseon Shim
- Department of Artificial Intelligence, Tech University of Korea, Siheung, Republic of Korea
| | - Ki Hwan Hong
- Neurive Co., Ltd, Gimhae, 50969 Republic of Korea
| | - Hyuk Choi
- Neurive Co., Ltd, Gimhae, 50969 Republic of Korea
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul, 028411 Republic of Korea
| | - Jae-Jun Song
- Neurive Co., Ltd, Gimhae, 50969 Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Guro Hospital, Seoul, 08308 Republic of Korea
| | - Han-Jeong Hwang
- Department of Electronics and Information, Korea University, Sejong, 30019 Republic of Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, Republic of Korea
| |
Collapse
|
16
|
Cheng T, Hu Y, Qin X, Ma J, Zha D, Xie H, Ji T, Liu Q, Wang Z, Hao H, Wu Y, Li L. A predictive model combining connectomics and entropy biomarkers to discriminate long-term vagus nerve stimulation efficacy for pediatric patients with drug-resistant epilepsy. CNS Neurosci Ther 2024; 30:e14751. [PMID: 39015946 PMCID: PMC11252558 DOI: 10.1111/cns.14751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 07/18/2024] Open
Abstract
AIMS To predict the vagus nerve stimulation (VNS) efficacy for pediatric drug-resistant epilepsy (DRE) patients, we aim to identify preimplantation biomarkers through clinical features and electroencephalogram (EEG) signals and thus establish a predictive model from a multi-modal feature set with high prediction accuracy. METHODS Sixty-five pediatric DRE patients implanted with VNS were included and followed up. We explored the topological network and entropy features of preimplantation EEG signals to identify the biomarkers for VNS efficacy. A Support Vector Machine (SVM) integrated these biomarkers to distinguish the efficacy groups. RESULTS The proportion of VNS responders was 58.5% (38/65) at the last follow-up. In the analysis of parieto-occipital α band activity, higher synchronization level and nodal efficiency were found in responders. The central-frontal θ band activity showed significantly lower entropy in responders. The prediction model reached an accuracy of 81.5%, a precision of 80.1%, and an AUC (area under the receiver operating characteristic curve) of 0.838. CONCLUSION Our results revealed that, compared to nonresponders, VNS responders had a more efficient α band brain network, especially in the parieto-occipital region, and less spectral complexity of θ brain activities in the central-frontal region. We established a predictive model integrating both preimplantation clinical and EEG features and exhibited great potential for discriminating the VNS responders. This study contributed to the understanding of the VNS mechanism and improved the performance of the current predictive model.
Collapse
Affiliation(s)
- Tung‐yang Cheng
- National Engineering Research Center of Neuromodulation, School of Aerospace EngineeringTsinghua UniversityBeijingChina
| | - Yingbing Hu
- National Engineering Research Center of Neuromodulation, School of Aerospace EngineeringTsinghua UniversityBeijingChina
- Tsinghua‐Berkeley Shenzhen InstituteTsinghua UniversityShenzhenChina
| | - Xiaoya Qin
- National Engineering Research Center of Neuromodulation, School of Aerospace EngineeringTsinghua UniversityBeijingChina
- Tsinghua‐Berkeley Shenzhen InstituteTsinghua UniversityShenzhenChina
| | - Jiayi Ma
- Department of PediatricsPeking University First HospitalBeijingChina
| | - Daqi Zha
- National Engineering Research Center of Neuromodulation, School of Aerospace EngineeringTsinghua UniversityBeijingChina
| | - Han Xie
- Department of PediatricsPeking University First HospitalBeijingChina
| | - Taoyun Ji
- Department of PediatricsPeking University First HospitalBeijingChina
- Pediatric Epilepsy CenterPeking University First HospitalBeijingChina
| | - Qingzhu Liu
- Pediatric Epilepsy CenterPeking University First HospitalBeijingChina
| | - Zhiyan Wang
- CAS Key Laboratory of Mental Health, Institute of PsychologyChinese Academy of SciencesBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Hongwei Hao
- National Engineering Research Center of Neuromodulation, School of Aerospace EngineeringTsinghua UniversityBeijingChina
| | - Ye Wu
- Department of PediatricsPeking University First HospitalBeijingChina
- Pediatric Epilepsy CenterPeking University First HospitalBeijingChina
| | - Luming Li
- National Engineering Research Center of Neuromodulation, School of Aerospace EngineeringTsinghua UniversityBeijingChina
- IDG/McGovern Institute for Brain Research at Tsinghua UniversityBeijingChina
| |
Collapse
|
17
|
Parhizi B, Barss TS, Dineros AM, Sivadasan G, Mann D, Mushahwar VK. Bimanual coordination and spinal cord neuromodulation: how neural substrates of bimanual movements are altered by transcutaneous spinal cord stimulation. J Neuroeng Rehabil 2024; 21:103. [PMID: 38890742 PMCID: PMC11184732 DOI: 10.1186/s12984-024-01395-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 05/30/2024] [Indexed: 06/20/2024] Open
Abstract
Humans use their arms in complex ways that often demand two-handed coordination. Neurological conditions limit this impressive feature of the human motor system. Understanding how neuromodulatory techniques may alter neural mechanisms of bimanual coordination is a vital step towards designing efficient rehabilitation interventions. By non-invasively activating the spinal cord, transcutaneous spinal cord stimulation (tSCS) promotes recovery of motor function after spinal cord injury. A multitude of research studies have attempted to capture the underlying neural mechanisms of these effects using a variety of electrophysiological tools, but the influence of tSCS on cortical rhythms recorded via electroencephalography remains poorly understood, especially during bimanual actions. We recruited 12 neurologically intact participants to investigate the effect of cervical tSCS on sensorimotor cortical oscillations. We examined changes in the movement kinematics during the application of tSCS as well as the cortical activation level and interhemispheric connectivity during the execution of unimanual and bimanual arm reaching movements that represent activities of daily life. Behavioral assessment of the movements showed improvement of movement time and error during a bimanual common-goal movement when tSCS was delivered, but no difference was found in the performance of unimanual and bimanual dual-goal movements with the application of tSCS. In the alpha band, spectral power was modulated with tSCS in the direction of synchronization in the primary motor cortex during unimanual and bimanual dual-goal movements and in the somatosensory cortex during unimanual movements. In the beta band, tSCS significantly increased spectral power in the primary motor and somatosensory cortices during the performance of bimanual common-goal and unimanual movements. A significant increase in interhemispheric connectivity in the primary motor cortex in the alpha band was only observed during unimanual tasks in the presence of tSCS. Our observations provide, for the first time, information regarding the supra-spinal effects of tSCS as a neuromodulatory technique applied to the spinal cord during the execution of bi- and unimanual arm movements. They also corroborate the suppressive effect of tSCS at the cortical level reported in previous studies. These findings may guide the design of improved rehabilitation interventions using tSCS for the recovery of upper-limb function in the future.
Collapse
Affiliation(s)
- Behdad Parhizi
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Institute for Smart Augmentative and Restorative Technologies and Health Innovation (iSMART), University of Alberta, Edmonton, AB, Canada
| | - Trevor S Barss
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Institute for Smart Augmentative and Restorative Technologies and Health Innovation (iSMART), University of Alberta, Edmonton, AB, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Alphonso Martin Dineros
- Institute for Smart Augmentative and Restorative Technologies and Health Innovation (iSMART), University of Alberta, Edmonton, AB, Canada
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada
| | - Gokul Sivadasan
- Institute for Smart Augmentative and Restorative Technologies and Health Innovation (iSMART), University of Alberta, Edmonton, AB, Canada
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada
| | - Darren Mann
- Institute for Smart Augmentative and Restorative Technologies and Health Innovation (iSMART), University of Alberta, Edmonton, AB, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Vivian K Mushahwar
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
- Institute for Smart Augmentative and Restorative Technologies and Health Innovation (iSMART), University of Alberta, Edmonton, AB, Canada.
- Division of Physical Medicine and Rehabilitation, Department of Medicine, Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
| |
Collapse
|
18
|
Babiloni C, Jakhar D, Tucci F, Del Percio C, Lopez S, Soricelli A, Salvatore M, Ferri R, Catania V, Massa F, Arnaldi D, Famà F, Güntekin B, Yener G, Stocchi F, Vacca L, Marizzoni M, Giubilei F, Yıldırım E, Hanoğlu L, Hünerli D, Frisoni GB, Noce G. Resting state electroencephalographic alpha rhythms are sensitive to Alzheimer's disease mild cognitive impairment progression at a 6-month follow-up. Neurobiol Aging 2024; 137:19-37. [PMID: 38402780 DOI: 10.1016/j.neurobiolaging.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/31/2023] [Accepted: 01/26/2024] [Indexed: 02/27/2024]
Abstract
Are posterior resting-state electroencephalographic (rsEEG) alpha rhythms sensitive to the Alzheimer's disease mild cognitive impairment (ADMCI) progression at a 6-month follow-up? Clinical, cerebrospinal, neuroimaging, and rsEEG datasets in 52 ADMCI and 60 Healthy old seniors (equivalent groups for demographic features) were available from an international archive (www.pdwaves.eu). The ADMCI patients were arbitrarily divided into two groups: REACTIVE and UNREACTIVE, based on the reduction (reactivity) in the posterior rsEEG alpha eLORETA source activities from the eyes-closed to eyes-open condition at ≥ -10% and -10%, respectively. 75% of the ADMCI patients were REACTIVE. Compared to the UNREACTIVE group, the REACTIVE group showed (1) less abnormal posterior rsEEG source activity during the eyes-closed condition and (2) a decrease in that activity at the 6-month follow-up. These effects could not be explained by neuroimaging and neuropsychological biomarkers of AD. Such a biomarker might reflect abnormalities in cortical arousal in quiet wakefulness to be used for clinical studies in ADMCI patients using 6-month follow-ups.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy; Hospital San Raffaele Cassino, Cassino (FR), Italy.
| | - Dharmendra Jakhar
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Federico Tucci
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Claudio Del Percio
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Susanna Lopez
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Andrea Soricelli
- IRCCS Synlab SDN, Naples, Italy; Department of Medical, Movement and Wellbeing Sciences, University of Naples Parthenope, Naples, Italy
| | | | | | | | - Federico Massa
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Genova, Italy; Clinica neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Dario Arnaldi
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Genova, Italy; Neurofisiopatologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesco Famà
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Genova, Italy; Neurofisiopatologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Bahar Güntekin
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey; Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Görsev Yener
- Izmir University of Economics, Faculty of Medicine, Izmir, Turkey
| | | | | | - Moira Marizzoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Franco Giubilei
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Ebru Yıldırım
- Program of Electroneurophysiology, Vocational School, Istanbul Medipol University, Istanbul, Turkey
| | - Lutfu Hanoğlu
- Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Duygu Hünerli
- Health Sciences Institute, Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | - Giovanni B Frisoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
19
|
Zhang C, Bo R, Zhou T, Chen N, Yuan Y. The raphe nuclei are the early lesion site of gastric α-synuclein propagation to the substantia nigra. Acta Pharm Sin B 2024; 14:2057-2076. [PMID: 38799632 PMCID: PMC11119576 DOI: 10.1016/j.apsb.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/14/2023] [Accepted: 01/05/2024] [Indexed: 05/29/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegeneration disease with α-synuclein accumulated in the substantia nigra pars compacta (SNpc) and most of the dopaminergic neurons are lost in SNpc while patients are diagnosed with PD. Exploring the pathology at an early stage contributes to the development of the disease-modifying strategy. Although the "gut-brain" hypothesis is proposed to explain the underlying mechanism, where the earlier lesioned site in the brain of gastric α-synuclein and how α-synuclein further spreads are not fully understood. Here we report that caudal raphe nuclei (CRN) are the early lesion site of gastric α-synuclein propagating through the spinal cord, while locus coeruleus (LC) and substantia nigra pars compacta (SNpc) were further affected over a time frame of 7 months. Pathological α-synuclein propagation via CRN leads to neuron loss and disordered neuron activity, accompanied by abnormal motor and non-motor behavior. Potential neuron circuits are observed among CRN, LC, and SNpc, which contribute to the venerability of dopaminergic neurons in SNpc. These results show that CRN is the key region for the gastric α-synuclein spread to the midbrain. Our study provides valuable details for the "gut-brain" hypothesis and proposes a valuable PD model for future research on early PD intervention.
Collapse
Affiliation(s)
| | | | - Tiantian Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Materia Medica, Beijing 100050, China
| | - Naihong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Materia Medica, Beijing 100050, China
| | - Yuhe Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Materia Medica, Beijing 100050, China
| |
Collapse
|
20
|
Skora L, Marzecová A, Jocham G. Tonic and phasic transcutaneous auricular vagus nerve stimulation (taVNS) both evoke rapid and transient pupil dilation. Brain Stimul 2024; 17:233-244. [PMID: 38423207 DOI: 10.1016/j.brs.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Transcutaneous auricular vagus nerve stimulation (tVNS or taVNS) is a non-invasive method of electrical stimulation of the afferent pathway of the vagus nerve, suggested to drive changes in putative physiological markers of noradrenergic activity, including pupil dilation. OBJECTIVE However, it is unknown whether different taVNS modes can map onto the phasic and tonic modes of noradrenergic activity. The effects of taVNS on pupil dilation in humans are inconsistent, largely due to differences in stimulation protocols. Here, we attempted to address these issues. METHODS We investigated pupil dilation under phasic (1 s) and tonic (30 s) taVNS, in a pre-registered, single-blind, sham-controlled, within-subject cross-over design, in the absence of a behavioural task. RESULTS Phasic taVNS induced a rapid increase in pupil size over baseline, significantly greater than under sham stimulation, which rapidly declined after stimulation offset. Tonic taVNS induced a similarly rapid (and larger than sham) increase in pupil size over baseline, returning to baseline within 5 s, despite the ongoing stimulation. Thus, both active and sham tonic modes closely resembled the phasic effect. There were no differences in tonic baseline pupil size, and no sustained effects of stimulation on tonic baseline pupil size. CONCLUSIONS These results suggest that both phasic- and tonic-like taVNS under the standard stimulation parameters may modulate primarily the phasic mode of noradrenergic activity, as indexed by evoked pupil dilation, over and above somatosensory effects. This result sheds light on the temporal profile of phasic and tonic stimulation, with implications for their applicability in further research.
Collapse
Affiliation(s)
- Lina Skora
- Heinrich Heine University Düsseldorf, Germany; University of Sussex, Brighton, UK.
| | | | | |
Collapse
|
21
|
Chen L, Tang C, Wang Z, Zhang L, Gu B, Liu X, Ming D. Enhancing Motor Sequence Learning via Transcutaneous Auricular Vagus Nerve Stimulation (taVNS): An EEG Study. IEEE J Biomed Health Inform 2024; 28:1285-1296. [PMID: 38109248 DOI: 10.1109/jbhi.2023.3344176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Motor learning plays a crucial role in human life, and various neuromodulation methods have been utilized to strengthen or improve it. Transcutaneous auricular vagus nerve stimulation (taVNS) has gained increasing attention due to its non-invasive nature, affordability and ease of implementation. Although the potential of taVNS on regulating motor learning has been suggested, its actual regulatory effect has yet been fully explored. Electroencephalogram (EEG) analysis provides an in-depth understanding of cognitive processes involved in motor learning so as to offer methodological support for regulation of motor learning. To investigate the effect of taVNS on motor learning, this study recruited 22 healthy subjects to participate a single-blind, sham-controlled, and within-subject serial reaction time task (SRTT) experiment. Every subject involved in two sessions at least one week apart and received a 20-minute active/sham taVNS in each session. Behavioral indicators as well as EEG characteristics during the task state, were extracted and analyzed. The results revealed that compared to the sham group, the active group showed higher learning performance. Additionally, the EEG results indicated that after taVNS, the motor-related cortical potential amplitudes and alpha-gamma modulation index decreased significantly and functional connectivity based on partial directed coherence towards frontal lobe was enhanced. These findings suggest that taVNS can improve motor learning, mainly through enhancing cognitive and memory functions rather than simple movement learning. This study confirms the positive regulatory effect of taVNS on motor learning, which is particularly promising as it offers a potential avenue for enhancing motor skills and facilitating rehabilitation.
Collapse
|
22
|
Yan L, Li H, Qian Y, Zhang J, Cong S, Zhang X, Wu L, Wang Y, Wang M, Yu T. Transcutaneous vagus nerve stimulation: a new strategy for Alzheimer's disease intervention through the brain-gut-microbiota axis? Front Aging Neurosci 2024; 16:1334887. [PMID: 38476661 PMCID: PMC10927744 DOI: 10.3389/fnagi.2024.1334887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
Transcutaneous vagus nerve stimulation (tVNS) is an emerging non-invasive technique designed to stimulate branches of the vagus nerve distributed over the body surface. Studies suggest a correlation between the brain-gut-microbiota (BGM) axis and the pathogenesis of Alzheimer's disease (AD). The BGM axis represents a complex bidirectional communication system, with the vagus nerve being a crucial component. Therefore, non-invasive electrical stimulation of the vagus nerve might have the potential to modify-most of the time probably in a non-physiological way-the signal transmission within the BGM axis, potentially influencing the progression or symptoms of AD. This review explores the interaction between percutaneous vagus nerve stimulation and the BGM axis, emphasizing its potential effects on AD. It examines various aspects, such as specific brain regions, gut microbiota composition, maintenance of intestinal environmental homeostasis, inflammatory responses, brain plasticity, and hypothalamic-pituitary-adrenal (HPA) axis regulation. The review suggests that tVNS could serve as an effective strategy to modulate the BGM axis and potentially intervene in the progression or treatment of Alzheimer's disease in the future.
Collapse
Affiliation(s)
- Long Yan
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
- Graduate Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hong Li
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
- Graduate Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yulin Qian
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| | - Junfeng Zhang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
- Graduate Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shan Cong
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
- Graduate Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuemin Zhang
- Graduate Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Linna Wu
- Graduate Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Wang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| | - Meng Wang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| | - Tao Yu
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
23
|
Treiber MC, Grünberger J, Vyssoki B, Szeles JC, Kaniusas E, Kampusch S, Stöhr H, Walter H, Lesch OM, König D, Kraus C. Pupillary response to percutaneous auricular vagus nerve stimulation in alcohol withdrawal syndrome: A pilot trial. Alcohol 2024; 114:61-68. [PMID: 37661002 DOI: 10.1016/j.alcohol.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/19/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Autonomic symptoms in alcohol withdrawal syndrome (AWS) are associated with a sympathetic-driven imbalance of the autonomic nervous system. To restore autonomic balance in AWS, novel neuromodulatory approaches could be beneficial. We conducted a pilot trial with percutaneous auricular vagus nerve stimulation (pVNS) in AWS and hypothesized that pVNS will enhance the parasympathetic tone represented by a reduction of pupillary dilation in a parasympatholytic pharmacological challenge. METHODS Thirty patients suffering from alcohol use disorder, undergoing AWS, and stable on medication, were recruited in this open-label, single-arm pilot trial with repeated-measure design. Peripheral VNS (monophasic volt impulses of 1 msec, alternating polarity, frequency 1 Hz, amplitude 4 mV) was administered at the left cymba conchae for 72 h, followed by pupillometry under a tropicamide challenge. We assessed craving with a visual analog scale. We used pupillary mean as the dependent variable in a repeated-measures ANOVA (rmANOVA). RESULTS A repeated-measures ANOVA resulted in a significant difference for pupillary diameter across time and condition (F(2,116) = 27.97, p < .001, ηp2 > .14). Tukey-adjusted post hoc analysis revealed a significant reduction of pupillary diameter after pVNS. Alcohol craving was significantly reduced after pVNS (p < .05, Cohen's d = 1.27). CONCLUSION Our study suggests that pVNS activates the parasympathetic nervous system in patients with acute AWS, and that this activation is measurable by pupillometry. To this end, pVNS could be beneficial as a supportive therapy for AWS. Potential confounding effects of anti-craving treatment should be kept in mind.
Collapse
Affiliation(s)
- M C Treiber
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Austria.
| | - J Grünberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Austria
| | - B Vyssoki
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Austria
| | - J C Szeles
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, Austria
| | - E Kaniusas
- Institute of Biomedical Electronics, Vienna University of Technology, Austria
| | | | - H Stöhr
- Faculty of Computer Science, University of Vienna, Austria
| | - H Walter
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Austria
| | - O M Lesch
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Austria
| | - D König
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Austria
| | - C Kraus
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Austria
| |
Collapse
|
24
|
Okonogi T, Kuga N, Yamakawa M, Kayama T, Ikegaya Y, Sasaki T. Stress-induced vagal activity influences anxiety-relevant prefrontal and amygdala neuronal oscillations in male mice. Nat Commun 2024; 15:183. [PMID: 38195621 PMCID: PMC10776769 DOI: 10.1038/s41467-023-44205-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2024] Open
Abstract
The vagus nerve crucially affects emotions and psychiatric disorders. However, the detailed neurophysiological dynamics of the vagus nerve in response to emotions and its associated pathological changes remain unclear. In this study, we demonstrated that the spike rates of the cervical vagus nerve change depending on anxiety behavior in an elevated plus maze test, and these changes were eradicated in stress-susceptible male mice. Furthermore, instantaneous spike rates of the vagus nerve were negatively and positively correlated with the power of 2-4 Hz and 20-30 Hz oscillations, respectively, in the prefrontal cortex and amygdala. The oscillations also underwent dynamic changes depending on the behavioral state in the elevated plus maze, and these changes were no longer observed in stress-susceptible and vagotomized mice. Chronic vagus nerve stimulation restored behavior-relevant neuronal oscillations with the recovery of altered behavioral states in stress-susceptible mice. These results suggested that physiological vagal-brain communication underlies anxiety and mood disorders.
Collapse
Affiliation(s)
- Toya Okonogi
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Nahoko Kuga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8578, Japan
| | - Musashi Yamakawa
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8578, Japan
| | - Tasuku Kayama
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8578, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, 113-0033, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka, 565-0871, Japan
| | - Takuya Sasaki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8578, Japan.
| |
Collapse
|
25
|
Schwarz KG, Vicencio SC, Inestrosa NC, Villaseca P, Del Rio R. Autonomic nervous system dysfunction throughout menopausal transition: A potential mechanism underpinning cardiovascular and cognitive alterations during female ageing. J Physiol 2024; 602:263-280. [PMID: 38064358 DOI: 10.1113/jp285126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/24/2023] [Indexed: 01/16/2024] Open
Abstract
Cardiovascular diseases (CVD) and neurodegenerative disorders, such as Alzheimer's disease (AD), are highly prevalent conditions in middle-aged women that severely impair quality of life. Recent evidence suggests the existence of an intimate cross-talk between the heart and the brain, resulting from a complex network of neurohumoral circuits. From a pathophysiological perspective, the higher prevalence of AD in women may be explained, at least in part, by sex-related differences in the incidence/prevalence of CVD. Notably, the autonomic nervous system, the main heart-brain axis physiological orchestrator, has been suggested to play a role in the incidence of adverse cardiovascular events in middle-aged women because of decreases in oestrogen-related signalling during transition into menopause. Despite its overt relevance for public health, this hypothesis has not been thoroughly tested. Accordingly, in this review, we aim to provide up to date evidence supporting how changes in circulating oestrogen levels during transition to menopause may trigger autonomic dysfunction, thus promoting cardiovascular and cognitive decline in women. A main focus on the effects of oestrogen-mediated signalling at CNS structures related to autonomic regulation is provided, particularly on the role of oestrogens in sympathoexcitation. Improving the understanding of the contribution of the autonomic nervous system on the development, maintenance and/or progression of both cardiovascular and cognitive dysfunction during the transition to menopause should help improve the clinical management of elderly women, with the outcome being an improved life quality during the natural ageing process.
Collapse
Affiliation(s)
- Karla G Schwarz
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sinay C Vicencio
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Paulina Villaseca
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
- Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
26
|
Teruel-Hernández E, López-Pina JA, Souto-Camba S, Báez-Suárez A, Medina-Ramírez R, Gómez-Conesa A. Improving Sleep Quality, Daytime Sleepiness, and Cognitive Function in Patients with Dementia by Therapeutic Exercise and NESA Neuromodulation: A Multicenter Clinical Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:7027. [PMID: 37947583 PMCID: PMC10650908 DOI: 10.3390/ijerph20217027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/28/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
Dementia is a progressive decline in cognitive functions caused by an alteration in the pattern of neural network connections. There is an inability to create new neuronal connections, producing behavioral disorders. The most evident alteration in patients with neurodegenerative diseases is the alteration of sleep-wake behavior. The aim of this study was to test the effect of two non-pharmacological interventions, therapeutic exercise (TE) and non-invasive neuromodulation through the NESA device (NN) on sleep quality, daytime sleepiness, and cognitive function of 30 patients diagnosed with dementia (non-invasive neuromodulation experimental group (NNG): mean ± SD, age: 71.6 ± 7.43 years; therapeutic exercise experimental group (TEG) 75.2 ± 8.63 years; control group (CG) 80.9 ± 4.53 years). The variables were evaluated by means of the Pittsburg Index (PSQI), the Epworth Sleepiness Scale (ESS), and the Mini-Cognitive Exam Test at four different times during the study: at baseline, after 2 months (after completion of the NNG), after 5 months (after completion of the TEG), and after 7 months (after 2 months of follow-up). Participants in the NNG and TEG presented significant improvements with respect to the CG, and in addition, the NNG generated greater relevant changes in the three variables with respect to the TEG (sleep quality (p = 0.972), daytime sleepiness (p = 0.026), and cognitive function (p = 0.127)). In conclusion, with greater effects in the NNG, both treatments were effective to improve daytime sleepiness, sleep quality, and cognitive function in the dementia population.
Collapse
Affiliation(s)
| | | | - Sonia Souto-Camba
- Department of Physiotherapy, Medicine and Biomedical Sciences, University of A Coruña, 15006 A Coruña, Spain;
| | - Aníbal Báez-Suárez
- Health Science Faculty, University of Las Palmas de Gran Canaria, 35016 Las Palmas, Spain;
| | - Raquel Medina-Ramírez
- SocDig Research Group, University of Las Palmas de Gran Canaria, 35016 Las Palmas, Spain;
| | - Antonia Gómez-Conesa
- Research Methods and Evaluation in the Social Sciences Research Group, Mare Nostrum Campus of International Excellence, University of Murcia, 30100 Murcia, Spain;
| |
Collapse
|
27
|
McHaney JR, Schuerman WL, Leonard MK, Chandrasekaran B. Transcutaneous Auricular Vagus Nerve Stimulation Modulates Performance but Not Pupil Size During Nonnative Speech Category Learning. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2023; 66:3825-3843. [PMID: 37652065 DOI: 10.1044/2023_jslhr-22-00596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
PURPOSE Subthreshold transcutaneous auricular vagus nerve stimulation (taVNS) synchronized with behavioral training can selectively enhance nonnative speech category learning in adults. Prior work has demonstrated that behavioral performance increases when taVNS is paired with easier-to-learn Mandarin tone categories in native English listeners, relative to when taVNS is paired with harder-to-learn Mandarin tone categories or without taVNS. Mechanistically, this temporally precise plasticity has been attributed to noradrenergic modulation. However, prior work did not specifically utilize methodologies that indexed noradrenergic modulation and, therefore, was unable to explicitly test this hypothesis. Our goal for this study was to use pupillometry to gain mechanistic insights into taVNS behavioral effects. METHOD Thirty-eight participants learned to categorize Mandarin tones while pupillometry was recorded. In a double-blinded design, participants were divided into two taVNS groups that, as in the prior study, differed according to whether taVNS was paired with easier-to-learn tones or harder-to-learn tones. Learning performance and pupillary responses were measured using linear mixed-effects models. RESULTS We found that taVNS did not have any tone-specific or group behavioral or pupillary effects. However, in an exploratory analysis, we observed that taVNS did lead to faster rates of learning on trials paired with stimulation, particularly for those who were stimulated at lower amplitudes. CONCLUSIONS Our results suggest that pupillary responses may not be a reliable marker of locus coeruleus-norepinephrine system activity in humans. However, future research should systematically examine the effects of stimulation amplitude on both behavior and pupillary responses. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.24036666.
Collapse
|
28
|
Baig SS, Kamarova M, Bell SM, Ali AN, Su L, Dimairo M, Dawson J, Redgrave JN, Majid A. tVNS in Stroke: A Narrative Review on the Current State and the Future. Stroke 2023; 54:2676-2687. [PMID: 37646161 DOI: 10.1161/strokeaha.123.043414] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Ischemic stroke is a leading cause of disability and there is a paucity of therapeutic strategies that promote functional recovery after stroke. Transcutaneous vagus nerve stimulation (tVNS) has shown promising evidence as a tool to reduce infarct size in animal models of hyperacute stroke. In chronic stroke, tVNS paired with limb movements has been shown to enhance neurological recovery. In this review, we summarize the current evidence for tVNS in preclinical models and clinical trials in humans. We highlight the mechanistic pathways involved in the beneficial effects of tVNS. We critically evaluate the current gaps in knowledge and recommend the key areas of research required to translate tVNS into clinical practice in acute and chronic stroke.
Collapse
Affiliation(s)
- Sheharyar S Baig
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, United Kingdom (S.S.B., M.K., S.M.B., A.N.A., L.S., J.N.R., A.M.)
| | - Marharyta Kamarova
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, United Kingdom (S.S.B., M.K., S.M.B., A.N.A., L.S., J.N.R., A.M.)
| | - Simon M Bell
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, United Kingdom (S.S.B., M.K., S.M.B., A.N.A., L.S., J.N.R., A.M.)
| | - Ali N Ali
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, United Kingdom (S.S.B., M.K., S.M.B., A.N.A., L.S., J.N.R., A.M.)
| | - Li Su
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, United Kingdom (S.S.B., M.K., S.M.B., A.N.A., L.S., J.N.R., A.M.)
| | - Munya Dimairo
- School of Health and Related Research, University of Sheffield, United Kingdom (M.D.)
| | - Jesse Dawson
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Queen Elizabeth University Hospital, United Kingdom (J.D.)
| | - Jessica N Redgrave
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, United Kingdom (S.S.B., M.K., S.M.B., A.N.A., L.S., J.N.R., A.M.)
| | - Arshad Majid
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, United Kingdom (S.S.B., M.K., S.M.B., A.N.A., L.S., J.N.R., A.M.)
| |
Collapse
|
29
|
Wienke C, Grueschow M, Haghikia A, Zaehle T. Phasic, Event-Related Transcutaneous Auricular Vagus Nerve Stimulation Modifies Behavioral, Pupillary, and Low-Frequency Oscillatory Power Responses. J Neurosci 2023; 43:6306-6319. [PMID: 37591736 PMCID: PMC10490471 DOI: 10.1523/jneurosci.0452-23.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/14/2023] [Accepted: 07/23/2023] [Indexed: 08/19/2023] Open
Abstract
Transcutaneous auricular vagus nerve stimulation (taVNS) has been proposed to activate the locus ceruleus-noradrenaline (LC-NA) system. However, previous studies failed to find consistent modulatory effects of taVNS on LC-NA biomarkers. Previous studies suggest that phasic taVNS may be capable of modulating LC-NA biomarkers such as pupil dilation and alpha oscillations. However, it is unclear whether these effects extend beyond pure sensory vagal nerve responses. Critically, the potential of the pupillary light reflex as an additional taVNS biomarker has not been explored so far. Here, we applied phasic active and sham taVNS in 29 subjects (16 female, 13 male) while they performed an emotional Stroop task (EST) and a passive pupil light reflex task (PLRT). We recorded pupil size and brain activity dynamics using a combined Magnetoencephalography (MEG) and pupillometry design. Our results show that phasic taVNS significantly increased pupil dilation and performance during the EST. During the PLRT, active taVNS reduced and delayed pupil constriction. In the MEG, taVNS increased frontal-midline theta and alpha power during the EST, whereas occipital alpha power was reduced during both the EST and PLRT. Our findings provide evidence that phasic taVNS systematically modulates behavioral, pupillary, and electrophysiological parameters of LC-NA activity during cognitive processing. Moreover, we demonstrate for the first time that the pupillary light reflex can be used as a simple and effective proxy of taVNS efficacy. These findings have important implications for the development of noninvasive neuromodulation interventions for various cognitive and clinical applications.SIGNIFICANCE STATEMENT taVNS has gained increasing attention as a noninvasive neuromodulation technique and is widely used in clinical and nonclinical research. Nevertheless, the exact mechanism of action of taVNS is not yet fully understood. By assessing physiology and behavior in a response conflict task in healthy humans, we demonstrate the first successful application of a phasic, noninvasive vagus nerve stimulation to improve cognitive control and to systematically modulate pupillary and electrophysiological markers of the noradrenergic system. Understanding the mechanisms of action of taVNS could optimize future clinical applications and lead to better treatments for mental disorders associated with noradrenergic dysfunction. In addition, we present a new taVNS-sensitive pupillary measure representing an easy-to-use biomarker for future taVNS studies.
Collapse
Affiliation(s)
| | - Marcus Grueschow
- Zurich Center for Neuroeconomics, Departement of Economics, University of Zurich, 8006 Zurich, Switzerland
| | - Aiden Haghikia
- Otto-von-Guericke University, 39120 Magdeburg, Germany
- Deusches Zentrum für Neurodegenrative Erkrankungen, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, 39120, Germany
| | - Tino Zaehle
- Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, 39120, Germany
| |
Collapse
|
30
|
D'Agostini M, Burger AM, Jelinčić V, von Leupoldt A, Van Diest I. Effects of transcutaneous auricular vagus nerve stimulation on P300 magnitudes and salivary alpha-amylase during an auditory oddball task. Biol Psychol 2023; 182:108646. [PMID: 37481230 DOI: 10.1016/j.biopsycho.2023.108646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
Transcutaneous auricular vagus nerve stimulation (taVNS) is a non-invasive neurostimulation technique that is thought to modulate noradrenergic activity. Previous studies have demonstrated inconsistent effects of taVNS on noradrenergic activity, which is possibly due to insufficient statistical power, suboptimal stimulation parameter settings, and data collection procedures. In this preregistered within-subject experiment, 44 healthy participants received taVNS and sham (earlobe) stimulation during two separate experimental sessions. Stimulation intensity was individually calibrated to the maximum level below pain. During each session, participants received the stimulation continuously ten minutes before an auditory novelty oddball task till the end of the experimental session. The P3b component of the event-related potential served as a marker of phasic noradrenergic activity, whereas P3a magnitude was explored as an index of dopaminergic activity. Salivary alpha-amylase (sAA) was measured as an index of tonic noradrenergic activity before and at the end of the stimulation. The taVNS and sham conditions did not differ in P3a or P3b magnitudes, nor sAA secretion. These findings call into question whether taVNS, administered continuously at high, nonpainful stimulation intensities, reliably augments noradrenergic activity via the vagus nerve.
Collapse
Affiliation(s)
- Martina D'Agostini
- Health Psychology Research Group, KU Leuven, Tiensestraat 102/3726, Leuven 3000, Belgium.
| | - Andreas M Burger
- Health Psychology Research Group, KU Leuven, Tiensestraat 102/3726, Leuven 3000, Belgium
| | - Valentina Jelinčić
- Health Psychology Research Group, KU Leuven, Tiensestraat 102/3726, Leuven 3000, Belgium
| | - Andreas von Leupoldt
- Health Psychology Research Group, KU Leuven, Tiensestraat 102/3726, Leuven 3000, Belgium
| | - Ilse Van Diest
- Health Psychology Research Group, KU Leuven, Tiensestraat 102/3726, Leuven 3000, Belgium
| |
Collapse
|
31
|
Kumagai S, Shiramatsu TI, Matsumura A, Ishishita Y, Ibayashi K, Onuki Y, Kawai K, Takahashi H. Frequency-specific modulation of oscillatory activity in the rat auditory cortex by vagus nerve stimulation. Brain Stimul 2023; 16:1476-1485. [PMID: 37777110 DOI: 10.1016/j.brs.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND We previously found that vagus nerve stimulation (VNS) strengthened stimulus-evoked activity in the superficial layer of the sensory cortex but not in the deep layer, suggesting that VNS altered the balance between the feedforward (FF) and feedback (FB) pathways. Band-specific oscillatory activities in the cortex could serve as an index of the FF-FB balance, but whether VNS affects cortical oscillations along sensory pathways through neuromodulators remains unclear. HYPOTHESIS VNS modulates the FF-FB balance through the cholinergic and noradrenergic systems, which modulate stimulus gain in the cortex. METHODS We investigated the effects of VNS using electrocorticography in the auditory cortex of 34 Wistar rats under general anesthesia while presenting click stimuli. In the time-frequency analyses, the putative modulation of the FF and FB pathways was estimated using high- and low-frequency power. We assessed, using analysis of variance, how VNS modulates auditory-evoked activities and how the modulation changes with cholinergic and noradrenergic antagonists. RESULTS VNS increased auditory cortical evoked potentials, consistent with results of our previous work. Furthermore, VNS increased auditory-evoked gamma and beta powers and decreased theta power. Local administration of cholinergic antagonists in the auditory cortex selectively disrupted the VNS-induced increase in gamma and beta power, while noradrenergic antagonists disrupted the decrease in theta power. CONCLUSIONS VNS might strengthen the FF pathway through the cholinergic system and attenuate the FB pathway through the noradrenergic system in the auditory cortex. Cortical gain modulation through the VNS-induced neuromodulatory system provides new mechanistic insights into the effect of VNS on auditory processing.
Collapse
Affiliation(s)
- Shinichi Kumagai
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan; Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Tomoyo Isoguchi Shiramatsu
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Akane Matsumura
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yohei Ishishita
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Kenji Ibayashi
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Yoshiyuki Onuki
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Kensuke Kawai
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Hirokazu Takahashi
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
32
|
Veiz E, Kieslich SK, Czesnik D, Herrmann-Lingen C, Meyer T, Staab J. A randomized vagus nerve stimulation study demonstrates that serum aldosterone levels decrease with age in women, but not in men. Sci Rep 2023; 13:14197. [PMID: 37648715 PMCID: PMC10469189 DOI: 10.1038/s41598-023-40113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023] Open
Abstract
In this randomized, sham-controlled study, we explored the effects of acute transcutaneous vagus nerve stimulation (tVNS) on serum aldosterone in 20 younger (21-26 years) and 19 older (40-70 years) healthy participants. Blood samples were collected on two different days before and after a 20-min application of active tVNS at the inner tragus or sham stimulation of the earlobe. Irrespective of the stimulation mode, aldosterone levels decreased from pre- to post-stimulation in both the young (active: β = - 1.610 (- 2.855, - 0.365), p = 0.022; sham: β = - 0.857 (- 2.102, 0.388), p = 0.257) and the old cohort (active: β = - 1.969 (- 3.234, - 0.703), p = 0.005; sham: β = - 1.334 (- 2.600, - 0.069), p = 0.063). Although this decline was significant during active tVNS, the difference in estimated β-coefficients between active and sham stimulation was not statistically significant in either cohort. Nevertheless, aldosterone concentrations showed a significant interaction effect between sex and age (p = 0.001). Among all study participants, younger women (23.3 ± 1.6 years) had the highest mineralocorticoid levels (pre active: 172.1 ± 102.0 pg/ml, pre sham: 214.3 ± 82.3 pg/ml), whereas the lowest were observed in older females (59.4 ± 9.4 years) (pre active: 104.9 ± 85.8 pg/ml, pre sham: 81.1 ± 53.8 pg/ml). This post hoc analysis did not suggest that active auricular tVNS reduces serum aldosterone levels compared to sham stimulation in healthy subjects. However, serum aldosterone levels differed among subjects depending on their age and sex, irrespective of tVNS.
Collapse
Affiliation(s)
- Elisabeth Veiz
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center, Göttingen, Germany
- Department of Neurology, University Medical Center, Göttingen, Germany
| | - Susann-Kristin Kieslich
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center, Göttingen, Germany
| | - Dirk Czesnik
- Department of Neurology, University Medical Center, Göttingen, Germany
| | - Christoph Herrmann-Lingen
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Thomas Meyer
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center, Göttingen, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany.
| | - Julia Staab
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| |
Collapse
|
33
|
Mercante B, Enrico P, Deriu F. Cognitive Functions following Trigeminal Neuromodulation. Biomedicines 2023; 11:2392. [PMID: 37760833 PMCID: PMC10525298 DOI: 10.3390/biomedicines11092392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/13/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Vast scientific effort in recent years have been focused on the search for effective and safe treatments for cognitive decline. In this regard, non-invasive neuromodulation has gained increasing attention for its reported effectiveness in promoting the recovery of multiple cognitive domains after central nervous system damage. In this short review, we discuss the available evidence supporting a possible cognitive effect of trigeminal nerve stimulation (TNS). In particular, we ask that, while TNS has been widely and successfully used in the treatment of various neuropsychiatric conditions, as far as research in the cognitive field is concerned, where does TNS stand? The trigeminal nerve is the largest cranial nerve, conveying the sensory information from the face to the trigeminal sensory nuclei, and from there to the thalamus and up to the somatosensory cortex. On these bases, a bottom-up mechanism has been proposed, positing that TNS-induced modulation of the brainstem noradrenergic system may affect the function of the brain networks involved in cognition. Nevertheless, despite the promising theories, to date, the use of TNS for cognitive empowering and/or cognitive decline treatment has several challenges ahead of it, mainly due to little uniformity of the stimulation protocols. However, as the field continues to grow, standardization of practice will allow for data comparisons across studies, leading to optimized protocols targeting specific brain circuitries, which may, in turn, influence cognition in a designed manner.
Collapse
Affiliation(s)
- Beniamina Mercante
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (B.M.); (P.E.)
| | - Paolo Enrico
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (B.M.); (P.E.)
| | - Franca Deriu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (B.M.); (P.E.)
- AOU Sassari, Unit of Endocrinology, Nutritional and Metabolic Disorders, 07100 Sassari, Italy
| |
Collapse
|
34
|
Greene AS, Horien C, Barson D, Scheinost D, Constable RT. Why is everyone talking about brain state? Trends Neurosci 2023; 46:508-524. [PMID: 37164869 PMCID: PMC10330476 DOI: 10.1016/j.tins.2023.04.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/17/2023] [Accepted: 04/07/2023] [Indexed: 05/12/2023]
Abstract
The rapid and coordinated propagation of neural activity across the brain provides the foundation for complex behavior and cognition. Technical advances across neuroscience subfields have advanced understanding of these dynamics, but points of convergence are often obscured by semantic differences, creating silos of subfield-specific findings. In this review we describe how a parsimonious conceptualization of brain state as the fundamental building block of whole-brain activity offers a common framework to relate findings across scales and species. We present examples of the diverse techniques commonly used to study brain states associated with physiology and higher-order cognitive processes, and discuss how integration across them will enable a more comprehensive and mechanistic characterization of the neural dynamics that are crucial to survival but are disrupted in disease.
Collapse
Affiliation(s)
- Abigail S Greene
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06520, USA; MD/PhD program, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Corey Horien
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06520, USA; MD/PhD program, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Daniel Barson
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06520, USA; MD/PhD program, Yale School of Medicine, New Haven, CT 06520, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Dustin Scheinost
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06520, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA; Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT 06520, USA; Department of Statistics and Data Science, Yale University, New Haven, CT 06511, USA; Child Study Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - R Todd Constable
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06520, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA; Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT 06520, USA; Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
35
|
Lloyd B, Wurm F, de Kleijn R, Nieuwenhuis S. Short-term transcutaneous vagus nerve stimulation increases pupil size but does not affect EEG alpha power: A replication of Sharon et al. (2021, Journal of Neuroscience). Brain Stimul 2023; 16:1001-1008. [PMID: 37348704 DOI: 10.1016/j.brs.2023.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/29/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Transcutaneous auricular vagus nerve stimulation (taVNS) has been tested as a potential treatment for pharmaco-resistant epilepsy and depression. Its clinical efficacy is thought to depend on taVNS-induced activation of the locus coeruleus and other neuromodulator systems. However, unlike for invasive VNS in rodents, there is little evidence for an effect of taVNS on noradrenergic activity. OBJECTIVE We attempted to replicate recently published findings by Sharon et al. (2021), showing that short bursts of taVNS transiently increased pupil size and decreased EEG alpha power, two correlates of central noradrenergic activity. METHODS Following the original study, we used a single-blind, sham-controlled, randomized cross-over design. Human volunteers (n = 29) received short-term (3.4 s) taVNS at the maximum level below the pain threshold, while we collected resting-state pupil-size and EEG data. To analyze the data, we used scripts provided by Sharon and colleagues. RESULTS Consistent with Sharon et al. (2021), pupil dilation was significantly larger during taVNS than during sham stimulation (p = .009; Bayes factor supporting the difference = 7.45). However, we failed to replicate the effect of taVNS on EEG alpha power (p = .37); the data were four times more likely under the null hypothesis (BF10 = 0.28). CONCLUSION Our findings support the effectiveness of short-term taVNS in inducing transient pupil dilation, a correlate of phasic noradrenergic activity. However, we failed to replicate the recent finding by Sharon et al. (2021) that taVNS attenuates EEG alpha activity. Overall, this study highlights the need for continued research on the neural mechanisms underlying taVNS efficacy and its potential as a treatment option for pharmaco-resistant conditions. It also highlights the need for direct replications of influential taVNS studies.
Collapse
Affiliation(s)
- Beth Lloyd
- Institute of Psychology, Leiden University, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden University, Leiden, the Netherlands.
| | - Franz Wurm
- Institute of Psychology, Leiden University, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden University, Leiden, the Netherlands
| | - Roy de Kleijn
- Institute of Psychology, Leiden University, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden University, Leiden, the Netherlands
| | - Sander Nieuwenhuis
- Institute of Psychology, Leiden University, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden University, Leiden, the Netherlands
| |
Collapse
|
36
|
St Pierre MA, Shinohara M. Transcutaneous vagus nerve stimulation at nonspecific timings during training can compromise motor adaptation in healthy humans. J Neurophysiol 2023; 130:212-223. [PMID: 37377193 PMCID: PMC10393334 DOI: 10.1152/jn.00447.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 06/06/2023] [Accepted: 06/21/2023] [Indexed: 06/29/2023] Open
Abstract
Adding afferent vagus nerve stimulation to motor training via implanted electrodes can modify neuromotor adaptation depending on the stimulation timing. This study aimed to understand neuromotor adaptations when transcutaneous vagus nerve stimulation (tVNS) is applied at nonspecific timings during motor skill training in healthy humans. Twenty-four healthy young adults performed visuomotor training to match a complex force trajectory pattern with the index and little finger abduction forces concurrently. Participants were assigned to the tVNS group receiving tVNS at the tragus or the sham group receiving sham stimulation to the earlobe. The corresponding stimulations were applied at nonspecific timings throughout the training trials. Visuomotor tests were performed without tVNS or sham stimulation before and after training sessions across days. The reduction in the root mean square error (RMSE) against the trained force trajectory was attenuated in the tVNS group compared with the sham group, while its in-session reduction was not different between groups. The reduction of RMSE against an untrained trajectory pattern was not different between groups. No training effect was observed in corticospinal excitability or GABA-mediated intracortical inhibition. These findings suggest that adding tVNS at nonspecific timings during motor skill training can compromise motor adaptation but not transfer in healthy humans.NEW & NOTEWORTHY Adding vagus nerve stimulation via implanted electrodes during motor training can facilitate motor recovery in disabled animals and humans. No study examined the effect of transcutaneous vagus nerve stimulation (tVNS) during training on neuromotor adaptation in healthy humans. We have found that adding tVNS at nonspecific timings during motor skill training can compromise motor adaptation but not transfer in healthy humans.
Collapse
Affiliation(s)
- Mitchell Adrien St Pierre
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Minoru Shinohara
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States
| |
Collapse
|
37
|
Olsen LK, Solis E, McIntire LK, Hatcher-Solis CN. Vagus nerve stimulation: mechanisms and factors involved in memory enhancement. Front Hum Neurosci 2023; 17:1152064. [PMID: 37457500 PMCID: PMC10342206 DOI: 10.3389/fnhum.2023.1152064] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/21/2023] [Indexed: 07/18/2023] Open
Abstract
Vagus nerve stimulation (VNS) has been recognized as a useful neuromodulation tool to target the central nervous system by electrical stimulation of peripheral nerves. Activation of the nucleus of the solitary tract (NTS) in the brainstem by vagal afferent nerve fibers allows for modulation of various higher order brain regions, including limbic and cerebral cortex structures. Along with neurological and psychiatric indications, clinical and preclinical studies suggest that VNS can improve memory. While the underlying mechanisms to improve memory with VNS involve brain areas, such as the prefrontal cortex and processes including alertness and arousal, here we focus on VNS-induced memory improvements related to the hippocampus, the main area implicated in memory acquisition. In addition, we detail research demonstrating that a targeted approach to VNS can modify memory outcomes and delve into the molecular mechanisms associated with these changes. These findings indicate that a greater understanding of VNS mechanisms while also considering stimulation parameters, administration site, timing in relation to training, and sex-specific factors, may allow for optimal VNS application to enhance memory.
Collapse
Affiliation(s)
- Laura K. Olsen
- Air Force Research Laboratory, 711th Human Performance Wing, Cognitive Neuroscience, Wright-Patterson Air Force Base, OH, United States
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Ernesto Solis
- Air Force Research Laboratory, 711th Human Performance Wing, Aerospace Physiology, Wright-Patterson Air Force Base, OH, United States
- Consortium of Universities of the Washington Metropolitan Area, Washington, DC, United States
| | - Lindsey K. McIntire
- Air Force Research Laboratory, 711th Human Performance Wing, Cognitive Neuroscience, Wright-Patterson Air Force Base, OH, United States
- Infoscitex Corporation, Dayton, OH, United States
| | - Candice N. Hatcher-Solis
- Air Force Research Laboratory, 711th Human Performance Wing, Cognitive Neuroscience, Wright-Patterson Air Force Base, OH, United States
| |
Collapse
|
38
|
Konjusha A, Yu S, Mückschel M, Colzato L, Ziemssen T, Beste C. Auricular Transcutaneous Vagus Nerve Stimulation Specifically Enhances Working Memory Gate Closing Mechanism: A System Neurophysiological Study. J Neurosci 2023; 43:4709-4724. [PMID: 37221097 PMCID: PMC10286950 DOI: 10.1523/jneurosci.2004-22.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 05/25/2023] Open
Abstract
Everyday tasks and goal-directed behavior involve the maintenance and continuous updating of information in working memory (WM). WM gating reflects switches between these two core states. Neurobiological considerations suggest that the catecholaminergic and the GABAergic are likely involved in these dynamics. Both of these neurotransmitter systems likely underlie the effects to auricular transcutaneous vagus nerve stimulation (atVNS). We examine the effects of atVNS on WM gating dynamics and their underlying neurophysiological and neurobiological processes in a randomized crossover study design in healthy humans of both sexes. We show that atVNS specifically modulates WM gate closing and thus specifically modulates neural mechanisms enabling the maintenance of information in WM. WM gate opening processes were not affected. atVNS modulates WM gate closing processes through the modulation of EEG alpha band activity. This was the case for clusters of activity in the EEG signal referring to stimulus information, motor response information, and fractions of information carrying stimulus-response mapping rules during WM gate closing. EEG-beamforming shows that modulations of activity in fronto-polar, orbital, and inferior parietal regions are associated with these effects. The data suggest that these effects are not because of modulations of the catecholaminergic (noradrenaline) system as indicated by lack of modulatory effects in pupil diameter dynamics, in the inter-relation of EEG and pupil diameter dynamics and saliva markers of noradrenaline activity. Considering other findings, it appears that a central effect of atVNS during cognitive processing refers to the stabilization of information in neural circuits, putatively mediated via the GABAergic system.SIGNIFICANCE STATEMENT Goal-directed behavior depends on how well information in short-term memory can be flexibly updated but also on how well it can be shielded from distraction. These two functions were guarded by a working memory gate. We show how an increasingly popular brain stimulation techniques specifically enhances the ability to close the working memory gate to shield information from distraction. We show what physiological and anatomic aspects underlie these effects.
Collapse
Affiliation(s)
- Anyla Konjusha
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden 01307, Germany
| | - Shijing Yu
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden 01307, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden 01307, Germany
| | - Lorenza Colzato
- Faculty of Psychology, Shandong Normal University, Jinan 250014, China
| | - Tjalf Ziemssen
- Department of Neurology, Faculty of Medicine, MS Centre, TU Dresden, Dresden 01307, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden 01307, Germany
- Faculty of Psychology, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
39
|
Abdul-Rahman T, Lizano-Jubert I, Garg N, Tejerina-Marion E, Awais Bukhari SM, Luisa Ek A, Wireko AA, Mares AC, Sikora V, Gupta R. The Use of Cardioprotective Devices and Strategies in Patients Undergoing Percutaneous Procedures and Cardiac Surgery. Healthcare (Basel) 2023; 11:healthcare11081094. [PMID: 37107928 PMCID: PMC10137626 DOI: 10.3390/healthcare11081094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
In the United States, about one million people are seen to visit the operating theater for cardiac surgery annually. However, nearly half of these visits result in complications such as renal, neurological, and cardiac injury of varying degrees. Historically, many mechanisms and approaches have been explored in attempts to reduce injuries associated with cardiac surgery and percutaneous procedures. Devices such as cardioplegia, mechanical circulatory support, and other methods have shown promising results in managing and preventing life-threatening cardiac-surgery-related outcomes such as heart failure and cardiogenic shock. Comparably, cardioprotective devices such as TandemHeart, Impella family devices, and venoarterial extracorporeal membrane oxygenation (VA-ECMO) have also been proven to show significant cardioprotection through mechanical support. However, their use as interventional agents in the prevention of hemodynamic changes due to cardiac surgery or percutaneous interventions has been correlated with adverse effects. This can lead to a rebound increased risk of mortality in high-risk patients who undergo cardiac surgery. Further research is necessary to delineate and stratify patients into appropriate cardioprotective device groups. Furthermore, the use of one device over another in terms of efficacy remains controversial and further research is necessary to assess device potential in different settings. Clinical research is also needed regarding novel strategies and targets, such as transcutaneous vagus stimulation and supersaturated oxygen therapy, aimed at reducing mortality among high-risk cardiac surgery patients. This review explores the recent advances regarding the use of cardioprotective devices in patients undergoing percutaneous procedures and cardiac surgery.
Collapse
Affiliation(s)
- Toufik Abdul-Rahman
- Medical Institute, Sumy State University, 40007 Sumy, Ukraine
- Department of Cardiology, Otto Von Guericke University of Magdeburg, 39120 Magdeburg, Germany
| | - Ileana Lizano-Jubert
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac Campus Norte, Huixquilucan 52786, Mexico
| | - Neil Garg
- Rowan-Virtua School of Osteopathic Medicine, One Medical Center Drive Stratford, Stratford, NJ 08084, USA
| | - Emilio Tejerina-Marion
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac Campus Norte, Huixquilucan 52786, Mexico
| | | | - Ana Luisa Ek
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac Campus Norte, Huixquilucan 52786, Mexico
| | - Andrew Awuah Wireko
- Medical Institute, Sumy State University, 40007 Sumy, Ukraine
- Department of Cardiology, Otto Von Guericke University of Magdeburg, 39120 Magdeburg, Germany
| | - Adriana C Mares
- Division of Cardiovascular Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Vladyslav Sikora
- Medical Institute, Sumy State University, 40007 Sumy, Ukraine
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, 71122 Foggia, Italy
| | - Rahul Gupta
- Department of Cardiology, Lehigh Valley Health Network, Allentown, PA 18103, USA
| |
Collapse
|
40
|
Gurtubay IG, Perez-Rodriguez DR, Fernandez E, Librero-Lopez J, Calvo D, Bermejo P, Pinin-Osorio C, Lopez M. Immediate effects and duration of a short and single application of transcutaneous auricular vagus nerve stimulation on P300 event related potential. Front Neurosci 2023; 17:1096865. [PMID: 37051148 PMCID: PMC10083261 DOI: 10.3389/fnins.2023.1096865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/10/2023] [Indexed: 03/28/2023] Open
Abstract
IntroductionTranscutaneous auricular vagus nerve stimulation (taVNS) is a neuromodulatory technique that stimulates the auricular branch of the vagus nerve. The modulation of the locus coeruleus-norepinephrine (LC-NE) network is one of the potential working mechanisms of this method. Our aims were 1-to investigate if short and single applications of taVNS can modulate the P300 cognitive event-related potential (ERP) as an indirect marker that reflects NE brain activation under control of the LC, and 2-to evaluate the duration of these changes.Methods20 healthy volunteers executed an auditory oddball paradigm to obtain P300 and reaction time (RT) values. Then a 7 min active or sham taVNS period was initiated and simultaneously a new P300 paradigm was performed. We successively repeated the paradigm on 4 occasions with different time intervals up to 56 min after the stimulation onset.ResultsDuring active taVNS an immediate and significant effect of increasing the amplitude and reducing the latency of P300, as well as a shortening in the RT was observed. This effect was prolonged in time up to 28 min. The values then returned to pre-stimulation levels. Sham stimulation did not generate changes.DiscussionOur results, demonstrate differential facilitating effects in a concrete time window after taVNS. Literature about the modulatory effect of taVNS over P300 ERP shows a wide spread of results. There is not a standardized system for taVNS and currently the great heterogeneity of stimulation approaches concerning targets and parameters, make it difficult to obtain conclusions about this relationship. Our study was designed optimizing several stimulation settings, such as a customized earbud stimulator, enlarged stimulating surface, simultaneous stimulation over the cymba and cavum conchae, a Delayed Biphasic Pulse Burst and current controlled stimulation that adjusted the output voltage and guaranteed the administration of a preset electrical dose. Under our stimulation conditions, targeting vagal nerve fibers via taVNS modulates the P300 in healthy participants. The optimal settings of modulatory function of taVNS on P300, and their interdependency is insufficiently studied in the literature, but our data provides several easily optimizable parameters, that will produce more robust results in future.
Collapse
Affiliation(s)
- Iñaki G. Gurtubay
- Department of Neurophysiology, University Hospital of Navarre, Pamplona, Spain
- Navarrabiomed Biomedical Research Centre, Pamplona, Spain
- *Correspondence: Iñaki G. Gurtubay,
| | | | | | | | - David Calvo
- Arrhythmia Unit, Cardiovascular Institute, Hospital Clínico San Carlos, Madrid, Asturias, Spain
| | - Pedro Bermejo
- Neurologist, Translational Medicine UCB Pharma, Brussels, Belgium
| | | | - Miguel Lopez
- Xana Smart Neurostimulation, Epalinges, Switzerland
| |
Collapse
|
41
|
Wang C, Zeng L, Cao X, Dai J, Liu Y, Gao Z, Qin Y, Yang L, Wang H, Wen Z. Synergistic effects of transcutaneous vagus nerve stimulation and inhibitory control training on electrophysiological performance in healthy adults. Front Neurosci 2023; 17:1123860. [PMID: 36968500 PMCID: PMC10033592 DOI: 10.3389/fnins.2023.1123860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
Transcutaneous vagal nerve stimulation (tVNS) is a non-invasive nerve stimulation technique that exerts a positive “exogenous” online neuromodulatory effect on inhibitory control (IC). Additionally, IC training (ICT) is an effective approach for enhancing IC via the “endogenous” activation of brain regions implicated in this process. The aim of the present study was to examine the synergistic effects of tVNS and ICT on IC enhancement. For this, we measured the changes in neural activity in frontal, fronto-central, and central regions in the time domain of the N2 component and the frequency domain of alpha power during the stop signal task. A total of 58 participants were randomly divided into four groups that received five sessions of either ICT or sham ICT with either online tVNS or sham tVNS. No differences in N2 amplitude were detected after any of the interventions. However, N2 latency shortened after tVNS + ICT in frontal, fronto-central, and central regions. N2 latency shortened after the intervention of sham tVNS + ICT in frontal region. Moreover, alpha power after tVNS + ICT intervention was larger than those of the other interventions in frontal, fronto-central, and central regions. The obtained electrophysiological data suggested that combining tVNS with ICT has synergistic ameliorative effects on IC, and provide evidence supporting the IC-enhancing potential of tVNS combined with ICT.
Collapse
Affiliation(s)
- Chunchen Wang
- Department of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Lingwei Zeng
- Department of Medical Psychology, Air Force Medical University, Xi’an, China
| | - Xinsheng Cao
- Department of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Jing Dai
- Department of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Yang Liu
- Department of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Zhijun Gao
- Department of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Yilong Qin
- Department of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Lin Yang
- Department of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
- Lin Yang,
| | - Hang Wang
- Department of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
- Hang Wang,
| | - Zhihong Wen
- Department of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
- *Correspondence: Zhihong Wen,
| |
Collapse
|
42
|
Murphy AJ, O'Neal AG, Cohen RA, Lamb DG, Porges EC, Bottari SA, Ho B, Trifilio E, DeKosky ST, Heilman KM, Williamson JB. The Effects of Transcutaneous Vagus Nerve Stimulation on Functional Connectivity Within Semantic and Hippocampal Networks in Mild Cognitive Impairment. Neurotherapeutics 2023; 20:419-430. [PMID: 36477709 PMCID: PMC10121945 DOI: 10.1007/s13311-022-01318-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2022] [Indexed: 12/12/2022] Open
Abstract
Better treatments are needed to improve cognition and brain health in people with mild cognitive impairment (MCI) and Alzheimer's disease (AD). Transcutaneous vagus nerve stimulation (tVNS) may impact brain networks relevant to AD through multiple mechanisms including, but not limited to, projection to the locus coeruleus, the brain's primary source of norepinephrine, and reduction in inflammation. Neuropathological data suggest that the locus coeruleus may be an early site of tau pathology in AD. Thus, tVNS may modify the activity of networks that are impaired and progressively deteriorate in patients with MCI and AD. Fifty patients with MCI (28 women) confirmed via diagnostic consensus conference prior to MRI (sources of info: Montreal Cognitive Assessment Test (MOCA), Clinical Dementia Rating scale (CDR), Functional Activities Questionnaire (FAQ), Hopkins Verbal Learning Test - Revised (HVLT-R) and medical record review) underwent resting state functional magnetic resonance imaging (fMRI) on a Siemens 3 T scanner during tVNS (left tragus, n = 25) or sham control conditions (left ear lobe, n = 25). During unilateral left tVNS, compared with ear lobe stimulation, patients with MCI showed alterations in functional connectivity between regions of the brain that are important in semantic and salience functions including regions of the temporal and parietal lobes. Furthermore, connectivity from hippocampi to several cortical and subcortical clusters of ROIs also demonstrated change with tVNS compared with ear lobe stimulation. In conclusion, tVNS modified the activity of brain networks in which disruption correlates with deterioration in AD. These findings suggest afferent target engagement of tVNS, which carries implications for the development of noninvasive therapeutic intervention in the MCI population.
Collapse
Affiliation(s)
- Aidan J Murphy
- Center for OCD and Anxiety Related Disorders, Department of Psychiatry, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Brain Rehabilitation Research Center, Malcom Randall VAMC, Gainesville, FL, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Alexandria G O'Neal
- Center for OCD and Anxiety Related Disorders, Department of Psychiatry, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Brain Rehabilitation Research Center, Malcom Randall VAMC, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Ronald A Cohen
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Brain Rehabilitation Research Center, Malcom Randall VAMC, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Damon G Lamb
- Center for OCD and Anxiety Related Disorders, Department of Psychiatry, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Brain Rehabilitation Research Center, Malcom Randall VAMC, Gainesville, FL, USA
| | - Eric C Porges
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Brain Rehabilitation Research Center, Malcom Randall VAMC, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Sarah A Bottari
- Center for OCD and Anxiety Related Disorders, Department of Psychiatry, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Brain Rehabilitation Research Center, Malcom Randall VAMC, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Brian Ho
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Erin Trifilio
- Center for OCD and Anxiety Related Disorders, Department of Psychiatry, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Brain Rehabilitation Research Center, Malcom Randall VAMC, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Steven T DeKosky
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Kenneth M Heilman
- Brain Rehabilitation Research Center, Malcom Randall VAMC, Gainesville, FL, USA
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - John B Williamson
- Center for OCD and Anxiety Related Disorders, Department of Psychiatry, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Brain Rehabilitation Research Center, Malcom Randall VAMC, Gainesville, FL, USA.
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA.
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
43
|
Weiss E, Kann M, Wang Q. Neuromodulation of Neural Oscillations in Health and Disease. BIOLOGY 2023; 12:371. [PMID: 36979063 PMCID: PMC10045166 DOI: 10.3390/biology12030371] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023]
Abstract
Using EEG and local field potentials (LFPs) as an index of large-scale neural activities, research has been able to associate neural oscillations in different frequency bands with markers of cognitive functions, goal-directed behavior, and various neurological disorders. While this gives us a glimpse into how neurons communicate throughout the brain, the causality of these synchronized network activities remains poorly understood. Moreover, the effect of the major neuromodulatory systems (e.g., noradrenergic, cholinergic, and dopaminergic) on brain oscillations has drawn much attention. More recent studies have suggested that cross-frequency coupling (CFC) is heavily responsible for mediating network-wide communication across subcortical and cortical brain structures, implicating the importance of neurotransmitters in shaping coordinated actions. By bringing to light the role each neuromodulatory system plays in regulating brain-wide neural oscillations, we hope to paint a clearer picture of the pivotal role neural oscillations play in a variety of cognitive functions and neurological disorders, and how neuromodulation techniques can be optimized as a means of controlling neural network dynamics. The aim of this review is to showcase the important role that neuromodulatory systems play in large-scale neural network dynamics, informing future studies to pay close attention to their involvement in specific features of neural oscillations and associated behaviors.
Collapse
Affiliation(s)
| | | | - Qi Wang
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120th Street, New York, NY 10027, USA
| |
Collapse
|
44
|
Chen Y, Lu X, Hu L. Transcutaneous Auricular Vagus Nerve Stimulation Facilitates Cortical Arousal and Alertness. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1402. [PMID: 36674156 PMCID: PMC9859411 DOI: 10.3390/ijerph20021402] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Transcutaneous auricular vagus nerve stimulation (taVNS) is a promising noninvasive technique with potential beneficial effects on human emotion and cognition, including cortical arousal and alertness. However, it remains unclear how taVNS could improve cortical arousal and alertness, which are crucial for consciousness and daily task performance. Here, we aimed to estimate the modulatory effect of taVNS on cortical arousal and alertness and to reveal its underlying neural mechanisms. Sixty subjects were recruited and randomly assigned to either the taVNS group (receiving taVNS for 20 min) or the control group (receiving taVNS for 30 s). The effects of taVNS were evaluated behaviorally using a cue-target pattern task, and neurologically using a resting-state electroencephalogram (EEG). We found that taVNS facilitated the reaction time for the targets requiring right-hand responses and attenuated high-frequency alpha oscillations under the close-eye resting state. Importantly, taVNS-modulated alpha oscillations were positively correlated with the facilitated target detection performance, i.e., reduced reaction time. Furthermore, microstate analysis of the resting-state EEG when the eyes were closed illustrated that taVNS reduced the mean duration of microstate C, which has been proven to be associated with alertness. Altogether, this work provided novel evidence suggesting that taVNS could be an enhancer of both cortical arousal and alertness.
Collapse
Affiliation(s)
- Yuxin Chen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuejing Lu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
45
|
Engels-Domínguez N, Koops EA, Prokopiou PC, Van Egroo M, Schneider C, Riphagen JM, Singhal T, Jacobs HIL. State-of-the-art imaging of neuromodulatory subcortical systems in aging and Alzheimer's disease: Challenges and opportunities. Neurosci Biobehav Rev 2023; 144:104998. [PMID: 36526031 PMCID: PMC9805533 DOI: 10.1016/j.neubiorev.2022.104998] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/30/2022] [Accepted: 11/07/2022] [Indexed: 12/14/2022]
Abstract
Primary prevention trials have shifted their focus to the earliest stages of Alzheimer's disease (AD). Autopsy data indicates that the neuromodulatory subcortical systems' (NSS) nuclei are specifically vulnerable to initial tau pathology, indicating that these nuclei hold great promise for early detection of AD in the context of the aging brain. The increasing availability of new imaging methods, ultra-high field scanners, new radioligands, and routine deep brain stimulation implants has led to a growing number of NSS neuroimaging studies on aging and neurodegeneration. Here, we review findings of current state-of-the-art imaging studies assessing the structure, function, and molecular changes of these nuclei during aging and AD. Furthermore, we identify the challenges associated with these imaging methods, important pathophysiologic gaps to fill for the AD NSS neuroimaging field, and provide future directions to improve our assessment, understanding, and clinical use of in vivo imaging of the NSS.
Collapse
Affiliation(s)
- Nina Engels-Domínguez
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, the Netherlands
| | - Elouise A Koops
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Prokopis C Prokopiou
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Maxime Van Egroo
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, the Netherlands
| | - Christoph Schneider
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joost M Riphagen
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tarun Singhal
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Heidi I L Jacobs
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
46
|
Monaco A, Cattaneo R, Smurra P, Di Nicolantonio S, Cipriano F, Pietropaoli D, Ortu E. Trigeminal electrical stimulation with ULFTENS of the dorsal anterior mucosal surface of the tongue: Effects on Heart Rate Variability (HRV). PLoS One 2023; 18:e0285464. [PMID: 37163499 PMCID: PMC10171590 DOI: 10.1371/journal.pone.0285464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Trigeminal electrical stimulation of the dorsal anterior mucosal surface of the tongue has demonstrated its efficacy in a variety of neurological disorders in which anatomical or functional alterations are present. The pathogenesis of such disorders is often linked to altered arousal circuits, and the benefits of tongue stimulation are attributed to the rebalancing of this system. Dental ULFTENS shows efficacy in acting on the muscular, autonomic system and control of the descending pathways that modulate pain. It is administered at the skin level in the area anterior to the tragus and not on the mucosal surface of the tongue. The use of this stimulation technique at the tongue level could have new applications and clinical results if it were able to reduce the activity of arousal circuits. MATERIAL AND METHOD A new intraoral device allowed electrical stimulation of the dorsal anterior mucosa of the tongue in 32 healthy young women. The effects on HRV were monitored by photoplethysmographic wave (PPG) and compared with a control group. The HRV parameters studied were RMSSD, HF, LF, LF/HF, REC, DET. RESULTS The group of stimulated subjects showed a significant change in some of the HRV parameters that was maintained even in the epoch after the end of electrical stimulation. This effect can be considered as a vagal activation and a change of HRV trend. The control group of unstimulated subjects showed an opposite trend. There were no undesirable or annoying effects of stimulation. CONCLUSION Stimulation of the dorsal anterior (trigeminal) mucosal surface of the tongue with ULFTENS applied with an intraoral device was shown to be able to increase HRV.
Collapse
Affiliation(s)
- A Monaco
- Departement of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - R Cattaneo
- Departement of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - P Smurra
- Departement of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - S Di Nicolantonio
- Departement of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - F Cipriano
- Departement of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - D Pietropaoli
- Departement of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - E Ortu
- Departement of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
47
|
Forte G, Favieri F, Leemhuis E, De Martino ML, Giannini AM, De Gennaro L, Casagrande M, Pazzaglia M. Ear your heart: transcutaneous auricular vagus nerve stimulation on heart rate variability in healthy young participants. PeerJ 2022; 10:e14447. [PMID: 36438582 PMCID: PMC9686410 DOI: 10.7717/peerj.14447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 11/01/2022] [Indexed: 11/22/2022] Open
Abstract
Background Transcutaneous auricular vagus nerve stimulation (taVNS) stimulating the auricular branch of the vagus nerve along a well-defined neuroanatomical pathway, has promising therapeutic efficacy. Potentially, taVNS can modulate autonomic responses. Specifically, taVNS can induce more consistent parasympathetic activation and may lead to increased heart rate variability (HRV). However, the effects of taVNS on HRV remain inconclusive. Here, we investigated changes in HRV due to brief alteration periods of parasympathetic-vagal cardiac activity produced by taVNS on the cymba as opposed to control administration via the helix. Materials and Methods We compared the effect of 10 min of active stimulation (i.e., cymba conchae) to sham stimulation (i.e., helix) on peripheral cardiovascular response, in 28 healthy young adults. HRV was estimated in the time domain and frequency domain during the overall stimulation. Results Although active-taVNS and sham-taVNS stimulation did not differ in subjective intensity ratings, the active stimulation of the cymba led to vagally mediated HRV increases in both the time and frequency domains. Differences were significant between active-taVNS and both sham-taVNS and resting conditions in the absence of stimulation for various HRV parameters, but not for the low-frequency index of HRV, where no differences were found between active-taVNS and sham-taVNS conditions. Conclusion This work supports the hypothesis that taVNS reliably induces a rapid increase in HRV parameters when auricular stimulation is used to recruit fibers in the cymba compared to stimulation at another site. The results suggest that HRV can be used as a physiological indicator of autonomic tone in taVNS for research and potential therapeutic applications, in line with the established effects of invasive VNS. Knowledge of the physiological effect of taVNS short sessions in modulating cardiovagal processing is essential for enhancing its clinical use.
Collapse
Affiliation(s)
- Giuseppe Forte
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Rome, Italy,Department of Psychology, University of Roma “La Sapienza”, Rome, Italy
| | - Francesca Favieri
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Rome, Italy,Department of Psychology, University of Roma “La Sapienza”, Rome, Italy
| | - Erik Leemhuis
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Rome, Italy,Department of Psychology, University of Roma “La Sapienza”, Rome, Italy
| | - Maria Luisa De Martino
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Rome, Italy,Department of Psychology, University of Roma “La Sapienza”, Rome, Italy
| | | | - Luigi De Gennaro
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Rome, Italy,Department of Psychology, University of Roma “La Sapienza”, Rome, Italy
| | - Maria Casagrande
- Dipartimento di Psicologia Clinica, Dinamica e Salute, University of Roma “La Sapienza”, Rome, Italy
| | - Mariella Pazzaglia
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Rome, Italy,Department of Psychology, University of Roma “La Sapienza”, Rome, Italy
| |
Collapse
|
48
|
Giraudier M, Ventura-Bort C, Burger AM, Claes N, D'Agostini M, Fischer R, Franssen M, Kaess M, Koenig J, Liepelt R, Nieuwenhuis S, Sommer A, Usichenko T, Van Diest I, von Leupoldt A, Warren CM, Weymar M. Evidence for a modulating effect of transcutaneous auricular vagus nerve stimulation (taVNS) on salivary alpha-amylase as indirect noradrenergic marker: A pooled mega-analysis. Brain Stimul 2022; 15:1378-1388. [PMID: 36183953 DOI: 10.1016/j.brs.2022.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Non-invasive transcutaneous auricular vagus nerve stimulation (taVNS) has received tremendous attention as a potential neuromodulator of cognitive and affective functions, which likely exerts its effects via activation of the locus coeruleus-noradrenaline (LC-NA) system. Reliable effects of taVNS on markers of LC-NA system activity, however, have not been demonstrated yet. METHODS The aim of the present study was to overcome previous limitations by pooling raw data from a large sample of ten taVNS studies (371 healthy participants) that collected salivary alpha-amylase (sAA) as a potential marker of central NA release. RESULTS While a meta-analytic approach using summary statistics did not yield any significant effects, linear mixed model analyses showed that afferent stimulation of the vagus nerve via taVNS increased sAA levels compared to sham stimulation (b = 0.16, SE = 0.05, p = 0.001). When considering potential confounders of sAA, we further replicated previous findings on the diurnal trajectory of sAA activity. CONCLUSION(S) Vagal activation via taVNS increases sAA release compared to sham stimulation, which likely substantiates the assumption that taVNS triggers NA release. Moreover, our results highlight the benefits of data pooling and data sharing in order to allow stronger conclusions in research.
Collapse
Affiliation(s)
- Manon Giraudier
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany.
| | - Carlos Ventura-Bort
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany
| | | | - Nathalie Claes
- Research Group Health Psychology, KU Leuven, Leuven, Belgium
| | | | - Rico Fischer
- Department of Psychology, University of Greifswald, Greifswald, Germany
| | | | - Michael Kaess
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Department of Child and Adolescent Psychiatry, Centre for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| | - Julian Koenig
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Cologne, Germany
| | - Roman Liepelt
- Department of General Psychology: Judgment, Decision Making, Action, Faculty of Psychology, University of Hagen (FernUniversität in Hagen), Hagen, Germany
| | - Sander Nieuwenhuis
- Institute of Psychology, Leiden University, Netherlands; Leiden Institute for Brain and Cognition, Leiden University, Netherlands
| | - Aldo Sommer
- Department of General Psychology: Judgment, Decision Making, Action, Faculty of Psychology, University of Hagen (FernUniversität in Hagen), Hagen, Germany; Department of Exercise Physiology, German Sport University Cologne, Cologne, Germany
| | - Taras Usichenko
- Department of Anesthesiology, University Medicine of Greifswald, Greifswald, Germany; Department of Anesthesia, McMaster University, Hamilton, Canada
| | - Ilse Van Diest
- Research Group Health Psychology, KU Leuven, Leuven, Belgium
| | | | - Christopher M Warren
- Emma Eccles Jones College of Education and Human Services, Utah State University, United States
| | - Mathias Weymar
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany; Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam, Germany.
| |
Collapse
|
49
|
Vespa S, Stumpp L, Liberati G, Delbeke J, Nonclercq A, Mouraux A, El Tahry R. Characterization of vagus nerve stimulation-induced pupillary responses in epileptic patients. Brain Stimul 2022; 15:1498-1507. [PMID: 36402376 DOI: 10.1016/j.brs.2022.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/15/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Modulation of the locus coeruleus (LC)-noradrenergic system is a key mechanism of vagus nerve stimulation (VNS). Activation of the LC produces pupil dilation, and the VNS-induced change in pupil diameter was demonstrated in animals as a possible dose-dependent biomarker for treatment titration. OBJECTIVE This study aimed to characterize VNS-induced pupillary responses in epileptic patients. METHODS Pupil diameter was recorded in ten epileptic patients upon four stimulation conditions: three graded levels of VNS intensity and a somatosensory control stimulation (cutaneous electrical stimulation over the left clavicle). For each block, the patients rated the intensity of stimulation on a numerical scale. We extracted the latency of the peak pupil dilation and the magnitude of the early (0-2.5 s) and late components (2.5-5 s) of the pupil dilation response (PDR). RESULTS VNS elicited a peak dilation with longer latency compared to the control condition (p = 0.043). The magnitude of the early PDR was significantly correlated with the intensity of perception (p = 0.046), whereas the late PDR was not (p = 0.19). There was a significant main effect of the VNS level of intensity on the magnitude of the late PDR (p = 0.01) but not on the early PDR (p = 0.2). The relationship between late PDR magnitude and VNS intensity was best fit by a Gaussian model (inverted-U). CONCLUSIONS The late component of the PDR might reflect specific dose-dependent effects of VNS, as compared to control somatosensory stimulation. The inverted-U relationship of late PDR with VNS intensity might indicate the engagement of antagonist central mechanisms at high stimulation intensities.
Collapse
Affiliation(s)
- Simone Vespa
- Institute of NeuroScience, Catholic University of Louvain, Brussels, Belgium.
| | - Lars Stumpp
- Institute of NeuroScience, Catholic University of Louvain, Brussels, Belgium
| | - Giulia Liberati
- Institute of NeuroScience, Catholic University of Louvain, Brussels, Belgium
| | - Jean Delbeke
- Institute of NeuroScience, Catholic University of Louvain, Brussels, Belgium
| | | | - André Mouraux
- Institute of NeuroScience, Catholic University of Louvain, Brussels, Belgium
| | - Riëm El Tahry
- Institute of NeuroScience, Catholic University of Louvain, Brussels, Belgium; Department of Neurology, Saint Luc University Hospital, Brussels, Belgium
| |
Collapse
|
50
|
Arvin S, Yonehara K, Glud AN. Therapeutic Neuromodulation toward a Critical State May Serve as a General Treatment Strategy. Biomedicines 2022; 10:biomedicines10092317. [PMID: 36140418 PMCID: PMC9496064 DOI: 10.3390/biomedicines10092317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022] Open
Abstract
Brain disease has become one of this century’s biggest health challenges, urging the development of novel, more effective treatments. To this end, neuromodulation represents an excellent method to modulate the activity of distinct neuronal regions to alleviate disease. Recently, the medical indications for neuromodulation therapy have expanded through the adoption of the idea that neurological disorders emerge from deficits in systems-level structures, such as brain waves and neural topology. Connections between neuronal regions are thought to fluidly form and dissolve again based on the patterns by which neuronal populations synchronize. Akin to a fire that may spread or die out, the brain’s activity may similarly hyper-synchronize and ignite, such as seizures, or dwindle out and go stale, as in a state of coma. Remarkably, however, the healthy brain remains hedged in between these extremes in a critical state around which neuronal activity maneuvers local and global operational modes. While it has been suggested that perturbations of this criticality could underlie neuropathologies, such as vegetative states, epilepsy, and schizophrenia, a major translational impact is yet to be made. In this hypothesis article, we dissect recent computational findings demonstrating that a neural network’s short- and long-range connections have distinct and tractable roles in sustaining the critical regime. While short-range connections shape the dynamics of neuronal activity, long-range connections determine the scope of the neuronal processes. Thus, to facilitate translational progress, we introduce topological and dynamical system concepts within the framework of criticality and discuss the implications and possibilities for therapeutic neuromodulation guided by topological decompositions.
Collapse
Affiliation(s)
- Simon Arvin
- Center for Experimental Neuroscience—CENSE, Department of Neurosurgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
- Danish Research Institute of Translational Neuroscience—DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Ole Worms Allé 8, 8000 Aarhus C, Denmark
- Department of Neurosurgery, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11 Building A, 8200 Aarhus N, Denmark
- Correspondence: ; Tel.: +45 6083-1275
| | - Keisuke Yonehara
- Danish Research Institute of Translational Neuroscience—DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Ole Worms Allé 8, 8000 Aarhus C, Denmark
- Multiscale Sensory Structure Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan
| | - Andreas Nørgaard Glud
- Center for Experimental Neuroscience—CENSE, Department of Neurosurgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
- Department of Neurosurgery, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11 Building A, 8200 Aarhus N, Denmark
| |
Collapse
|