1
|
De Luca LA, Laurin M, Menani JV. Control of fluid intake in dehydrated rats and evolution of sodium appetite. Physiol Behav 2024; 284:114642. [PMID: 39032667 DOI: 10.1016/j.physbeh.2024.114642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
The objective of the present work is to examine from a new perspective the existence of causal factors not predicted by the classical theory that thirst and sodium appetite are two distinct motivations. For example, we ask why water deprivation induces sodium appetite, thirst is not "water appetite", and intracellular dehydration potentially causes sodium appetite. Contrary to the classical theory, we suggest that thirst first, and sodium appetite second, designate a temporal sequence underlying the same motivation. The single motivation becomes an "intervenient variable" a concept borrowed from the literature, fully explained in the text, between causes of dehydration (extracellular, intracellular, or both together), and respective behavioral responses subserved by hindbrain-dependent inhibition (e.g., lateral parabrachial nucleus) and forebrain facilitation (e.g., angiotensin II). A corollary is homology between rat sodium appetite and marine teleost thirst-like motivation that we name "protodipsia". The homology argument rests on similarities between behavior (salty water intake) and respective neuroanatomical as well as functional mechanisms. Tetrapod origin in a marine environment provides additional support for the homology. The single motivation hypothesis is also consistent with ingestive behaviors in nature given similarities (e.g., thirst producing brackish water intake) between the behavior of the laboratory rat and wild animals, rodents included. The hypotheses of single motivation and homology might explain why hyperosmotic rats, or eventually any other hyperosmotic tetrapod, shows paradoxical signs of sodium appetite. They might also explain how ingestive behaviors determined by dehydration and subserved by hindbrain inhibitory mechanisms contributed to tetrapod transition from sea to land.
Collapse
Affiliation(s)
- Laurival A De Luca
- Department of Physiology & Pathology, School of Dentistry, São Paulo State University (UNESP), 14801-903 Araraquara, São Paulo, Brazil.
| | - Michel Laurin
- CR2P, UMR 7207, CNRS/MNHN/SU, Muséum National d'Histoire Naturelle, Bâtiment de Géologie, CP 48, F-75231 Paris cedex 05, France
| | - José Vanderlei Menani
- Department of Physiology & Pathology, School of Dentistry, São Paulo State University (UNESP), 14801-903 Araraquara, São Paulo, Brazil
| |
Collapse
|
2
|
Haan KD, Park SJ, Nakamura Y, Fukami K, Fisher TE. Osmotically evoked PLCδ1-dependent translocation of ΔN-TRPV1 channels in rat supraoptic neurons. iScience 2023; 26:106258. [PMID: 36926650 PMCID: PMC10011827 DOI: 10.1016/j.isci.2023.106258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/10/2022] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Osmoregulation is an essential homeostatic process that requires constant release of vasopressin during sustained increases in plasma osmolality. The magnocellular neurosecretory cells (MNCs) respond to increases in external osmolality through increases in the activity of ΔN-TRPV1 channels, which leads to increased action potential firing and vasopressin release. We show that sustained exposure of acutely isolated rat and mouse MNCs to hypertonic solutions (90 min) causes a reversible translocation of ΔN-TRPV1 channels from internal stores to the plasma membrane that depends on the activation of phospholipase C and on SNARE-dependent exocytosis. ΔN-TRPV1 channel translocation is absent in MNCs isolated from transgenic mice lacking the PLCδ1 isoform, suggesting that PLCδ1 is essential for triggering this process. The translocation of ΔN-TRPV1 channels to the cell surface could contribute to the maintenance of MNC excitability during sustained increases in osmolality. Our data therefore have important implications for the mechanisms underlying mammalian osmoregulation.
Collapse
Affiliation(s)
- Kirk D Haan
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Sung Jin Park
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yoshikazu Nakamura
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | - Kiyoko Fukami
- Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Thomas E Fisher
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
3
|
Atila C, Monnerat S, Bingisser R, Siegemund M, Lampart M, Rueegg M, Zellweger N, Osswald S, Rentsch K, Christ-Crain M, Twerenbold R. Inverse relationship between IL-6 and sodium levels in patients with COVID-19 and other respiratory tract infections: data from the COVIVA study. Endocr Connect 2022; 11:e220171. [PMID: 36006851 PMCID: PMC9578076 DOI: 10.1530/ec-22-0171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/25/2022] [Indexed: 11/08/2022]
Abstract
Objective Hyponatremia in COVID-19 is often due to the syndrome of inadequate antidiuresis (SIAD), possibly mediated by interleukin-6 (IL-6)-induced non-osmotic arginine vasopressin (AVP) secretion. We hypothesized an inverse association between IL-6 and plasma sodium concentration, stronger in COVID-19 compared to other respiratory infections. Design Secondary analysis of a prospective cohort study including patients with COVID-19 suspicion admitted to the Emergency Department, University Hospital of Basel, Switzerland, between March and July 2020. Methods We included patients with PCR-confirmed COVID-19 and patients with similar symptoms, further subclassified into bacterial and other viral respiratory infections. The primary objective was to investigate the association between plasma sodium and IL-6 levels. Results A total of 500 patients were included, 184 (37%) with COVID-19, 92 (18%) with bacterial respiratory infections, and 224 (45%) with other viral respiratory infections. In all groups, median (IQR) IL-6 levels were significantly higher in hyponatremic compared to normonatremic patients (COVID-19: 43.4 (28.4, 59.8) vs 9.2 (2.8, 32.7) pg/mL, P < 0.001; bacterial: 122.1 (63.0, 282.0) vs 67.1 (24.9, 252.0) pg/mL, P < 0.05; viral: 14.1 (6.9, 84.7) vs 4.3 (2.1, 14.4) pg/mL, P < 0.05). IL-6 levels were negatively correlated with plasma sodium levels in COVID-19, whereas the correlation in bacterial and other viral infections was weaker (COVID-19: R = -0.48, P < 0.001; bacterial: R = -0.25, P = 0.05, viral: R = -0.27, P < 0.001). Conclusions IL-6 levels were inversely correlated with plasma sodium levels, with a stronger correlation in COVID-19 compared to bacterial and other viral infections. IL-6 might stimulate AVP secretion and lead to higher rates of hyponatremia due to the SIAD in these patients.
Collapse
Affiliation(s)
- Cihan Atila
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Sophie Monnerat
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Roland Bingisser
- Emergency Department, University Hospital Basel, Basel, Switzerland
| | - Martin Siegemund
- Department of Intensive Care, University Hospital Basel, Basel, Switzerland
| | - Maurin Lampart
- Department of Cardiology and Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Marco Rueegg
- Emergency Department, University Hospital Basel, Basel, Switzerland
| | - Núria Zellweger
- Department of Intensive Care, University Hospital Basel, Basel, Switzerland
| | - Stefan Osswald
- Department of Cardiology and Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Katharina Rentsch
- Department of Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | - Mirjam Christ-Crain
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Raphael Twerenbold
- Department of Cardiology and Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Basel, Switzerland
- University Center of Cardiovascular Science & Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg–Kiel–Lübeck, Hamburg, Germany
| |
Collapse
|
4
|
Aikins AO, Nguyen DH, Paundralingga O, Farmer GE, Shimoura CG, Brock C, Cunningham JT. Cardiovascular Neuroendocrinology: Emerging Role for Neurohypophyseal Hormones in Pathophysiology. Endocrinology 2021; 162:6247962. [PMID: 33891015 PMCID: PMC8234498 DOI: 10.1210/endocr/bqab082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Indexed: 11/19/2022]
Abstract
Arginine vasopressin (AVP) and oxytocin (OXY) are released by magnocellular neurosecretory cells that project to the posterior pituitary. While AVP and OXY currently receive more attention for their contributions to affiliative behavior, this mini-review discusses their roles in cardiovascular function broadly defined to include indirect effects that influence cardiovascular function. The traditional view is that neither AVP nor OXY contributes to basal cardiovascular function, although some recent studies suggest that this position might be re-evaluated. More evidence indicates that adaptations and neuroplasticity of AVP and OXY neurons contribute to cardiovascular pathophysiology.
Collapse
Affiliation(s)
- Ato O Aikins
- Department of Physiology and Anatomy, Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX 76107, USA
| | - Dianna H Nguyen
- Department of Physiology and Anatomy, Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX 76107, USA
- Texas College of Osteopathic Medicine, UNT Health Science Center, Fort Worth, TX 76107, USA
| | - Obed Paundralingga
- Department of Physiology and Anatomy, Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX 76107, USA
| | - George E Farmer
- Department of Physiology and Anatomy, Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX 76107, USA
| | - Caroline Gusson Shimoura
- Department of Physiology and Anatomy, Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX 76107, USA
| | - Courtney Brock
- Department of Physiology and Anatomy, Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX 76107, USA
| | - J Thomas Cunningham
- Department of Physiology and Anatomy, Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX 76107, USA
- Correspondence: J. Thomas Cunningham Department of Physiology & Anatomy CBH 338 UNT Health Science Center 3500 Camp Bowie Blvd Fort Worth, TX 76107, USA.
| |
Collapse
|
5
|
Levi DI, Wyrosdic JC, Hicks AI, Andrade MA, Toney GM, Prager-Khoutorsky M, Bourque CW. High dietary salt amplifies osmoresponsiveness in vasopressin-releasing neurons. Cell Rep 2021; 34:108866. [PMID: 33730577 PMCID: PMC8049100 DOI: 10.1016/j.celrep.2021.108866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 04/13/2020] [Accepted: 02/24/2021] [Indexed: 12/28/2022] Open
Abstract
High dietary salt increases arterial pressure partly through activation of magnocellular neurosecretory cells (MNCVP) that secrete the antidiuretic and vasoconstrictor hormone vasopressin (VP) into the circulation. Here, we show that the intrinsic and synaptic excitation of MNCVP caused by hypertonicity are differentially potentiated in two models of salt-dependent hypertension in rats. One model combined salty chow with a chronic subpressor dose of angiotensin II (AngII-salt), the other involved replacing drinking water with 2% NaCl (salt loading, SL). In both models, we observed a significant increase in the quantal amplitude of EPSCs on MNCVP. However, model-specific changes were also observed. AngII-salt increased the probability of glutamate release by osmoreceptor afferents and increased overall excitatory network drive. In contrast, SL specifically increased membrane stiffness and the intrinsic osmosensitivity of MNCVP. These results reveal that dietary salt increases the excitability of MNCVP through effects on the cell-autonomous and synaptic osmoresponsiveness of MNCVP.
Collapse
Affiliation(s)
- David I Levi
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G1A4, Canada
| | - Joshua C Wyrosdic
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G1A4, Canada
| | - Amirah-Iman Hicks
- Department of Physiology, McGill University, 3644 Promenade Sir William Osler, Montreal, QC H3G1Y6, Canada
| | - Mary Ann Andrade
- Department of Cellular and Integrative Physiology, University of Texas Health Sciences Centre San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Glenn M Toney
- Department of Cellular and Integrative Physiology, University of Texas Health Sciences Centre San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Masha Prager-Khoutorsky
- Department of Physiology, McGill University, 3644 Promenade Sir William Osler, Montreal, QC H3G1Y6, Canada.
| | - Charles W Bourque
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G1A4, Canada.
| |
Collapse
|
6
|
Unique Organization of Actin Cytoskeleton in Magnocellular Vasopressin Neurons in Normal Conditions and in Response to Salt-Loading. eNeuro 2020; 7:ENEURO.0351-19.2020. [PMID: 32209611 PMCID: PMC7189486 DOI: 10.1523/eneuro.0351-19.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/04/2022] Open
Abstract
Magnocellular neurosecretory cells (MNCs) are intrinsically osmosensitive and can be activated by increases in blood osmolality, triggering the release of antidiuretic hormone vasopressin (VP) to promote water retention. Hence, the activity of magnocellular VP neurons is one of the key elements contributing to the regulation of body fluid homeostasis in healthy organisms. Chronic exposure to high dietary salt leads to excessive activation of VP neurons, thereby elevating levels of circulating VP, which can cause increases in blood pressure contributing to salt-dependent hypertension. However, the molecular basis underlying high-salt diet-induced hyperactivation of magnocellular VP neurons remains not fully understood. Previous studies suggest that magnocellular neurosecretory neurons contain a subcortical layer of actin filaments and pharmacological stabilization of this actin network potentiates osmotically-induced activation of magnocellular neurons. Using super-resolution imaging in situ, we investigated the organization of the actin cytoskeleton in rat MNCs under normal physiological conditions and after a chronic increase in blood osmolality following 7 d of salt-loading (SL). We found that, in addition to the subcortical layer of actin filaments, magnocellular VP neurons are endowed with a unique network of cytoplasmic actin filaments throughout their somata. Moreover, we revealed that the density of both subcortical and cytoplasmic actin networks in magnocellular VP neurons is dramatically increased following SL. These results suggest that increased osmo-responsiveness of VP neurons following chronic exposure to high dietary salt may be mediated by the modulation of unique actin networks in magnocellular VP neurons, possibly contributing to elevated blood pressure in this condition.
Collapse
|
7
|
Tasker JG, Prager-Khoutorsky M, Teruyama R, Lemos JR, Amstrong WE. Advances in the neurophysiology of magnocellular neuroendocrine cells. J Neuroendocrinol 2020; 32:e12826. [PMID: 31917875 PMCID: PMC7192795 DOI: 10.1111/jne.12826] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
Abstract
Hypothalamic magnocellular neuroendocrine cells have unique electrical properties and a remarkable capacity for morphological and synaptic plasticity. Their large somatic size, their relatively uniform and dense clustering in the supraoptic and paraventricular nuclei, and their large axon terminals in the neurohypophysis make them an attractive target for direct electrophysiological interrogation. Here, we provide a brief review of significant recent findings in the neuroplasticity and neurophysiological properties of these neurones that were presented at the symposium "Electrophysiology of Magnocellular Neurons" during the 13th World Congress on Neurohypophysial Hormones in Ein Gedi, Israel in April 2019. Magnocellular vasopressin (VP) neurones respond directly to hypertonic stimulation with membrane depolarisation, which is triggered by cell shrinkage-induced opening of an N-terminal-truncated variant of transient receptor potential vanilloid type-1 (TRPV1) channels. New findings indicate that this mechanotransduction depends on actin and microtubule cytoskeletal networks, and that direct coupling of the TRPV1 channels to microtubules is responsible for mechanical gating of the channels. Vasopressin neurones also respond to osmostimulation by activation of epithelial Na+ channels (ENaC). It was shown recently that changes in ENaC activity modulate magnocellular neurone basal firing by generating tonic changes in membrane potential. Both oxytocin and VP neurones also undergo robust excitatory synapse plasticity during chronic osmotic stimulation. Recent findings indicate that new glutamate synapses induced during chronic salt loading express highly labile Ca2+ -permeable GluA1 receptors requiring continuous dendritic protein synthesis for synapse maintenance. Finally, recordings from the uniquely tractable neurohypophysial terminals recently revealed an unexpected property of activity-dependent neuropeptide release. A significant fraction of the voltage-dependent neurohypophysial neurosecretion was found to be independent of Ca2+ influx through voltage-gated Ca2+ channels. Together, these findings provide a snapshot of significant new advances in the electrophysiological signalling mechanisms and neuroplasticity of the hypothalamic-neurohypophysial system, a system that continues to make important contributions to the field of neurophysiology.
Collapse
Affiliation(s)
- Jeffrey G. Tasker
- Department of Cell and Molecular Biology and Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Correspondence: Jeffrey Tasker, PhD, Tulane University, Cell and Molecular Biology Dept, 2000 Percival Stern Hall, New Orleans, LA 70118, USA; .; William Armstrong, PhD, University of Tennessee Health Science Center, Anatomy and Neurobiology Dept and Neuroscience Institute, 855 Monroe Ave, Memphis, TN 38163, USA;
| | | | - Ryoichi Teruyama
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - José R. Lemos
- Department of Microbiology and Physiological Systems & Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA, USA
| | - William E. Amstrong
- Department of Anatomy and Neurobiology and Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
- Correspondence: Jeffrey Tasker, PhD, Tulane University, Cell and Molecular Biology Dept, 2000 Percival Stern Hall, New Orleans, LA 70118, USA; .; William Armstrong, PhD, University of Tennessee Health Science Center, Anatomy and Neurobiology Dept and Neuroscience Institute, 855 Monroe Ave, Memphis, TN 38163, USA;
| |
Collapse
|
8
|
Porcari CY, Debarba LK, Amigone JL, Caeiro XE, Reis LC, Cunha TM, Mecawi AS, Elias LL, Antunes-Rodrigues J, Vivas L, Godino A. Brain osmo-sodium sensitive channels and the onset of sodium appetite. Horm Behav 2020; 118:104658. [PMID: 31874139 DOI: 10.1016/j.yhbeh.2019.104658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/14/2019] [Accepted: 12/17/2019] [Indexed: 01/13/2023]
Abstract
The aim of the present study was to determine whether the TRPV1 channel is involved in the onset of sodium appetite. For this purpose, we used TRPV1-knockout mice to investigate sodium depletion-induced drinking at different times (2/24 h) after furosemide administration combined with a low sodium diet (FURO-LSD). In sodium depleted wild type and TRPV1 KO (SD-WT/SD-TPRV1-KO) mice, we also evaluated the participation of other sodium sensors, such as TPRV4, NaX and angiotensin AT1-receptors (by RT-PCR), as well as investigating the pattern of neural activation shown by Fos immunoreactivity, in different nuclei involved in hydromineral regulation. TPRV1 SD-KO mice revealed an increased sodium preference, ingesting a higher hypertonic cocktail in comparison with SD-WT mice. Our results also showed in SD-WT animals that SFO-Trpv4 expression increased 2 h after FURO-LSD, compared to other groups, thus supporting a role of SFO-Trpv4 channels during the hyponatremic state. However, the SD-TPRV1-KO animals did not show this early increase, and maybe as a consequence drank more hypertonic cocktail. Regarding the SFO-NaX channel expression, in both genotypes our findings revealed a reduction 24 h after FURO-LSD. In addition, there was an increase in the OVLT-NaX expression of SD-WT 24 h after FURO-LSD, suggesting the participation of OVLT-NaX channels in the appearance of sodium appetite, possibly as an anticipatory response in order to limit sodium intake and to induce thirst. Our work demonstrates changes in the expression of different osmo‑sodium-sensitive channels at specific nuclei, related to the body sodium status in order to stimulate an adequate drinking.
Collapse
Affiliation(s)
- C Y Porcari
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
| | - L K Debarba
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - J L Amigone
- Sección de Bioquímica Clínica, Hospital Privado, Córdoba, Argentina
| | - X E Caeiro
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
| | - L C Reis
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - T M Cunha
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - A S Mecawi
- Laboratory of Molecular Neuroendocrinology, Department of Biophysics, Paulista Medical School, Federal University of São Paulo, São Paulo, Brazil
| | - L L Elias
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - J Antunes-Rodrigues
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - L Vivas
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina; Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - A Godino
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
9
|
Sandgren JA, Linggonegoro DW, Zhang SY, Sapouckey SA, Claflin KE, Pearson NA, Leidinger MR, Pierce GL, Santillan MK, Gibson-Corley KN, Sigmund CD, Grobe JL. Angiotensin AT 1A receptors expressed in vasopressin-producing cells of the supraoptic nucleus contribute to osmotic control of vasopressin. Am J Physiol Regul Integr Comp Physiol 2018; 314:R770-R780. [PMID: 29364700 PMCID: PMC6032302 DOI: 10.1152/ajpregu.00435.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/03/2018] [Accepted: 01/17/2018] [Indexed: 11/22/2022]
Abstract
Angiotensin II (ANG) stimulates the release of arginine vasopressin (AVP) from the neurohypophysis through activation of the AT1 receptor within the brain, although it remains unclear whether AT1 receptors expressed on AVP-expressing neurons directly mediate this control. We explored the hypothesis that ANG acts through AT1A receptors expressed directly on AVP-producing cells to regulate AVP secretion. In situ hybridization and transgenic mice demonstrated localization of AVP and AT1A mRNA in the supraoptic nucleus (SON) and the paraventricular nucleus (PVN), but coexpression of both AVP and AT1A mRNA was only observed in the SON. Mice harboring a conditional allele for the gene encoding the AT1A receptor (AT1Aflox) were then crossed with AVP-Cre mice to generate mice that lack AT1A in all cells that express the AVP gene (AT1AAVP-KO). AT1AAVP-KO mice exhibited spontaneously increased plasma and serum osmolality but no changes in fluid or salt-intake behaviors, hematocrit, or total body water. AT1AAVP-KO mice exhibited reduced AVP secretion (estimated by measurement of copeptin) in response to osmotic stimuli such as acute hypertonic saline loading and in response to chronic intracerebroventricular ANG infusion. However, the effects of these receptors on AVP release were masked by complex stimuli such as overnight dehydration and DOCA-salt treatment, which simultaneously induce osmotic, volemic, and pressor stresses. Collectively, these data support the expression of AT1A in AVP-producing cells of the SON but not the PVN, and a role for AT1A receptors in these cells in the osmotic regulation of AVP secretion.
Collapse
MESH Headings
- Angiotensin II/administration & dosage
- Angiotensin II/pharmacology
- Animals
- Body Water
- Feeding Behavior
- Injections, Intraventricular
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Osmosis
- Paraventricular Hypothalamic Nucleus/metabolism
- Receptor, Angiotensin, Type 1/biosynthesis
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/physiology
- Sodium, Dietary
- Supraoptic Nucleus/metabolism
- Supraoptic Nucleus/physiology
- Vasoconstrictor Agents/administration & dosage
- Vasoconstrictor Agents/pharmacology
- Vasopressins/biosynthesis
- Vasopressins/physiology
Collapse
Affiliation(s)
| | | | - Shao Yang Zhang
- Department of Pharmacology, University of Iowa , Iowa City, Iowa
| | | | | | - Nicole A Pearson
- Department of Pharmacology, University of Iowa , Iowa City, Iowa
| | | | - Gary L Pierce
- Department of Health and Human Physiology, University of Iowa , Iowa City, Iowa
- Center for Hypertension Research, University of Iowa , Iowa City, Iowa
- François M. Abboud Cardiovascular Research Center, University of Iowa , Iowa City, Iowa
| | - Mark K Santillan
- Department of Obstetrics and Gynecology, University of Iowa , Iowa City, Iowa
- Center for Hypertension Research, University of Iowa , Iowa City, Iowa
| | - Katherine N Gibson-Corley
- Department of Pathology, University of Iowa , Iowa City, Iowa
- Center for Hypertension Research, University of Iowa , Iowa City, Iowa
- Fraternal Order of Eagles' Diabetes Research Center, University of Iowa , Iowa City, Iowa
| | - Curt D Sigmund
- Department of Pharmacology, University of Iowa , Iowa City, Iowa
- Center for Hypertension Research, University of Iowa , Iowa City, Iowa
- François M. Abboud Cardiovascular Research Center, University of Iowa , Iowa City, Iowa
| | - Justin L Grobe
- Department of Pharmacology, University of Iowa , Iowa City, Iowa
- Center for Hypertension Research, University of Iowa , Iowa City, Iowa
- François M. Abboud Cardiovascular Research Center, University of Iowa , Iowa City, Iowa
- Iowa Neuroscience Institute, University of Iowa , Iowa City, Iowa
- Obesity Research and Education Initiative, University of Iowa , Iowa City, Iowa
- Fraternal Order of Eagles' Diabetes Research Center, University of Iowa , Iowa City, Iowa
| |
Collapse
|
10
|
Bansal V, Fisher TE. Osmotic activation of a Ca 2+-dependent phospholipase C pathway that regulates ∆N TRPV1-mediated currents in rat supraoptic neurons. Physiol Rep 2018; 5:5/8/e13259. [PMID: 28432255 PMCID: PMC5408288 DOI: 10.14814/phy2.13259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/08/2017] [Indexed: 01/12/2023] Open
Abstract
The magnocellular neurosecretory cells (MNCs) of the hypothalamus regulate body fluid balance by releasing the hormones vasopressin (VP) and oxytocin (OT) in an osmolality‐dependent manner. Elevations of external osmolality increase MNC firing and hormone release. MNC osmosensitivity is largely due to activation of a mechanosensitive non‐selective cation current that responds to osmotically‐evoked changes in MNC volume and is mediated by an N‐terminal variant of the TRPV1 channel (∆N TRPV1). We report a novel mechanism by which increases in osmolality may modulate ∆N TRPV1‐mediated currents and thus influence MNC electrical behaviour. We showed previously that acute elevations of external osmolality activate the enzyme phospholipase C (PLC) in isolated MNCs. We now show that the osmotic activation of PLC has a time course and dose‐dependence that is consistent with a role in MNC osmosensitivity and that it contributes to the osmotically‐evoked increase in non‐selective cation current in MNCs through a protein kinase C‐dependent pathway. We furthermore show that the mechanism of osmotic activation of PLC requires an increase in internal Ca2+ that depends on influx through L‐type Ca2+ channels. Our data therefore suggest that MNCs possess an osmotically‐activated Ca2+‐dependent PLC that contributes to the osmotic activation of ∆N TRPV1 and may therefore be important in MNC osmosensitivity and in central osmoregulation.
Collapse
Affiliation(s)
- Vimal Bansal
- Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Thomas E Fisher
- Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
11
|
Prager-Khoutorsky M, Choe KY, Levi DI, Bourque CW. Role of Vasopressin in Rat Models of Salt-Dependent Hypertension. Curr Hypertens Rep 2017; 19:42. [PMID: 28451854 DOI: 10.1007/s11906-017-0741-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Dietary salt intake increases both plasma sodium and osmolality and therefore increases vasopressin (VP) release from the neurohypophysis. Although this effect could increase blood pressure by inducing fluid reabsorption and vasoconstriction, acute activation of arterial baroreceptors inhibits VP neurons via GABAA receptors to oppose high blood pressure. Here we review recent findings demonstrating that this protective mechanism fails during chronic high salt intake in rats. RECENT FINDINGS Two recent studies showed that chronic high sodium intake causes an increase in intracellular chloride concentration in VP neurons. This effect causes GABAA receptors to become excitatory and leads to the emergence of VP-dependent hypertension. One study showed that the increase in intracellular chloride was provoked by a decrease in the expression of the chloride exporter KCC2 mediated by local secretion of brain-derived neurotrophic factor and activation of TrkB receptors. Prolonged high dietary salt intake can cause pathological plasticity in a central homeostatic circuit that controls VP secretion and thereby contribute to peripheral vasoconstriction and hypertension.
Collapse
Affiliation(s)
- Masha Prager-Khoutorsky
- Department of Physiology, McGill University, McIntyre Medical Sciences Bldg., 3655 Promenade Sir-William Osler, Montreal, QC, H3G 1Y6, Canada
| | - Katrina Y Choe
- 2309 Gonda Neuroscience and Genetics Research Center, UCLA Department of Neurology, 695 Charles E. Young Dr. South, Los Angeles, CA, 90095, USA
| | - David I Levi
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Center, Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC, H3G 1A4, Canada
| | - Charles W Bourque
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Center, Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC, H3G 1A4, Canada.
| |
Collapse
|
12
|
Abstract
Osmosensory neurons are specialized cells activated by increases in blood osmolality to trigger thirst, secretion of the antidiuretic hormone vasopressin, and elevated sympathetic tone during dehydration. In addition to multiple extrinsic factors modulating their activity, osmosensory neurons are intrinsically osmosensitive, as they are activated by increased osmolality in the absence of neighboring cells or synaptic contacts. This intrinsic osmosensitivity is a mechanical process associated with osmolality-induced changes in cell volume. This review summarises recent findings revealing molecular mechanisms underlying the mechanical activation of osmosensory neurons and highlighting important roles of microtubules, actin, and mechanosensitive ion channels in this process.
Collapse
|
13
|
Hoorn EJ, Zietse R. Diagnosis and Treatment of Hyponatremia: Compilation of the Guidelines. J Am Soc Nephrol 2017; 28:1340-1349. [PMID: 28174217 DOI: 10.1681/asn.2016101139] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hyponatremia is a common water balance disorder that often poses a diagnostic or therapeutic challenge. Therefore, guidelines were developed by professional organizations, one from within the United States (2013) and one from within Europe (2014). This review discusses the diagnosis and treatment of hyponatremia, comparing the two guidelines and highlighting recent developments. Diagnostically, the initial step is to differentiate hypotonic from nonhypotonic hyponatremia. Hypotonic hyponatremia is further differentiated on the basis of urine osmolality, urine sodium level, and volume status. Recently identified parameters, including fractional uric acid excretion and plasma copeptin concentration, may further improve the diagnostic approach. The treatment for hyponatremia is chosen on the basis of duration and symptoms. For acute or severely symptomatic hyponatremia, both guidelines adopted the approach of giving a bolus of hypertonic saline. Although fluid restriction remains the first-line treatment for most forms of chronic hyponatremia, therapy to increase renal free water excretion is often necessary. Vasopressin receptor antagonists, urea, and loop diuretics serve this purpose, but received different recommendations in the two guidelines. Such discrepancies may relate to different interpretations of the limited evidence or differences in guideline methodology. Nevertheless, the development of guidelines has been important in advancing this evolving field.
Collapse
Affiliation(s)
- Ewout J Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Robert Zietse
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
14
|
Abstract
The posterior pituitary gland secretes oxytocin and vasopressin (the antidiuretic hormone) into the blood system. Oxytocin is required for normal delivery of the young and for delivery of milk to the young during lactation. Vasopressin increases water reabsorption in the kidney to maintain body fluid balance and causes vasoconstriction to increase blood pressure. Oxytocin and vasopressin secretion occurs from the axon terminals of magnocellular neurons whose cell bodies are principally found in the hypothalamic supraoptic nucleus and paraventricular nucleus. The physiological functions of oxytocin and vasopressin depend on their secretion, which is principally determined by the pattern of action potentials initiated at the cell bodies. Appropriate secretion of oxytocin and vasopressin to meet the challenges of changing physiological conditions relies mainly on integration of afferent information on reproductive, osmotic, and cardiovascular status with local regulation of magnocellular neurons by glia as well as intrinsic regulation by the magnocellular neurons themselves. This review focuses on the control of magnocellular neuron activity with a particular emphasis on their regulation by reproductive function, body fluid balance, and cardiovascular status. © 2016 American Physiological Society. Compr Physiol 6:1701-1741, 2016.
Collapse
Affiliation(s)
- Colin H Brown
- Brain Health Research Centre, Centre for Neuroendocrinology and Department of Physiology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
15
|
Zaelzer C, Hua P, Prager-Khoutorsky M, Ciura S, Voisin D, Liedtke W, Bourque C. ΔN-TRPV1: A Molecular Co-detector of Body Temperature and Osmotic Stress. Cell Rep 2015; 13:23-30. [DOI: 10.1016/j.celrep.2015.08.061] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 07/25/2015] [Accepted: 08/21/2015] [Indexed: 10/23/2022] Open
|
16
|
Braconnier A, Vrigneaud L, Bertocchio JP. [Hyponatremias: From pathophysiology to treatments. Review for clinicians]. Nephrol Ther 2015; 11:201-12. [PMID: 26095871 DOI: 10.1016/j.nephro.2015.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/22/2015] [Accepted: 04/22/2015] [Indexed: 10/23/2022]
Abstract
Hyponatremia could be defined as a public health topic: too many patients are concerned in both hospitalized and general populations; hyponatremia induces lots of clinical outcomes and a great economic burden. Its pathophysiology involves thirst regulation (hypotonic water intakes) and losses regulation (through the kidney under vasopressin control). Diagnostic approach should insure that hyponatremia reflects hypo-osmolality and hypotonicity: first, a false hyponatremia should be ruled out, then a non-hypotonic one. Next step is clinic: extracellular status should be evaluated. When increased, any edematous status should be evoked: heart failure, liver cirrhosis or nephrotic syndrome. When decreased, any cause of extracellular dehydration should be evoked: natriuresis could help distinguishing between renal (adrenal insufficiency, diuretics use or salt-losing nephropathy) or extrarenal (digestive mostly) etiologies. When clinically normal, a secretion of inappropriate antidiuretic hormone (SIADH) should be evoked, once hypothyroidism or hypoadrenocorticism have been ruled out. Therapy depends on the severity of the clinical impact. From extracellular rehydration, through fluid restriction, the paraneoplastic and heart failure-induced SIADH benefit from a new class of drug, available among the therapeutic strategies: aquaretics act through antidiuretic hormone receptor antagonism (vaptans). Their long-term benefits still have to be proven but it is a significant step forward in the treatment of hyponatremias.
Collapse
Affiliation(s)
- Antoine Braconnier
- Service de néphrologie, hémodialyse, transplantation, hôpital Maison-Blanche, CHU de Reims, avenue Cognacq-Jay, 51092 Reims cedex, France; Faculté de médecine, université Reims Champagne Ardenne, 51000 Reims, France; Club des jeunes néphrologues, 11, rue Auguste-Mourcou, 59000 Lille, France
| | - Laurence Vrigneaud
- Club des jeunes néphrologues, 11, rue Auguste-Mourcou, 59000 Lille, France; Service de néphrologie, médecine interne, centre hospitalier de Valenciennes, avenue Désandrouin, CS 50479, 59322 Valenciennes cedex, France
| | - Jean-Philippe Bertocchio
- Club des jeunes néphrologues, 11, rue Auguste-Mourcou, 59000 Lille, France; Service d'explorations fonctionnelles rénales et métaboliques, hôpital européen Georges-Pompidou, 20, rue Leblanc, 75908 Paris cedex, France; Université Paris Descartes, 75006 Paris, France.
| |
Collapse
|
17
|
Prager-Khoutorsky M, Bourque CW. Mechanical basis of osmosensory transduction in magnocellular neurosecretory neurones of the rat supraoptic nucleus. J Neuroendocrinol 2015; 27:507-15. [PMID: 25712904 DOI: 10.1111/jne.12270] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/19/2015] [Accepted: 02/22/2015] [Indexed: 12/31/2022]
Abstract
Rat magnocellular neurosecretory cells (MNCs) release vasopressin and oxytocin to promote antidiuresis and natriuresis at the kidney. The osmotic control of oxytocin and vasopressin release at the neurohypophysis is required for osmoregulation in these animals, and this release is mediated by a modulation of the action potential firing rate by the MNCs. Under basal (isotonic) conditions, MNCs fire action potentials at a slow rate, and this activity is inhibited by hypo-osmotic conditions and enhanced by hypertonicity. The effects of changes in osmolality on MNCs are mediated by a number of different factors, including the involvement of synaptic inputs, the release of taurine by local glial cells and regulation of ion channels expressed within the neurosecretory neurones themselves. We review recent findings that have clarified our understanding of how osmotic stimuli modulate the activity of nonselective cation channels in MNCs. Previous studies have shown that osmotically-evoked changes in membrane potential and action potential firing rate in acutely isolated MNCs are provoked mainly by a modulation of nonselective cation channels. Notably, the excitation of isolated MNCs during hypertonicity is mediated by the activation of a capsaicin-insensitive cation channel that MNCs express as an N-terminal variant of the transient receptor potential vanilloid 1 (Trpv1) channel. The activation of this channel during hypertonicity is a mechanical process associated with cell shrinking. The effectiveness of this mechanical process depends on the presence of a thin layer of actin filaments (F-actin) beneath the plasma membrane, as well as a densely interweaved network of microtubules (MTs) occupying the bulk of the cytoplasm of MNCs. Although the mechanism by which F-actin contributes to Trpv1 activation remains unknown, recent data have shown that MTs interact with Trpv1 channels via binding sites on the C-terminus, and that the force mediated through this complex is required for channel gating during osmosensory transduction. Indeed, displacement of this interaction prevents channel activation during shrinking, whereas increasing the density of these interaction sites potentiates shrinking-induced activation of Trpv1. Therefore, the gain of the osmosensory transduction process can be regulated bi-directionally through changes in the organisation of F-actin and MTs.
Collapse
Affiliation(s)
- M Prager-Khoutorsky
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | - C W Bourque
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| |
Collapse
|
18
|
Sharif-Naeini R. Contribution of mechanosensitive ion channels to somatosensation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:53-71. [PMID: 25744670 DOI: 10.1016/bs.pmbts.2014.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mechanotransduction, the conversion of a mechanical stimulus into an electrical signal, is a central mechanism to several physiological functions in mammals. It relies on the function of mechanosensitive ion channels (MSCs). Although the first single-channel recording from MSCs dates back to 30 years ago, the identity of the genes encoding MSCs has remained largely elusive. Because these channels have an important role in the development of mechanical hypersensitivity, a better understanding of their function may lead to the identification of selective inhibitors and generate novel therapeutic pathways in the treatment of chronic pain. Here, I will describe our current understanding of the role MSCs may play in somatosensation and the potential candidate genes proposed to encode them.
Collapse
Affiliation(s)
- Reza Sharif-Naeini
- Department of Physiology and Cell Information Systems Group, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
19
|
Spasovski G, Vanholder R, Allolio B, Annane D, Ball S, Bichet D, Decaux G, Fenske W, Hoorn EJ, Ichai C, Joannidis M, Soupart A, Zietse R, Haller M, van der Veer S, Van Biesen W, Nagler E. Clinical practice guideline on diagnosis and treatment of hyponatraemia. Eur J Endocrinol 2014; 170:G1-47. [PMID: 24569125 DOI: 10.1530/eje-13-1020] [Citation(s) in RCA: 448] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hyponatraemia, defined as a serum sodium concentration <135 mmol/l, is the most common disorder of body fluid and electrolyte balance encountered in clinical practice. It can lead to a wide spectrum of clinical symptoms, from subtle to severe or even life threatening, and is associated with increased mortality, morbidity and length of hospital stay in patients presenting with a range of conditions. Despite this, the management of patients remains problematic. The prevalence of hyponatraemia in widely different conditions and the fact that hyponatraemia is managed by clinicians with a broad variety of backgrounds have fostered diverse institution- and speciality-based approaches to diagnosis and treatment. To obtain a common and holistic view, the European Society of Intensive Care Medicine (ESICM), the European Society of Endocrinology (ESE) and the European Renal Association - European Dialysis and Transplant Association (ERA-EDTA), represented by European Renal Best Practice (ERBP), have developed the Clinical Practice Guideline on the diagnostic approach and treatment of hyponatraemia as a joint venture of three societies representing specialists with a natural interest in hyponatraemia. In addition to a rigorous approach to methodology and evaluation, we were keen to ensure that the document focused on patient-important outcomes and included utility for clinicians involved in everyday practice.
Collapse
|
20
|
Spasovski G, Vanholder R, Allolio B, Annane D, Ball S, Bichet D, Decaux G, Fenske W, Hoorn EJ, Ichai C, Joannidis M, Soupart A, Zietse R, Haller M, van der Veer S, Van Biesen W, Nagler E. Clinical practice guideline on diagnosis and treatment of hyponatraemia. Nephrol Dial Transplant 2014; 29 Suppl 2:i1-i39. [PMID: 24569496 DOI: 10.1093/ndt/gfu040] [Citation(s) in RCA: 329] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hyponatraemia, defined as a serum sodium concentration <135 mmol/l, is the most common disorder of body fluid and electrolyte balance encountered in clinical practice. It can lead to a wide spectrum of clinical symptoms, from subtle to severe or even life threatening, and is associated with increased mortality, morbidity and length of hospital stay in patients presenting with a range of conditions. Despite this, the management of patients remains problematic. The prevalence of hyponatraemia in widely different conditions and the fact that hyponatraemia is managed by clinicians with a broad variety of backgrounds have fostered diverse institution- and speciality-based approaches to diagnosis and treatment. To obtain a common and holistic view, the European Society of Intensive Care Medicine (ESICM), the European Society of Endocrinology (ESE) and the European Renal Association - European Dialysis and Transplant Association (ERA-EDTA), represented by European Renal Best Practice (ERBP), have developed the Clinical Practice Guideline on the diagnostic approach and treatment of hyponatraemia as a joint venture of three societies representing specialists with a natural interest in hyponatraemia. In addition to a rigorous approach to methodology and evaluation, we were keen to ensure that the document focused on patient-important outcomes and included utility for clinicians involved in everyday practice.
Collapse
|
21
|
|
22
|
New determinants of firing rates and patterns of vasopressinergic magnocellular neurons: predictions using a mathematical model of osmodetection. J Comput Neurosci 2011; 31:441-51. [DOI: 10.1007/s10827-011-0321-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/21/2011] [Accepted: 02/22/2011] [Indexed: 10/18/2022]
|
23
|
Sudbury JR, Ciura S, Sharif-Naeini R, Bourque CW. Osmotic and thermal control of magnocellular neurosecretory neurons - role of an N-terminal variant of trpv1. Eur J Neurosci 2010; 32:2022-30. [DOI: 10.1111/j.1460-9568.2010.07512.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
24
|
Prager-Khoutorsky M, Bourque CW. Osmosensation in vasopressin neurons: changing actin density to optimize function. Trends Neurosci 2009; 33:76-83. [PMID: 19963290 DOI: 10.1016/j.tins.2009.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 10/31/2009] [Accepted: 11/13/2009] [Indexed: 11/19/2022]
Abstract
The proportional relation between circulating vasopressin concentration and plasma osmolality is fundamental for body fluid homeostasis. Although changes in the sensitivity of this relation are associated with pathophysiological conditions, central mechanisms modulating osmoregulatory gain are unknown. Here, we review recent data that sheds important light on this process. The cell autonomous osmosensitivity of vasopressin neurons depends on cation channels comprising a variant of the transient receptor potential vanilloid 1 (TRPV1) channel. Hyperosmotic activation is mediated by a mechanical process where sensitivity increases in proportion with actin filament density. Moreover, angiotensin II amplifies osmotic activation by a rapid stimulation of actin polymerization, suggesting that neurotransmitter-induced changes in cytoskeletal organization in osmosensory neurons can mediate central changes in osmoregulatory gain.
Collapse
Affiliation(s)
- Masha Prager-Khoutorsky
- Center for Research in Neuroscience, Research Institute of the McGill University Health Center, Montreal General Hospital, 1650 Cedar Avenue, Montreal, Canada
| | | |
Collapse
|
25
|
Inoue R, Mori M, Kawarabayashi Y, Jian Z. Chemical-mechanical synergism for cardiovascular TRPC6 channel activation via PLC/diacylglycerol and PLA2/omega-hydroxylase/20-HETE pathways. Nihon Yakurigaku Zasshi 2009; 134:116-21. [PMID: 19749481 DOI: 10.1254/fpj.134.116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Guilak F, Cohen DM, Estes BT, Gimble JM, Liedtke W, Chen CS. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 2009; 5:17-26. [PMID: 19570510 DOI: 10.1016/j.stem.2009.06.016] [Citation(s) in RCA: 1355] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A diverse array of environmental factors contributes to the overall control of stem cell activity. In particular, new data continue to mount on the influence of the extracellular matrix (ECM) on stem cell fate through physical interactions with cells, such as the control of cell geometry, ECM geometry/topography at the nanoscale, ECM mechanical properties, and the transmission of mechanical or other biophysical factors to the cell. Here, we review some of the physical processes by which cues from the ECM can influence stem cell fate, with particular relevance to the use of stem cells in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Farshid Guilak
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | |
Collapse
|
27
|
|