1
|
Huang Q, Lee HH, Volpe B, Zhang Q, Xue C, Liu BC, Abuhasan YR, Li L, Yang JS, Egholm J, Gutierrez-Vazquez C, Li A, Lee A, Tang S, Wong CW, Liu T, Huang Y, Ramos RL, Stout RF, El Ouaamari A, Quintana FJ, Lowell BB, Kahn CR, Pothos EN, Cai W. Deletion of murine astrocytic vesicular nucleotide transporter increases anxiety and depressive-like behavior and attenuates motivation for reward. Mol Psychiatry 2025; 30:506-520. [PMID: 39122778 PMCID: PMC11750621 DOI: 10.1038/s41380-024-02692-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Astrocytes are multi-functional glial cells in the central nervous system that play critical roles in modulation of metabolism, extracellular ion and neurotransmitter levels, and synaptic plasticity. Astrocyte-derived signaling molecules mediate many of these modulatory functions of astrocytes, including vesicular release of ATP. In the present study, we used a unique genetic mouse model to investigate the functional significance of astrocytic exocytosis of ATP. Using primary cultured astrocytes, we show that loss of vesicular nucleotide transporter (Vnut), a primary transporter responsible for loading cytosolic ATP into the secretory vesicles, dramatically reduces ATP loading into secretory lysosomes and ATP release, without any change in the molecular machinery of exocytosis or total intracellular ATP content. Deletion of astrocytic Vnut in adult mice leads to increased anxiety, depressive-like behaviors, and decreased motivation for reward, especially in females, without significant impact on food intake, systemic glucose metabolism, cognition, or sociability. These behavioral alterations are associated with significant decreases in the basal extracellular dopamine levels in the nucleus accumbens. Likewise, ex vivo brain slices from these mice show a strong trend toward a reduction in evoked dopamine release in the nucleus accumbens. Mechanistically, the reduced dopamine signaling we observed is likely due to an increased expression of monoamine oxidases. Together, these data demonstrate a key modulatory role of astrocytic exocytosis of ATP in anxiety, depressive-like behavior, and motivation for reward, by regulating the mesolimbic dopamine circuitry.
Collapse
Affiliation(s)
- Qian Huang
- Department of Molecular and Cellular Biochemistry, the Barnstable Brown Diabetes and Obesity Center, University of Kentucky College of Medicine, Lexington, KY, USA
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Hiu Ham Lee
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Bryan Volpe
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Qingchen Zhang
- Program in Pharmacology and Experimental Therapeutics and Pharmacology and Drug Development, Graduate School of Biomedical Sciences and Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Chang Xue
- Program in Pharmacology and Experimental Therapeutics and Pharmacology and Drug Development, Graduate School of Biomedical Sciences and Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Brian C Liu
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Yahia R Abuhasan
- Program in Pharmacology and Experimental Therapeutics and Pharmacology and Drug Development, Graduate School of Biomedical Sciences and Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Lingyun Li
- Program in Pharmacology and Experimental Therapeutics and Pharmacology and Drug Development, Graduate School of Biomedical Sciences and Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Jeremy S Yang
- Program in Pharmacology and Experimental Therapeutics and Pharmacology and Drug Development, Graduate School of Biomedical Sciences and Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Julie Egholm
- Program in Pharmacology and Experimental Therapeutics and Pharmacology and Drug Development, Graduate School of Biomedical Sciences and Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Cristina Gutierrez-Vazquez
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Allen Li
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Alyssa Lee
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Sharon Tang
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Chun Wa Wong
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Tiemin Liu
- Key Laboratory of Genetic Engineering, Department of Endocrinology and Metabolism, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, PR China
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Yuan Huang
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Raddy L Ramos
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Randy F Stout
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | | | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bradford B Lowell
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - C Ronald Kahn
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Emmanuel N Pothos
- Program in Pharmacology and Experimental Therapeutics and Pharmacology and Drug Development, Graduate School of Biomedical Sciences and Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Weikang Cai
- Department of Molecular and Cellular Biochemistry, the Barnstable Brown Diabetes and Obesity Center, University of Kentucky College of Medicine, Lexington, KY, USA.
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA.
| |
Collapse
|
2
|
Liu S, Luo Z, Li F, Zhang L, Xie M, Yang J, Xu Z. The JNK Signaling Pathway Regulates Seizures Through ENT1 in Pilocarpine-Induced Epilepsy Rat Model. CNS Neurosci Ther 2024; 30:e70190. [PMID: 39722194 DOI: 10.1111/cns.70190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
OBJECTIVE The study investigates whether the expression and function of ENT1 can be regulated by inhibiting the JNK signaling pathway, thereby altering the levels of extracellular adenosine and glutamate in neurons, and subsequently affecting the progression of epilepsy. METHODS The adult male SD rats were randomly divided into four groups: EP + SP600125 group, EP + DMSO group, EP group, and normal control group. The expression levels of ENT1, p-JNK, and JNK in the hippocampus of rats from each experimental group were detected using Western blotting technology. The expression and localization of ENT1 and p-JNK in the CA1, CA3, and DG areas of the hippocampus were detected by immunohistochemical staining and immunofluorescence staining. Microdialysis combined with liquid chromatography-mass spectrometry was used to determine the concentrations of adenosine and glutamate in the extracellular fluid of hippocampus in each experimental group. RESULTS This study showed that the JNK-specific inhibitor SP600125 could reduce ENT1 expression and seizure intensity in experimental rats. Statistical analysis confirmed that adenosine and glutamate levels in the extracellular fluid of the hippocampus increased significantly after seizures in rats, and the JNK-specific inhibitor SP600125 could increase adenosine levels in the extracellular fluid but decrease glutamate levels. SIGNIFICANCE The JNK-specific inhibitor SP600125 can specifically inhibit the JNK signaling pathway and reduce the expression of ENT1 transporter. The mechanism is related to the transport of adenosine from the extracellular space to the intracellular space by ENT1 during epileptic states. Inhibition of ENT1 can increase the concentration of adenosine in the extracellular fluid of the hippocampus. The increase in adenosine concentration stopped glutamate from being released and reduced the amount of glutamate in the outside of the cell.
Collapse
Affiliation(s)
- Shun Liu
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhong Luo
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Fangjing Li
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Lijia Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Mingxiang Xie
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Juan Yang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Zucai Xu
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou, China
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
3
|
Stedehouder J, Roberts BM, Raina S, Bossi S, Liu AKL, Doig NM, McGerty K, Magill PJ, Parkkinen L, Cragg SJ. Rapid modulation of striatal cholinergic interneurons and dopamine release by satellite astrocytes. Nat Commun 2024; 15:10017. [PMID: 39562551 PMCID: PMC11577008 DOI: 10.1038/s41467-024-54253-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 11/01/2024] [Indexed: 11/21/2024] Open
Abstract
Astrocytes are increasingly appreciated to possess underestimated and important roles in modulating neuronal circuits. Astrocytes in striatum can regulate dopamine transmission by governing the extracellular tone of axonal neuromodulators, including GABA and adenosine. However, here we reveal that striatal astrocytes occupy a cell type-specific anatomical and functional relationship with cholinergic interneurons (ChIs), through which they rapidly excite ChIs and govern dopamine release via nicotinic acetylcholine receptors on subsecond timescales. We identify that ChI somata are in unexpectedly close proximity to astrocyte somata, in mouse and human, forming a "soma-to-soma" satellite-like configuration not typically observed for other striatal neurons. We find that transient depolarization of astrocytes in mouse striatum reversibly regulates ChI excitability by decreasing extracellular calcium. These findings reveal a privileged satellite astrocyte-interneuron interaction for striatal ChIs operating on subsecond timescales via regulation of extracellular calcium dynamics to shape downstream striatal circuit activity and dopamine signaling.
Collapse
Affiliation(s)
- Jeffrey Stedehouder
- Centre for Cellular and Molecular Neurobiology, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, OX1 3PT, UK
| | - Bradley M Roberts
- Centre for Cellular and Molecular Neurobiology, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, OX1 3PT, UK
| | - Shinil Raina
- Centre for Cellular and Molecular Neurobiology, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, OX1 3PT, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Simon Bossi
- Centre for Cellular and Molecular Neurobiology, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, OX1 3PT, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Alan King Lun Liu
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, OX1 3PT, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Natalie M Doig
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QT, UK
| | - Kevin McGerty
- Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK
| | - Peter J Magill
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, OX1 3PT, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QT, UK
| | - Laura Parkkinen
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, OX1 3PT, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Stephanie J Cragg
- Centre for Cellular and Molecular Neurobiology, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, OX1 3PT, UK.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
4
|
Bassareo V, Maccioni R, Talani G, Zuffa S, El Abiead Y, Lorrai I, Kawamura T, Pantis S, Puliga R, Vargiu R, Lecca D, Enrico P, Peana A, Dazzi L, Dorrestein PC, Sanna PP, Sanna E, Acquas E. Receptor and metabolic insights on the ability of caffeine to prevent alcohol-induced stimulation of mesolimbic dopamine transmission. Transl Psychiatry 2024; 14:391. [PMID: 39341817 PMCID: PMC11438888 DOI: 10.1038/s41398-024-03112-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024] Open
Abstract
The consumption of alcohol and caffeine affects the lives of billions of individuals worldwide. Although recent evidence indicates that caffeine impairs the reinforcing properties of alcohol, a characterization of its effects on alcohol-stimulated mesolimbic dopamine (DA) function was lacking. Acting as the pro-drug of salsolinol, alcohol excites DA neurons in the posterior ventral tegmental area (pVTA) and increases DA release in the nucleus accumbens shell (AcbSh). Here we show that caffeine, via antagonistic activity on A2A adenosine receptors (A2AR), prevents alcohol-dependent activation of mesolimbic DA function as assessed, in-vivo, by brain microdialysis of AcbSh DA and, in-vitro, by electrophysiological recordings of pVTA DA neuronal firing. Accordingly, while the A1R antagonist DPCPX fails to prevent the effects of alcohol on DA function, both caffeine and the A2AR antagonist SCH 58261 prevent alcohol-dependent pVTA generation of salsolinol and increase in AcbSh DA in-vivo, as well as alcohol-dependent excitation of pVTA DA neurons in-vitro. However, caffeine also prevents direct salsolinol- and morphine-stimulated DA function, suggesting that it can exert these inhibitory effects also independently from affecting alcohol-induced salsolinol formation or bioavailability. Finally, untargeted metabolomics of the pVTA showcases that caffeine antagonizes alcohol-mediated effects on molecules (e.g. phosphatidylcholines, fatty amides, carnitines) involved in lipid signaling and energy metabolism, which could represent an additional salsolinol-independent mechanism of caffeine in impairing alcohol-mediated stimulation of mesolimbic DA transmission. In conclusion, the outcomes of this study strengthen the potential of caffeine, as well as of A2AR antagonists, for future development of preventive/therapeutic strategies for alcohol use disorder.
Collapse
Affiliation(s)
- Valentina Bassareo
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Riccardo Maccioni
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Giuseppe Talani
- Institute of Neuroscience - National Research Council (C.N.R.) of Italy, Cagliari, Italy
| | - Simone Zuffa
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Yasin El Abiead
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Irene Lorrai
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Tomoya Kawamura
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Sofia Pantis
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Roberta Puliga
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Romina Vargiu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Daniele Lecca
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Paolo Enrico
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Alessandra Peana
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Laura Dazzi
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Pietro Paolo Sanna
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Enrico Sanna
- Institute of Neuroscience - National Research Council (C.N.R.) of Italy, Cagliari, Italy
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Elio Acquas
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| |
Collapse
|
5
|
Brill-Weil SG, Kramer PF, Yanez A, Clever FH, Zhang R, Khaliq ZM. Presynaptic GABA A receptors control integration of nicotinic input onto dopaminergic axons in the striatum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600616. [PMID: 39372741 PMCID: PMC11451734 DOI: 10.1101/2024.06.25.600616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Axons of dopaminergic neurons express gamma-aminobutyric acid type-A receptors (GABAARs) and nicotinic acetylcholine receptors (nAChRs) which are both independently positioned to shape striatal dopamine release. Using electrophysiology and calcium imaging, we investigated how interactions between GABAARs and nAChRs influence dopaminergic axon excitability. Direct axonal recordings showed that benzodiazepine application suppresses subthreshold axonal input from cholinergic interneurons (CINs). In imaging experiments, we used the first temporal derivative of presynaptic calcium signals to distinguish between direct- and nAChR-evoked activity in dopaminergic axons. We found that GABAAR antagonism with gabazine selectively enhanced nAChR-evoked axonal signals. Acetylcholine release was unchanged in gabazine suggesting that GABAARs located on dopaminergic axons, but not CINs, mediated this enhancement. Unexpectedly, we found that a widely used GABAAR antagonist, picrotoxin, inhibits axonal nAChRs and should be used cautiously for striatal circuit analysis. Overall, we demonstrate that GABAARs on dopaminergic axons regulate integration of nicotinic input to shape presynaptic excitability.
Collapse
Affiliation(s)
- Samuel G. Brill-Weil
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Paul F. Kramer
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Anthony Yanez
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Faye H. Clever
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Renshu Zhang
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Zayd M. Khaliq
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| |
Collapse
|
6
|
Couto GT, da Silva GP, Rockenbach L, da Silva JS, Vianna MRMR, Da Silva RS. Anticonvulsant Role of Adenosine is Blunted During Alcohol Withdrawal Syndrome in an Adult Zebrafish Model. Neurochem Res 2023; 48:3007-3015. [PMID: 37256498 DOI: 10.1007/s11064-023-03958-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/20/2023] [Accepted: 05/21/2023] [Indexed: 06/01/2023]
Abstract
Alcohol (ethanol) dependence and related disorders are life-threatening conditions and source of suffering for the user, family members and society. Alcohol withdrawal syndrome (AWS) is a little-known dynamic process associated with a high frequency of relapses. A state of hyperglutamatergic neurotransmission and imbalanced GABAergic function is related to an increased susceptibility to seizures during alcohol withdrawal. Adenosine signaling display an important role in endogenous response to decrease seizure and related damages. Here, an intermittent alcohol exposure regimen (1 h daily of 0.5% ethanol solution) for 16 days or 8 days of the same ethanol exposure regimen followed by 1 or 8 days of ethanol withdrawal was used to assess adenosine signaling in the context of seizure susceptibility using adult zebrafish. In both abstainer groups, a sub-convulsant dose of pentylenetetrazol (2.5 mM) was able to increase the frequency of animals reaching a clonic seizure-like state, while continuous-treated animals had no seizure, as did control animals. The total brain mRNA expression of A1 adenosine receptor was decreased in animals with 1 day of ethanol withdrawal. The agonism of A1 adenosine receptor induced an anticonvulsant effect in animals with 1 day of ethanol withdrawal after the injection of the specific agonist (N6-cyclopentyladenosine, 10 mg.Kg- 1; i.p.). These findings reinforce A1 adenosine receptor as a key target in acute alcohol withdrawal syndrome and zebrafish as an excellent platform to study biological mechanism of AWS.
Collapse
Affiliation(s)
- Giovanna Trevisan Couto
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilherme Pietro da Silva
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Liliana Rockenbach
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jéssica Scheid da Silva
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Monica Ryff Moreira Roca Vianna
- Laboratório de Biologia do Desenvolvimento do Sistema Nervoso, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rosane Souza Da Silva
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Neurociências, Universidade Federal Fluminense R. Prof. Marcos Waldemar de Freitas Reis, São Domingos, Niterói, RJ, 24210-201, Brazil.
| |
Collapse
|
7
|
Zhao Y, Liu X, Yang G. Adenosinergic Pathway in Parkinson's Disease: Recent Advances and Therapeutic Perspective. Mol Neurobiol 2023; 60:3054-3070. [PMID: 36786912 DOI: 10.1007/s12035-023-03257-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized pathologically by α-synuclein (α-syn) aggregation. In PD, the current mainstay of symptomatic treatment is levodopa (L-DOPA)-based dopamine (DA) replacement therapy. However, the development of dyskinesia and/or motor fluctuations which is relevant to levodopa is restricting its long-term utility. Given that the ability of which is to modulate the striato-thalamo-cortical loops and function to modulate basal ganglia output, the adenosinergic pathway (AP) is qualified as a potential promising non-DA target. As an indispensable component of energy production pathways, AP modulates cellular metabolism and gene regulation in both neurons and neuroglia cells through the recognition and degradation of extracellular adenosine. In addition, AP is geared to the initiation, evolution, and resolution of inflammation as well. Besides the above-mentioned crosstalk between the adenosine and dopamine signaling pathways, the functions of adenosine receptors (A1R, A2AR, A2BR, and A3R) and metabolism enzymes in modulating PD pathological process have been extensively investigated in recent decades. Here we reviewed the emerging findings focused on the function of adenosine receptors, adenosine formation, and metabolism in the brain and discussed its potential roles in PD pathological process. We also recapitulated clinical studies and the preclinical evidence for the medical strategies targeting the Ado signaling pathway to improve motor dysfunction and alleviate pathogenic process in PD. We hope that further clinical studies should consider this pathway in their monotherapy and combination therapy, which would open new vistas to more targeted therapeutic approaches.
Collapse
Affiliation(s)
- Yuan Zhao
- Department of Geriatrics, The Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Xin Liu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Guofeng Yang
- Department of Geriatrics, The Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, People's Republic of China. .,Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
8
|
Ferré S, Sarasola LI, Quiroz C, Ciruela F. Presynaptic adenosine receptor heteromers as key modulators of glutamatergic and dopaminergic neurotransmission in the striatum. Neuropharmacology 2023; 223:109329. [PMID: 36375695 DOI: 10.1016/j.neuropharm.2022.109329] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022]
Abstract
Adenosine plays a very significant role in modulating striatal glutamatergic and dopaminergic neurotransmission. In the present essay we first review the extensive evidence that indicates this modulation is mediated by adenosine A1 and A2A receptors (A1Rs and A2ARs) differentially expressed by the components of the striatal microcircuit that include cortico-striatal glutamatergic and mesencephalic dopaminergic terminals, and the cholinergic interneuron. This microcircuit mediates the ability of striatal glutamate release to locally promote dopamine release through the intermediate activation of cholinergic interneurons. A1Rs and A2ARs are colocalized in the cortico-striatal glutamatergic terminals, where they form A1R-A2AR and A2AR-cannabinoid CB1 receptor (CB1R) heteromers. We then evaluate recent findings on the unique properties of A1R-A2AR and A2AR-CB1R heteromers, which depend on their different quaternary tetrameric structure. These properties involve different allosteric mechanisms in the two receptor heteromers that provide fine-tune modulation of adenosine and endocannabinoid-mediated striatal glutamate release. Finally, we evaluate the evidence supporting the use of different heteromers containing striatal adenosine receptors as targets for drug development for neuropsychiatric disorders, such as Parkinson's disease and restless legs syndrome, based on the ability or inability of the A2AR to demonstrate constitutive activity in the different heteromers, and the ability of some A2AR ligands to act preferentially as neutral antagonists or inverse agonists, or to have preferential affinity for a specific A2AR heteromer.
Collapse
Affiliation(s)
- Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes on Drug Abuse, Baltimore, MD, USA.
| | - Laura I Sarasola
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907, L'Hospitalet de Llobregat, Spain; Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, 08907, L'Hospitalet de Llobregat, Spain
| | - César Quiroz
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes on Drug Abuse, Baltimore, MD, USA
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907, L'Hospitalet de Llobregat, Spain; Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, 08907, L'Hospitalet de Llobregat, Spain.
| |
Collapse
|
9
|
Kruyer A, Kalivas PW, Scofield MD. Astrocyte regulation of synaptic signaling in psychiatric disorders. Neuropsychopharmacology 2023; 48:21-36. [PMID: 35577914 PMCID: PMC9700696 DOI: 10.1038/s41386-022-01338-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 02/07/2023]
Abstract
Over the last 15 years, the field of neuroscience has evolved toward recognizing the critical role of astroglia in shaping neuronal synaptic activity and along with the pre- and postsynapse is now considered an equal partner in tripartite synaptic transmission and plasticity. The relative youth of this recognition and a corresponding deficit in reagents and technologies for quantifying and manipulating astroglia relative to neurons continues to hamper advances in understanding tripartite synaptic physiology. Nonetheless, substantial advances have been made and are reviewed herein. We review the role of astroglia in synaptic function and regulation of behavior with an eye on how tripartite synapses figure into brain pathologies underlying behavioral impairments in psychiatric disorders, both from the perspective of measures in postmortem human brains and more subtle influences on tripartite synaptic regulation of behavior in animal models of psychiatric symptoms. Our goal is to provide the reader a well-referenced state-of-the-art understanding of current knowledge and predict what we may discover with deeper investigation of tripartite synapses using reagents and technologies not yet available.
Collapse
Affiliation(s)
- Anna Kruyer
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA.
| | - Michael D Scofield
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
- Department of Anesthesia & Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
10
|
Hausrat TJ, Vogl C, Neef J, Schweizer M, Yee BK, Strenzke N, Kneussel M. Monoallelic loss of the F-actin-binding protein radixin facilitates startle reactivity and pre-pulse inhibition in mice. Front Cell Dev Biol 2022; 10:987691. [DOI: 10.3389/fcell.2022.987691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022] Open
Abstract
Hearing impairment is one of the most common disorders with a global burden and increasing prevalence in an ever-aging population. Previous research has largely focused on peripheral sensory perception, while the brain circuits of auditory processing and integration remain poorly understood. Mutations in the rdx gene, encoding the F-actin binding protein radixin (Rdx), can induce hearing loss in human patients and homozygous depletion of Rdx causes deafness in mice. However, the precise physiological function of Rdx in hearing and auditory information processing is still ill-defined. Here, we investigated consequences of rdx monoallelic loss in the mouse. Unlike the homozygous (−/−) rdx knockout, which is characterized by the degeneration of actin-based stereocilia and subsequent hearing loss, our analysis of heterozygous (+/−) mutants has revealed a different phenotype. Specifically, monoallelic loss of rdx potentiated the startle reflex in response to acoustic stimulation of increasing intensities, suggesting a gain of function relative to wildtype littermates. The monoallelic loss of the rdx gene also facilitated pre-pulse inhibition of the acoustic startle reflex induced by weak auditory pre-pulse stimuli, indicating a modification to the circuit underlying sensorimotor gating of auditory input. However, the auditory brainstem response (ABR)-based hearing thresholds revealed a mild impairment in peripheral sound perception in rdx (+/-) mice, suggesting minor aberration of stereocilia structural integrity. Taken together, our data suggest a critical role of Rdx in the top-down processing and/or integration of auditory signals, and therefore a novel perspective to uncover further Rdx-mediated mechanisms in central auditory information processing.
Collapse
|
11
|
Ma L, Day-Cooney J, Benavides OJ, Muniak MA, Qin M, Ding JB, Mao T, Zhong H. Locomotion activates PKA through dopamine and adenosine in striatal neurons. Nature 2022; 611:762-768. [PMID: 36352228 PMCID: PMC10752255 DOI: 10.1038/s41586-022-05407-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 10/03/2022] [Indexed: 11/10/2022]
Abstract
The canonical model of striatal function predicts that animal locomotion is associated with the opposing regulation of protein kinase A (PKA) in direct and indirect pathway striatal spiny projection neurons (SPNs) by dopamine1-7. However, the precise dynamics of PKA in dorsolateral SPNs during locomotion remain to be determined. It is also unclear whether other neuromodulators are involved. Here we show that PKA activity in both types of SPNs is essential for normal locomotion. Using two-photon fluorescence lifetime imaging8-10 of a PKA sensor10 through gradient index lenses, we measured PKA activity within individual SPNs of the mouse dorsolateral striatum during locomotion. Consistent with the canonical view, dopamine activated PKA activity in direct pathway SPNs during locomotion through the dopamine D1 receptor. However, indirect pathway SPNs exhibited a greater increase in PKA activity, which was largely abolished through the blockade of adenosine A2A receptors. In agreement with these results, fibre photometry measurements of an adenosine sensor11 revealed an acute increase in extracellular adenosine during locomotion. Functionally, antagonism of dopamine or adenosine receptors resulted in distinct changes in SPN PKA activity, neuronal activity and locomotion. Together, our results suggest that acute adenosine accumulation interplays with dopamine release to orchestrate PKA activity in SPNs and proper striatal function during animal locomotion.
Collapse
Affiliation(s)
- Lei Ma
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Julian Day-Cooney
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Omar Jáidar Benavides
- Department of Neurosurgery and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Michael A Muniak
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Maozhen Qin
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Jun B Ding
- Department of Neurosurgery and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Tianyi Mao
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Haining Zhong
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|