1
|
Su H, Ye T, Cao S, Hu C. Understanding the shift to compulsion in addiction: insights from personality traits, social factors, and neurobiology. Front Psychol 2024; 15:1416222. [PMID: 39315036 PMCID: PMC11416939 DOI: 10.3389/fpsyg.2024.1416222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Compulsion stands as a central symptom of drug addiction; however, only a small fraction of individuals who use drugs exhibit compulsive characteristics. Differences observed in Sign-trackers (ST) and Goal-trackers (GT) during Pavlovian conditioning may shed light on individual variances in drug addiction. Here, we focus on the behavioral attributes, formation processes, and neural mechanisms underlying ST and how they drive addiction toward compulsivity in humans. We will explore addiction from three interconnected levels: individual personality traits, social factors, and neurobiology. Furthermore, we distinguish between the processes of sensitization and habituation within ST. These nuanced distinctions across various aspects of addiction will contribute to our understanding of the addiction development process and the formulation of targeted preventive strategies.
Collapse
Affiliation(s)
- Haodong Su
- College of Humanities, Anhui Science and Technology University, Chuzhou, China
- Psychological Education Research Department, Anhui Science and Technology University, Chuzhou, China
| | - Tongtong Ye
- College of Humanities, Anhui Science and Technology University, Chuzhou, China
- Psychological Education Research Department, Anhui Science and Technology University, Chuzhou, China
| | - Songyan Cao
- College of Humanities, Anhui Science and Technology University, Chuzhou, China
| | - Chunyan Hu
- College of Humanities, Anhui Science and Technology University, Chuzhou, China
| |
Collapse
|
2
|
Ghasemahmad Z, Mrvelj A, Panditi R, Sharma B, Perumal KD, Wenstrup JJ. Emotional vocalizations alter behaviors and neurochemical release into the amygdala. eLife 2024; 12:RP88838. [PMID: 39008352 PMCID: PMC11249735 DOI: 10.7554/elife.88838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
The basolateral amygdala (BLA), a brain center of emotional expression, contributes to acoustic communication by first interpreting the meaning of social sounds in the context of the listener's internal state, then organizing the appropriate behavioral responses. We propose that modulatory neurochemicals such as acetylcholine (ACh) and dopamine (DA) provide internal-state signals to the BLA while an animal listens to social vocalizations. We tested this in a vocal playback experiment utilizing highly affective vocal sequences associated with either mating or restraint, then sampled and analyzed fluids within the BLA for a broad range of neurochemicals and observed behavioral responses of adult male and female mice. In male mice, playback of restraint vocalizations increased ACh release and usually decreased DA release, while playback of mating sequences evoked the opposite neurochemical release patterns. In non-estrus female mice, patterns of ACh and DA release with mating playback were similar to males. Estrus females, however, showed increased ACh, associated with vigilance, as well as increased DA, associated with reward-seeking. Experimental groups that showed increased ACh release also showed the largest increases in an aversive behavior. These neurochemical release patterns and several behavioral responses depended on a single prior experience with the mating and restraint behaviors. Our results support a model in which ACh and DA provide contextual information to sound analyzing BLA neurons that modulate their output to downstream brain regions controlling behavioral responses to social vocalizations.
Collapse
Affiliation(s)
- Zahra Ghasemahmad
- Department of Anatomy and Neurobiology and Hearing Research Group, Northeast Ohio Medical UniversityRootstownUnited States
- School of Biomedical Sciences, Kent State UniversityKentUnited States
- Brain Health Research Institute, Kent State UniversityKentUnited States
| | - Aaron Mrvelj
- Department of Anatomy and Neurobiology and Hearing Research Group, Northeast Ohio Medical UniversityRootstownUnited States
| | - Rishitha Panditi
- Department of Anatomy and Neurobiology and Hearing Research Group, Northeast Ohio Medical UniversityRootstownUnited States
| | - Bhavya Sharma
- Department of Anatomy and Neurobiology and Hearing Research Group, Northeast Ohio Medical UniversityRootstownUnited States
| | - Karthic Drishna Perumal
- Department of Anatomy and Neurobiology and Hearing Research Group, Northeast Ohio Medical UniversityRootstownUnited States
| | - Jeffrey J Wenstrup
- Department of Anatomy and Neurobiology and Hearing Research Group, Northeast Ohio Medical UniversityRootstownUnited States
- School of Biomedical Sciences, Kent State UniversityKentUnited States
- Brain Health Research Institute, Kent State UniversityKentUnited States
| |
Collapse
|
3
|
Steinegger CA, Zoelch N, Hock A, Henning A, Engeli EJ, Pryce CR, Seifritz E, Herdener M, Hulka LM. Neurometabolic profile of the amygdala in smokers assessed with 1H-magnetic resonance spectroscopy. Neuroimage 2024; 288:120525. [PMID: 38278429 DOI: 10.1016/j.neuroimage.2024.120525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/18/2023] [Accepted: 01/23/2024] [Indexed: 01/28/2024] Open
Abstract
Tobacco smoking is one of the main causes of premature death worldwide and quitting success remains low, highlighting the need to understand the neurobiological mechanisms underlying relapse. Preclinical models have shown that the amygdala and glutamate play an important role in nicotine addiction. The aims of this study were to compare glutamate and other metabolites in the amygdala between smokers and controls, and between different smoking states. Furthermore, associations between amygdalar metabolite levels and smoking characteristics were explored. A novel non-water-suppressed proton magnetic resonance spectroscopy protocol was applied to quantify neurometabolites in 28 male smokers (≥15 cigarettes/day) and 21 non-smoking controls, matched in age, education, verbal IQ, and weekly alcohol consumption. Controls were measured once (baseline) and smokers were measured in a baseline state (1-3 h abstinence), during withdrawal (24 h abstinence) and in a satiation state (directly after smoking). Baseline spectroscopy data were compared between groups by independent t-tests or Mann-Whitney-U tests. Smoking state differences were investigated by repeated-measures analyses of variance (ANOVAs). Associations between spectroscopy data and smoking characteristics were explored using Spearman correlations. Good spectral quality, high anatomical specificity (98% mean gray matter) and reliable quantification of most metabolites of interest were achieved in the amygdala. Metabolite levels did not differ between groups, but smokers showed significantly higher glutamine levels at baseline than satiation. Glx levels were negatively associated with pack-years and smoking duration. In summary, this study provides first insights into the neurometabolic profile of the amygdala in smokers with high anatomical specificity. By applying proton magnetic resonance spectroscopy, neurometabolites in smokers during different smoking states and non-smoking controls were quantified reliably. A significant shift in glutamine levels between smoking states was detected, with lower concentrations in satiation than baseline. The negative association between Glx levels and smoking quantity and duration may imply altered glutamate homeostasis with more severe nicotine addiction.
Collapse
Affiliation(s)
- Colette A Steinegger
- Center for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Selnaustrasse 9, Zurich 8001, Switzerland.
| | - Niklaus Zoelch
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland; Institute of Forensic Medicine, Department of Forensic Medicine and Imaging, University of Zurich, Zurich, Switzerland; Institute for Biomedical Engineering, University and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Andreas Hock
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland; Institute for Biomedical Engineering, University and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland; Philips, Horgen, Switzerland
| | - Anke Henning
- Institute for Biomedical Engineering, University and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland; Max Planck Institute for Biological Cybernetics, Tübingen, Germany; University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Etna Je Engeli
- Center for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Selnaustrasse 9, Zurich 8001, Switzerland
| | - Christopher R Pryce
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Switzerland
| | - Marcus Herdener
- Center for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Selnaustrasse 9, Zurich 8001, Switzerland
| | - Lea M Hulka
- Center for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Selnaustrasse 9, Zurich 8001, Switzerland
| |
Collapse
|
4
|
Wojick JA, Paranjapye A, Chiu JK, Mahmood M, Oswell C, Kimmey BA, Wooldridge LM, McCall NM, Han A, Ejoh LL, Chehimi SN, Crist RC, Reiner BC, Korb E, Corder G. A nociceptive amygdala-striatal pathway for chronic pain aversion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.579947. [PMID: 38405972 PMCID: PMC10888915 DOI: 10.1101/2024.02.12.579947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The basolateral amygdala (BLA) is essential for assigning positive or negative valence to sensory stimuli. Noxious stimuli that cause pain are encoded by an ensemble of nociceptive BLA projection neurons (BLAnoci ensemble). However, the role of the BLAnoci ensemble in mediating behavior changes and the molecular signatures and downstream targets distinguishing this ensemble remain poorly understood. Here, we show that the same BLAnoci ensemble neurons are required for both acute and chronic neuropathic pain behavior. Using single nucleus RNA-sequencing, we characterized the effect of acute and chronic pain on the BLA and identified enrichment for genes with known functions in axonal and synaptic organization and pain perception. We thus examined the brain-wide targets of the BLAnoci ensemble and uncovered a previously undescribed nociceptive hotspot of the nucleus accumbens shell (NAcSh) that mirrors the stability and specificity of the BLAnoci ensemble and is recruited in chronic pain. Notably, BLAnoci ensemble axons transmit acute and neuropathic nociceptive information to the NAcSh, highlighting this nociceptive amygdala-striatal circuit as a unique pathway for affective-motivational responses across pain states.
Collapse
Affiliation(s)
- Jessica A. Wojick
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Alekh Paranjapye
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Juliann K. Chiu
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Malaika Mahmood
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Corinna Oswell
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Blake A. Kimmey
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lisa M. Wooldridge
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nora M. McCall
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alan Han
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lindsay L. Ejoh
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samar Nasser Chehimi
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard C. Crist
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin C. Reiner
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erica Korb
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory Corder
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
5
|
Clarke-Williams CJ, Lopes-Dos-Santos V, Lefèvre L, Brizee D, Causse AA, Rothaermel R, Hartwich K, Perestenko PV, Toth R, McNamara CG, Sharott A, Dupret D. Coordinating brain-distributed network activities in memory resistant to extinction. Cell 2024; 187:409-427.e19. [PMID: 38242086 PMCID: PMC7615560 DOI: 10.1016/j.cell.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 07/13/2023] [Accepted: 12/13/2023] [Indexed: 01/21/2024]
Abstract
Certain memories resist extinction to continue invigorating maladaptive actions. The robustness of these memories could depend on their widely distributed implementation across populations of neurons in multiple brain regions. However, how dispersed neuronal activities are collectively organized to underpin a persistent memory-guided behavior remains unknown. To investigate this, we simultaneously monitored the prefrontal cortex, nucleus accumbens, amygdala, hippocampus, and ventral tegmental area (VTA) of the mouse brain from initial recall to post-extinction renewal of a memory involving cocaine experience. We uncover a higher-order pattern of short-lived beta-frequency (15-25 Hz) activities that are transiently coordinated across these networks during memory retrieval. The output of a divergent pathway from upstream VTA glutamatergic neurons, paced by a slower (4-Hz) oscillation, actuates this multi-network beta-band coactivation; its closed-loop phase-informed suppression prevents renewal of cocaine-biased behavior. Binding brain-distributed neural activities in this temporally structured manner may constitute an organizational principle of robust memory expression.
Collapse
Affiliation(s)
- Charlie J Clarke-Williams
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK.
| | - Vítor Lopes-Dos-Santos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Laura Lefèvre
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Demi Brizee
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Adrien A Causse
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Roman Rothaermel
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Katja Hartwich
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Pavel V Perestenko
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Robert Toth
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Colin G McNamara
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Andrew Sharott
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK.
| |
Collapse
|
6
|
Lee IB, Lee E, Han NE, Slavuj M, Hwang JW, Lee A, Sun T, Jeong Y, Baik JH, Park JY, Choi SY, Kwag J, Yoon BJ. Persistent enhancement of basolateral amygdala-dorsomedial striatum synapses causes compulsive-like behaviors in mice. Nat Commun 2024; 15:219. [PMID: 38191518 PMCID: PMC10774417 DOI: 10.1038/s41467-023-44322-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/08/2023] [Indexed: 01/10/2024] Open
Abstract
Compulsive behaviors are observed in a range of psychiatric disorders, however the neural substrates underlying the behaviors are not clearly defined. Here we show that the basolateral amygdala-dorsomedial striatum (BLA-DMS) circuit activation leads to the manifestation of compulsive-like behaviors. We revealed that the BLA neurons projecting to the DMS, mainly onto dopamine D1 receptor-expressing neurons, largely overlap with the neuronal population that responds to aversive predator stress, a widely used anxiogenic stressor. Specific optogenetic activation of the BLA-DMS circuit induced a strong anxiety response followed by compulsive grooming. Furthermore, we developed a mouse model for compulsivity displaying a wide spectrum of compulsive-like behaviors by chronically activating the BLA-DMS circuit. In these mice, persistent molecular changes at the BLA-DMS synapses observed were causally related to the compulsive-like phenotypes. Together, our study demonstrates the involvement of the BLA-DMS circuit in the emergence of enduring compulsive-like behaviors via its persistent synaptic changes.
Collapse
Affiliation(s)
- In Bum Lee
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Eugene Lee
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Na-Eun Han
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Marko Slavuj
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Jeong Wook Hwang
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Ahrim Lee
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Taeyoung Sun
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Yehwan Jeong
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Ja-Hyun Baik
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Jae-Yong Park
- School of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Se-Young Choi
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 03080, Republic of Korea
| | - Jeehyun Kwag
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Bong-June Yoon
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
7
|
Hrickova M, Amchova P, Ruda-Kucerova J. The effect of CNQX on self-administration: present in nicotine, absent in methamphetamine model. Front Behav Neurosci 2024; 17:1305412. [PMID: 38249125 PMCID: PMC10796660 DOI: 10.3389/fnbeh.2023.1305412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024] Open
Abstract
Objective Addiction is a chronic disease with limited pharmacological options for intervention. Focusing on reducing glutamate levels in the brain seems to be a promising strategy in addiction treatment research. Our research aimed to evaluate the effects of CNQX, an antagonist that targets AMPA and kainate glutamatergic receptors while also exhibiting affinity for the NMDA receptor, especially by modulating its glycine site. We conducted this assessment on the self-administration of nicotine and methamphetamine via intravenous (IV) administration in rats. Methods An operant IV self-administration model was used in male Wistar rats. When animals maintained a stable intake of nicotine or methamphetamine, we administered a single injection of CNQX (in the dose of 3 or 6 mg/kg IV) to evaluate its effect on drug intake. Subsequently, the rats were forced to abstain by staying in their home cages for 2 weeks. The period of abstinence was followed by a context-induced relapse-like session before which animals were pretreated with the injection of CNQX (3 or 6 mg/kg IV) to evaluate its effect on drug seeking. Results CNQX significantly reduced nicotine intake during the maintenance phase, but no effect was revealed on nicotine seeking after forced abstinence. CNQX did not affect methamphetamine taking or seeking. Conclusion The effect of reducing nicotine taking but not seeking could be explained by different involvement of glutamatergic receptors in various stages of nicotine dependence.
Collapse
Affiliation(s)
| | | | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
8
|
Stark AJ, Song AK, Petersen KJ, Hay KR, Lin YC, Trujillo P, Kang H, Collazzo JM, Donahue MJ, Zald DH, Claassen DO. Accentuated Paralimbic and Reduced Mesolimbic D 2/3-Impulsivity Associations in Parkinson's Disease. J Neurosci 2023; 43:8733-8743. [PMID: 37852792 PMCID: PMC10727183 DOI: 10.1523/jneurosci.1037-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/31/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023] Open
Abstract
Impulsivity is a behavioral trait that is elevated in many neuropsychiatric disorders. Parkinson's disease (PD) patients can exhibit a specific pattern of reward-seeking impulsive-compulsive behaviors (ICBs), as well as more subtle changes to generalized trait impulsivity. Prior studies in healthy controls (HCs) suggest that trait impulsivity is regulated by D2/3 autoreceptors in mesocorticolimbic circuits. While altered D2/3 binding is noted in ICB+ PD patients, there is limited prior assessment of the trait impulsivity-D2/3 relationship in PD, and no prior direct comparison with patterns in HCs. We examined 54 PD (36 M; 18 F) and 31 sex- and age-matched HC (21 M; 10 F) subjects using [18F]fallypride, a high-affinity D2/3 receptor ligand, to measure striatal and extrastriatal D2/3 nondisplaceable binding potential (BPND). Subcortical and cortical assessment exclusively used ROI or exploratory-voxelwise methods, respectively. All completed the Barratt Impulsiveness Scale, a measure of trait impulsivity. Subcortical ROI analyses indicated a negative relationship between trait impulsivity and D2/3 BPND in the ventral striatum and amygdala of HCs but not in PD. By contrast, voxelwise methods demonstrated a positive trait impulsivity-D2/3 BPND correlation in ventral frontal olfactocentric-paralimbic cortex of subjects with PD but not HCs. Subscale analysis also highlighted different aspects of impulsivity, with significant interactions between group and motor impulsivity in the ventral striatum, and attentional impulsivity in the amygdala and frontal paralimbic cortex. These results suggest that dopamine functioning in distinct regions of the mesocorticolimbic circuit influence aspects of impulsivity, with the relative importance of regional dopamine functions shifting in the neuropharmacological context of PD.SIGNIFICANCE STATEMENT The biological determinants of impulsivity have broad clinical relevance, from addiction to neurodegenerative disorders. Here, we address biomolecular distinctions in Parkinson's disease. This is the first study to evaluate a large cohort of Parkinson's disease patients and age-matched healthy controls with a measure of trait impulsivity and concurrent [18F]fallypride PET, a method that allows quantification of D2/3 receptors throughout the mesocorticolimbic network. We demonstrate widespread differences in the trait impulsivity-dopamine relationship, including (1) loss of subcortical relationships present in the healthy brain and (2) emergence of a new relationship in a limbic cortical area. This illustrates the loss of mechanisms of behavioral regulation present in the healthy brain while suggesting a potential compensatory response and target for future investigation.
Collapse
Affiliation(s)
- Adam J Stark
- School of Medicine, Vanderbilt University, Nashville, Tennessee 37232
| | - Alexander K Song
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Kalen J Petersen
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63310
| | - Kaitlyn R Hay
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Ya-Chen Lin
- Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Paula Trujillo
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Hakmook Kang
- Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Jenna M Collazzo
- School of Medicine, Temple University, Philadelphia, Pennsylvania 19140
| | - Manus J Donahue
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - David H Zald
- Department of Psychiatry, Rutgers University, Piscataway, New Jersey 08901
| | - Daniel O Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| |
Collapse
|
9
|
He Y, Huang YH, Schlüter OM, Dong Y. Cue- versus reward-encoding basolateral amygdala projections to nucleus accumbens. eLife 2023; 12:e89766. [PMID: 37963179 PMCID: PMC10645419 DOI: 10.7554/elife.89766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
In substance use disorders, drug use as unconditioned stimulus (US) reinforces drug taking. Meanwhile, drug-associated cues (conditioned stimulus [CS]) also gain incentive salience to promote drug seeking. The basolateral amygdala (BLA) is implicated in both US- and CS-mediated responses. Here, we show that two genetically distinct BLA neuronal types, expressing Rspo2 versus Ppp1r1b, respectively, project to the nucleus accumbens (NAc) and form monosynaptic connections with both dopamine D1 and D2 receptor-expressing neurons. While intra-NAc stimulation of Rspo2 or Ppp1r1b presynaptic terminals establishes intracranial self-stimulation (ICSS), only Ppp1r1b-stimulated mice exhibit cue-induced ICSS seeking. Furthermore, increasing versus decreasing the Ppp1r1b-to-NAc, but not Rspo2-to-NAc, subprojection increases versus decreases cue-induced cocaine seeking after cocaine withdrawal. Thus, while both BLA-to-NAc subprojections contribute to US-mediated responses, the Ppp1r1b subprojection selectively encodes CS-mediated reward and drug reinforcement. Such differential circuit representations may provide insights into precise understanding and manipulation of drug- versus cue-induced drug seeking and relapse.
Collapse
Affiliation(s)
- Yi He
- Departments of Neuroscience, University of PittsburghPittsburghUnited States
| | - Yanhua H Huang
- Departments of Psychiatry, University of PittsburghPittsburghUnited States
| | - Oliver M Schlüter
- Departments of Neuroscience, University of PittsburghPittsburghUnited States
| | - Yan Dong
- Departments of Neuroscience, University of PittsburghPittsburghUnited States
- Departments of Psychiatry, University of PittsburghPittsburghUnited States
| |
Collapse
|
10
|
Domingues AV, Rodrigues AJ, Soares-Cunha C. A novel perspective on the role of nucleus accumbens neurons in encoding associative learning. FEBS Lett 2023; 597:2601-2610. [PMID: 37643893 DOI: 10.1002/1873-3468.14727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
The nucleus accumbens (NAc) has been considered a key brain region for encoding reward/aversion and cue-outcome associations. These processes are encoded by medium spiny neurons that express either dopamine receptor D1 (D1-MSNs) or D2 (D2-MSNs). Despite the well-established role of NAc neurons in encoding reward/aversion, the underlying processing by D1-/D2-MSNs remains largely unknown. Recent electrophysiological, optogenetic and calcium imaging studies provided insight on the complex role of D1- and D2-MSNs in these behaviours and helped to clarify their involvement in associative learning. Here, we critically discuss findings supporting an intricate and complementary role of NAc D1- and D2-MSNs in associative learning, emphasizing the need for additional studies in order to fully understand the role of these neurons in behaviour.
Collapse
Affiliation(s)
- Ana Verónica Domingues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
11
|
Hauser SR, Deehan GA, Knight CP, Waeiss RA, Engleman EA, Ding ZM, Johnson PL, McBride WJ, Truitt WA, Rodd ZA. Inhibitory and excitatory alcohol-seeking cues distinct roles in behavior, neurochemistry, and mesolimbic pathway in alcohol preferring (P) rats. Drug Alcohol Depend 2023; 246:109858. [PMID: 37028106 PMCID: PMC10212692 DOI: 10.1016/j.drugalcdep.2023.109858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 04/09/2023]
Abstract
Cues associated with alcohol use can readily enhance self-reported cravings for alcohol, which increases the likelihood of reusing alcohol. Understanding the neuronal mechanisms involved in alcohol-seeking behavior is important for developing strategies to treat alcohol use disorder. In all experiments, adult female alcohol-preferring (P) rats were exposed to three conditioned odor cues; CS+ associated with EtOH self-administration, CS- associated with the absence of EtOH (extinction training), and a CS0, a neutral stimulus. The data indicated that presentation of an excitatory conditioned cue (CS+) can enhance EtOH- seeking while the CS- can inhibit EtOH-seeking under multiple test conditions. Presentation of the CS+ activates a subpopulation of dopamine neurons within the interfascicular nucleus of the posterior ventral tegmental area (posterior VTA) and basolateral amygdala (BLA). Pharmacological inactivation of the BLA with GABA agonists inhibits the ability of the CS+ to enhance EtOH-seeking but does not alter context-induced EtOH-seeking or the ability of the CS- to inhibit EtOH-seeking. Presentation of the conditioned odor cues in a non-drug-paired environment indicated that presentation of the CS+ increased dopamine levels in the BLA. In contrast, presentation of the CS- decreased both glutamate and dopamine levels in the BLA. Further analysis revealed that presentation of a CS+ EtOH-associated conditioned cue activates GABA interneurons but not glutamate projection neurons. Overall, the data indicate that excitatory and inhibitory conditioned cues can contrarily alter EtOH-seeking behaviors and that different neurocircuitries are mediating these distinct cues in critical brain regions. Pharmacotherapeutics for craving should inhibit the CS+ and enhance the CS- neurocircuits.
Collapse
Affiliation(s)
- Sheketha R Hauser
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Gerald A Deehan
- Department of Psychology, East Tennessee State University, Johnson City, TN 37614, USA
| | - Christopher P Knight
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Robert A Waeiss
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Eric A Engleman
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Zheng-Ming Ding
- Department of Anesthesiology and Perioperative Medicine, Department of Pharmacology, The Pennsylvania State University, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Phillip L Johnson
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - William J McBride
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - William A Truitt
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Zachary A Rodd
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
12
|
Servonnet A, Rompré PP, Samaha AN. Optogenetic activation of basolateral amygdala-to-nucleus accumbens core neurons promotes Pavlovian approach responses but not instrumental pursuit of reward cues. Behav Brain Res 2023; 440:114254. [PMID: 36516942 DOI: 10.1016/j.bbr.2022.114254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Reward-associated conditioned stimuli (CSs) can acquire predictive value, evoking conditioned approach behaviours that prepare animals to engage with forthcoming rewards. Such CSs can also acquire conditioned reinforcing value, becoming attractive and pursued. Through their conditioned effects, CSs can promote adaptive (e.g., locating food) but also maladaptive behaviours (e.g., drug use). Basolateral amygdala neurons projecting to the nucleus accumbens core (BLA→NAc core neurons) mediate the response to appetitive CSs, but the extent to which this involves effects on the predictive and/or conditioned reinforcing properties of CSs is unclear. Thus, we examined the effects of optogenetic stimulation of BLA→NAc core neurons on i) CS-triggered approach to the site of reward delivery, a Pavlovian conditioned approach response and ii) the instrumental pursuit of a CS, a measure of conditioned reinforcement. Water-restricted, adult male rats learned that a light-tone compound cue (the CS) predicts water delivery into a receptacle. Pairing optogenetic stimulation of BLA→NAc core neurons with CS presentation potentiated CS-triggered water receptacle visits. This suggests that activity in BLA→NAc core neurons promotes Pavlovian goal-approach behaviour. Next, rats could lever press for CS presentations, without water delivery. Optogenetic stimulation of BLA→NAc core neurons either during instrumental test sessions or during prior CS-water conditioning did not influence lever responding for the CS. This suggests that activity in BLA→NAc core neurons does not influence the instrumental pursuit of a water-paired CS. We conclude that activation of BLA→NAc core neurons promotes cue-induced control over behaviour by increasing conditioned goal-approach responses, without affecting the operant pursuit of reward cues.
Collapse
Affiliation(s)
| | | | - Anne-Noël Samaha
- Department of Pharmacology and Physiology (Faculty of Medicine), Canada; Groupe de recherche sur le système nerveux central, Faculty of Medicine, Université de Montréal, 2900 Edouard-Montpetit Boulevard, Montreal H3T 1J4, Quebec, Canada.
| |
Collapse
|
13
|
Nett KE, Zimbelman AR, McGregor MS, Alizo Vera V, Harris MR, LaLumiere RT. Infralimbic Projections to the Nucleus Accumbens Shell and Amygdala Regulate the Encoding of Cocaine Extinction Learning. J Neurosci 2023; 43:1348-1359. [PMID: 36657972 PMCID: PMC9987566 DOI: 10.1523/jneurosci.2023-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 01/20/2023] Open
Abstract
Prior evidence indicates that the infralimbic cortex (IL) mediates the ongoing inhibition of cocaine seeking following self-administration and extinction training in rats, specifically through projections to the nucleus accumbens shell (NAshell). Our own data indicate that IL activity immediately following an unreinforced lever press is critical for encoding the extinction contingencies in such procedures. Whether extinction encoding requires activity in the IL exclusively or also activity in its outputs, such as those to the NAshell and amygdala, is unknown. To address this issue, we used a closed-loop optogenetic approach in female and male Sprague Dawley rats to silence IL-NAshell or IL-amygdala activity following an unreinforced lever press during extinction training. Optical illumination (20 s) was given either immediately after a lever press or following a 20 s delay. IL-NAshell inhibition immediately following an unreinforced lever press increased lever pressing during extinction training and impaired retention of extinction learning, as assessed during subsequent extinction sessions without optical inhibition. Likewise, IL-amygdala inhibition given in the same manner impaired extinction retention during sessions without inhibition. Control experiments indicate that critical encoding of extinction learning does not require activity in these pathways beyond the initial 20 s post-lever press period, as delayed IL-NAshell and IL-amygdala inhibition had no effect on extinction learning. These results suggest that a larger network extending from the IL to the NAshell and amygdala is involved in encoding extinction contingencies following cocaine self-administration.SIGNIFICANCE STATEMENT Infralimbic cortex (IL) activity following an unreinforced lever press during extinction learning encodes the extinction of cocaine-seeking behavior. However, the larger circuitry controlling such encoding has not been investigated. Using closed-loop optogenetic pathway targeting, we found that inhibition of IL projections to the nucleus accumbens shell and to the amygdala impaired the extinction of cocaine seeking. Importantly, these effects were only observed when activity was disrupted during the first 20 s post-lever press and not when given following a 20 s delay. These findings suggest that successful cocaine extinction encoding requires activity across a larger circuit beyond simply inputs to the IL.
Collapse
Affiliation(s)
- Kelle E Nett
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, Iowa 52242
| | - Alexa R Zimbelman
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242
| | - Matthew S McGregor
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, Iowa 52242
| | - Vanessa Alizo Vera
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242
| | - Molly R Harris
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242
| | - Ryan T LaLumiere
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, Iowa 52242
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
14
|
Loh MK, Rosenkranz JA. The medial orbitofrontal cortex governs reward-related circuits in an age-dependent manner. Cereb Cortex 2023; 33:1913-1924. [PMID: 35551358 PMCID: PMC9977359 DOI: 10.1093/cercor/bhac182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/14/2022] Open
Abstract
Nucleus accumbens (NAc) neurons integrate excitatory inputs from cortical and limbic structures, contributing to critical cognitive functions, including decision-making. As these afferents mature from adolescence through adulthood, incoming signals to the NAc may summate differently between age groups. Decision-making evaluates both reward and risk before action selection, suggesting an interplay between reward- and risk-related circuits. Medial orbitofrontal cortex (MO)-NAc circuits permit risk assessment behaviors and likely underlie risk information incorporation. As adolescents make reward-centric choices regardless of risk, we hypothesized the impact of MO activity alters reward-related NAc circuits in an age-dependent manner. To test this hypothesis, we used single-unit electrophysiology to measure MO train stimulation's effect on reward-related pathways, specifically the basolateral amygdala (BLA)-NAc circuit, in adult and adolescent rats. MO train stimulation altered the strength but not the timing of BLA-NAc interactions in a frequency-dependent manner. In adults, MO train stimulation produced a frequency-dependent, bidirectional effect on BLA-evoked NAc AP probability. Contrastingly, MO train stimulation uniformly attenuated BLA-NAc interactions in adolescents. While the mature MO can govern reward-related circuits in an activity-dependent manner, perhaps to adapt to positive or negative decision-making outcomes, the adolescent MO may be less able to bidirectionally impact reward-related pathways resulting in biased decision-making.
Collapse
Affiliation(s)
- Maxine K Loh
- Department of Foundational Sciences and Humanities, Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - J Amiel Rosenkranz
- Department of Foundational Sciences and Humanities, Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| |
Collapse
|
15
|
Li JY, Yu YJ, Su CL, Shen YQ, Chang CH, Gean PW. Modulation of methamphetamine memory reconsolidation by neural projection from basolateral amygdala to nucleus accumbens. Neuropsychopharmacology 2023; 48:478-488. [PMID: 36109595 PMCID: PMC9852248 DOI: 10.1038/s41386-022-01417-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/21/2022] [Accepted: 07/28/2022] [Indexed: 02/02/2023]
Abstract
Drug-associated conditioned cues promote subjects to recall drug reward memory, resulting in drug-seeking and reinstatement. A consolidated memory becomes unstable after recall, such that the amnestic agent can disrupt the memory during the reconsolidation stage, which implicates a potential therapeutic strategy for weakening maladaptive memories. The basolateral amygdala (BLA) involves the association of conditioned cues with reward and aversive valences and projects the information to the nucleus accumbens (NAc) that mediates reward-seeking. However, whether the BLA-NAc projection plays a role in drug-associated memory reactivation and reconsolidation is unknown. We used methamphetamine (MeAM) conditioned place preference (CPP) to investigate the role of BLA-NAc neural projection in the memory reconsolidation. Two weeks before CPP training, we infused adeno-associated virus (AAV) carrying the designer receptor exclusively activated by designer drugs (DREADD) or control constructs. We infused clozapine-N-oxide (CNO) after the recall test to manipulate the neural activity of BLA-NAc projections in mice. We found that after recall, DREADD-mediated inhibition of BLA neurons projecting to the NAc core blunted consolidated MeAM-associated memory. Inhibition of BLA glutamatergic nerve terminals in the NAc core 1 h after recall disrupted consolidated MeAM-associated memory. However, inhibiting this pathway after the time window of reconsolidation failed to affect memory. Furthermore, under the condition without memory retrieval, DREADD-mediated activation of BLA-NAc core projection was required for amnesic agents to disrupt consolidated MeAM-associated memory. Our findings provide evidence that the BLA-NAc pathway activity is involved in the post-retrieval processing of MeAM-associated memory in CPP.
Collapse
Affiliation(s)
- Jia-Ying Li
- Department of Pharmacology, National Cheng-Kung University, Tainan, 701, Taiwan, ROC
| | - Yang-Jung Yu
- Department of Pharmacology, National Cheng-Kung University, Tainan, 701, Taiwan, ROC
| | - Chun-Lin Su
- Department of Pharmacology, National Cheng-Kung University, Tainan, 701, Taiwan, ROC
| | - Yu-Qi Shen
- Department of Pharmacology, National Cheng-Kung University, Tainan, 701, Taiwan, ROC
| | - Chih-Hua Chang
- Department of Pharmacology, National Cheng-Kung University, Tainan, 701, Taiwan, ROC.
- Department of Biotechnology and Bioindustry Sciences, National Cheng-Kung University, Tainan, 701, Taiwan, ROC.
| | - Po-Wu Gean
- Department of Pharmacology, National Cheng-Kung University, Tainan, 701, Taiwan, ROC.
- Department of Biotechnology and Bioindustry Sciences, National Cheng-Kung University, Tainan, 701, Taiwan, ROC.
| |
Collapse
|
16
|
Fouyssac M, Peña-Oliver Y, Puaud M, Lim NTY, Giuliano C, Everitt BJ, Belin D. Negative Urgency Exacerbates Relapse to Cocaine Seeking After Abstinence. Biol Psychiatry 2022; 91:1051-1060. [PMID: 34922736 DOI: 10.1016/j.biopsych.2021.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/21/2021] [Accepted: 10/08/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND The mechanisms through which drug-cue-induced negative affective states are involved in relapse have not been defined. We tested the hypothesis that in individuals having developed a dorsolateral striatum (DLS)-dependent cue-controlled cocaine-seeking habit, the loss of the opportunity to enact the drug-seeking response during abstinence results in an urge to act that exacerbates relapse severity mediated by negative urgency. METHODS Eighty-seven male Sprague Dawley rats were trained to seek cocaine under the influence of the conditioned reinforcing properties of drug-paired cues or not. We investigated whether the tendency to relapse depended on the aversive state of withdrawal or instead on the loss of opportunity to perform the ingrained drug-seeking response after periods of abstinence. The striatal locus of control over cocaine seeking at baseline and relapse was investigated using in situ hybridization of the cellular activity marker C-fos and assessment of the sensitivity of instrumental drug seeking to dopamine receptor blockade in the dorsomedial striatum-dependent goal-directed and DLS-dependent habit systems. RESULTS The development of a DLS-dependent cue-controlled cocaine-seeking habit prior to abstinence resulted in a marked increase in drug seeking at relapse, which was not motivated by a cocaine withdrawal state and was no longer dependent on the DLS habit system. Instead, it reflected the emergence of negative urgency caused by the prevention of the performance of the habit during abstinence and underpinned by transient engagement of the goal-directed system. CONCLUSIONS These results show that ingrained cue-controlled drug-seeking habits increase the pressure to relapse.
Collapse
Affiliation(s)
- Maxime Fouyssac
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Yolanda Peña-Oliver
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Mickaёl Puaud
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Nicole T Y Lim
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Chiara Giuliano
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Barry J Everitt
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - David Belin
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
17
|
Zinsmaier AK, Dong Y, Huang YH. Cocaine-induced projection-specific and cell type-specific adaptations in the nucleus accumbens. Mol Psychiatry 2022; 27:669-686. [PMID: 33963288 PMCID: PMC8691189 DOI: 10.1038/s41380-021-01112-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 03/29/2021] [Accepted: 04/09/2021] [Indexed: 02/03/2023]
Abstract
Cocaine craving, seeking, and relapse are mediated, in part, by cocaine-induced adaptive changes in the brain reward circuits. The nucleus accumbens (NAc) integrates and prioritizes different emotional and motivational inputs to the reward system by processing convergent glutamatergic projections from the medial prefrontal cortex, basolateral amygdala, ventral hippocampus, and other limbic and paralimbic brain regions. Medium spiny neurons (MSNs) are the principal projection neurons in the NAc, which can be divided into two major subpopulations, namely dopamine receptor D1- versus D2-expressing MSNs, with complementing roles in reward-associated behaviors. After cocaine experience, NAc MSNs exhibit complex and differential adaptations dependent on cocaine regimen, withdrawal time, cell type, location (NAc core versus shell), and related input and output projections, or any combination of these factors. Detailed characterization of these cellular adaptations has been greatly facilitated by the recent development of optogenetic/chemogenetic techniques combined with transgenic tools. In this review, we discuss such cell type- and projection-specific adaptations induced by cocaine experience. Specifically, (1) D1 and D2 NAc MSNs frequently exhibit differential adaptations in spinogenesis, glutamatergic receptor trafficking, and intrinsic membrane excitability, (2) cocaine experience differentially changes the synaptic transmission at different afferent projections onto NAc MSNs, (3) cocaine-induced NAc adaptations exhibit output specificity, e.g., being different at NAc-ventral pallidum versus NAc-ventral tegmental area synapses, and (4) the input, output, subregion, and D1/D2 cell type may together determine cocaine-induced circuit plasticity in the NAc. In light of the projection- and cell-type specificity, we also briefly discuss ensemble and circuit mechanisms contributing to cocaine craving and relapse after drug withdrawal.
Collapse
Affiliation(s)
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15219,Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15219
| | - Yanhua H. Huang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15219
| |
Collapse
|
18
|
Opendak M, Raineki C, Perry RE, Rincón-Cortés M, Song SC, Zanca RM, Wood E, Packard K, Hu S, Woo J, Martinez K, Vinod KY, Brown RW, Deehan GA, Froemke RC, Serrano PA, Wilson DA, Sullivan RM. Bidirectional control of infant rat social behavior via dopaminergic innervation of the basolateral amygdala. Neuron 2021; 109:4018-4035.e7. [PMID: 34706218 PMCID: PMC8988217 DOI: 10.1016/j.neuron.2021.09.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 07/08/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
Social interaction deficits seen in psychiatric disorders emerge in early-life and are most closely linked to aberrant neural circuit function. Due to technical limitations, we have limited understanding of how typical versus pathological social behavior circuits develop. Using a suite of invasive procedures in awake, behaving infant rats, including optogenetics, microdialysis, and microinfusions, we dissected the circuits controlling the gradual increase in social behavior deficits following two complementary procedures-naturalistic harsh maternal care and repeated shock alone or with an anesthetized mother. Whether the mother was the source of the adversity (naturalistic Scarcity-Adversity) or merely present during the adversity (repeated shock with mom), both conditions elevated basolateral amygdala (BLA) dopamine, which was necessary and sufficient in initiating social behavior pathology. This did not occur when pups experienced adversity alone. These data highlight the unique impact of social adversity as causal in producing mesolimbic dopamine circuit dysfunction and aberrant social behavior.
Collapse
Affiliation(s)
- Maya Opendak
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York, NY 10016, USA; Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Kennedy Krieger Institute, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Charlis Raineki
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York, NY 10016, USA; Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Psychology, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Rosemarie E Perry
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York, NY 10016, USA; Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Applied Psychology, New York University, New York, NY 10012, USA
| | - Millie Rincón-Cortés
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York, NY 10016, USA; Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Neuroscience, University of Pittsburgh, Pittsburgh PA 15260, USA
| | - Soomin C Song
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA; Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Roseanna M Zanca
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York, NY 10016, USA; Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Psychology, CUNY Hunter College, New York, 10016, USA; The Graduate Center of CUNY, New York, 10016, USA
| | - Emma Wood
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York, NY 10016, USA; Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Katherine Packard
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York, NY 10016, USA; Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Shannon Hu
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York, NY 10016, USA; Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Joyce Woo
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York, NY 10016, USA; Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Krissian Martinez
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York, NY 10016, USA
| | - K Yaragudri Vinod
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York, NY 10016, USA; Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Russell W Brown
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Gerald A Deehan
- Department of Psychology, East Tennessee State University, Johnson City, TN 37614, USA
| | - Robert C Froemke
- Center for Neural Science, New York University, New York, NY 10003, USA; Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA; Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA; Department of Otolaryngology, New York University School of Medicine, New York, NY 10016, USA; Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA
| | - Peter A Serrano
- Department of Psychology, CUNY Hunter College, New York, 10016, USA; The Graduate Center of CUNY, New York, 10016, USA
| | - Donald A Wilson
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York, NY 10016, USA; Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Regina M Sullivan
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York, NY 10016, USA; Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
19
|
Abstract
Astroglia are key regulators of synaptic function, playing central roles in homeostatic ion buffering, energy dynamics, transmitter uptake, maintenance of neurotransmitter pools, and regulation of synaptic plasticity through release of neuroactive chemicals. Given the myriad of crucial homeostatic and signaling functions attributed to astrocytes and the variety of neurotransmitter receptors expressed by astroglia, they serve as prime cellular candidates for establishing maladaptive synaptic plasticity following drug exposure. Initial studies on astroglia and addiction have placed drug-mediated disruptions in the homeostatic regulation of glutamate as a central aspect of relapse vulnerability. However, the generation of sophisticated tools to study and manipulate astroglia have proven that the interaction between addictive substances, astroglia, and relapse-relevant synaptic plasticity extends far beyond the homeostatic regulation of glutamate. Here we present astroglial systems impacted by drug exposure and discuss how changes in astroglial biology contribute to addiction biology.
Collapse
|
20
|
Zan GY, Wang YJ, Li XP, Fang JF, Yao SY, Du JY, Wang Q, Sun X, Liu R, Shao XM, Long JD, Chai JR, Deng YZ, Chen YQ, Li QL, Fang JQ, Liu ZQ, Liu JG. Amygdalar κ-opioid receptor-dependent upregulating glutamate transporter 1 mediates depressive-like behaviors of opioid abstinence. Cell Rep 2021; 37:109913. [PMID: 34731618 DOI: 10.1016/j.celrep.2021.109913] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/06/2021] [Accepted: 10/09/2021] [Indexed: 11/17/2022] Open
Abstract
Opiates produce a strong rewarding effect, but abstinence from opiate use emerges with severe negative emotions. Depression is one of the most frequent emotion disorders associated with opiate abstinence, which is thought to be a main cause for relapse. However, neurobiological bases of such an aversive emotion processing are poorly understood. Here, we find that morphine abstinence activates κ-opioid receptors (KORs) by increasing endogenous KOR ligand dynorphin expression in the amygdala, which in turn facilitates glutamate transporter 1 (GLT1) expression by activation of p38 mitogen-activated protein kinase (MAPK). Upregulation of GLT1 expression contributes to opiate-abstinence-elicited depressive-like behaviors through modulating amygdalar glutamatergic inputs to the nucleus accumbens (NAc). Intra-amygdala injection of GLT1 inhibitor DHK or knockdown of GLT1 expression in the amygdala significantly suppresses morphine-abstinence-induced depressive-like behaviors. Pharmacological and pharmacogenetic activation of amygdala-NAc projections prevents morphine-abstinence-induced behaviors. Overall, our study provides key molecular and circuit insights into the mechanisms of depression associated with opiate abstinence.
Collapse
Affiliation(s)
- Gui-Ying Zan
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yu-Jun Wang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Xue-Ping Li
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jun-Fan Fang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurobiology of Zhejiang Province, Hangzhou 310053, China
| | - Song-Yu Yao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jun-Ying Du
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurobiology of Zhejiang Province, Hangzhou 310053, China
| | - Qian Wang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiang Sun
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230038, China
| | - Rui Liu
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xiao-Mei Shao
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurobiology of Zhejiang Province, Hangzhou 310053, China
| | - Jian-Dong Long
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing-Rui Chai
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ying-Zhi Deng
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ye-Qing Chen
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurobiology of Zhejiang Province, Hangzhou 310053, China
| | - Qing-Lin Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230038, China
| | - Jian-Qiao Fang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurobiology of Zhejiang Province, Hangzhou 310053, China.
| | - Zhi-Qiang Liu
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Jing-Gen Liu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurobiology of Zhejiang Province, Hangzhou 310053, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
21
|
Wolter M, Lapointe T, Melanson B, Baidoo N, Francis T, Winters BD, Leri F. Memory enhancing effects of nicotine, cocaine, and their conditioned stimuli; effects of beta-adrenergic and dopamine D2 receptor antagonists. Psychopharmacology (Berl) 2021; 238:2617-2628. [PMID: 34175982 DOI: 10.1007/s00213-021-05884-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/27/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND There is evidence that post-training exposure to nicotine, cocaine, and their conditioned stimuli (CS), enhance memory consolidation in rats. The present study assessed the effects of blocking noradrenergic and dopaminergic receptors on nicotine and cocaine unconditioned and conditioned memory modulation. METHODS Males Sprague-Dawley rats tested on the spontaneous object recognition task received post-sample exposure to 0.4 mg/kg nicotine, 20 mg/kg cocaine, or their CSs, in combination with 5-10 mg/kg propranolol (PRO; beta-adrenergic antagonist) or 0.2-0.6 mg/kg pimozide (PIM; dopamine D2 receptor antagonist). The CSs were established by confining rats in a chamber (the CS +) after injections of 0.4 mg/kg nicotine, or 20 mg/kg cocaine, for 2 h and in another chamber (the CS -) after injections of vehicle, repeated over 10 days (5 drug/CS + and 5 vehicle/CS - pairings in total). Object memory was tested 72 h post sample in drug-free animals. RESULTS Co-administration of PRO or PIM blocked the memory-enhancing effects of post-training injections of nicotine, cocaine, and, importantly, exposure to their CSs. CONCLUSIONS These data suggest that nicotine, cocaine as well as their conditioned stimuli share actions on overlapping noradrenergic and dopaminergic systems to modulate memory consolidation.
Collapse
Affiliation(s)
- Michael Wolter
- Department of Psychology, Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Thomas Lapointe
- Department of Psychology, Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Brett Melanson
- Department of Psychology, Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Nana Baidoo
- Department of Psychology, Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Travis Francis
- Department of Psychology, Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Boyer D Winters
- Department of Psychology, Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Francesco Leri
- Department of Psychology, Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
22
|
Reactivating a positive feedback loop VTA-BLA-NAc circuit associated with positive experience ameliorates the attenuated reward sensitivity induced by chronic stress. Neurobiol Stress 2021; 15:100370. [PMID: 34381852 PMCID: PMC8334743 DOI: 10.1016/j.ynstr.2021.100370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
Both genetic predisposition and life events, particularly life stress, are thought to increase the risk for depression. Reward sensitivity appears to be attenuated in major depressive disorder (MDD), suggesting deficits in reward processing in these patients. We identified the VTA-BLA-NAc circuit as being activated by sex reward, and the VTA neurons that respond to sex reward are mostly dopaminergic. Acute or chronic reactivation of this circuit ameliorates the reward insensitivity induced by chronic restraint stress. Our histological and electrophysiological results show that the VTA neuron subpopulation responding to restraint stress, predominantly GABAergic neurons, inhibits the responsiveness of VTA dopaminergic neurons to reward stimuli, which is probably the mechanism by which stress modulates the reward processing neural circuits and subsequently disrupts reward-related behaviours. Furthermore, we found that the VTA-BLA-NAc circuit is a positive feedback loop. Blocking the projections from the BLA to the NAc associated with sex reward increases the excitability of VTA GABAergic neurons and decreases the excitability of VTA dopaminergic neurons, while activating this pathway decreases the excitability of VTA GABAergic neurons and increases the excitability of VTA dopaminergic neurons, which may be the cellular mechanism by which the VTA-BLA-NAc circuit associated with sex reward ameliorates the attenuated reward sensitivity induced by chronic stress.
Collapse
|
23
|
Keefer SE, Gyawali U, Calu DJ. Choose your path: Divergent basolateral amygdala efferents differentially mediate incentive motivation, flexibility and decision-making. Behav Brain Res 2021; 409:113306. [PMID: 33887310 PMCID: PMC8189324 DOI: 10.1016/j.bbr.2021.113306] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
To survive in a complex environment, individuals form associations between environmental stimuli and rewards to organize and optimize reward seeking behaviors. The basolateral amygdala (BLA) uses these learned associations to inform decision-making processes. In this review, we describe functional projections between BLA and its cortical and striatal targets that promote learning and motivational processes central to decision-making. Specifically, we compare and contrast divergent projections from the BLA to the orbitofrontal (OFC) and to the nucleus accumbens (NAc) and examine the roles of these pathways in associative learning, value-guided decision-making, choice behaviors, as well as cue and context-driven drug seeking. Finally, we consider how these projections are involved in disorders of motivation, with a focus on Substance Use Disorder.
Collapse
Affiliation(s)
- Sara E Keefer
- Department of Anatomy and Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Utsav Gyawali
- Department of Anatomy and Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, United States; Program in Neuroscience, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Donna J Calu
- Department of Anatomy and Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, United States; Program in Neuroscience, University of Maryland, School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
24
|
Jones JA, Zuhlsdorff K, Dalley JW. Neurochemical substrates linked to impulsive and compulsive phenotypes in addiction: A preclinical perspective. J Neurochem 2021; 157:1525-1546. [PMID: 33931861 DOI: 10.1111/jnc.15380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/24/2021] [Accepted: 04/25/2021] [Indexed: 01/18/2023]
Abstract
Drug compulsion manifests in some but not all individuals and implicates multifaceted processes including failures in top-down cognitive control as drivers for the hazardous pursuit of drug use in some individuals. As a closely related construct, impulsivity encompasses rash or risky behaviour without foresight and underlies most forms of drug taking behaviour, including drug use during adverse emotional states (i.e., negative urgency). While impulsive behavioural dimensions emerge from drug-induced brain plasticity, burgeoning evidence suggests that impulsivity also predates the emergence of compulsive drug use. Although the neural substrates underlying the apparently causal relationship between trait impulsivity and drug compulsion are poorly understood, significant advances have come from the interrogation of defined limbic cortico-striatal circuits involved in motivated behaviour and response inhibition, together with chemical neuromodulatory influences from the ascending neurotransmitter systems. We review what is presently known about the neurochemical mediation of impulsivity, in its various forms, and ask whether commonalities exist in the neurochemistry of compulsive drug-motivated behaviours that might explain individual risk for addiction.
Collapse
Affiliation(s)
- Jolyon A Jones
- Department of Psychology, University of Cambridge, Cambridge, UK
| | | | - Jeffrey W Dalley
- Department of Psychology, University of Cambridge, Cambridge, UK.,Department of Psychiatry, Hershel Smith Building for Brain and Mind Sciences, Cambridge, UK
| |
Collapse
|
25
|
Piantadosi PT, Halladay LR, Radke AK, Holmes A. Advances in understanding meso-cortico-limbic-striatal systems mediating risky reward seeking. J Neurochem 2021; 157:1547-1571. [PMID: 33704784 PMCID: PMC8981567 DOI: 10.1111/jnc.15342] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 02/06/2023]
Abstract
The risk of an aversive consequence occurring as the result of a reward-seeking action can have a profound effect on subsequent behavior. Such aversive events can be described as punishers, as they decrease the probability that the same action will be produced again in the future and increase the exploration of less risky alternatives. Punishment can involve the omission of an expected rewarding event ("negative" punishment) or the addition of an unpleasant event ("positive" punishment). Although many individuals adaptively navigate situations associated with the risk of negative or positive punishment, those suffering from substance use disorders or behavioral addictions tend to be less able to curtail addictive behaviors despite the aversive consequences associated with them. Here, we discuss the psychological processes underpinning reward seeking despite the risk of negative and positive punishment and consider how behavioral assays in animals have been employed to provide insights into the neural mechanisms underlying addictive disorders. We then review the critical contributions of dopamine signaling to punishment learning and risky reward seeking, and address the roles of interconnected ventral striatal, cortical, and amygdala regions to these processes. We conclude by discussing the ample opportunities for future study to clarify critical gaps in the literature, particularly as related to delineating neural contributions to distinct phases of the risky decision-making process.
Collapse
Affiliation(s)
- Patrick T. Piantadosi
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Lindsay R. Halladay
- Department of Psychology, Santa Clara University, Santa Clara, California 95053, USA
| | - Anna K. Radke
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| |
Collapse
|
26
|
Abstract
Drug addiction is a chronic relapsing disorder, and a significant amount of research has been devoted to understand the factors that contribute to the development, loss of control, and persistence of compulsive addictive behaviors. In this review, we provide an overview of various theories of addiction to drugs of abuse and the neurobiology involved in elements of the addiction cycle. Specific focus is devoted to the role of the mesolimbic pathway in acute drug reinforcement and occasional drug use, the role of the mesocortical pathway and associated areas (e.g., the dorsal striatum) in escalation/dependence, and the contribution of these pathways and associated circuits to conditioned responses, drug craving, and loss of behavioral control that may underlie drug relapse. By enhancing the understanding of the neurobiological factors that mediate drug addiction, continued preclinical and clinical research will aid in the development of novel therapeutic interventions that can serve as effective long-term treatment strategies for drug-dependent individuals.
Collapse
Affiliation(s)
- Matthew W Feltenstein
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Ronald E See
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425, USA
- Department of Psychology, Westmont College, Santa Barbara, California 93108, USA
| | - Rita A Fuchs
- Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington 99164-7620, USA
| |
Collapse
|
27
|
Puaud M, Higuera-Matas A, Brunault P, Everitt BJ, Belin D. The Basolateral Amygdala to Nucleus Accumbens Core Circuit Mediates the Conditioned Reinforcing Effects of Cocaine-Paired Cues on Cocaine Seeking. Biol Psychiatry 2021; 89:356-365. [PMID: 33040986 DOI: 10.1016/j.biopsych.2020.07.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND Individuals addicted to cocaine spend much of their time foraging for the drug. Pavlovian drug-associated conditioned stimuli exert a major influence on the initiation and maintenance of drug seeking often long into abstinence, especially when presented response-contingently, acting as conditioned reinforcers that bridge delays to drug use. The acquisition of cue-controlled cocaine seeking has been shown to depend on functional interactions between the basolateral amygdala (BLA) and the nucleus accumbens core (NAcC). However, the precise neuronal circuits underlying the acquisition of cue-controlled cocaine-seeking behavior have not been elucidated. METHODS Here, we used a projection-specific Cre-dependent DREADD (designer receptor exclusively activated by designer drugs)-mediated causal approach to test the hypothesis that the direct projections from the BLA to the NAcC are required for the acquisition of cue-controlled cocaine-seeking behavior. RESULTS In Sprague Dawley rats with Cre-mediated expression of the inhibitory DREADD hM4D(Gi) in the NAcC-projecting BLA neurons, treatment with clozapine N-oxide, but not vehicle, selectively prevented the impact of cocaine-associated conditioned reinforcers on cocaine seeking under a second-order schedule of reinforcement. This effect was attributable to the chemogenetic inhibition of the NAcC-projecting BLA neurons, as it was reversible, and it was absent in clozapine N-oxide-treated rats expressing an empty control virus. In contrast, chemogenetic inhibition of the anterior insula, which receives collateral projections from NAcC-projecting BLA neurons, was without effect. CONCLUSIONS These data demonstrate that the acquisition of cue-controlled cocaine seeking that depends on the conditioned reinforcing effects of cocaine cues requires activity in the direct projections from the BLA to the NAcC.
Collapse
Affiliation(s)
- Mickaël Puaud
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Alejandro Higuera-Matas
- Department of Psychobiology, School of Psychology. Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Paul Brunault
- Équipe de Liaison et de Soins en Addictologie, Centre Hospitalier Régional Universitaire de Tours, Tours, France; Joint Research Unit 1253, iBrain, Université de Tours, French Institute of Health and Medical Research, Tours, France
| | - Barry J Everitt
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - David Belin
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
28
|
Pittenger ST, Chou S, Murawski NJ, Barrett ST, Loh O, Duque JF, Li M, Bevins RA. Female rats display higher methamphetamine-primed reinstatement and c-Fos immunoreactivity than male rats. Pharmacol Biochem Behav 2021; 201:173089. [PMID: 33422599 PMCID: PMC9067906 DOI: 10.1016/j.pbb.2020.173089] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 11/20/2022]
Abstract
Methamphetamine (meth) dependence is often characterized by persistent and chronic relapse (i.e., return to drug use). Previous work suggests females may be at greater risk to relapse. In this study, we extended this limited evidence and identified sex-dependent neural substrates related to meth-triggered reinstatement. Male and female Sprague-Dawley rats were implanted with indwelling jugular catheters. Half of the rats were then trained to self-administer meth (0.05 mg/kg/inf); the other half self-administered saline during 21 daily sessions (2 h). Rats were then given 12 extinction sessions. Twenty-four hours after the last extinction session, rats received reinstatement testing. Half of the rats received a meth-prime (0.3 mg/kg, IP) injection and the remaining rats received a saline injection. This design resulted in 4 separate groups for each sex, allowing for careful investigation of brain regions related to meth-triggered reinstatement. Brains were harvested following the reinstatement session and c-Fos immunoreactivity was measured in multiple brain regions. Meth triggered reinstatement in both sexes and this effect was more robust in females compared to males. Significant sex differences were detected. Females showed greater c-Fos immunoreactivity in the cingulate cortex area 1, lateral orbitofrontal cortex, prelimbic cortex, caudate-putamen, nucleus accumbens core and shell, and central nucleus of the amygdala following meth-primed reinstatement.
Collapse
Affiliation(s)
- Steven T Pittenger
- University of Nebraska-Lincoln, Department of Psychology, United States of America
| | - Shinnyi Chou
- University of Pittsburgh Medical Center, United States of America
| | | | - Scott T Barrett
- University of Nebraska-Lincoln, Department of Psychology, United States of America
| | - Olivia Loh
- University of Colorado-Denver, United States of America
| | - Juan F Duque
- Arcadia University, Department of Psychology, United States of America
| | - Ming Li
- University of Nebraska-Lincoln, Department of Psychology, United States of America
| | - Rick A Bevins
- University of Nebraska-Lincoln, Department of Psychology, United States of America.
| |
Collapse
|
29
|
Zhang Y, Gui H, Hu L, Li C, Zhang J, Liang X. Dopamine D1 receptor in the NAc shell is involved in delayed emergence from isoflurane anesthesia in aged mice. Brain Behav 2021; 11:e01913. [PMID: 33094567 PMCID: PMC7821614 DOI: 10.1002/brb3.1913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/24/2020] [Accepted: 10/07/2020] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Delayed emergence after general anesthesia tends to occur in the elderly population, but the mechanism remains unclear. Apart from age-related pharmacokinetic changes, the aging-induced structural and functional alterations in the arousal-promoting neural substrates should be considered. The nucleus accumbens (NAc) is a crucial arousal-related nucleus, in which activating medium spiny neurons (MSNs) expressing dopamine D1 receptor (D1R) could facilitate the arousal from natural sleep. Meanwhile, the dopaminergic systems decline with aging in multiple brain regions. However, whether the age-related decline in D1R in the NAc shell attenuates its arousal-promoting capacity from general anesthesia remains to be elucidated. METHODS We first verified the delayed emergence from isoflurane anesthesia and examined the corresponding changes of electroencephalogram (EEG) power in aged mice. In turn, the arousal-modulating capacity of D1R was characterized in the young and aged cohorts by microinjection of D1R agonist/antagonist into the NAc shell. Furthermore, to address the possible mechanism responsible for the attenuated arousal-modulating capacity of the aged NAc, the expression of D1R in the NAc shell was measured and compared between young and aged mice. RESULTS Our data indicated that compared with young mice, the emergence time in aged mice was notably longer, while EEG power in δ band (1-4Hz) was significantly higher and power in β band (12-25Hz) was lower. Activating or inhibiting D1R in the NAc shell by microinjection D1R agonist/antagonist promoted or delayed the emergence process in young mice. Nevertheless, this modulation capacity of D1R in the NAc shell declined in aged mice, respectively. Meanwhile, downregulation of D1R expression in the NAc shell was detected in the aged brain. CONCLUSION Together, these results suggest that aging attenuates the arousal-modulating capacity of D1R in the NAc shell probably through downregulation of D1R expression therein, which may provide a potential explanation and a therapeutic target for increased sensitivity to anesthetics in the elderly patients.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Anesthesiology, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, China.,School of Anesthesiology, Zunyi Medical University, Zunyi, China
| | - Huan Gui
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, China
| | - Lang Hu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, China
| | - Chengxi Li
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, China
| | - Jie Zhang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, China
| | - Xiaoli Liang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, China.,School of Anesthesiology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
30
|
Wright WJ, Dong Y. Psychostimulant-Induced Adaptations in Nucleus Accumbens Glutamatergic Transmission. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a039255. [PMID: 31964644 DOI: 10.1101/cshperspect.a039255] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Carrying different aspects of emotional and motivational signals, glutamatergic synaptic projections from multiple limbic and paralimbic brain regions converge to the nucleus accumbens (NAc), in which these arousing signals are processed and prioritized for behavioral output. In animal models of drug addiction, some key drug-induced alterations at NAc glutamatergic synapses underlie important cellular and circuit mechanisms that promote subsequent drug taking, seeking, and relapse. With the focus of cocaine, we review changes at NAc glutamatergic synapses that occur after different drug procedures and abstinence durations, and the behavioral impact of these changes.
Collapse
Affiliation(s)
- William J Wright
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
31
|
Kochli DE, Keefer SE, Gyawali U, Calu DJ. Basolateral Amygdala to Nucleus Accumbens Communication Differentially Mediates Devaluation Sensitivity of Sign- and Goal-Tracking Rats. Front Behav Neurosci 2020; 14:593645. [PMID: 33324182 PMCID: PMC7723965 DOI: 10.3389/fnbeh.2020.593645] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/05/2020] [Indexed: 12/02/2022] Open
Abstract
Rats rely on communication between the basolateral amygdala (BLA) and nucleus accumbens (NAc) to express lever directed approach in a Pavlovian lever autoshaping (PLA) task that distinguishes sign- and goal-tracking rats. During PLA, sign-tracking rats preferentially approach an insertable lever cue, while goal-tracking rats approach a foodcup where rewards are delivered. While sign-tracking rats inflexibly respond to cues even after the associated reward is devalued, goal-tracking rats flexibly reduce responding to cues during outcome devaluation. Here, we sought to determine whether BLA-NAc communication, which is necessary for sign, but not goal-tracking, drives a rigid appetitive approach of sign-tracking rats that are insensitive to manipulations of outcome value. Using a contralateral chemogenetic inactivation design, we injected contralateral BLA and NAc core with inhibitory DREADD (hm4Di-mCherry) or control (mCherry) constructs. To determine sign- and goal-tracking groups, we trained rats in five PLA sessions in which brief lever insertion predicts food pellet delivery. We sated rats on training pellets (devalued condition) or chow (valued condition) before systemic clozapine injections (0.1 mg/kg) to inactivate BLA and contralateral NAc during two outcome devaluation probe tests, in which we measured lever and foodcup approach. Contralateral BLA-NAc chemogenetic inactivation promoted a flexible lever approach in sign-tracking rats but disrupted the flexible foodcup approach in goal-tracking rats. Consistent with a prior BLA-NAc disconnection lesion study, we find contralateral chemogenetic inactivation of BLA and NAc core reduces lever, but not the foodcup approach in PLA. Together these findings suggest rigid appetitive associative encoding in BLA-NAc of sign-tracking rats hinders the expression of flexible behavior when outcome value changes.
Collapse
Affiliation(s)
- Daniel E. Kochli
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Sara E. Keefer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Utsav Gyawali
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Donna J. Calu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
32
|
Improving translation of animal models of addiction and relapse by reverse translation. Nat Rev Neurosci 2020; 21:625-643. [PMID: 33024318 DOI: 10.1038/s41583-020-0378-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2020] [Indexed: 12/13/2022]
Abstract
Critical features of human addiction are increasingly being incorporated into complementary animal models, including escalation of drug intake, punished drug seeking and taking, intermittent drug access, choice between drug and non-drug rewards, and assessment of individual differences based on criteria in the fourth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV). Combined with new technologies, these models advanced our understanding of brain mechanisms of drug self-administration and relapse, but these mechanistic gains have not led to improvements in addiction treatment. This problem is not unique to addiction neuroscience, but it is an increasing source of disappointment and calls to regroup. Here we first summarize behavioural and neurobiological results from the animal models mentioned above. We then propose a reverse translational approach, whose goal is to develop models that mimic successful treatments: opioid agonist maintenance, contingency management and the community-reinforcement approach. These reverse-translated 'treatments' may provide an ecologically relevant platform from which to discover new circuits, test new medications and improve translation.
Collapse
|
33
|
Taujanskaitė U, Cahill EN, Milton AL. Targeting drug memory reconsolidation: a neural analysis. Curr Opin Pharmacol 2020; 56:7-12. [PMID: 32961367 DOI: 10.1016/j.coph.2020.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 10/23/2022]
Abstract
Addiction can be conceptualised as a disorder of maladaptive learning and memory. Therefore, maladaptive drug memories supporting drug-seeking and relapse behaviours may present novel treatment targets for therapeutic approaches based upon reconsolidation-blockade. It is known that different structures within the limbic corticostriatal system contribute differentially to different types of maladaptive drug memories, including pavlovian associations between environmental cues and contexts with the drug high, and instrumental memories underlying drug-seeking. Here, we review the mechanisms underlying drug memory reconsolidation in the amygdala, striatum, and hippocampus, noting similarities and differences, and opportunities for future research.
Collapse
Affiliation(s)
- Uršulė Taujanskaitė
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Emma N Cahill
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Amy L Milton
- Department of Psychology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
34
|
Hsu CC, Madsen TE, O'Gorman E, Gourley SL, Rainnie DG. Reward-related dynamical coupling between basolateral amygdala and nucleus accumbens. Brain Struct Funct 2020; 225:1873-1888. [PMID: 32556583 PMCID: PMC7405940 DOI: 10.1007/s00429-020-02099-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 06/06/2020] [Indexed: 12/28/2022]
Abstract
Recognizing reward-related stimuli is crucial for survival. Neuronal projections from the basolateral amygdala (BLA) to the nucleus accumbens (NAc) play an important role in processing reward-related cues. Previous studies revealed synchronization between distant brain regions in reward-sensitive neurocircuits; however, whether the NAc synchronizes with the BLA is unknown. Here, we recorded local field potentials simultaneously from the BLA and NAc of rats during social preference tests and an appetitive conditioning test in which explicit stimuli were associated with food. BLA-NAc coherence in the theta band (5-8 Hz) increased in response to food-associated cues. Meanwhile, the modulatory strength of theta-high gamma (50-110 Hz) phase-amplitude cross-frequency coupling (PAC) in the NAc decreased. Importantly, both of these neuromodulations disappeared upon extinction. In contrast, both theta and gamma power oscillations in each region increased in the presence of social conspecifics or contexts associated with conspecifics, but coherence did not change. To potentially disrupt behavior and associated neural activity, a subgroup of rats was exposed prenatally to valproic acid (VPA), which has been shown to disrupt transcriptome and excitatory/inhibitory balance in the amygdala. VPA-exposed rats demonstrated impulsive-like behavior, but VPA did not affect BLA-NAc coherence. These findings reveal changes in BLA-NAc coherence in response to select reward-related stimuli (i.e., food-predictive cues); the differences between the tasks used here could shed light onto the functional nature of BLA-NAc coherence and are discussed.
Collapse
Affiliation(s)
- Chia-Chun Hsu
- Yerkes National Primate Research Center, Emory University, Atlanta, USA
- Neuroscience Graduate Program, Emory University, Atlanta, USA
- Department of Pediatrics, Emory University, Atlanta, USA
| | - Teresa E Madsen
- Yerkes National Primate Research Center, Emory University, Atlanta, USA
| | | | - Shannon L Gourley
- Yerkes National Primate Research Center, Emory University, Atlanta, USA.
- Neuroscience Graduate Program, Emory University, Atlanta, USA.
- Department of Pediatrics, Emory University, Atlanta, USA.
| | - Donald G Rainnie
- Yerkes National Primate Research Center, Emory University, Atlanta, USA.
| |
Collapse
|
35
|
Wang Y, Liu Z, Cai L, Guo R, Dong Y, Huang YH. A Critical Role of Basolateral Amygdala-to-Nucleus Accumbens Projection in Sleep Regulation of Reward Seeking. Biol Psychiatry 2020; 87:954-966. [PMID: 31924324 PMCID: PMC7210061 DOI: 10.1016/j.biopsych.2019.10.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/09/2019] [Accepted: 10/27/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND Sleep impacts reward-motivated behaviors partly by retuning the brain reward circuits. The nucleus accumbens (NAc) is a reward processing hub sensitive to acute sleep deprivation. Glutamatergic transmission carrying reward-associated signals converges in the NAc and regulates various aspects of reward-motivated behaviors. The basolateral amygdala projection (BLAp) innervates broad regions of the NAc and critically regulates reward seeking. METHODS Using slice electrophysiology, we measured how acute sleep deprivation alters transmission at BLAp-NAc synapses in male C57BL/6 mice. Moreover, using SSFO (stabilized step function opsin) and DREADDs (designer receptors exclusively activated by designer drugs) (Gi) to amplify and reduce transmission, respectively, we tested behavioral consequences following bidirectional manipulations of BLAp-NAc transmission. RESULTS Acute sleep deprivation increased sucrose self-administration in mice and altered the BLAp-NAc transmission in a topographically specific manner. It selectively reduced glutamate release at the rostral BLAp (rBLAp) onto ventral and lateral NAc (vlNAc) synapses, but spared caudal BLAp onto medial NAc synapses. Furthermore, experimentally facilitating glutamate release at rBLAp-vlNAc synapses suppressed sucrose reward seeking. Conversely, mimicking sleep deprivation-induced reduction of rBLAp-vlNAc transmission increased sucrose reward seeking. Finally, facilitating rBLAp-vlNAc transmission per se did not promote either approach motivation or aversion. CONCLUSIONS Sleep acts on rBLAp-vINAc transmission gain control to regulate established reward seeking but does not convey approach motivation or aversion on its own.
Collapse
Affiliation(s)
- Yao Wang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA,Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA,These authors contributed equally to this work
| | - Zheng Liu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA,These authors contributed equally to this work
| | - Li Cai
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Rong Guo
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Yan Dong
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA,Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA
| | - Yanhua H. Huang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
36
|
Lüscher C, Robbins TW, Everitt BJ. The transition to compulsion in addiction. Nat Rev Neurosci 2020; 21:247-263. [PMID: 32231315 PMCID: PMC7610550 DOI: 10.1038/s41583-020-0289-z] [Citation(s) in RCA: 232] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2020] [Indexed: 01/09/2023]
Abstract
Compulsion is a cardinal symptom of drug addiction (severe substance use disorder). However, compulsion is observed in only a small proportion of individuals who repeatedly seek and use addictive substances. Here, we integrate accounts of the neuropharmacological mechanisms that underlie the transition to compulsion with overarching learning theories, to outline how compulsion develops in addiction. Importantly, we emphasize the conceptual distinctions between compulsive drug-seeking behaviour and compulsive drug-taking behaviour (that is, use). In the latter, an individual cannot stop using a drug despite major negative consequences, possibly reflecting an imbalance in frontostriatal circuits that encode reward and aversion. By contrast, an individual may compulsively seek drugs (that is, persist in seeking drugs despite the negative consequences of doing so) when the neural systems that underlie habitual behaviour dominate goal-directed behavioural systems, and when executive control over this maladaptive behaviour is diminished. This distinction between different aspects of addiction may help to identify its neural substrates and new treatment strategies.
Collapse
Affiliation(s)
- Christian Lüscher
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland.
- Division of Neurology, Department of Clinical Neurosciences, Geneva University Hospital, Geneva, Switzerland.
| | - Trevor W Robbins
- Behavioural and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge, UK.
| | - Barry J Everitt
- Behavioural and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
37
|
Beyeler A, Dabrowska J. Neuronal diversity of the amygdala and the bed nucleus of the stria terminalis. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2020; 26:63-100. [PMID: 32792868 DOI: 10.1016/b978-0-12-815134-1.00003-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Anna Beyeler
- Neurocentre Magendie, French National Institutes of Health (INSERM) unit 1215, Neurocampus of Bordeaux University, Bordeaux, France
| | - Joanna Dabrowska
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
38
|
Therapeutic efficacy of environmental enrichment for substance use disorders. Pharmacol Biochem Behav 2019; 188:172829. [PMID: 31778722 DOI: 10.1016/j.pbb.2019.172829] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/18/2022]
Abstract
Addiction to drug and alcohol is regarded as a major health problem worldwide for which available treatments show limited effectiveness. The biggest challenge remains to enhance the capacities of interventions to reduce craving, prevent relapse and promote long-term recovery. New strategies to meet these challenges are being explored. Findings from preclinical work suggest that environmental enrichment (EE) holds therapeutic potential for the treatment of substance use disorders, as demonstrated in a number of animal models of drug abuse. The EE intervention introduced after drug exposure leads to attenuation of compulsive drug taking, attenuation of the rewarding (and reinforcing) effects of drugs, reductions in control of behavior by drug cues, and, very importantly, relapse prevention. Clinical work also suggests that multidimensional EE interventions (involving physical activity, social interaction, vocational training, recreational and community involvement) might produce similar therapeutic effects, if implemented continuously and rigorously. In this review we survey preclinical and clinical studies assessing the efficacy of EE as a behavioral intervention for substance use disorders and address related challenges. We also review work providing empirical evidence for EE-induced neuroplasticity within the mesocorticolimbic system that is believed to contribute to the seemingly therapeutic effects of EE on drug and alcohol-related behaviors.
Collapse
|
39
|
Everitt BJ, Giuliano C, Belin D. Addictive behaviour in experimental animals: prospects for translation. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0027. [PMID: 29352026 DOI: 10.1098/rstb.2017.0027] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2017] [Indexed: 11/12/2022] Open
Abstract
Since the introduction of intravenous drug self-administration methodology over 50 years ago, experimental investigation of addictive behaviour has delivered an enormous body of data on the neural, psychological and molecular mechanisms of drug reward and reinforcement and the neuroadaptations to chronic use. Whether or not these behavioural and molecular studies are viewed as modelling the underpinnings of addiction in humans, the discussion presented here highlights two areas-the impact of drug-associated conditioned stimuli-or drug cues-on drug seeking and relapse, and compulsive cocaine seeking. The degree to which these findings translate to the clinical state of addiction is considered in terms of the underlying neural circuitry and also the ways in which this understanding has helped develop new treatments for addiction. The psychological and neural mechanisms underlying drug memory reconsolidation and extinction established in animal experiments show particular promise in delivering new treatments for relapse prevention to the clinic.This article is part of a discussion meeting issue 'Of mice and mental health: facilitating dialogue between basic and clinical neuroscientists'.
Collapse
Affiliation(s)
- Barry J Everitt
- Behavioural and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK
| | - Chiara Giuliano
- Behavioural and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK
| | - David Belin
- Behavioural and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK
| |
Collapse
|
40
|
Wisłowska-Stanek A, Płaźnik A, Kołosowska K, Skórzewska A, Turzyńska D, Liguz-Lęcznar M, Krząścik P, Gryz M, Szyndler J, Sobolewska A, Lehner M. Differences in the dopaminergic reward system in rats that passively and actively behave in the Porsolt test. Behav Brain Res 2018; 359:181-189. [PMID: 30366032 DOI: 10.1016/j.bbr.2018.10.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 12/11/2022]
Abstract
The aim of the study was to assess appetitive responses and central dopaminergic neurotransmission in passive and active rats divided according to their immobility time in the Porsolt swim test and exposed to restraint stress. Passive rats had more episodes of appetitive 50-kHz ultrasonic vocalization (USV) during rat encounter after social isolation and spent significantly more time in the amphetamine-associated context in conditioned place preference test, compared to active rats. Restraint stress decreased sucrose preference, but increased appetitive vocalization and reinforced the conditioned place preference only in passive animals that was associated with increased dopamine concentration in the amygdala. Restraint stress increased also the level of Cocaine- and Amphetamine Regulated Transcript (CART) peptide, a neuromodulator linked to dopamine neurotransmission, in the central nucleus of amygdala, while decreasing it the nucleus accumbens shell in passive rats. In the parvocellular region of paraventricular nucleus of the hypothalamus passive animals had a higher expression of CART compared to passive restraint rats and active control rats. The obtained results show that active and passive rats in the Porsolt test differ significantly in response to appetitive stimuli, which can be additionally changed under stress conditions. The underlying mechanisms are probably associated with differences in dopaminergic activity and CART signaling in reward system.
Collapse
Affiliation(s)
- Aleksandra Wisłowska-Stanek
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre For Preclinical Research and Technology (CEPT), 1B Banacha Street, 02-097, Warsaw, Poland.
| | - Adam Płaźnik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre For Preclinical Research and Technology (CEPT), 1B Banacha Street, 02-097, Warsaw, Poland; Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957, Warsaw, Poland
| | - Karolina Kołosowska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957, Warsaw, Poland
| | - Anna Skórzewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957, Warsaw, Poland
| | - Danuta Turzyńska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957, Warsaw, Poland
| | - Monika Liguz-Lęcznar
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Paweł Krząścik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre For Preclinical Research and Technology (CEPT), 1B Banacha Street, 02-097, Warsaw, Poland
| | - Marek Gryz
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957, Warsaw, Poland
| | - Janusz Szyndler
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre For Preclinical Research and Technology (CEPT), 1B Banacha Street, 02-097, Warsaw, Poland
| | - Alicja Sobolewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957, Warsaw, Poland
| | - Małgorzata Lehner
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957, Warsaw, Poland
| |
Collapse
|
41
|
Role of glutamatergic system and mesocorticolimbic circuits in alcohol dependence. Prog Neurobiol 2018; 171:32-49. [PMID: 30316901 DOI: 10.1016/j.pneurobio.2018.10.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/08/2018] [Accepted: 10/08/2018] [Indexed: 02/06/2023]
Abstract
Emerging evidence demonstrates that alcohol dependence is associated with dysregulation of several neurotransmitters. Alterations in dopamine, glutamate and gamma-aminobutyric acid release are linked to chronic alcohol exposure. The effects of alcohol on the glutamatergic system in the mesocorticolimbic areas have been investigated extensively. Several studies have demonstrated dysregulation in the glutamatergic systems in animal models exposed to alcohol. Alcohol exposure can lead to an increase in extracellular glutamate concentrations in mesocorticolimbic brain regions. In addition, alcohol exposure affects the expression and functions of several glutamate receptors and glutamate transporters in these brain regions. In this review, we discussed the effects of alcohol exposure on glutamate receptors, glutamate transporters and glutamate homeostasis in each area of the mesocorticolimbic system. In addition, we discussed the genetic aspect of alcohol associated with glutamate and reward circuitry. We also discussed the potential therapeutic role of glutamate receptors and glutamate transporters in each brain region for the treatment of alcohol dependence. Finally, we provided some limitations on targeting the glutamatergic system for potential therapeutic options for the treatment alcohol use disorders.
Collapse
|
42
|
Sharp BM. Basolateral amygdala, nicotinic cholinergic receptors, and nicotine: Pharmacological effects and addiction in animal models and humans. Eur J Neurosci 2018; 50:2247-2254. [PMID: 29802666 DOI: 10.1111/ejn.13970] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/10/2018] [Accepted: 05/14/2018] [Indexed: 01/08/2023]
Abstract
The amygdala is involved in processing incoming information about rewarding stimuli and emotions that denote danger such as anxiety and fear. Bi-directional neural connections between basolateral amygdala (BLA) and brain regions such as nucleus accumbens, prefrontal cortex, hippocampus, and hindbrain regions regulate motivation, cognition, and responses to stress. Altered local regulation of BLA excitability is pivotal to the behavioral disturbances characteristic of posttraumatic stress disorder, and relapse to drug use induced by stress. Herein, we review the physiological regulation of BLA by cholinergic inputs, emphasizing the role of BLA nicotinic receptors. We review BLA-dependent effects of nicotine on cognition, motivated behaviors, and emotional states, including memory, taking and seeking drugs, and anxiety and fear in humans and animal models. The alterations in BLA activity observed in animal studies inform human behavioral and brain imaging research by enabling a more exact understanding of altered BLA function. Converging evidence indicates that cholinergic signaling from basal forebrain projections to local nicotinic receptors is an important physiological regulator of BLA and that nicotine alters BLA function. In essence, BLA is necessary for behavioral responses to stimuli that evoke anxiety and fear; reinstatement of cue-induced drug seeking; responding to second-order cues conditioned to abused drugs; reacquisition of amplified nicotine self-administration due to chronic stress during abstinence; and to promote responding for natural reward.
Collapse
Affiliation(s)
- Burt M Sharp
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
43
|
Peters J, Scofield MD, Reichel CM. Chemogenetic activation of the perirhinal cortex reverses methamphetamine-induced memory deficits and reduces relapse. ACTA ACUST UNITED AC 2018; 25:410-415. [PMID: 30115762 PMCID: PMC6097768 DOI: 10.1101/lm.046797.117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/04/2018] [Indexed: 11/24/2022]
Abstract
Prolonged use of methamphetamine (meth) has been associated with episodic memory deficits in humans, and preclinical rat models of meth self-administration indicate the memory deficits are a consequence of meth use. Others have suggested that the meth-induced memory deficits may promote a cyclical pattern of drug use, abstinence, and relapse, although preclinical evidence for this relationship is somewhat lacking. The memory deficits in preclinical models manifest as a loss of novel object recognition (NOR) memory. These deficits occur one to two weeks after cessation of meth use and involve the perirhinal cortex, a parahippocampal region essential to NOR memory. We hypothesized that a loss of perirhinal cortex function contributes to both the NOR memory deficits and increased vulnerability to relapse in a novel-cue reinstatement model. To test this, we attempted to restore NOR memory in meth rats using an excitatory Gq-DREADD in perirhinal neurons. Activation of these neurons not only reversed the meth-induced deficit in NOR memory, but also restored novelty salience in a novel-cue reinstatement model. Thus, perirhinal cortex functionality contributes to both memory deficits in relapse in a long-access model of meth self-administration in rats, and chemogenetic restoration of perirhinal function restores memory and reduces relapse.
Collapse
Affiliation(s)
- Jamie Peters
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Michael D Scofield
- Department of Anesthesiology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Carmela M Reichel
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| |
Collapse
|
44
|
Caprioli D, Justinova Z, Venniro M, Shaham Y. Effect of Novel Allosteric Modulators of Metabotropic Glutamate Receptors on Drug Self-administration and Relapse: A Review of Preclinical Studies and Their Clinical Implications. Biol Psychiatry 2018; 84:180-192. [PMID: 29102027 PMCID: PMC5837933 DOI: 10.1016/j.biopsych.2017.08.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/23/2017] [Accepted: 08/28/2017] [Indexed: 12/31/2022]
Abstract
Results from preclinical rodent studies during the last 20 years implicated glutamate neurotransmission in different brain regions in drug self-administration and rodent models of relapse. These results, along with evidence for drug-induced neuroadaptations in glutamatergic neurons and receptors, suggested that addiction might be treatable by medications that inhibit glutamatergic responses to drugs of abuse, drug-associated cues, and stressors. This idea is supported by findings in rodent and primate models that drug self-administration and relapse are reduced by systemic injections of antagonists of ionotropic glutamate receptors or metabotropic glutamate receptors (mGluRs) or orthosteric agonists of mGluR2/3. However, these compounds have not advanced to clinical use because of potential side effects and other factors. This state of affairs has led to the development of positive allosteric modulators (PAMs) and negative allosteric modulators (NAMs) of mGluRs. PAMs and NAMs of mGluRs, either of which can inhibit evoked glutamate release, may be suitable for testing in humans. We reviewed results from recent studies of systemically injected PAMs and NAMs of mGluRs in rodents and monkeys, focusing on whether they reduce drug self-administration, reinstatement of drug seeking, and incubation of drug craving. We also review results from rat studies in which PAMs or NAMs of mGluRs were injected intracranially to reduce drug self-administration and reinstatement. We conclude that PAMs and NAMs of mGluRs should be considered for clinical trials.
Collapse
Affiliation(s)
- Daniele Caprioli
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy.
| | - Zuzana Justinova
- Behavioral Neuroscience Research Branch, Intramural Research Program, NIDA, NIH, DHHS, Baltimore, MD, USA
| | - Marco Venniro
- Behavioral Neuroscience Research Branch, Intramural Research Program, NIDA, NIH, DHHS, Baltimore, MD, USA
| | - Yavin Shaham
- Behavioral Neuroscience Research Branch, Intramural Research Program, NIDA, NIH, DHHS, Baltimore, MD, USA
| |
Collapse
|
45
|
Drug Cues, Conditioned Reinforcement, and Drug Seeking: The Sequelae of a Collaborative Venture With Athina Markou. Biol Psychiatry 2018; 83:924-931. [PMID: 29100631 DOI: 10.1016/j.biopsych.2017.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 01/13/2023]
Abstract
Athina Markou spent a research period in my laboratory, then in the Department of Anatomy in Cambridge University, in 1991 to help us establish a cocaine-seeking procedure. Thus we embarked on developing a second-order schedule of intravenous cocaine reinforcement to investigate the neural basis of the pronounced effects of cocaine-associated conditioned stimuli on cocaine seeking. This brief review summarizes the fundamental aspects of cocaine seeking measured using this approach and the importance of the methodology in enabling us to define the neural mechanisms and circuitry underlying conditioned reinforcement and cocaine, heroin, and alcohol seeking. The shift over time and experience of control over drug seeking from a limbic cortical-ventral striatal circuit underlying goal-directed drug seeking to a dorsal striatal system mediating habitual drug seeking are also summarized. The theoretical implications of these data are discussed, thereby revealing the ways in which the outcomes of a collaboration can endure.
Collapse
|
46
|
Bystrowska B, Frankowska M, Smaga I, Pomierny-Chamioło L, Filip M. Effects of Cocaine Self-Administration and Its Extinction on the Rat Brain Cannabinoid CB1 and CB2 Receptors. Neurotox Res 2018; 34:547-558. [PMID: 29754307 PMCID: PMC6154179 DOI: 10.1007/s12640-018-9910-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 04/23/2018] [Accepted: 05/01/2018] [Indexed: 12/18/2022]
Abstract
The aim of this study was to evaluate changes in the expression of cannabinoid type 1 (CB1) and 2 (CB2) receptor proteins in several brain regions in rats undergoing cocaine self-administration and extinction training. We used a triad-yoked procedure to distinguish between the motivational and pharmacological effects of cocaine. Using immunohistochemistry, we observed a significant decrease in CB1 receptor expression in the prefrontal cortex, dorsal striatum, and the basolateral and basomedial amygdala following cocaine (0.5 mg/kg/infusion) self-administration. Increased CB1 receptor expression in the ventral tegmental area in rats with previous cocaine exposure was also found. Following cocaine abstinence after 10 days of extinction training, we detected increases in the expression of CB1 receptors in the substantia nigra in both cocaine groups and in the subregions of the amygdala for only the yoked cocaine controls, while any method of cocaine exposure resulted in a decrease in CB2 receptor expression in the prefrontal cortex (p < 0.01), nucleus accumbens (p < 0.01), and medial globus pallidus (p < 0.01). Our findings further support the idea that the eCB system and CB1 receptors are involved in cocaine-reinforced behaviors. Moreover, we detected a cocaine-evoked adaptation in CB2 receptors in the amygdala, prefrontal cortex, and globus pallidus.
Collapse
Affiliation(s)
- Beata Bystrowska
- Department of Toxicology, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland.
| | - Małgorzata Frankowska
- Department of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Irena Smaga
- Department of Internal Medicine, Jagiellonian University Medical College, Skawińska 8, 31-066, Kraków, Poland
| | - Lucyna Pomierny-Chamioło
- Department of Toxicology, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| |
Collapse
|
47
|
Stark AJ, Smith CT, Petersen KJ, Trujillo P, van Wouwe NC, Donahue MJ, Kessler RM, Deutch AY, Zald DH, Claassen DO. [ 18F]fallypride characterization of striatal and extrastriatal D 2/3 receptors in Parkinson's disease. Neuroimage Clin 2018; 18:433-442. [PMID: 29541577 PMCID: PMC5849871 DOI: 10.1016/j.nicl.2018.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/15/2018] [Accepted: 02/07/2018] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is characterized by widespread degeneration of monoaminergic (especially dopaminergic) networks, manifesting with a number of both motor and non-motor symptoms. Regional alterations to dopamine D2/3 receptors in PD patients are documented in striatal and some extrastriatal areas, and medications that target D2/3 receptors can improve motor and non-motor symptoms. However, data regarding the combined pattern of D2/3 receptor binding in both striatal and extrastriatal regions in PD are limited. We studied 35 PD patients off-medication and 31 age- and sex-matched healthy controls (HCs) using PET imaging with [18F]fallypride, a high affinity D2/3 receptor ligand, to measure striatal and extrastriatal D2/3 nondisplaceable binding potential (BPND). PD patients completed PET imaging in the off medication state, and motor severity was concurrently assessed. Voxel-wise evaluation between groups revealed significant BPND reductions in PD patients in striatal and several extrastriatal regions, including the locus coeruleus and mesotemporal cortex. A region-of-interest (ROI) based approach quantified differences in dopamine D2/3 receptors, where reduced BPND was noted in the globus pallidus, caudate, amygdala, hippocampus, ventral midbrain, and thalamus of PD patients relative to HC subjects. Motor severity positively correlated with D2/3 receptor density in the putamen and globus pallidus. These findings support the hypothesis that abnormal D2/3 expression occurs in regions related to both the motor and non-motor symptoms of PD, including areas richly invested with noradrenergic neurons.
Collapse
Affiliation(s)
- Adam J Stark
- Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | | | - Kalen J Petersen
- Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Paula Trujillo
- Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Nelleke C van Wouwe
- Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Manus J Donahue
- Neurology, Vanderbilt University Medical Center, Nashville, TN, United States; Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States; Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Robert M Kessler
- Radiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ariel Y Deutch
- Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States; Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - David H Zald
- Psychology, Vanderbilt University, Nashville, TN, United States; Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Daniel O Claassen
- Neurology, Vanderbilt University Medical Center, Nashville, TN, United States.
| |
Collapse
|
48
|
Derman RC, Ferrario CR. Enhanced incentive motivation in obesity-prone rats is mediated by NAc core CP-AMPARs. Neuropharmacology 2017; 131:326-336. [PMID: 29291424 PMCID: PMC6010194 DOI: 10.1016/j.neuropharm.2017.12.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 11/07/2022]
Abstract
Studies in humans suggest that stronger incentive motivational responses to Pavlovian food cues may drive over-consumption leading to and maintaining obesity, particularly in susceptible individuals. However, whether this enhanced incentive motivation emerges as a consequence of obesity or rather precedes obesity is unknown. Moreover, while human imaging studies have provided important information about differences in striatal responsiveness between susceptible and non-susceptible individuals, the neural mechanisms mediating these behavioral differences are unknown. The Nucleus Accumbens (NAc) mediates cue-triggered reward seeking and activity in the NAc is enhanced in obesity-susceptible populations. Therefore here, we used selectively-bred obesity-prone and obesity-resistant rats to examine intrinsic differences in incentive motivation, and the role of NAc AMPARs in the expression of these behaviors prior to obesity. We found that obesity-prone rats exhibit robust cue-triggered food-seeking (Pavlovian-to-instrumental transfer, PIT). Using intra-NAc infusion of AMPAR antagonists, we show that this behavior is selectively mediated by CP-AMPARs in the NAc core. Additionally, biochemical data suggest that this is due in part to experience-induced increases in CP-AMPAR surface expression in the NAc of obesity-prone rats. In contrast, in obesity-resistant rats PIT was weak and unreliable and training did not increase NAc AMPAR surface expression. Collectively, these data show that food cues acquire greater incentive motivational control in obesity-susceptible populations prior to the development of obesity. This provides support to the idea that enhanced intrinsic incentive motivation may be a contributing factor, rather than a consequence of obesity. In addition, these data demonstrate a novel role for experience-induced up-regulation of NAc CP-AMPARs in PIT, pointing to potential mechanistic parallels between the processes leading to addiction and to obesity.
Collapse
Affiliation(s)
- Rifka C Derman
- Department of Pharmacology, University of Michigan, United States
| | - Carrie R Ferrario
- Department of Pharmacology, University of Michigan, United States; Neuroscience Graduate Program, University of Michigan, United States.
| |
Collapse
|
49
|
Are Cocaine-Seeking "Habits" Necessary for the Development of Addiction-Like Behavior in Rats? J Neurosci 2017; 38:60-73. [PMID: 29158359 DOI: 10.1523/jneurosci.2458-17.2017] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/10/2017] [Accepted: 10/31/2017] [Indexed: 12/21/2022] Open
Abstract
Drug self-administration models of addiction typically require animals to make the same response (e.g., a lever-press or nose-poke) over and over to procure and take drugs. By their design, such procedures often produce behavior controlled by stimulus-response (S-R) habits. This has supported the notion of addiction as a "drug habit," and has led to considerable advances in our understanding of the neurobiological basis of such behavior. However, to procure such drugs as cocaine, addicts often require considerable ingenuity and flexibility in seeking behavior, which, by definition, precludes the development of habits. To better model drug-seeking behavior in addicts, we first developed a novel cocaine self-administration procedure [puzzle self-administration procedure (PSAP)] that required rats to solve a new puzzle every day to gain access to cocaine, which they then self-administered on an intermittent access (IntA) schedule. Such daily problem-solving precluded the development of S-R seeking habits. We then asked whether prolonged PSAP/IntA experience would nevertheless produce "symptoms of addiction." It did, including escalation of intake, sensitized motivation for drug, continued drug use in the face of adverse consequences, and very robust cue-induced reinstatement of drug seeking, especially in a subset of "addiction-prone" rats. Furthermore, drug-seeking behavior continued to require dopamine neurotransmission in the core of the nucleus accumbens (but not the dorsolateral striatum). We conclude that the development of S-R seeking habits is not necessary for the development of cocaine addiction-like behavior in rats.SIGNIFICANCE STATEMENT Substance-use disorders are often characterized as "habitual" behaviors aimed at obtaining and administering drugs. Although the actions involved in consuming drugs may involve a rigid repertoire of habitual behaviors, evidence suggests that addicts must be very creative and flexible when trying to procure drugs, and thus drug seeking cannot be governed by habit alone. We modeled flexible drug-seeking behavior in rats by requiring animals to solve daily puzzles to gain access to cocaine. We find that habitual drug-seeking isn't necessary for the development of addiction-like behavior, and that our procedure doesn't result in transfer of dopaminergic control from the ventral to dorsal striatum. This approach may prove useful in studying changes in neuropsychological function that promote the transition to addiction.
Collapse
|
50
|
Moaddab M, Mangone E, Ray MH, McDannald MA. Adolescent Alcohol Drinking Renders Adult Drinking BLA-Dependent: BLA Hyper-Activity as Contributor to Comorbid Alcohol Use Disorder and Anxiety Disorders. Brain Sci 2017; 7:brainsci7110151. [PMID: 29135933 PMCID: PMC5704158 DOI: 10.3390/brainsci7110151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/31/2017] [Accepted: 11/10/2017] [Indexed: 01/01/2023] Open
Abstract
Adolescent alcohol drinking increases the risk for alcohol-use disorder in adulthood. Yet, the changes in adult neural function resulting from adolescent alcohol drinking remain poorly understood. We hypothesized that adolescent alcohol drinking alters basolateral amygdala (BLA) function, making alcohol drinking BLA-dependent in adulthood. Male, Long Evans rats were given voluntary, intermittent access to alcohol (20% ethanol) or a bitter, isocaloric control solution, across adolescence. Half of the rats in each group received neurotoxic BLA lesions. In adulthood, all rats were given voluntary, intermittent access to alcohol. BLA lesions reduced adult alcohol drinking in rats receiving adolescent access to alcohol, but not in rats receiving adolescent access to the control solution. The effect of the BLA lesion was most apparent in high alcohol drinking adolescent rats. The BLA is essential for fear learning and is hyper-active in anxiety disorders. The results are consistent with adolescent heavy alcohol drinking inducing BLA hyper-activity, providing a neural mechanism for comorbid alcohol use disorder and anxiety disorders.
Collapse
Affiliation(s)
- Mahsa Moaddab
- Department of Psychology, Boston College, Chestnut Hill, MA 02467, USA.
| | - Elizabeth Mangone
- Department of Psychology, Boston College, Chestnut Hill, MA 02467, USA.
| | - Madelyn H Ray
- Department of Psychology, Boston College, Chestnut Hill, MA 02467, USA.
| | | |
Collapse
|