1
|
Zhang X, Jie Y. Importance of Circadian Rhythms in the Ocular Surface. Biomolecules 2024; 14:796. [PMID: 39062510 PMCID: PMC11274730 DOI: 10.3390/biom14070796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/22/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Circadian rhythms are a ubiquitous feature throughout the organism. Accumulating evidence suggests that the dysfunction of circadian rhythms due to genetic mutations or environmental factors contributes to the genesis and progress of multiple diseases. The physiological homeostasis of the ocular surface, like any other tissue or organ, is also orchestrated by circadian rhythms. In this review, we summarize the molecular clocks and the expression of clock-controlled genes in the mammalian ocular surface. Based on the circadian expression of these genes, we conclude the diurnal oscillations of cellular biological activities in the mammalian ocular surface. Moreover, we evaluate the factors entraining circadian oscillators in the ocular surface. Finally, we further discuss the latest development of the close correlation between circadian rhythms and ocular health. Briefly, this review aimed to synthesize the previous studies to aid in understanding the importance of circadian rhythms in the ocular surface and the possible opportunities for circadian rhythm-based interventional strategies to restore the homeostasis of the ocular surface.
Collapse
Affiliation(s)
| | - Ying Jie
- Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dong Jiao Min Xiang, Dong Cheng District, Beijing 100730, China;
| |
Collapse
|
2
|
Okamoto HH, Cecon E, Nureki O, Rivara S, Jockers R. Melatonin receptor structure and signaling. J Pineal Res 2024; 76:e12952. [PMID: 38587234 DOI: 10.1111/jpi.12952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/05/2024] [Accepted: 03/24/2024] [Indexed: 04/09/2024]
Abstract
Melatonin (5-methoxy-N-acetyltryptamine) binds with high affinity and specificity to membrane receptors. Several receptor subtypes exist in different species, of which the mammalian MT1 and MT2 receptors are the best-characterized. They are members of the G protein-coupled receptor superfamily, preferentially coupling to Gi/o proteins but also to other G proteins in a cell-context-depending manner. In this review, experts on melatonin receptors will summarize the current state of the field. We briefly report on the discovery and classification of melatonin receptors, then focus on the molecular structure of human MT1 and MT2 receptors and highlight the importance of molecular simulations to identify new ligands and to understand the structural dynamics of these receptors. We then describe the state-of-the-art of the intracellular signaling pathways activated by melatonin receptors and their complexes. Brief statements on the molecular toolbox available for melatonin receptor studies and future perspectives will round-up this review.
Collapse
Affiliation(s)
- Hiroyuki H Okamoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Erika Cecon
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Silvia Rivara
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Ralf Jockers
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| |
Collapse
|
3
|
de Diego-Garcia L, Brennan GP, Auer T, Menendez-Mendez A, Parras A, Martin-Gil A, Mitra M, Ollà I, Villalba-Benito L, Gil B, Alves M, Lau K, Delanty N, Beausang A, Cryan J, Brett FM, Farrell MA, O'Brien DF, Mendez R, Carracedo-Rodríguez G, Henshall DC, Lucas JJ, Engel T. CPEB4-CLOCK crosstalk during temporal lobe epilepsy. Epilepsia 2023; 64:2827-2840. [PMID: 37543852 DOI: 10.1111/epi.17736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
OBJECTIVE Posttranscriptional mechanisms are increasingly recognized as important contributors to the formation of hyperexcitable networks in epilepsy. Messenger RNA (mRNA) polyadenylation is a key regulatory mechanism governing protein expression by enhancing mRNA stability and translation. Previous studies have shown large-scale changes in mRNA polyadenylation in the hippocampus of mice during epilepsy development. The cytoplasmic polyadenylation element-binding protein CPEB4 was found to drive epilepsy-induced poly(A) tail changes, and mice lacking CPEB4 develop a more severe seizure and epilepsy phenotype. The mechanisms controlling CPEB4 function and the downstream pathways that influence the recurrence of spontaneous seizures in epilepsy remain poorly understood. METHODS Status epilepticus was induced in wild-type and CPEB4-deficient male mice via an intra-amygdala microinjection of kainic acid. CLOCK binding to the CPEB4 promoter was analyzed via chromatin immunoprecipitation assay and melatonin levels via high-performance liquid chromatography in plasma. RESULTS Here, we show increased binding of CLOCK to recognition sites in the CPEB4 promoter region during status epilepticus in mice and increased Cpeb4 mRNA levels in N2A cells overexpressing CLOCK. Bioinformatic analysis of CPEB4-dependent genes undergoing changes in their poly(A) tail during epilepsy found that genes involved in the regulation of circadian rhythms are particularly enriched. Clock transcripts displayed a longer poly(A) tail length in the hippocampus of mice post-status epilepticus and during epilepsy. Moreover, CLOCK expression was increased in the hippocampus in mice post-status epilepticus and during epilepsy, and in resected hippocampus and cortex of patients with drug-resistant temporal lobe epilepsy. Furthermore, CPEB4 is required for CLOCK expression after status epilepticus, with lower levels in CPEB4-deficient compared to wild-type mice. Last, CPEB4-deficient mice showed altered circadian function, including altered melatonin blood levels and altered clustering of spontaneous seizures during the day. SIGNIFICANCE Our results reveal a new positive transcriptional-translational feedback loop involving CPEB4 and CLOCK, which may contribute to the regulation of the sleep-wake cycle during epilepsy.
Collapse
Affiliation(s)
- Laura de Diego-Garcia
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Ocupharm Group Research, Faculty of Optics and Optometry, University Complutense of Madrid, Madrid, Spain
| | - Gary P Brennan
- School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Theresa Auer
- School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Aida Menendez-Mendez
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Alberto Parras
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Center for Molecular Biology "Severo Ochoa," Spanish National Research Council/Autonomous University of Madrid, Madrid, Spain, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Madrid, Spain
| | - Alba Martin-Gil
- Ocupharm Group Research, Faculty of Optics and Optometry, University Complutense of Madrid, Madrid, Spain
| | - Meghma Mitra
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Ivana Ollà
- Center for Molecular Biology "Severo Ochoa," Spanish National Research Council/Autonomous University of Madrid, Madrid, Spain, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Madrid, Spain
- Networking Research Center on Neurodegenerative Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Leticia Villalba-Benito
- School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Beatriz Gil
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Mariana Alves
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Kelvin Lau
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Norman Delanty
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
- Beaumont Hospital, Dublin, Ireland
| | | | | | | | | | | | - Raúl Mendez
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | | | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - José J Lucas
- Center for Molecular Biology "Severo Ochoa," Spanish National Research Council/Autonomous University of Madrid, Madrid, Spain, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Madrid, Spain
- Networking Research Center on Neurodegenerative Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
4
|
Li P, Ji X, Shan M, Wang Y, Dai X, Yin M, Liu Y, Guan L, Ye L, Cheng H. Melatonin regulates microglial polarization to M2 cell via RhoA/ROCK signaling pathway in epilepsy. Immun Inflamm Dis 2023; 11:e900. [PMID: 37382264 PMCID: PMC10266134 DOI: 10.1002/iid3.900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/26/2023] [Accepted: 05/17/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Melatonin (MEL), an endogenous hormone, has been widely investigated in neurological diseases. Microglia (MG), a resident immunocyte localizing in central nervous system is reported to play important functions in the animal model of temporal lobe epilepsy (TLE). Some evidence showed that MEL influenced activation of MG, but the detailed model of action that MEL plays in remains uncertain. METHODS In this study, we established a model of TLE in mice by stereotactic injection of kainic acid (KA). We treated the mice with MEL. Lipopolysaccharide, ROCK2-knockdown (ROCK-KD) and -overexpression (ROCK-OE) of lentivirus-treated cells were used in cell experiments to simulate an in vitro inflammatory model. RESULTS The results of electrophysiological tests showed that MEL reduced frequency and severity of seizure. The results of behavioral tests indicated MEL improved cognition, learning, and memory ability. Histological evidences demonstrated a significant reduction of neuronal death in the hippocampus. In vivo study showed that MEL changed the polarization status of MG from a proinflammatory M1 phenotype to an anti-inflammatory M2 phenotype by inversely regulating the RhoA/ROCK signaling pathway. In cytological study, we found that MEL had a significant protective effect in LPS-treated BV-2 cells and ROCK-KD cells, while the protective effect of MEL was significantly attenuated in ROCK-OE cells. CONCLUSION MEL played an antiepileptic role in the KA-induced TLE modeling mice both in behavioral and histological levels, and changed MG polarization status by regulating the RhoA/ROCK signaling pathway.
Collapse
Affiliation(s)
- Pingping Li
- Department of NeurosurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Xuefei Ji
- Department of NeurosurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Ming Shan
- Department of NeurosurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Yi Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Xingliang Dai
- Department of NeurosurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Mengyuan Yin
- Department of NeurosurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Yunlong Liu
- First Clinical Medical CollegeAnhui Medical UniversityHefeiChina
| | - Liao Guan
- Department of NeurosurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Lei Ye
- Department of NeurosurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Hongwei Cheng
- Department of NeurosurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| |
Collapse
|
5
|
Abstract
The pineal gland is a interface between light-dark cycle and shows neuro-endocrine functions. Melatonin is the primary hormone of pineal gland, secreted at night. The night-time melatonin peak regulates the physiological functions at dark. Melatonin has several unique features as it synchronises internal rhythm with daily and seasonal variations, regulates circadian rhythm and sleep-wake cycle. Physiologically melatonin involves in detoxification of free radicals, immune functions, neuro-protection, oncostatic effects, cardiovascular functions, reproduction, and foetal development. The precise functions of melatonin are exhibited by specific receptors. In relation to pathophysiology, impaired melatonin secretion promotes sleep disorder, cancer progression, type-2 diabetes, and neurodegenerative diseases. Several reports have highlighted the therapeutic benefits of melatonin specially related to cancer protection, sleep disorder, psychiatric disorders, and jet lag problems. This review will touch the most of the area of melatonin-oriented health impacts and its therapeutic aspects.
Collapse
|
6
|
Durkina AV, Bernikova OG, Gonotkov MA, Mikhaleva NJ, Sedova KA, Malykhina IA, Kuzmin VS, Velegzhaninov IO, Azarov JE. Melatonin treatment improves ventricular conduction via upregulation of Nav1.5 channel proteins and sodium current in the normal rat heart. J Pineal Res 2022; 73:e12798. [PMID: 35384053 DOI: 10.1111/jpi.12798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 11/29/2022]
Abstract
Melatonin treatment was reported to reduce the risk of cardiac arrhythmias, and crucial for this antiarrhythmic action was the effect of melatonin on activation spread. The aim of the present study was evaluation of the mechanisms of this activation enhancement. Experiments were performed in a total of 123 control and melatonin-treated (10 mg/kg, daily, for 7 days) male Wistar rats. In epicardial mapping studies (64 leads, interlead distance 0.5 mm) in the anesthetized animals, activation times (ATs) were determined in each lead as dV/dt minimum during QRS complex under sinus rhythm. Epicardial pacing was performed to measure conduction velocity (CV) across the mapped area. Average left ventricular ATs were shorter in the treated animals as compared to the controls, whereas the minimal epicardial ATs indicating the duration of activation propagation via the ventricular conduction system did not differ between the groups. CV was higher in the treated groups indicating that melatonin affected conduction via contractile myocardium The area of Cx43-derived fluorescence, as well as the expression of Cx43 protein, was similar in ventricles in the control and melatonin-treated groups. Expression of Gja1 gene transcripts encoding Cx43, was increased in the last group. An uncoupling agent octanol modified myocardial conduction properties (time of activation, action potential upstroke velocity, passive electrotonic phase duration) similarly in both groups. On the other hand, the expression of both Scn5a gene transcripts encoding Nav1.5 proteins, as well as peak density of transmembrane sodium current were increased in the ventricular myocytes from the melatonin-treated animals. Thus, a week-long melatonin treatment caused the increase of conduction velocity via enhancement of sodium channel proteins expression and increase of sodium current in the ventricular myocytes.
Collapse
Affiliation(s)
- Aleksandra V Durkina
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia
| | - Olesya G Bernikova
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia
| | - Mikhail A Gonotkov
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia
| | - Natalia J Mikhaleva
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia
| | - Ksenia A Sedova
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
| | - Inna A Malykhina
- Department of Human and Animal Physiology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Vladislav S Kuzmin
- Department of Human and Animal Physiology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Ilya O Velegzhaninov
- Department of Radioecology, Institute of Biology, Komi Scientific Centre, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia
| | - Jan E Azarov
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia
| |
Collapse
|
7
|
Jia S, Guo X, Chen Z, Li S, Liu XA. The roles of the circadian hormone melatonin in drug addiction. Pharmacol Res 2022; 183:106371. [PMID: 35907435 DOI: 10.1016/j.phrs.2022.106371] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
Abstract
Given the devastating social and health consequences of drug addiction and the limitations of current treatments, a new strategy is needed. Circadian system disruptions are frequently associated with drug addiction. Correcting abnormal circadian rhythms and improving sleep quality may thus be beneficial in the treatment of patients with drug addiction. Melatonin, an essential circadian hormone that modulates the biological clock, has anti-inflammatory, analgesic, anti-depressive, and neuroprotective effects via gut microbiota regulation and epigenetic modifications. It has attracted scientists' attention as a potential solution to drug abuse. This review summarized scientific evidence on the roles of melatonin in substance use disorders at the cellular, circuitry, and system levels, and discussed its potential applications as an intervention strategy for drug addiction.
Collapse
Affiliation(s)
- Shuhui Jia
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xuantong Guo
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zuxin Chen
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Xin-An Liu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Melatonin Receptors: A Key Mediator in Animal Reproduction. Vet Sci 2022; 9:vetsci9070309. [PMID: 35878326 PMCID: PMC9320721 DOI: 10.3390/vetsci9070309] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 01/26/2023] Open
Abstract
Melatonin, a hormone produced by the mammalian pineal gland, influences various physiological activities, many of which are related to animal reproduction, including neuroendocrine function, rhythm regulation, seasonal behavior, gonadogenesis, gamete development and maturation, sexual maturation, and thermoregulation. Melatonin exerts beneficial actions mainly via binding with G-protein-coupled receptors (GPCR), termed MT1 and MT2. Melatonin receptors are crucial for mediating animal reproduction. This paper reviews the characteristics of melatonin receptors including MT1 and MT2, as well as their roles in mediating signal transduction and biological effects, with a focus on their function in animal reproduction. In addition, we briefly summarize the developments in pharmacological research regarding melatonin receptors as drug targets. It is expected that this review will provide a reference for further exploration and unveiling of melatonin receptor function in reproductive regulation.
Collapse
|
9
|
Glatfelter GC, Sosa J, Hudson RL, Dubocovich ML. Methods to Assess Melatonin Receptor-Mediated Phase-Shift and Re-entrainment of Rhythmic Behaviors in Mouse Models. Methods Mol Biol 2022; 2550:391-411. [PMID: 36180708 DOI: 10.1007/978-1-0716-2593-4_39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The neurohormone melatonin facilitates entrainment of biological rhythms to environmental light-dark conditions as well as phase-shifts of circadian rhythms in constant conditions via activation of the MT1 and/or MT2 receptors expressed within the suprachiasmatic nucleus of the hypothalamus. The efficacy of melatonin and related agonists to modulate biological rhythms can be assessed using two well-validated mouse models of rhythmic behaviors. These models serve as predictive measures of therapeutic efficacy for treatment of circadian phase disorders caused by internal (e.g., clock gene mutations, blindness, depression, seasonal affective disorder) or external (e.g., shift work, travel across time zones) causes in humans. Here we provide background and detailed protocols for quantitative assessment of the magnitude and efficacy of melatonin receptor ligands in mouse circadian phase-shift and re-entrainment paradigms. The utility of these models in the discovery of novel therapeutics acting on melatonin receptors will also be discussed.
Collapse
Affiliation(s)
- Grant C Glatfelter
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences University at Buffalo, Buffalo, NY, USA
- Designer Drug Research Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
| | - Jennifer Sosa
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences University at Buffalo, Buffalo, NY, USA
| | - Randall L Hudson
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences University at Buffalo, Buffalo, NY, USA
| | - Margarita L Dubocovich
- Department of Pharmacology and Toxicology, Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences University at Buffalo (SUNY), Buffalo, NY, USA.
| |
Collapse
|
10
|
Akyuz E, Koklu B, Uner A, Angelopoulou E, Paudel YN. Envisioning the role of inwardly rectifying potassium (Kir) channel in epilepsy. J Neurosci Res 2021; 100:413-443. [PMID: 34713909 DOI: 10.1002/jnr.24985] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 01/29/2023]
Abstract
Epilepsy is a devastating neurological disorder characterized by recurrent seizures attributed to the disruption of the dynamic excitatory and inhibitory balance in the brain. Epilepsy has emerged as a global health concern affecting about 70 million people worldwide. Despite recent advances in pre-clinical and clinical research, its etiopathogenesis remains obscure, and there are still no treatment strategies modifying disease progression. Although the precise molecular mechanisms underlying epileptogenesis have not been clarified yet, the role of ion channels as regulators of cellular excitability has increasingly gained attention. In this regard, emerging evidence highlights the potential implication of inwardly rectifying potassium (Kir) channels in epileptogenesis. Kir channels consist of seven different subfamilies (Kir1-Kir7), and they are highly expressed in both neuronal and glial cells in the central nervous system. These channels control the cell volume and excitability. In this review, we discuss preclinical and clinical evidence on the role of the several subfamilies of Kir channels in epileptogenesis, aiming to shed more light on the pathogenesis of this disorder and pave the way for future novel therapeutic approaches.
Collapse
Affiliation(s)
- Enes Akyuz
- Faculty of International Medicine, Department of Biophysics, University of Health Sciences, Istanbul, Turkey
| | - Betul Koklu
- Faculty of Medicine, Namık Kemal University, Tekirdağ, Turkey
| | - Arda Uner
- Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
11
|
Segovia-Roldan M, Diez ER, Pueyo E. Melatonin to Rescue the Aged Heart: Antiarrhythmic and Antioxidant Benefits. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8876792. [PMID: 33791076 PMCID: PMC7984894 DOI: 10.1155/2021/8876792] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/16/2021] [Accepted: 01/23/2021] [Indexed: 12/19/2022]
Abstract
Aging comes with gradual loss of functions that increase the vulnerability to disease, senescence, and death. The mechanisms underlying these processes are linked to a prolonged imbalance between damage and repair. Damaging mechanisms include oxidative stress, mitochondrial dysfunction, chronodisruption, inflammation, and telomere attrition, as well as genetic and epigenetic alterations. Several endogenous tissue repairing mechanisms also decrease. These alterations associated with aging affect the entire organism. The most devastating manifestations involve the cardiovascular system and may lead to lethal cardiac arrhythmias. Together with structural remodeling, electrophysiological and intercellular communication alterations during aging predispose to arrhythmic events. Despite the knowledge on repairing mechanisms in the cardiovascular system, effective antiaging strategies able to reduce the risk of arrhythmias are still missing. Melatonin is a promising therapeutic candidate due to its pleiotropic actions. This indoleamine regulates chronobiology and endocrine physiology. Of relevance, melatonin is an antiaging, antioxidant, antiapoptotic, antiarrhythmic, immunomodulatory, and antiproliferative molecule. This review focuses on the protective effects of melatonin on age-induced cardiac functional and structural alterations, potentially becoming a new fountain of youth for the heart.
Collapse
Affiliation(s)
- Margarita Segovia-Roldan
- Biomedical Signal Interpretation and Computational Simulation (BSICoS), I3A, Universidad de Zaragoza, IIS Aragón and CIBER-BBN, Spain
| | | | - Esther Pueyo
- Biomedical Signal Interpretation and Computational Simulation (BSICoS), I3A, Universidad de Zaragoza, IIS Aragón and CIBER-BBN, Spain
| |
Collapse
|
12
|
Oishi A, Gbahou F, Jockers R. Melatonin receptors, brain functions, and therapies. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:345-356. [PMID: 34225974 DOI: 10.1016/b978-0-12-819975-6.00022-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In mammals, including humans, the neurohormone melatonin is mainly secreted from the pineal gland at night and acts on two high-affinity G protein-coupled receptors, the melatonin MT1 and MT2 receptors. Major functions of melatonin receptors in the brain are the regulation of circadian rhythms and sleep. Correspondingly, the main indications of the currently available drugs for these receptors indicate this as targets. Yet these drugs may not only improve circadian rhythm- and sleep-related disorders but may also be beneficial for complex diseases like major depression, Alzheimer's disease, autism, and attention-deficit/hyperactivity disorders. Here, we will focus on the hypothalamic functions of melatonin receptors by updating our knowledge on their hypothalamic expression pattern at normal, aged, and disease states, by discussing their capacity to regulate circadian rhythms and sleep and by presenting the clinical applications of the melatonin receptor-targeting drugs ramelteon, tasimelteon, and agomelatine or of prolonged-release melatonin formulations. Finally, we speculate about future trends in the field of melatonin receptor drugs.
Collapse
Affiliation(s)
- Atsuro Oishi
- Institut Cochin, Université de Paris, Paris, France
| | | | - Ralf Jockers
- Institut Cochin, Université de Paris, Paris, France.
| |
Collapse
|
13
|
Pevet P, Challet E, Felder-Schmittbuhl MP. Melatonin and the circadian system: Keys for health with a focus on sleep. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:331-343. [PMID: 34225973 DOI: 10.1016/b978-0-12-819975-6.00021-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Melatonin (MLT), secreted during the night by the pineal gland, is an efferent hormonal signal of the master circadian clock located in the suprachiasmatic nucleus (SCN). Consequently, it is a reliable phase marker of the SCN clock. If one defines as "chronobiotic," a drug able to influence the phase and/or the period of the circadian clock, MLT is a very potent one. The most convincing data obtained so far come from studies on totally blind individuals. Exogenous MLT administered daily entrains the sleep-wake cycle of these individuals to a 24-h cycle. MLT, however, is not essential to sleep. In nocturnally, active mammals, MLT is released during the night concomitantly with the daily period of wakefulness. Therefore, MLT cannot be simply considered as a sleep hormone, but rather as a signal of darkness. Its role in the circadian system is to reinforce nighttime physiology, including timing of the sleep-wake cycle and other circadian rhythms. MLT exerts its effects on the sleep cycle especially by a direct action on the master circadian clock. The sleep-wake cycle is depending not only on the circadian clock but also on an orchestrated network of different centers in the brain. Thus, the control of sleep-wake rhythm might be explained by a parallel and concomitant action of MLT on the master clock (chronobiotic effect) and on sleep-related structures within the brain. MLT acts through two high-affinity membrane receptors (MT1 and MT2) with striking differences in their distribution pattern. MLT is a powerful synchronizer of human circadian rhythms, thus justifying the use of MLT and MLT agonists in clinical medicine as pharmacological tools to manipulate the sleep-wake cycle, and to treat sleep disorders and other circadian disorders. Available MLT analogs/drugs are all nonspecific MT1/MT2 agonists. The development of new ligands which are highly selectivity for each subtype is clearly a new challenge for the field and will be at the root of new therapeutic agents for curing specific pathologies, including sleep disorders.
Collapse
Affiliation(s)
- Paul Pevet
- Institute of Cellular and Integrative Neurosciences, CNRS, University of Strasbourg, Strasbourg, France.
| | - Etienne Challet
- Institute of Cellular and Integrative Neurosciences, CNRS, University of Strasbourg, Strasbourg, France
| | | |
Collapse
|
14
|
Samanta S. Melatonin: an endogenous miraculous indolamine, fights against cancer progression. J Cancer Res Clin Oncol 2020; 146:1893-1922. [PMID: 32583237 DOI: 10.1007/s00432-020-03292-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Melatonin is an amphipathic indolamine molecule ubiquitously present in all organisms ranging from cyanobacteria to humans. The pineal gland is the site of melatonin synthesis and secretion under the influence of the retinohypothalamic tract. Some extrapineal tissues (skin, lens, gastrointestinal tract, testis, ovary, lymphocytes, and astrocytes) also enable to produce melatonin. Physiologically, melatonin regulates various functions like circadian rhythm, sleep-wake cycle, gonadal activity, redox homeostasis, neuroprotection, immune-modulation, and anticancer effects in the body. Inappropriate melatonin secretion advances the aging process, tumorigenesis, visceral adiposity, etc. METHODS: For the preparation of this review, I had reviewed the literature on the multidimensional activities of melatonin from the NCBI website database PubMed, Springer Nature, Science Direct (Elsevier), Wiley Online ResearchGate, and Google Scholar databases to search relevant articles. Specifically, I focused on the roles and mechanisms of action of melatonin in cancer prevention. RESULTS The actions of melatonin are primarily mediated by G-protein coupled MT1 and MT2 receptors; however, several intracellular protein and nuclear receptors can modulate the activity. Normal levels of the melatonin protect the cells from adverse effects including carcinogenesis. Therapeutically, melatonin has chronomedicinal value; it also shows a remarkable anticancer property. The oncostatic action of melatonin is multidimensional, associated with the advancement of apoptosis, the arrest of the cell cycle, inhibition of metastasis, and antioxidant activity. CONCLUSION The present review has emphasized the mechanism of the anti-neoplastic activity of melatonin that increases the possibilities of the new approaches in cancer therapy.
Collapse
Affiliation(s)
- Saptadip Samanta
- Department Physiology, Midnapore College, Paschim Medinipur, Midnapore, West Bengal, 721101, India.
| |
Collapse
|
15
|
Re CJ, Batterman AI, Gerstner JR, Buono RJ, Ferraro TN. The Molecular Genetic Interaction Between Circadian Rhythms and Susceptibility to Seizures and Epilepsy. Front Neurol 2020; 11:520. [PMID: 32714261 PMCID: PMC7344275 DOI: 10.3389/fneur.2020.00520] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/12/2020] [Indexed: 12/19/2022] Open
Abstract
Seizure patterns observed in patients with epilepsy suggest that circadian rhythms and sleep/wake mechanisms play some role in the disease. This review addresses key topics in the relationship between circadian rhythms and seizures in epilepsy. We present basic information on circadian biology, but focus on research studying the influence of both the time of day and the sleep/wake cycle as independent but related factors on the expression of seizures in epilepsy. We review studies investigating how seizures and epilepsy disrupt expression of core clock genes, and how disruption of clock mechanisms impacts seizures and the development of epilepsy. We focus on the overlap between mechanisms of circadian-associated changes in SCN neuronal excitability and mechanisms of epileptogenesis as a means of identifying key pathways and molecules that could represent new targets or strategies for epilepsy therapy. Finally, we review the concept of chronotherapy and provide a perspective regarding its application to patients with epilepsy based on their individual characteristics (i.e., being a “morning person” or a “night owl”). We conclude that better understanding of the relationship between circadian rhythms, neuronal excitability, and seizures will allow both the identification of new therapeutic targets for treating epilepsy as well as more effective treatment regimens using currently available pharmacological and non-pharmacological strategies.
Collapse
Affiliation(s)
- Christopher J Re
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Alexander I Batterman
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Jason R Gerstner
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Russell J Buono
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Thomas N Ferraro
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| |
Collapse
|
16
|
Melatonin Relations with Energy Metabolism as Possibly Involved in Fatal Mountain Road Traffic Accidents. Int J Mol Sci 2020; 21:ijms21062184. [PMID: 32235717 PMCID: PMC7139848 DOI: 10.3390/ijms21062184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 12/18/2022] Open
Abstract
Previous results evidenced acute exposure to high altitude (HA) weakening the relation between daily melatonin cycle and the respiratory quotient. This review deals with the threat extreme environments pose on body time order, particularly concerning energy metabolism. Working at HA, at poles, or in space challenge our ancestral inborn body timing system. This conflict may also mark many aspects of our current lifestyle, involving shift work, rapid time zone crossing, and even prolonged office work in closed buildings. Misalignments between external and internal rhythms, in the short term, traduce into risk of mental and physical performance shortfalls, mood changes, quarrels, drug and alcohol abuse, failure to accomplish with the mission and, finally, high rates of fatal accidents. Relations of melatonin with energy metabolism being altered under a condition of hypoxia focused our attention on interactions of the indoleamine with redox state, as well as, with autonomic regulations. Individual tolerance/susceptibility to such interactions may hint at adequately dealing with body timing disorders under extreme conditions.
Collapse
|
17
|
Harvey JRM, Plante AE, Meredith AL. Ion Channels Controlling Circadian Rhythms in Suprachiasmatic Nucleus Excitability. Physiol Rev 2020; 100:1415-1454. [PMID: 32163720 DOI: 10.1152/physrev.00027.2019] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Animals synchronize to the environmental day-night cycle by means of an internal circadian clock in the brain. In mammals, this timekeeping mechanism is housed in the suprachiasmatic nucleus (SCN) of the hypothalamus and is entrained by light input from the retina. One output of the SCN is a neural code for circadian time, which arises from the collective activity of neurons within the SCN circuit and comprises two fundamental components: 1) periodic alterations in the spontaneous excitability of individual neurons that result in higher firing rates during the day and lower firing rates at night, and 2) synchronization of these cellular oscillations throughout the SCN. In this review, we summarize current evidence for the identity of ion channels in SCN neurons and the mechanisms by which they set the rhythmic parameters of the time code. During the day, voltage-dependent and independent Na+ and Ca2+ currents, as well as several K+ currents, contribute to increased membrane excitability and therefore higher firing frequency. At night, an increase in different K+ currents, including Ca2+-activated BK currents, contribute to membrane hyperpolarization and decreased firing. Layered on top of these intrinsically regulated changes in membrane excitability, more than a dozen neuromodulators influence action potential activity and rhythmicity in SCN neurons, facilitating both synchronization and plasticity of the neural code.
Collapse
Affiliation(s)
- Jenna R M Harvey
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Amber E Plante
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Andrea L Meredith
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
18
|
Melatonin inhibits GABAergic neurons in the hypothalamus consistent with a reduction in wakefulness. Neuroreport 2020; 31:92-98. [DOI: 10.1097/wnr.0000000000001374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
19
|
Jiao X, Wu M, Lu D, Gu J, Li Z. Transcriptional Profiling of Daily Patterns of mRNA Expression in the C57BL/6J Mouse Cornea. Curr Eye Res 2019; 44:1054-1066. [PMID: 31136724 DOI: 10.1080/02713683.2019.1625408] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Purpose: The purpose of this study was to determine how the transcriptome of the murine cornea adapts to diurnal changes in physiology. Methods: C57BL/6J mice were maintained under a 12-h light/12-h dark (LD) cycle for two weeks. Corneas were collected from euthanized mice at Zeitgeber time (ZT) 0, 3, 6, 9, 12, 15, 18, and 21. Total RNA was extracted and subjected to RNA sequencing (RNA-Seq). A JTK_CYCLE algoithm and other software tools were used to analyze the transcriptional data to determine the periodicity, rhythmicity, and amplitude of the transcripts. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to analyze the enrichment of cycling transcripts. Results: Approximately 24% of the total transcripts from the murine corneal genome were rhythmically expressed over an LD cycle. GO analysis showed that these cycling genes are primarily involved in cellular and metabolic processes. A KEGG pathway analysis identified 6 branches and 44 pathways that encode the gene outputs necessary for basic cellular functions and processes. More importantly, most of the rhythmic genes between the day and night are enriched in their own unique pathways in addition to some common pathways. Furthermore, most of the rhythmic gene expression was concentrated in the 12-h and 24-h periods. A comparative analysis of GO and KEGG showed large differences in metabolic processes, but not cellular processes. Finally, the murine cornea also rhythmically expressed 11 canonical components of circadian clock genes over an LD cycle at the transcriptional level. Conclusions: One fourth of the corneal transcriptome follows a rhythmic expression pattern involved in basic molecular and cellular mechanisms. This implies that the time of day contributes significantly to the overall temporal organization of the corneal transcriptome.
Collapse
Affiliation(s)
- Xinwei Jiao
- Henan Provincial People's Hospital and People's Hospital of Henan University, Henan Eye Institute, Henan Eye Hospital , Zhengzhou , China
| | - Mingjuan Wu
- International Ocular Surface Research Center and Institute of Ophthalmology, Key Laboratory for Regenerative Medicine, Jinan University Medical School , Guangzhou , China
| | - Dingli Lu
- Henan Provincial People's Hospital and People's Hospital of Henan University, Henan Eye Institute, Henan Eye Hospital , Zhengzhou , China
| | - Jianqin Gu
- Henan Provincial People's Hospital and People's Hospital of Henan University, Henan Eye Institute, Henan Eye Hospital , Zhengzhou , China
| | - Zhijie Li
- Henan Provincial People's Hospital and People's Hospital of Henan University, Henan Eye Institute, Henan Eye Hospital , Zhengzhou , China.,International Ocular Surface Research Center and Institute of Ophthalmology, Key Laboratory for Regenerative Medicine, Jinan University Medical School , Guangzhou , China
| |
Collapse
|
20
|
Melatonin MT1 receptor as a novel target in neuropsychopharmacology: MT1 ligands, pathophysiological and therapeutic implications, and perspectives. Pharmacol Res 2019; 144:343-356. [DOI: 10.1016/j.phrs.2019.04.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/06/2019] [Accepted: 04/11/2019] [Indexed: 12/15/2022]
|
21
|
Abstract
Despite considerable advances in the past few years, obesity and type 2 diabetes mellitus (T2DM) remain two major challenges for public health systems globally. In the past 9 years, genome-wide association studies (GWAS) have established a major role for genetic variation within the MTNR1B locus in regulating fasting plasma levels of glucose and in affecting the risk of T2DM. This discovery generated a major interest in the melatonergic system, in particular the melatonin MT2 receptor (which is encoded by MTNR1B). In this Review, we discuss the effect of melatonin and its receptors on glucose homeostasis, obesity and T2DM. Preclinical and clinical post-GWAS evidence of frequent and rare variants of the MTNR1B locus confirmed its importance in regulating glucose homeostasis and T2DM risk with minor effects on obesity. However, these studies did not solve the question of whether melatonin is beneficial or detrimental, an issue that will be discussed in the context of the peculiarities of the melatonergic system. Melatonin receptors might have therapeutic potential as they belong to the highly druggable G protein-coupled receptor superfamily. Clarifying the precise role of melatonin and its receptors on glucose homeostasis is urgent, as melatonin is widely used for other indications, either as a prescribed medication or as a supplement without medical prescription, in many countries in Europe and in the USA.
Collapse
Affiliation(s)
- Angeliki Karamitri
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France
| | - Ralf Jockers
- Inserm, U1016, Institut Cochin, Paris, France.
- CNRS UMR 8104, Paris, France.
- Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
22
|
Abstract
Last year melatonin was 60 years old, or at least its discovery was 60 years ago. The molecule itself may well be almost as old as life itself. So it is time to take yet another perspective on our understanding of its functions, effects and clinical uses. This is not a formal review-there is already a multitude of systematic reviews, narrative reviews, meta-analyses and even reviews of reviews. In view of the extraordinary variety of effects attributed to melatonin in the last 25 years, it is more of an attempt to sort out some areas where a consensus opinion exists, and where placebo controlled, randomized, clinical trials have confirmed early observations on therapeutic uses. The current upsurge of concern about the multiple health problems associated with disturbed circadian rhythms has generated interest in related therapeutic interventions, of which melatonin is one. The present text will consider the physiological role of endogenous melatonin, and the mostly pharmacological effects of exogenous treatment, on the assumption that normal circulating concentrations represent endogenous pineal production. It will concentrate mainly on the most researched, and accepted area of therapeutic use and potential use of melatonin-its undoubted ability to realign circadian rhythms and sleep-since this is the author's bias. It will touch briefly upon some other systems with prominent rhythmic attributes including certain cancers, the cardiovascular system, the entero-insular axis and metabolism together with the use of melatonin to assess circadian status. Many of the ills of the developed world relate to deranged rhythms-and everything is rhythmic unless proved otherwise.
Collapse
|
23
|
Cipolla-Neto J, Amaral FGD. Melatonin as a Hormone: New Physiological and Clinical Insights. Endocr Rev 2018; 39:990-1028. [PMID: 30215696 DOI: 10.1210/er.2018-00084] [Citation(s) in RCA: 330] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/21/2018] [Indexed: 02/07/2023]
Abstract
Melatonin is a ubiquitous molecule present in almost every live being from bacteria to humans. In vertebrates, besides being produced in peripheral tissues and acting as an autocrine and paracrine signal, melatonin is centrally synthetized by a neuroendocrine organ, the pineal gland. Independently of the considered species, pineal hormone melatonin is always produced during the night and its production and secretory episode duration are directly dependent on the length of the night. As its production is tightly linked to the light/dark cycle, melatonin main hormonal systemic integrative action is to coordinate behavioral and physiological adaptations to the environmental geophysical day and season. The circadian signal is dependent on its daily production regularity, on the contrast between day and night concentrations, and on specially developed ways of action. During its daily secretory episode, melatonin coordinates the night adaptive physiology through immediate effects and primes the day adaptive responses through prospective effects that will only appear at daytime, when melatonin is absent. Similarly, the annual history of the daily melatonin secretory episode duration primes the central nervous/endocrine system to the seasons to come. Remarkably, maternal melatonin programs the fetuses' behavior and physiology to cope with the environmental light/dark cycle and season after birth. These unique ways of action turn melatonin into a biological time-domain-acting molecule. The present review focuses on the above considerations, proposes a putative classification of clinical melatonin dysfunctions, and discusses general guidelines to the therapeutic use of melatonin.
Collapse
Affiliation(s)
- José Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
24
|
Cecon E, Oishi A, Jockers R. Melatonin receptors: molecular pharmacology and signalling in the context of system bias. Br J Pharmacol 2018; 175:3263-3280. [PMID: 28707298 PMCID: PMC6057902 DOI: 10.1111/bph.13950] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/05/2017] [Accepted: 07/10/2017] [Indexed: 12/15/2022] Open
Abstract
Melatonin, N-acetyl-5-methoxytryptamine, an evolutionally old molecule, is produced by the pineal gland in vertebrates, and it binds with high affinity to melatonin receptors, which are members of the GPCR family. Among the multiple effects attributed to melatonin, we will focus here on those that are dependent on the activation of the two mammalian MT1 and MT2 melatonin receptors. We briefly summarize the latest developments on synthetic melatonin receptor ligands, including multi-target-directed ligands, and the characterization of signalling-biased ligands. We discuss signalling pathways activated by melatonin receptors that appear to be highly cell- and tissue-dependent, emphasizing the impact of system bias on the functional outcome. Different proteins have been demonstrated to interact with melatonin receptors, and thus, we postulate that part of this system bias has its molecular basis in differences of the expression of receptor-associated proteins including heterodimerization partners. Finally, bias at the level of the receptor, by the expression of genetic receptor variants, will be discussed to show how a modified receptor function can have an effect on the risk for common diseases like type 2 diabetes in humans. LINKED ARTICLES: This article is part of a themed section on Recent Developments in Research of Melatonin and its Potential Therapeutic Applications. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.16/issuetoc.
Collapse
Affiliation(s)
- Erika Cecon
- Institut CochinInserm, U1016ParisFrance
- CNRS UMR 8104ParisFrance
- Univ. Paris Descartes, Sorbonne Paris CitéParisFrance
| | - Atsuro Oishi
- Institut CochinInserm, U1016ParisFrance
- CNRS UMR 8104ParisFrance
- Univ. Paris Descartes, Sorbonne Paris CitéParisFrance
| | - Ralf Jockers
- Institut CochinInserm, U1016ParisFrance
- CNRS UMR 8104ParisFrance
- Univ. Paris Descartes, Sorbonne Paris CitéParisFrance
| |
Collapse
|
25
|
Mendoza-Vargas L, Guarneros-Bañuelos E, Báez-Saldaña A, Galicia-Mendoza F, Flores-Soto E, Fuentes-Pardo B, Alvarado R, Valdés-Tovar M, Sommer B, Benítez-King G, Solís-Chagoyán H. Involvement of Melatonin in the Regulation of the Circadian System in Crayfish. Int J Mol Sci 2018; 19:ijms19072147. [PMID: 30041485 PMCID: PMC6073447 DOI: 10.3390/ijms19072147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 02/07/2023] Open
Abstract
Melatonin (MEL) is an ancient molecule, broadly distributed in nature from unicellular to multicellular species. MEL is an indoleamine that acts on a wide variety of cellular targets regulating different physiological functions. This review is focused on the role played by this molecule in the regulation of the circadian rhythms in crayfish. In these species, information about internal and external time progression might be transmitted by the periodical release of MEL and other endocrine signals acting through the pacemaker. We describe documented and original evidence in support of this hypothesis that also suggests that the rhythmic release of MEL contributes to the reinforcement of the temporal organization of nocturnal or diurnal circadian oscillators. Finally, we discuss how MEL might coordinate functions that converge in the performance of complex behaviors, such as the agonistic responses to establish social dominance status in Procambarus clarkii and the burrowing behavior in the secondary digging crayfish P. acanthophorus.
Collapse
Affiliation(s)
- Leonor Mendoza-Vargas
- Departamento El Hombre y su Ambiente, Universidad Autónoma Metropolitana-Xochimilco (UAM-Xochimilco), 04960 Ciudad de México, Mexico.
| | - Elizabeth Guarneros-Bañuelos
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340 Ciudad de México, Mexico.
| | - Armida Báez-Saldaña
- Departamento de Biología Celular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico.
| | - Fabiola Galicia-Mendoza
- Departamento El Hombre y su Ambiente, Universidad Autónoma Metropolitana-Xochimilco (UAM-Xochimilco), 04960 Ciudad de México, Mexico.
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico.
| | - Beatriz Fuentes-Pardo
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico.
| | - Ramón Alvarado
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico.
| | - Marcela Valdés-Tovar
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, 14370 Ciudad de México, Mexico.
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, 14080 Ciudad de México, Mexico.
| | - Gloria Benítez-King
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, 14370 Ciudad de México, Mexico.
| | - Héctor Solís-Chagoyán
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, 14370 Ciudad de México, Mexico.
| |
Collapse
|
26
|
Abstract
The Melatonin (MLT), secreted rhythmically by the pineal, is an efferent hormonal signal of the circadian clock. MLT presents overall pleitropic effects but it is the role of MLT as a hormonal circadian signal which is the best documented. MLT-receptors are present in numerous structures/organs and the MLT is now considered as an endogenous synchronizer within the circadian system. The presence of MLT-receptors within the circadian clock, explains that exogenous MLT is a chronobiotic drug. Trials in humans, have confirmed the efficacy of MLT in circadian rhythm disorders. Subtypes of MLT-receptors have been characterized (MT1 and MT2). Striking differences are observed in the distribution pattern of these 2 subtypes. Up to now, MTL-analogues commercialized as drugs, are all non-specific MT1/MT2 agonists acting on the SCN. The development of new specific agonists/antagonists for both subtypes, the identification of the link between MLT target sites within different parts of the brain or the body and the association of specific MLT receptor subtypes and particular physiological effects open great therapeutic potential.
Collapse
Affiliation(s)
- P Pevet
- Institute for Cellular and Integrative Neurosciences (UPR 3212), CNRS and University of Strasbourg, Strasbourg France.
| | - P Klosen
- Institute for Cellular and Integrative Neurosciences (UPR 3212), CNRS and University of Strasbourg, Strasbourg France.
| | - M P Felder-Schmittbuhl
- Institute for Cellular and Integrative Neurosciences (UPR 3212), CNRS and University of Strasbourg, Strasbourg France.
| |
Collapse
|
27
|
Xiang Y, Li ZX, Zhang DY, He ZG, Hu J, Xiang HB. Alteration of circadian rhythm during epileptogenesis: implications for the suprachiasmatic nucleus circuits. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2017; 9:64-68. [PMID: 28694918 PMCID: PMC5498879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/20/2017] [Indexed: 06/07/2023]
Abstract
It is important to realize that characterization of the circadian rhythm patterns of seizure occurrence can implicate in diagnosis and treatment of selected types of epilepsy. Evidence suggests a role for the suprachiasmatic nucleus (SCN) circuits in overall circadian rhythm and seizure susceptibility both in animals and humans. Thus, we conclude that SCN circuits may exert modifying effects on circadian rhythmicity and neuronal excitability during epileptogenesis. SCN circuits will be studied in our brain centre and collaborating centres to explore further the interaction between the circadian rhythm and epileptic seizures. More and thorough research is warranted to provide insight into epileptic seizures with circadian disruption comorbidities such as disorders of cardiovascular parameters and core body temperature circadian rhythms.
Collapse
Affiliation(s)
- Yan Xiang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Zhi-Xiao Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, PR China
| | - Ding-Yu Zhang
- Intensive Care Unit, Wuhan Medical Treatment CenterNo. 1 Yintan Road, Dongxihu District, Wuhan 430023, PR China
| | - Zhi-Gang He
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, PR China
| | - Ji Hu
- Department of Anesthesiology, Liyuan Hospital of Tongji Medical College, Huazhong University of Science & TechnologyWuhan 430077, Hubei Province, China
| | - Hong-Bing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, PR China
| |
Collapse
|
28
|
Chernysheva MP, Nozdrachev AD. Neuroendocrine hypothalamus as a homeostat of endogenous time. J EVOL BIOCHEM PHYS+ 2017. [DOI: 10.1134/s002209301701001x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Albers HE, Walton JC, Gamble KL, McNeill JK, Hummer DL. The dynamics of GABA signaling: Revelations from the circadian pacemaker in the suprachiasmatic nucleus. Front Neuroendocrinol 2017; 44:35-82. [PMID: 27894927 PMCID: PMC5225159 DOI: 10.1016/j.yfrne.2016.11.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/16/2016] [Accepted: 11/22/2016] [Indexed: 12/31/2022]
Abstract
Virtually every neuron within the suprachiasmatic nucleus (SCN) communicates via GABAergic signaling. The extracellular levels of GABA within the SCN are determined by a complex interaction of synthesis and transport, as well as synaptic and non-synaptic release. The response to GABA is mediated by GABAA receptors that respond to both phasic and tonic GABA release and that can produce excitatory as well as inhibitory cellular responses. GABA also influences circadian control through the exclusively inhibitory effects of GABAB receptors. Both GABA and neuropeptide signaling occur within the SCN, although the functional consequences of the interactions of these signals are not well understood. This review considers the role of GABA in the circadian pacemaker, in the mechanisms responsible for the generation of circadian rhythms, in the ability of non-photic stimuli to reset the phase of the pacemaker, and in the ability of the day-night cycle to entrain the pacemaker.
Collapse
Affiliation(s)
- H Elliott Albers
- Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Neuroscience Institute, Georgia State University, Atlanta, GA 30302, United States.
| | - James C Walton
- Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Neuroscience Institute, Georgia State University, Atlanta, GA 30302, United States
| | - Karen L Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - John K McNeill
- Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Neuroscience Institute, Georgia State University, Atlanta, GA 30302, United States
| | - Daniel L Hummer
- Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Department of Psychology, Morehouse College, Atlanta, GA 30314, United States
| |
Collapse
|
30
|
van Ee R, Van de Cruys S, Schlangen LJ, Vlaskamp BN. Circadian-Time Sickness: Time-of-Day Cue-Conflicts Directly Affect Health. Trends Neurosci 2016; 39:738-749. [DOI: 10.1016/j.tins.2016.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/06/2016] [Accepted: 09/13/2016] [Indexed: 10/20/2022]
|
31
|
Biological Rhythms: Melatonin Shapes the Space–Time Continuum of Social Communication. Curr Biol 2016; 26:R892-R895. [DOI: 10.1016/j.cub.2016.08.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
32
|
Evely KM, Hudson RL, Dubocovich ML, Haj-Dahmane S. Melatonin receptor activation increases glutamatergic synaptic transmission in the rat medial lateral habenula. Synapse 2016; 70:181-186. [PMID: 26799638 DOI: 10.1002/syn.21892] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Melatonin (MLT) is secreted from the pineal gland and mediates its physiological effects through activation of two G protein-coupled receptors, MT1 and MT2 . These receptors are expressed in several brain areas, including the habenular complex, a pair of nuclei that relay information from forebrain to midbrain and modulate a plethora of behaviors, including sleep, mood, and pain. However, so far, the precise mechanisms by which MLT control the function of habenula neurons remain unknown. Using whole cell recordings from male rat brain slices, we examined the effects of MLT on the excitability of medial lateral habenula (MLHb) neurons. We found that MLT had no significant effects on the intrinsic excitability of MLHb neurons, but profoundly increased the amplitude of glutamate-mediated evoked excitatory post-synaptic currents (EPSC). The increase in strength of glutamate synapses onto MLHb neurons was mediated by an increase in glutamate release. The MLT-induced increase in glutamatergic synaptic transmission was blocked by the competitive MT1 /MT2 receptor antagonist luzindole (LUZ). These results unravel a potential cellular mechanism by which MLT receptor activation enhances the excitability of MLHb neurons. The MLT-mediated control of glutamatergic inputs to the MLHb may play a key role in the modulation of various behaviors controlled by the habenular complex.
Collapse
Affiliation(s)
- Katherine M Evely
- Department of Pharmacology and Toxicology, University at Buffalo, State University of New York, Buffalo, New York
- Research Institute on Addictions, University at Buffalo, State University of New York, Buffalo, New York
| | - Randall L Hudson
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York
| | - Margarita L Dubocovich
- Department of Pharmacology and Toxicology, University at Buffalo, State University of New York, Buffalo, New York
| | - Samir Haj-Dahmane
- Department of Pharmacology and Toxicology, University at Buffalo, State University of New York, Buffalo, New York
- Research Institute on Addictions, University at Buffalo, State University of New York, Buffalo, New York
| |
Collapse
|
33
|
Pévet P. Melatonin receptors as therapeutic targets in the suprachiasmatic nucleus. Expert Opin Ther Targets 2016; 20:1209-18. [DOI: 10.1080/14728222.2016.1179284] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Paul Pévet
- Institut des neurosciences cellulaires et Integratives, INCI UPR 3212, CNRS and the University of Strasbourg, Strasbourg, France
| |
Collapse
|
34
|
Lewis S. Melatonin influence on circadian rhythms. Nat Rev Neurosci 2015. [DOI: 10.1038/nrn.2015.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|