1
|
Saenz DE, Gu T, Ban Y, Winemiller KO, Markham MR. Derived loss of signal complexity and plasticity in a genus of weakly electric fish. J Exp Biol 2021; 224:269075. [PMID: 34109419 PMCID: PMC8246343 DOI: 10.1242/jeb.242400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/25/2021] [Indexed: 11/07/2022]
Abstract
Signal plasticity can maximize the usefulness of costly animal signals such as the electric organ discharges (EODs) of weakly electric fishes. Some species of the order Gymnotiformes rapidly alter their EOD amplitude and duration in response to circadian cues and social stimuli. How this plasticity is maintained across related species with different degrees of signal complexity is poorly understood. In one genus of weakly electric gymnotiform fish (Brachyhypopomus), only one species, B. bennetti, produces a monophasic signal while all other species emit complex biphasic or multiphasic EOD waveforms produced by two overlapping but asynchronous action potentials in each electric organ cell (electrocyte). One consequence of this signal complexity is the suppression of low-frequency signal content that is detectable by electroreceptive predators. In complex EODs, reduction of the EOD amplitude and duration during daytime inactivity can decrease both predation risk and the metabolic cost of EOD generation. We compared EOD plasticity and its underlying physiology in Brachyhypopomus focusing on B. bennetti. We found that B. bennetti exhibits minimal EOD plasticity, but that its electrocytes retained vestigial mechanisms of biphasic signaling and vestigial mechanisms for modulating the EOD amplitude. These results suggest that this species represents a transitional phenotypic state within a clade where signal complexity and plasticity were initially gained and then lost. Signal mimicry, mate recognition and sexual selection are potential factors maintaining the monophasic EOD phenotype in the face of detection by electroreceptive predators. Highlighted Article: In one electric fish genus, most species produce complex, plastic electric signals. One species that produces a simple signal shows reduced signal plasticity and retains vestigial mechanisms of signal complexity.
Collapse
Affiliation(s)
- David E Saenz
- Department of Ecology and Conservation Biology, Texas A&M University,College Station, TX 77843, USA
| | - Tingting Gu
- Sam Noble Microscopy Laboratory, University of Oklahoma, Norman, OK 73019, USA
| | - Yue Ban
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kirk O Winemiller
- Department of Ecology and Conservation Biology, Texas A&M University,College Station, TX 77843, USA
| | - Michael R Markham
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA.,Cellular & Behavioral Neurobiology Graduate Program, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
2
|
Yin L, Rasch MJ, He Q, Wu S, Dou F, Shu Y. Selective Modulation of Axonal Sodium Channel Subtypes by 5-HT1A Receptor in Cortical Pyramidal Neuron. Cereb Cortex 2018; 27:509-521. [PMID: 26494800 DOI: 10.1093/cercor/bhv245] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Serotonergic innervation of the prefrontal cortex (PFC) modulates neuronal activity and PFC functions. However, the cellular mechanism for serotonergic modulation of neuronal excitability remains unclear. We performed patch-clamp recording at the axon of layer-5 pyramidal neurons in rodent PFC slices. We found surprisingly that the activation of 5-HT1A receptors selectively inhibits Na+ currents obtained at the axon initial segment (AIS) but not those at the axon trunk. In addition, Na+ channel subtype NaV1.2 but not NaV1.6 at the AIS is selectively modulated by 5-HT1A receptors. Further experiments revealed that the inhibitory effect is attributable to a depolarizing shift of the activation curve and a facilitation of slow inactivation of AIS Na+ currents. Consistently, dual somatic and axonal recording and simulation results demonstrate that the activation of 5-HT1A receptors could decrease the success rate of action potential (AP) backpropagation toward the somatodendritic compartments, enhancing the segregation of axonal and dendritic activities. Together, our results reveal a selective modulation of NaV1.2 distributed at the proximal AIS region and AP backpropagation by 5-HT1A receptors, suggesting a potential mechanism for serotonergic regulation of functional polarization in the dendro-axonal axis, synaptic plasticity and PFC functions.
Collapse
Affiliation(s)
- Luping Yin
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Malte J Rasch
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, School of Brain and Cognitive Sciences, the Collaborative Innovation Center for Brain Science
| | - Quansheng He
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, School of Brain and Cognitive Sciences, the Collaborative Innovation Center for Brain Science
| | - Si Wu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, School of Brain and Cognitive Sciences, the Collaborative Innovation Center for Brain Science
| | - Fei Dou
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yousheng Shu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, School of Brain and Cognitive Sciences, the Collaborative Innovation Center for Brain Science
| |
Collapse
|
3
|
Pitchers WR, Constantinou SJ, Losilla M, Gallant JR. Electric fish genomics: Progress, prospects, and new tools for neuroethology. ACTA ACUST UNITED AC 2016; 110:259-272. [PMID: 27769923 DOI: 10.1016/j.jphysparis.2016.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/06/2016] [Accepted: 10/16/2016] [Indexed: 01/01/2023]
Abstract
Electric fish have served as a model system in biology since the 18th century, providing deep insight into the nature of bioelectrogenesis, the molecular structure of the synapse, and brain circuitry underlying complex behavior. Neuroethologists have collected extensive phenotypic data that span biological levels of analysis from molecules to ecosystems. This phenotypic data, together with genomic resources obtained over the past decades, have motivated new and exciting hypotheses that position the weakly electric fish model to address fundamental 21st century biological questions. This review article considers the molecular data collected for weakly electric fish over the past three decades, and the insights that data of this nature has motivated. For readers relatively new to molecular genetics techniques, we also provide a table of terminology aimed at clarifying the numerous acronyms and techniques that accompany this field. Next, we pose a research agenda for expanding genomic resources for electric fish research over the next 10years. We conclude by considering some of the exciting research prospects for neuroethology that electric fish genomics may offer over the coming decades, if the electric fish community is successful in these endeavors.
Collapse
Affiliation(s)
- William R Pitchers
- Dept. of Integrative Biology, Michigan State University, 288 Farm Lane RM 203, East Lansing, MI 48824, USA.
| | - Savvas J Constantinou
- Dept. of Integrative Biology, Michigan State University, 288 Farm Lane RM 203, East Lansing, MI 48824, USA
| | - Mauricio Losilla
- Dept. of Integrative Biology, Michigan State University, 288 Farm Lane RM 203, East Lansing, MI 48824, USA
| | - Jason R Gallant
- Dept. of Integrative Biology, Michigan State University, 288 Farm Lane RM 203, East Lansing, MI 48824, USA.
| |
Collapse
|
4
|
Abstract
Weakly electric gymnotiform and mormyrid fish generate and detect weak electric fields to image their worlds and communicate. These multi-purpose electric signals are generated by electrocytes, the specialized electric organ (EO) cells that produce the electric organ discharge (EOD). Just over 50 years ago the first experimental analyses of electrocyte physiology demonstrated that the EOD is produced and shaped by the timing and waveform of electrocyte action potentials (APs). Electrocytes of some species generate a single AP from a distinct region of excitable membrane, and this AP waveform determines EOD waveform. In other species, electrocytes possess two independent regions of excitable membrane that generate asynchronous APs with different waveforms, thereby increasing EOD complexity. Signal complexity is further enhanced in some gymnotiforms by the spatio-temporal activation of distinct EO regions with different electrocyte properties. For many mormyrids, additional EOD waveform components are produced by APs that propagate along stalks that connect postsynaptic regions to the main body of the electrocyte. I review here the history of research on electrocyte physiology in weakly electric fish, as well as recent discoveries of key phenomena not anticipated during early work in this field. Recent areas of investigation include the regulation of electrocyte activity by steroid and peptide hormones, the molecular evolution of electrocyte ion channels, and the evolutionary selection of ion channels expressed in excitable cells. These emerging research areas have generated renewed interest in electrocyte function and clear future directions for research addressing a broad range of new and important questions.
Collapse
Affiliation(s)
- Michael R Markham
- Department of Biology, The University of Oklahoma, Norman, OK 73019, USA.
| |
Collapse
|
5
|
Salazar VL, Krahe R, Lewis JE. The energetics of electric organ discharge generation in gymnotiform weakly electric fish. ACTA ACUST UNITED AC 2014; 216:2459-68. [PMID: 23761471 DOI: 10.1242/jeb.082735] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Gymnotiform weakly electric fish produce an electric signal to sense their environment and communicate with conspecifics. Although the generation of such relatively large electric signals over an entire lifetime is expected to be energetically costly, supporting evidence to date is equivocal. In this article, we first provide a theoretical analysis of the energy budget underlying signal production. Our analysis suggests that wave-type and pulse-type species invest a similar fraction of metabolic resources into electric signal generation, supporting previous evidence of a trade-off between signal amplitude and frequency. We then consider a comparative and evolutionary framework in which to interpret and guide future studies. We suggest that species differences in signal generation and plasticity, when considered in an energetics context, will not only help to evaluate the role of energetic constraints in the evolution of signal diversity but also lead to important general insights into the energetics of bioelectric signal generation.
Collapse
Affiliation(s)
- Vielka L Salazar
- Department of Biology, Cape Breton University, Sydney, NS, Canada, B1P 6L2
| | | | | |
Collapse
|
6
|
Carlson BA, Gallant JR. From sequence to spike to spark: evo-devo-neuroethology of electric communication in mormyrid fishes. J Neurogenet 2013; 27:106-29. [PMID: 23802152 DOI: 10.3109/01677063.2013.799670] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mormyrid fishes communicate using pulses of electricity, conveying information about their identity, behavioral state, and location. They have long been used as neuroethological model systems because they are uniquely suited to identifying cellular mechanisms for behavior. They are also remarkably diverse, and they have recently emerged as a model system for studying how communication systems may influence the process of speciation. These two lines of inquiry have now converged, generating insights into the neural basis of evolutionary change in behavior, as well as the influence of sensory and motor systems on behavioral diversification and speciation. Here, we review the mechanisms of electric signal generation, reception, and analysis and relate these to our current understanding of the evolution and development of electromotor and electrosensory systems. We highlight the enormous potential of mormyrids for studying evolutionary developmental mechanisms of behavioral diversification, and make the case for developing genomic and transcriptomic resources. A complete mormyrid genome sequence would enable studies that extend our understanding of mormyrid behavior to the molecular level by linking morphological and physiological mechanisms to their genetic basis. Applied in a comparative framework, genomic resources would facilitate analysis of evolutionary processes underlying mormyrid diversification, reveal the genetic basis of species differences in behavior, and illuminate the origins of a novel vertebrate sensory and motor system. Genomic approaches to studying the evo-devo-neuroethology of mormyrid communication represent a deeply integrative approach to understanding the evolution, function, development, and mechanisms of behavior.
Collapse
Affiliation(s)
- Bruce A Carlson
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130-4899, USA.
| | | |
Collapse
|
7
|
Markham MR, Kaczmarek LK, Zakon HH. A sodium-activated potassium channel supports high-frequency firing and reduces energetic costs during rapid modulations of action potential amplitude. J Neurophysiol 2013; 109:1713-23. [PMID: 23324315 DOI: 10.1152/jn.00875.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the ionic mechanisms that allow dynamic regulation of action potential (AP) amplitude as a means of regulating energetic costs of AP signaling. Weakly electric fish generate an electric organ discharge (EOD) by summing the APs of their electric organ cells (electrocytes). Some electric fish increase AP amplitude during active periods or social interactions and decrease AP amplitude when inactive, regulated by melanocortin peptide hormones. This modulates signal amplitude and conserves energy. The gymnotiform Eigenmannia virescens generates EODs at frequencies that can exceed 500 Hz, which is energetically challenging. We examined how E. virescens meets that challenge. E. virescens electrocytes exhibit a voltage-gated Na(+) current (I(Na)) with extremely rapid recovery from inactivation (τ(recov) = 0.3 ms) allowing complete recovery of Na(+) current between APs even in fish with the highest EOD frequencies. Electrocytes also possess an inwardly rectifying K(+) current and a Na(+)-activated K(+) current (I(KNa)), the latter not yet identified in any gymnotiform species. In vitro application of melanocortins increases electrocyte AP amplitude and the magnitudes of all three currents, but increased I(KNa) is a function of enhanced Na(+) influx. Numerical simulations suggest that changing I(Na) magnitude produces corresponding changes in AP amplitude and that K(Na) channels increase AP energy efficiency (10-30% less Na(+) influx/AP) over model cells with only voltage-gated K(+) channels. These findings suggest the possibility that E. virescens reduces the energetic demands of high-frequency APs through rapidly recovering Na(+) channels and the novel use of KNa channels to maximize AP amplitude at a given Na(+) conductance.
Collapse
Affiliation(s)
- Michael R Markham
- Section of Neurobiology and Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA.
| | | | | |
Collapse
|
8
|
Markham MR, McAnelly ML, Stoddard PK, Zakon HH. Circadian and social cues regulate ion channel trafficking. PLoS Biol 2009; 7:e1000203. [PMID: 19787026 PMCID: PMC2741594 DOI: 10.1371/journal.pbio.1000203] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 08/13/2009] [Indexed: 12/25/2022] Open
Abstract
Electric fish strengthen their communication signals nightly and during social encounters by rapidly trafficking ion channels into cell membranes, demonstrating a direct relationship between environmental stimuli, channel trafficking, and behavior. Electric fish generate and sense electric fields for navigation and communication. These signals can be energetically costly to produce and can attract electroreceptive predators. To minimize costs, some nocturnally active electric fish rapidly boost the power of their signals only at times of high social activity, either as night approaches or in response to social encounters. Here we show that the gymnotiform electric fish Sternopygus macrurus rapidly boosts signal amplitude by 40% at night and during social encounters. S. macrurus increases signal magnitude through the rapid and selective trafficking of voltage-gated sodium channels into the excitable membranes of its electrogenic cells, a process under the control of pituitary peptide hormones and intracellular second-messenger pathways. S. macrurus thus maintains a circadian rhythm in signal amplitude and adapts within minutes to environmental events by increasing signal amplitude through the rapid trafficking of ion channels, a process that directly modifies an ongoing behavior in real time. Excitable cells, such as neurons and muscle cells, control behavior by generating action potentials, electrical signals that propagate along the cell membrane. Action potentials are generated when the cell allows charged molecules (ions) such as sodium and potassium to move across the membrane through specialized proteins called ion channels. By changing the number of ion channels in the plasma membrane, excitable cells can rapidly remodel their functional characteristics, potentially causing changes in behavior. To gain an understanding of how environmental events cause the remodeling of excitable cell membranes and the resulting behavioral adaptations, we studied the electric communication/navigation signals of an electric fish, Sternopygus macrurus. High amplitude signals facilitate communication and electrolocation, but are energetically costly and more detectable by those predators that can detect electrical signals. We found that Sternopygus increase signal amplitude at night, when they are active, and increase signal amplitude rapidly during social encounters. Electrocytes, the cells that produce the signal, rapidly boost the signal amplitude when they allow more sodium to cross the cell membrane, thereby generating larger action potentials. To increase sodium currents during the action potential, electrocytes rapidly insert additional sodium channels into the cell membrane in response to hormones released into circulation by the pituitary. By adding new ion channels to the electrocyte membrane only during periods of activity or social encounters and removing these channels during inactive periods, these animals can save energy and reduce predation risks associated with communication.
Collapse
Affiliation(s)
- Michael R Markham
- Section of Neurobiology, Patterson Laboratory, The University of Texas at Austin, Austin, Texas, United States of America.
| | | | | | | |
Collapse
|
9
|
Few WP, Zakon HH. Sex differences in and hormonal regulation of Kv1 potassium channel gene expression in the electric organ: molecular control of a social signal. Dev Neurobiol 2007; 67:535-49. [PMID: 17443807 DOI: 10.1002/dneu.20305] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Electric fish communicate with electric organ (EO) discharges (EODs) that are sexually dimorphic, hormone-sensitive, and often individually distinct. The cells of the EO (electrocytes) of the weakly electric fish Sternopygus possess delayed rectifying K+ currents that systematically vary in their activation and deactivation kinetics, and this precise variation in K+ current kinetics helps shape sex and individual differences in the EOD. Because members of the Kv1 subfamily produce delayed rectifier currents, we cloned a number of genes in the Kv1 subfamily from the EO of Sternopygus. Using our sequences and those from genome databases, we found that in teleost fish Kv1.1 and Kv1.2 exist as duplicate pairs (Kv1.1a&b, Kv1.2a&b) whereas Kv1.3 does not. Using real-time quantitative RT-PCR, we found that Kv1.1a and Kv1.2a, but not Kv1.2b, expression in the EO is higher in high EOD frequency females (which have fast EO K+ currents) than in low EOD frequency males (which have slow EO K+ currents). Systemic treatment with dihydrotestosterone decreased Kv1.1a and Kv1.2a, but not Kv1.2b, expression in the EO, whereas treatment with human chorionic gonadotropin (hCG) increased Kv1.2a but not Kv1.1a or Kv1.2b expression in the EO. Thus, systematic variation in the ratios of Kv1 channels expressed in the EO is correlated with individual differences in and sexual dimorphism of a communication signal.
Collapse
Affiliation(s)
- W Preston Few
- Section of Neurobiology and Institute for Neuroscience, University of Texas, Austin, Texas 78712, USA.
| | | |
Collapse
|
10
|
Stoddard PK, Markham MR, Salazar VL, Allee S. Circadian rhythms in electric waveform structure and rate in the electric fish Brachyhypopomus pinnicaudatus. Physiol Behav 2006; 90:11-20. [PMID: 16996093 PMCID: PMC2426960 DOI: 10.1016/j.physbeh.2006.08.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 07/11/2006] [Accepted: 08/15/2006] [Indexed: 10/24/2022]
Abstract
Weakly electric fish have long been known to express day-night oscillations in their discharge rates, and in the amplitude and duration of individual electric organ discharges (EODs). Because these oscillations are altered by social environment and neuroendocrine interactions, electric fish are excellent organisms for exploring the social and neuroendocrine regulation of circadian rhythm expression. Previous studies asserting that these oscillations are circadian rhythms have been criticized for failing to control temperature and randomize feeding regimes, or for running the fish under constant conditions for just 2-3 days. Here we show that the day-night oscillations in the EODs of the neotropical gymnotiform fish Brachyhypopomus pinnicaudatus free-run for over a week under constant photic and thermal conditions, and randomized food provisioning. Sex differences were apparent in strength and magnitude of the circadian oscillations; male oscillations were stronger and larger. All three parameters retain a common oscillation period while differing in the persistence of oscillation strength and magnitude, a difference consistent with proposals by others that declines of behavioral circadian rhythms may result from breakdowns downstream of the central oscillator.
Collapse
Affiliation(s)
- Philip K Stoddard
- Department Biological Sciences, Florida International University, Miami, FL 33199, USA.
| | | | | | | |
Collapse
|
11
|
Stoddard PK, Zakon HH, Markham MR, McAnelly L. Regulation and modulation of electric waveforms in gymnotiform electric fish. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2006; 192:613-24. [PMID: 16437223 PMCID: PMC2430267 DOI: 10.1007/s00359-006-0101-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Revised: 11/10/2005] [Accepted: 12/26/2005] [Indexed: 12/17/2022]
Abstract
Weakly electric gymnotiform fish specialize in the regulation and modulation of the action potentials that make up their multi-purpose electric signals. To produce communication signals, gymnotiform fish modulate the waveforms of their electric organ discharges (EODs) over timescales spanning ten orders of magnitude within the animal's life cycle: developmental, reproductive, circadian, and behavioral. Rapid changes lasting milliseconds to seconds are the result of direct neural control of action potential firing in the electric organ. Intermediate-term changes taking minutes to hours result from the action of melanocortin peptides, the pituitary hormones that induce skin darkening and cortisol release in many vertebrates. Long-term changes in the EOD waveform taking days to weeks result from the action of sex steroids on the electrocytes in the electric organ as well as changes in the neural control structures in the brain. These long-term changes in the electric organ seem to be associated with changes in the expression of voltage-gated ion channels in two gene families. Electric organs express multiple voltage-gated sodium channel genes, at least one of which seems to be regulated by androgens. Electric organs also express multiple subunits of the shaker (Kv1) family of voltage-gated potassium channels. Expression of the Kv1 subtype has been found to vary with the duration of the waveform in the electric signal. Our increasing understanding of the mechanisms underlying precise control of electric communication signals may yield significant insights into the diversity of natural mechanisms available for modifying the performance of ion channels in excitable membranes. These mechanisms may lead to better understanding of normal function in a wide range of physiological systems and future application in treatment of disease states involving pathology of excitable membranes.
Collapse
Affiliation(s)
- Philip K Stoddard
- Department of Biological Sciences, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA.
| | | | | | | |
Collapse
|
12
|
Bass AH, Zakon HH. Sonic and electric fish: at the crossroads of neuroethology and behavioral neuroendocrinology. Horm Behav 2005; 48:360-72. [PMID: 16005002 DOI: 10.1016/j.yhbeh.2005.05.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 05/23/2005] [Accepted: 05/31/2005] [Indexed: 10/25/2022]
Abstract
Field and laboratory studies of weakly electric and sound-producing teleost fishes demonstrate how steroidal and non-steroidal hormones mediate the translation of neural events into behavior. The development of this research program has depended upon an interdisciplinary neuroethological approach that has characterized the neurophysiological properties of the motor and sensory pathways that lead to the production and detection of easily quantified highly stereotyped behaviors, namely, electric organ discharges (EODs) and vocalizations. Neuroethological studies of these teleosts have now integrated a behavioral neuroendocrinology approach that has provided several examples of how hormone-sensitive neurobiological traits contribute to adaptive behavioral plasticity in natural habitats. As such, these studies provide guideposts for comparable studies in other groups of teleosts and vertebrates in general.
Collapse
Affiliation(s)
- Andrew H Bass
- Department of Neurobiology and Behavior, Seeley G. Mudd Hall, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
13
|
Moody WJ, Bosma MM. Ion Channel Development, Spontaneous Activity, and Activity-Dependent Development in Nerve and Muscle Cells. Physiol Rev 2005; 85:883-941. [PMID: 15987798 DOI: 10.1152/physrev.00017.2004] [Citation(s) in RCA: 281] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
At specific stages of development, nerve and muscle cells generate spontaneous electrical activity that is required for normal maturation of intrinsic excitability and synaptic connectivity. The patterns of this spontaneous activity are not simply immature versions of the mature activity, but rather are highly specialized to initiate and control many aspects of neuronal development. The configuration of voltage- and ligand-gated ion channels that are expressed early in development regulate the timing and waveform of this activity. They also regulate Ca2+influx during spontaneous activity, which is the first step in triggering activity-dependent developmental programs. For these reasons, the properties of voltage- and ligand-gated ion channels expressed by developing neurons and muscle cells often differ markedly from those of adult cells. When viewed from this perspective, the reasons for complex patterns of ion channel emergence and regression during development become much clearer.
Collapse
Affiliation(s)
- William J Moody
- Department of Biology, University of Washington, Seattle, Washington 98195, USA.
| | | |
Collapse
|
14
|
Lu Y, Monsivais P, Tempel BL, Rubel EW. Activity-dependent regulation of the potassium channel subunits Kv1.1 and Kv3.1. J Comp Neurol 2004; 470:93-106. [PMID: 14755528 DOI: 10.1002/cne.11037] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Afferent activity, especially in young animals, can have profound influences on postsynaptic neuronal structure, function and metabolic processes. Most studies evaluating activity regulation of cellular components have examined the expression of ubiquitous cellular proteins as opposed to molecules that are specialized in the neurons of interest. Here we consider the regulation of two proteins (voltage-gated potassium channel subunits Kv1.1 and Kv3.1) that auditory brainstem neurons in birds and mammals express at uniquely high levels. Unilateral removal of the avian cochlea leads to rapid and dramatic reduction in the expression of both proteins in the nucleus magnocellularis (NM; a division of the avian cochlear nucleus) neurons as detected by immunocytochemistry. Uniform downregulation of Kv1.1 was reliable by 3 hours after cochlea removal, was sustained through 96 hours, and returned to control levels in the surviving neurons by 2 weeks. The activity-dependent changes in Kv3.1 appear to be bimodal and are more transient, being observed at 3 hours after cochlea removal and recovering to control levels within 24 hours. We also explored the functional properties of Kv1.1 in NM neurons deprived of auditory input for 24 hours by whole-cell recordings. Low-threshold potassium currents in deprived NM neurons were not significantly different from control neurons in their amplitude or sensitivity to dendrotoxin-I, a selective K+ channel antagonist. We conclude that the highly specialized abundant expression of Kv1.1 and 3.1 channel subunits is not permanently regulated by synaptic activity and that changes in overall protein levels do not predict membrane pools.
Collapse
Affiliation(s)
- Yong Lu
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-HNS, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
15
|
Abstract
Weakly electric fish use their electric fields to locate objects and communicate with each other. Their electric discharges vary with species, gender, and social status. This variation is mediated by steroid and peptide hormones that influence ion currents through changes in gene expression or phosphorylation state. Understanding how electric fish decode the perturbations of their electric fields that result from interactions with the discharges of other fish or prey is illuminating general mechanisms of neuronal processing. Their central sensory circuits are specialized to process amplitude modulated signals, to detect microsecond variations in spike timing, and are dynamically reconfigured depending on the stimulus parameters.
Collapse
Affiliation(s)
- Harold H Zakon
- The Section of Neurobiology, Patterson laboratory, The University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
16
|
McAnelly L, Silva A, Zakon HH. Cyclic AMP modulates electrical signaling in a weakly electric fish. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2003; 189:273-82. [PMID: 12743732 DOI: 10.1007/s00359-003-0400-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2002] [Revised: 01/08/2003] [Accepted: 02/04/2003] [Indexed: 10/25/2022]
Abstract
Many species of electric fish show diurnal or socially elicited variation in electric organ discharge amplitude. In Sternopygus macrurus, activation of protein kinase A by 8-bromo-cAMP increases electrocyte sodium current magnitude. To determine whether the behavioral plasticity in electric organ discharge amplitude is controlled by electrocyte biophysical properties, we examined whether the effects of phosphorylation on ion currents in the electric organ translate directly into electric organ discharge changes. We injected the electric organ of restrained fish with 8-bromo-cAMP and monitored the electric organ discharge. The effect of protein kinase A activation on electrocyte action potentials was examined in isolated electric organ using two-electrode current clamp. Electric organ discharge and action potential amplitude and pulse duration increased in response to 8-bromo-cAMP. Pulse and action potential duration both increased by about 25%. However, the increase in electric organ discharge amplitude (approximately 400%) was several-fold greater than the action potential amplitude increase (approximately 40%). Resting membrane resistance decreased in electrocytes exposed to 8-bromo-cAMP. We propose that in the Thevenin equivalent circuit of the electric organ a moderate increase in action potential amplitude combined with a decrease in internal resistance produces a greater voltage drop across the external resistance (the water around the fish), accounting for the large increase in the externally recorded electric organ discharge.
Collapse
Affiliation(s)
- L McAnelly
- Section of Neurobiology, Patterson Laboratory, The University of Texas at Austin, 1 University Station C0920, Austin, TX 78712, USA.
| | | | | |
Collapse
|
17
|
Stoddard PK, Markham MR, Salazar VL. Serotonin modulates the electric waveform of the gymnotiform electric fish Brachyhypopomus pinnicaudatus. J Exp Biol 2003; 206:1353-62. [PMID: 12624170 PMCID: PMC2426958 DOI: 10.1242/jeb.00252] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The gymnotiform electric fish Brachyhypopomus pinnicaudatus communicates with a sexually dimorphic electric waveform, the electric organ discharge (EOD). Males display pronounced circadian rhythms in the amplitude and duration of their EODs. Changes in the social environment influence the magnitudes of these circadian rhythms and also produce more transient responses in the EOD waveforms. Here we show that injections of serotonin produce quick, transient, dose-dependent enhancements of the male EOD characters similar to those induced by encounters with another male. The response to serotonin administered peripherally begins 5-10 min post injection and lasts approximately 3 h. The magnitude of the response to serotonin is tightly associated with the magnitude of the day-to-night swing of the circadian rhythm prior to injection. Taken together these findings suggest that the male's social environment influences his response to serotonin by altering the function of some part of the downstream chain between the serotonin receptors and the ion channels involved in control of the EOD waveform. Although chronic activation of serotonin circuitry is widely known to elicit subordinate behavior, we find that 5-HT initially increases a dominance signal in these fish. These findings are consistent with the emerging view that serotonin facilitates different adaptive responses to acute and chronic social challenge and stress.
Collapse
Affiliation(s)
- Philip K Stoddard
- Department of Biological Sciences, Florida International University, Miami FL 33199, USA.
| | | | | |
Collapse
|
18
|
Abstract
I introduce publicly available software for accurate fitting of Hodgkin-Huxley models to voltage-clamp data. I describe the model and non-linear fitting procedure employed by the software and compare its results with the usual method of fitting such models using potassium A-current data from a pyloric dilator cell of the lobster Panulirus interruptus and sodium current data from an electrocyte cell of the electric fish Sternopygus macrurus. The set of parameter values for the model determined by this software yield current traces that are substantially closer to the observed data than those determined from the usual fitting method. This improvement is due to the fact that the software fits all of the parameters simultaneously utilizing all of the data rather than fitting steady-state and time constant parameters disjointly using peak currents and portions of the rising and falling phases. I analyze the convergence properties of the software's fitting algorithm using simulated data showing that accurate parameter values are obtained for most of the parameters using any reasonable initial values. The software also incorporates a linear pre-estimation procedure to help in determining reasonable initial values for the full non-linear algorithm. I illustrate and discuss some of the inadequacies of voltage-clamp data.
Collapse
Affiliation(s)
- Allan R Willms
- Department of Mathematics and Statistics, Biomathematics Research Centre, University of Canterbury, Private Bag 4800, Christchurch, New Zealand.
| |
Collapse
|
19
|
Few WP, Zakon HH. Androgens alter electric organ discharge pulse duration despite stability in electric organ discharge frequency. Horm Behav 2001; 40:434-42. [PMID: 11673917 DOI: 10.1006/hbeh.2001.1709] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Weakly electric fish in the genus Sternopygus emit a sinusoidal, individually distinct, and sexually dimorphic electric organ discharge (EOD) that is used in electrolocation and communication. Systemically applied androgens decrease EOD frequency, which is set by a medullary pacemaker nucleus, and increase pulse duration, which is determined by the cells of the electric organ (the electrocytes), in a coordinated fashion. One possibility is that androgens broaden the EOD pulse duration by acting on the pacemaker neurons, thereby effecting a change in pacemaker firing frequency, and that the change in EOD pulse duration is due to an activity-dependent process. To determine whether androgens can alter pulse duration despite a stable pacemaker nucleus firing frequency, we implanted small doses of dihydrotestosterone in the electric organ. We found that androgen implants increased EOD pulse duration, but did not influence EOD frequency. In addition, using immunocytochemistry, we found that electrocytes label positively with an androgen receptor antibody. While it is not known on which cells androgens act directly, together these experiments suggest that they likely act on the electrocytes to increase EOD pulse duration. Since pulse duration is determined by electrocyte action potential duration and ionic current kinetics, androgens may therefore play a causative role in influencing individual variation and sexual dimorphism in electrocyte electrical excitability, an important component of electrocommunicatory behavior.
Collapse
Affiliation(s)
- W P Few
- Section of Neurobiology, University of Texas, Austin, TX 78712, USA
| | | |
Collapse
|
20
|
Lopreato GF, Lu Y, Southwell A, Atkinson NS, Hillis DM, Wilcox TP, Zakon HH. Evolution and divergence of sodium channel genes in vertebrates. Proc Natl Acad Sci U S A 2001; 98:7588-92. [PMID: 11416226 PMCID: PMC34712 DOI: 10.1073/pnas.131171798] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2001] [Accepted: 04/10/2001] [Indexed: 12/19/2022] Open
Abstract
Invertebrate species possess one or two Na+ channel genes, yet there are 10 in mammals. When did this explosive growth come about during vertebrate evolution? All mammalian Na+ channel genes reside on four chromosomes. It has been suggested that this came about by multiple duplications of an ancestral chromosome with a single Na+ channel gene followed by tandem duplications of Na+ channel genes on some of these chromosomes. Because a large-scale expansion of the vertebrate genome likely occurred before the divergence of teleosts and tetrapods, we tested this hypothesis by cloning Na+ channel genes in a teleost fish. Using an approach designed to clone all of the Na+ channel genes in a genome, we found six Na+ channel genes. Phylogenetic comparisons show that each teleost gene is orthologous to a Na+ channel gene or gene cluster on a different mammalian chromosome, supporting the hypothesis that four Na+ channel genes were present in the ancestors of teleosts and tetrapods. Further duplications occurred independently in the teleost and tetrapod lineages, with a greater number of duplications in tetrapods. This pattern has implications for the evolution of function and specialization of Na+ channel genes in vertebrates. Sodium channel genes also are linked to homeobox (Hox) gene clusters in mammals. Using our phylogeny of Na+ channel genes to independently test between two models of Hox gene evolution, we support the hypothesis that Hox gene clusters evolved as (AB) (CD) rather than [D[A(BC)]].
Collapse
Affiliation(s)
- G F Lopreato
- Sections of Neurobiology and Integrative Biology, School of Biological Sciences, University of Texas, Austin, TX 78712, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
McAnelly ML, Zakon HH. Coregulation of voltage-dependent kinetics of Na(+) and K(+) currents in electric organ. J Neurosci 2000; 20:3408-14. [PMID: 10777803 PMCID: PMC6773100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
The electric organ cells of Sternopygus generate action potentials whose durations vary over a fourfold range. This variation in action potential duration is the basis for individual variation in a communication signal. Thus, action potential duration must be precisely regulated in these cells. We had observed previously that the inactivation kinetics of the electrocyte Na(+) current show systematic individual variation. In this study, using a two-electrode voltage clamp, we found that the voltage-dependent activation and deactivation kinetics of the delayed rectifying K(+) current in these cells covary in a graded and predictable manner across fish. Furthermore, when Na(+) and K(+) currents were recorded in the same cell, their voltage-dependent kinetics were highly correlated. This finding illustrates an unprecedented degree of coregulation of voltage-dependent properties in two molecularly distinct ionic channels. Such a coregulation of ionic channels is uniquely observable in a cell specialized to generate individual differences in electrical activity and in which the results of biophysical control mechanisms are evident in behaving animals. We propose that the precise coregulation of the voltage-dependent kinetics of multiple ionic currents may be a general mechanism for regulation of membrane excitability.
Collapse
Affiliation(s)
- M L McAnelly
- Section of Neurobiology, Institute for Neuroscience, Patterson Laboratory, The University of Texas at Austin, Austin, Texas 78712, USA.
| | | |
Collapse
|
22
|
Arai H, Xin KQ, Hamajima K, Lu Y, Watabe S, Takahashi T, Toda S, Okuda K, Kudoh I, Suzuki M, Okuda K. 8 Br-cAMP enhances both humoral and cell-mediated immune responses induced by an HIV-1 DNA vaccine. Gene Ther 2000; 7:694-702. [PMID: 10800093 DOI: 10.1038/sj.gt.3301145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
From a series of preclinical studies and animal experiments, we have been able to demonstrate that DNA vaccines are a promising tool in strategies for protecting hosts from a variety of infectious diseases. Since the promoter activity of the human cytomegalovirus immediate-early promoter/ enhancer (CMV promoter) is known to be responsive to an elevation in the level of intracellular cAMP, we hypothesized that use of cAMP analogue (8-Bromo adenosine 3'5'-cyclic monophosphate, 8 Br-cAMP) would increase the level of transgene expression supported by the CMV, and enhance the ability of DNA vaccines to evoke an immune response against the transgene product in vivo. To evaluate this hypothesis, immune responses against HIV-1 envelope protein, gp160, an immunogenic HIV-1 component expressed under the control of the CMV promoter, were evaluated in BALB/c mice with or without stimulation by 8 Br-cAMP. DNA vaccine with 8 Br-cAMP was intramuscularly (i.m.) or intranasally (i.n.) administered to BALB/c mice twice on days 0 and 14. Regardless of which route was used, the combination increased the serum IgG antibody (Ab) titer, HIV-1-specific cytotoxic T lymphocyte (CTL) activity and the delayed-type hypersensitivity (DTH) response, compared with the effect of using the vaccine alone. When administered via the i.n. route, the combination also remarkably increased the titer of secretory IgA (sIgA). Moreover, it induced increased production of interferon-gamma with reduction in IL-4 synthesis, and decreased the ratio of serum IgG1/IgG2a. However, these enhancements were not observed when 8 Br-cAMP was coadministered with peptide vaccine or protein antigen. These data suggest that 8 Br-cAMP is able to enhance both humoral and cellular immune responses induced by the DNA vaccine. The induction of T helper type 1 (Th1) immunity against HIV-1 was also enhanced by coadministration of 8 Br-cAMP. A CAT assay study demonstrated that the adjuvant effect of 8 Br-cAMP may be due to the activation of the CMV promoter in the DNA vaccine. The virus challenge experiment in a mouse influenza model also proved our hypothesis.
Collapse
MESH Headings
- 8-Bromo Cyclic Adenosine Monophosphate/therapeutic use
- Administration, Intranasal
- Animals
- Combined Modality Therapy
- Cytomegalovirus/genetics
- Dose-Response Relationship, Drug
- Genetic Therapy/methods
- Genetic Vectors/administration & dosage
- HIV Envelope Protein gp160/genetics
- Hypersensitivity, Delayed/drug therapy
- Hypersensitivity, Delayed/immunology
- Immunoglobulin G/analysis
- Injections, Intramuscular
- Mice
- Mice, Inbred BALB C
- Orthomyxoviridae Infections/immunology
- Promoter Regions, Genetic
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- Vaccines, DNA/therapeutic use
Collapse
Affiliation(s)
- H Arai
- Department of Bacteriology, Yokohama City University School of Medicine, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zakon H, Mcanelly L, Smith GT, Dunlap K, Lopreato G, Oestreich J, Few WP. Plasticity of the electric organ discharge: implications for the regulation of ionic currents. J Exp Biol 1999; 202:1409-16. [PMID: 10210681 DOI: 10.1242/jeb.202.10.1409] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Weakly electric fish emit electric organ discharges (EODs) to locate objects around themselves and for communication. The EOD is generated by a simple hierarchically organized, neurophysiologically accessible circuit, the electromotor system. A number of forms of plasticity of the EOD waveform are initiated by social or environmental factors and mediated by hormones or neurotransmitters. Because the behavior itself is in the form of electric discharges, behavioral observations easily lead to testable hypotheses about the biophysical bases of these plasticities. This allows us to study ionic channels in their native cellular environments, where the regulation of various parameters of these currents have obvious functional consequences. In this review, we discuss three types of plasticity: a rapidly occurring, long-lasting, N-methyl-d-aspartate (NMDA)-receptor-dependent increase in baseline firing frequency of neurons in the pacemaker nucleus that underlies a readjustment of the baseline EOD frequency after long bouts of the jamming avoidance response; a rapidly occurring diurnal change in amplitude and duration of the EOD pulse that depends in part on modulation of the magnitude of the electrocyte Na+ current by a protein kinase; and a slowly occurring, hormonally modulated tandem change in pacemaker firing frequency and in the duration of the EOD pulse in which changes in EOD pulse duration are mediated by coordinated shifts in the activation and inactivation kinetics of the electrocyte Na+ and K+ currents.
Collapse
Affiliation(s)
- H Zakon
- Division of Biological Sciences, Section of Neurobiology and Institute for Neuroscience, Patterson Laboratory, The University of Texas, Austin, TX 78712, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Herfeld S, Moller P. Effects of 17alpha-methyltestosterone on sexually dimorphic characters in the weakly discharging electric fish, Brienomyrus niger (Günther, 1866) (Mormyridae): electric organ discharge, ventral body wall indentation, and anal-Fin ray bone expansion. Horm Behav 1998; 34:303-19. [PMID: 9878279 DOI: 10.1006/hbeh.1998.1486] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adult males of African weakly discharging electric fish (family: Mormyridae) are distinguished from juveniles and adult females by a dorsally directed indentation of the posterior ventral body wall and by massive bone expansion of the bases of a select number of anal-fin rays. These sexually dimorphic structures seem to facilitate the anal-fin reflex that is displayed during courtship when the male envelopes its anal fin around the female's to form a common spawning pouch. Expanded bone could provide additional surface for muscle attachment and thus assist in part with the courtship sequence. Based on the fact that the expression of the male sexually dimorphic electric organ discharge (EOD) is under androgen control, and that the female EOD can be masculinized through testosterone administration, we hypothesized that androgens should also drive anal-fin ray bone expansion in male mormyrids and equally effect male-like changes in treated juveniles and adult females. Exogenous androgen treatment (17alpha-methyltestosterone) of adult female Brienomyrus niger resulted in a male-like EOD, and male-typical structural transformations (body wall indentation and anal-fin ray bone expansion). Some of these changes were immediate and receded following hormone withdrawal (EOD), while others developed more slowly and were apparently permanent (indentation and bone formation). 17alpha-Methyltestosterone administration affected only those targets in females that are normally involved in the male's reproductive behavior, i.e., its courtship signal (EOD) and two morphological features (body-wall indentation and bone expansion). Rays of the dorsal or caudal fins were never affected.
Collapse
Affiliation(s)
- S Herfeld
- Department of Psychology, Hunter College of the City University of New York, New York, New York, 10024-5192, USA
| | | |
Collapse
|
25
|
Gotter AL, Kaetzel MA, Dedman JR. Electrophorus electricus as a model system for the study of membrane excitability. Comp Biochem Physiol A Mol Integr Physiol 1998; 119:225-41. [PMID: 11253789 DOI: 10.1016/s1095-6433(97)00414-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The stunning sensations produced by electric fish, particularly the electric eel, Electrophorus electricus, have fascinated scientists for centuries. Within the last 50 years, however, electric cells of Electrophorus have provided a unique model system that is both specialized and appropriate for the study of excitable cell membrane electrophysiology and biochemistry. Electric tissue generates whole animal electrical discharges by means of membrane potentials that are remarkably similar to those of mammalian neurons, myocytes and secretory cells. Electrocytes express ion channels, ATPases and signal transduction proteins common to these other excitable cells. Action potentials of electrocytes represent the specialized end function of electric tissue whereas other excitable cells use membrane potential changes to trigger sophisticated cellular processes, such as myofilament cross-bridging for contraction, or exocytosis for secretion. Because electric tissue lacks these functions and the proteins associated with them, it provides a highly specialized membrane model system. This review examines the basic mechanisms involved in the generation of the electrical discharge of the electric eel and the membrane proteins involved. The valuable contributions that electric tissue continues to make toward the understanding of excitable cell physiology and biochemistry are summarized, particularly those studies using electrocytes as a model system for the study of the regulation of membrane excitability by second messengers and signal transduction pathways.
Collapse
Affiliation(s)
- A L Gotter
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, OH 45267-0576, USA
| | | | | |
Collapse
|
26
|
Dunlap KD, McAnelly ML, Zakon HH. Estrogen modifies an electrocommunication signal by altering the electrocyte sodium current in an electric fish, Sternopygus. J Neurosci 1997; 17:2869-75. [PMID: 9092608 PMCID: PMC6573104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Many species of electric fish emit sexually dimorphic electrical signals that are used in gender recognition. In Sternopygus, mature females produce an electric organ discharge (EOD) that is higher in frequency and shorter in pulse duration than that of mature males. EOD pulse duration is determined by ion currents in the electrocytes, and androgens influence EOD pulse duration by altering the inactivation kinetics of the electrocyte sodium current. We examined whether estrogen modulates the female-specific EOD and, if so, whether it regulates EOD pulse duration by acting on the same androgen-sensitive ion current in the electrocytes. We implanted gonadectomized Sternopygus with either empty SILASTIC capsules (control), one capsule filled with estradiol-17beta (E2; low dose), or three capsules of E2 (high dose). Twelve days after implantation, E2-treated fish had plasma E2 levels approximately 3.3-fold (low dose) or approximately 7.1-fold (high dose) higher than controls. After implantation, both E2-treated groups had higher EOD frequency and shorter EOD pulse duration than controls and their own preimplantation values. Through immunocytochemistry, we identified immunoreactive estrogen receptors in the nuclei of electrocytes, indicating that these cells are directly responsive to estrogen. In addition, voltage-clamp studies showed that E2 affected the electrocyte ion currents kinetics: the sodium inactivation time constant was significantly lower in E2-treated fish than in controls. Thus, sexual dimorphism in the electrocommunication signal results, at least in part, from estrogens and androgens acting in opposite directions on the same ion current in the electrocytes.
Collapse
Affiliation(s)
- K D Dunlap
- Department of Zoology and Center for Developmental Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | |
Collapse
|