1
|
Krueger-Burg D. Understanding GABAergic synapse diversity and its implications for GABAergic pharmacotherapy. Trends Neurosci 2025; 48:47-61. [PMID: 39779392 DOI: 10.1016/j.tins.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/17/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025]
Abstract
Despite the substantial contribution of disruptions in GABAergic inhibitory neurotransmission to the etiology of psychiatric, neurodevelopmental, and neurodegenerative disorders, surprisingly few drugs targeting the GABAergic system are currently available, partly due to insufficient understanding of circuit-specific GABAergic synapse biology. In addition to GABA receptors, GABAergic synapses contain an elaborate organizational protein machinery that regulates the properties of synaptic transmission. Until recently, this machinery remained largely unexplored, but key methodological advances have now led to the identification of a wealth of new GABAergic organizer proteins. Notably, many of these proteins appear to function only at specific subsets of GABAergic synapses, creating a diversity of organizer complexes that may serve as circuit-specific targets for pharmacotherapies. The present review aims to summarize the methodological developments that underlie this newfound knowledge and provide a current overview of synapse-specific GABAergic organizer complexes, as well as outlining future avenues and challenges in translating this knowledge into clinical applications.
Collapse
Affiliation(s)
- Dilja Krueger-Burg
- Laboratory of Cell Biology and Neuroscience, Institute of Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| |
Collapse
|
2
|
Ullman EZ, Perszyk RE, Paladugu S, Fritzemeier RG, Akins NS, Jacobs L, Liotta DC, Traynelis SF. Mechanisms of Action Underlying Conductance-Modifying Positive Allosteric Modulators of the NMDA Receptor. Mol Pharmacol 2024; 106:334-353. [PMID: 39443157 PMCID: PMC11585258 DOI: 10.1124/molpharm.124.001019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are ionotropic glutamate receptors that mediate a slow, Ca2+-permeable component of excitatory neurotransmission. Modulation of NMDAR function has the potential for disease modification as NMDAR dysfunction has been implicated in neurodevelopment, neuropsychiatric, neurologic, and neurodegenerative disorders. We recently described the thieno[2,3-day]pyrimidin-4-one (EU1622) class of positive allosteric modulators, including several potent and efficacious analogs. Here we have used electrophysiological recordings from Xenopus oocytes, human embryonic kidney cells, and cultured cerebellar and cortical neurons to determine the mechanisms of action of a representative member of this class of modulator. EU1622-240 enhances current response to saturating agonist (doubling response amplitude at 0.2-0.5 μM), slows the deactivation time course following rapid removal of glutamate, increases open probability, enhances coagonist potency, and reduces single-channel conductance. We also show that EU1622-240 facilitates NMDAR activation when only glutamate or glycine is bound. EU1622-240-bound NMDARs channels activated by a single agonist (glutamate or glycine) open to a unique conductance level with different pore properties and Mg2+ sensitivity, in contrast to channels arising from activation of NMDARs with both coagonists bound. These data demonstrate that previously hypothesized distinct gating steps can be controlled by glutamate and glycine binding and shows that the 1622-series modulators enable glutamate- or glycine-bound NMDARs to generate open conformations with different pore properties. The properties of this class of allosteric modulators present intriguing therapeutic opportunities for the modulation of circuit function. SIGNIFICANCE STATEMENT: NMDA receptors are expressed throughout the central nervous system and are permeable to calcium. EU1622-240 increases open probability and agonist potency while reducing single-channel conductance and prolonging the deactivation time course. EU1622-240 allows NMDA receptor activation by the binding of one coagonist (glycine or glutamate), which produces channels with distinct properties. Evaluation of this modulator provides insight into gating mechanisms and may lead to the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Elijah Z Ullman
- Departments of Pharmacology and Chemical Biology, Emory School of Medicine (E.Z.U., R.E.P., S.F.T.) and Chemistry (S.P., R.G.F., N.S.A., L.J., D.C.L.), Emory University, Atlanta, Georgia
| | - Riley E Perszyk
- Departments of Pharmacology and Chemical Biology, Emory School of Medicine (E.Z.U., R.E.P., S.F.T.) and Chemistry (S.P., R.G.F., N.S.A., L.J., D.C.L.), Emory University, Atlanta, Georgia
| | - Srinu Paladugu
- Departments of Pharmacology and Chemical Biology, Emory School of Medicine (E.Z.U., R.E.P., S.F.T.) and Chemistry (S.P., R.G.F., N.S.A., L.J., D.C.L.), Emory University, Atlanta, Georgia
| | - Russell G Fritzemeier
- Departments of Pharmacology and Chemical Biology, Emory School of Medicine (E.Z.U., R.E.P., S.F.T.) and Chemistry (S.P., R.G.F., N.S.A., L.J., D.C.L.), Emory University, Atlanta, Georgia
| | - Nicholas S Akins
- Departments of Pharmacology and Chemical Biology, Emory School of Medicine (E.Z.U., R.E.P., S.F.T.) and Chemistry (S.P., R.G.F., N.S.A., L.J., D.C.L.), Emory University, Atlanta, Georgia
| | - Leon Jacobs
- Departments of Pharmacology and Chemical Biology, Emory School of Medicine (E.Z.U., R.E.P., S.F.T.) and Chemistry (S.P., R.G.F., N.S.A., L.J., D.C.L.), Emory University, Atlanta, Georgia
| | - Dennis C Liotta
- Departments of Pharmacology and Chemical Biology, Emory School of Medicine (E.Z.U., R.E.P., S.F.T.) and Chemistry (S.P., R.G.F., N.S.A., L.J., D.C.L.), Emory University, Atlanta, Georgia
| | - Stephen F Traynelis
- Departments of Pharmacology and Chemical Biology, Emory School of Medicine (E.Z.U., R.E.P., S.F.T.) and Chemistry (S.P., R.G.F., N.S.A., L.J., D.C.L.), Emory University, Atlanta, Georgia
| |
Collapse
|
3
|
Ibeh N, Kusuma P, Crenna Darusallam C, Malik SG, Sudoyo H, McCarthy DJ, Gallego Romero I. Profiling genetically driven alternative splicing across the Indonesian archipelago. Am J Hum Genet 2024; 111:2458-2477. [PMID: 39383868 PMCID: PMC11568790 DOI: 10.1016/j.ajhg.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/11/2024] Open
Abstract
One of the regulatory mechanisms influencing the functional capacity of genes is alternative splicing (AS). Previous studies exploring the splicing landscape of human tissues have shown that AS has contributed to human biology, especially in disease progression and the immune response. Nonetheless, this phenomenon remains poorly characterized across human populations, and it is unclear how genetic and environmental variation contribute to AS. Here, we examine a set of 115 Indonesian samples from three traditional island populations spanning the genetic ancestry cline that characterizes Island Southeast Asia. We conduct a global AS analysis between islands to ascertain the degree of functionally significant AS events and their consequences. Using an event-based statistical model, we detected over 1,500 significant differential AS events across all comparisons. Additionally, we identify over 6,000 genetic variants associated with changes in splicing (splicing quantitative trait loci [sQTLs]), some of which are driven by Papuan-like genetic ancestry, and only show partial overlap with other publicly available sQTL datasets derived from other populations. Computational predictions of RNA binding activity reveal that a fraction of these sQTLs directly modulate the binding propensity of proteins involved in the splicing regulation of immune genes. Overall, these results contribute toward elucidating the role of genetic variation in shaping gene regulation in one of the most diverse regions in the world.
Collapse
Affiliation(s)
- Neke Ibeh
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia; Melbourne Integrative Genomics, University of Melbourne, Parkville, VIC 3010, Australia; Bioinformatics and Cellular Genomics, St Vincents Institute of Medical Research, Fitzroy, VIC 3065, Australia; Human Genomics and Evolution, St Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Pradiptajati Kusuma
- Genome Diversity and Disease Laboratory, Mochtar Riady Institute of Nanotechnology, Tangerang 15811, Indonesia
| | - Chelzie Crenna Darusallam
- Genome Diversity and Disease Laboratory, Mochtar Riady Institute of Nanotechnology, Tangerang 15811, Indonesia
| | - Safarina G Malik
- Genome Diversity and Disease Laboratory, Mochtar Riady Institute of Nanotechnology, Tangerang 15811, Indonesia
| | - Herawati Sudoyo
- Genome Diversity and Disease Laboratory, Mochtar Riady Institute of Nanotechnology, Tangerang 15811, Indonesia
| | - Davis J McCarthy
- Melbourne Integrative Genomics, University of Melbourne, Parkville, VIC 3010, Australia; Bioinformatics and Cellular Genomics, St Vincents Institute of Medical Research, Fitzroy, VIC 3065, Australia; School of Mathematics and Statistics, Faculty of Science, University of Melbourne, Parkville, VIC 3010, Australia
| | - Irene Gallego Romero
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia; Melbourne Integrative Genomics, University of Melbourne, Parkville, VIC 3010, Australia; Human Genomics and Evolution, St Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia; Centre for Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia.
| |
Collapse
|
4
|
Camp CR, Banke TG, Xing H, Yu K, Perszyk RE, Epplin MP, Akins NS, Zhang J, Benke TA, Yuan H, Liotta DC, Traynelis SF. Selective Enhancement of the Interneuron Network and Gamma-Band Power via GluN2C/GluN2D NMDA Receptor Potentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.05.622179. [PMID: 39574703 PMCID: PMC11580944 DOI: 10.1101/2024.11.05.622179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
N-methyl-D-aspartate receptors (NMDARs) comprise a family of ligand-gated ionotropic glutamate receptors that mediate a slow, calcium-permeable component to excitatory neurotransmission. The GluN2D subunit is enriched in GABAergic inhibitory interneurons in cortical tissue. Diminished levels of GABAergic inhibition contribute to multiple neuropsychiatric conditions, suggesting that enhancing inhibition may have therapeutic utility, thus making GluN2D modulation an attractive drug target. Here, we describe the actions of a GluN2C/GluN2D-selective positive allosteric modulator (PAM), (+)-EU1180-453, which has improved drug-like properties such as increased aqueous solubility compared to the first-in-class GluN2C/GluN2D-selective prototypical PAM (+)-CIQ. (+)-EU1180-453 doubles the NMDAR response at lower concentrations (< 10 μM) compared to (+)-CIQ, and produces a greater degree of maximal potentiation at 30 μM. Using in vitro electrophysiological recordings, we show that (+)-EU1180-453 potentiates triheteromeric NMDARs containing at least one GluN2C or GluN2D subunit, and is active at both exon5-lacking and exon5-containing GluN1 splice variants. (+)-EU1180-453 increases glutamate efficacy for GluN2C/GluN2D-containing NMDARs by both prolonging the deactivation time and potentiating the peak response amplitude. We show that (+)-EU1180-453 selectively increases synaptic NMDAR-mediated charge transfer onto P11-15 CA1 stratum radiatum hippocampal interneurons, but is without effect on CA1 pyramidal cells. This increased charge transfer enhances inhibitory output from GABAergic interneurons onto CA1 pyramidal cells in a GluN2D-dependent manner. (+)-EU1180-453 also shifts excitatory-to-inhibitory coupling towards increased inhibition and produces enhanced gamma band power from carbachol-induced field potential oscillations in hippocampal slices. Thus, (+)-EU1180-453 can enhance overall circuit inhibition, which could prove therapeutically useful for the treatment of anxiety, depression, schizophrenia, and other neuropsychiatric disorders. Significance Statement Interneuron dysfunction and diminished GABAergic inhibition in neocortical and hippocampal circuits remains a prominent molecular hypothesis for neuropsychiatric diseases including anxiety, depression, and schizophrenia. Pharmacological agents that boost GABA receptor function have shown utility in various forms of depression and treating symptoms of schizophrenia. Cortical GABAergic interneurons, unlike their excitatory pyramidal cell counterparts, are enriched for the GluN2D subunit of the NMDA receptor. Thus, GluN2D subunit-selective modulation could be a useful therapeutic tool to enhance local inhibition, improving the prognosis for neuropsychiatric diseases for which interneuron dysfunction is prominent and causal to circuit aberration.
Collapse
Affiliation(s)
- Chad R. Camp
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Tue G. Banke
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hao Xing
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kuai Yu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Riley E. Perszyk
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Matthew P. Epplin
- Department of Chemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nicholas S. Akins
- Department of Chemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jing Zhang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tim A. Benke
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dennis C. Liotta
- Department of Chemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Stephen F. Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
5
|
Shabani K, Krupp J, Lemesre E, Lévy N, Tran H. Voltage-Gated Ion Channel Compensatory Effect in DEE: Implications for Future Therapies. Cells 2024; 13:1763. [PMID: 39513870 PMCID: PMC11544952 DOI: 10.3390/cells13211763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/02/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Developmental and Epileptic Encephalopathies (DEEs) represent a clinically and genetically heterogeneous group of rare and severe epilepsies. DEEs commonly begin early in infancy with frequent seizures of various types associated with intellectual disability and leading to a neurodevelopmental delay or regression. Disease-causing genomic variants have been identified in numerous genes and are implicated in over 100 types of DEEs. In this context, genes encoding voltage-gated ion channels (VGCs) play a significant role, and part of the large phenotypic variability observed in DEE patients carrying VGC mutations could be explained by the presence of genetic modifier alleles that can compensate for these mutations. This review will focus on the current knowledge of the compensatory effect of DEE-associated voltage-gated ion channels and their therapeutic implications in DEE. We will enter into detailed considerations regarding the sodium channels SCN1A, SCN2A, and SCN8A; the potassium channels KCNA1, KCNQ2, and KCNT1; and the calcium channels CACNA1A and CACNA1G.
Collapse
Affiliation(s)
- Khadijeh Shabani
- Institut de Recherches Servier, Rue Francis Perrin, 91190 Gif-sur-Yvette, France; (J.K.); (E.L.); (N.L.)
| | | | | | | | - Helene Tran
- Institut de Recherches Servier, Rue Francis Perrin, 91190 Gif-sur-Yvette, France; (J.K.); (E.L.); (N.L.)
| |
Collapse
|
6
|
Weißbach S, Milkovits J, Pastore S, Heine M, Gerber S, Todorov H. Cortexa: a comprehensive resource for studying gene expression and alternative splicing in the murine brain. BMC Bioinformatics 2024; 25:293. [PMID: 39237879 PMCID: PMC11378610 DOI: 10.1186/s12859-024-05919-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Gene expression and alternative splicing are strictly regulated processes that shape brain development and determine the cellular identity of differentiated neural cell populations. Despite the availability of multiple valuable datasets, many functional implications, especially those related to alternative splicing, remain poorly understood. Moreover, neuroscientists working primarily experimentally often lack the bioinformatics expertise required to process alternative splicing data and produce meaningful and interpretable results. Notably, re-analyzing publicly available datasets and integrating them with in-house data can provide substantial novel insights. However, such analyses necessitate developing harmonized data handling and processing pipelines which in turn require considerable computational resources and in-depth bioinformatics expertise. RESULTS Here, we present Cortexa-a comprehensive web portal that incorporates RNA-sequencing datasets from the mouse cerebral cortex (longitudinal or cell-specific) and the hippocampus. Cortexa facilitates understandable visualization of the expression and alternative splicing patterns of individual genes. Our platform provides SplicePCA-a tool that allows users to integrate their alternative splicing dataset and compare it to cell-specific or developmental neocortical splicing patterns. All standardized gene expression and alternative splicing datasets can be downloaded for further in-depth downstream analysis without the need for extensive preprocessing. CONCLUSIONS Cortexa provides a robust and readily available resource for unraveling the complexity of gene expression and alternative splicing regulatory processes in the mouse brain. The data portal is available at https://cortexa-rna.com/.
Collapse
Affiliation(s)
- Stephan Weißbach
- Institute of Developmental Biology and Neurobiology (iDN), Johannes Gutenberg University Mainz, 55128, Mainz, Germany
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Jonas Milkovits
- Institute of Developmental Biology and Neurobiology (iDN), Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Stefan Pastore
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, 55131, Mainz, Germany
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Martin Heine
- Institute of Developmental Biology and Neurobiology (iDN), Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Susanne Gerber
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, 55131, Mainz, Germany.
| | - Hristo Todorov
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, 55131, Mainz, Germany.
| |
Collapse
|
7
|
Li X, Mills WT, Jin DS, Meffert MK. Genome-wide and cell-type-selective profiling of in vivo small noncoding RNA:target RNA interactions by chimeric RNA sequencing. CELL REPORTS METHODS 2024; 4:100836. [PMID: 39127045 PMCID: PMC11384083 DOI: 10.1016/j.crmeth.2024.100836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/30/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024]
Abstract
Small noncoding RNAs (sncRNAs) regulate biological processes by impacting post-transcriptional gene expression through repressing the translation and levels of targeted transcripts. Despite the clear biological importance of sncRNAs, approaches to unambiguously define genome-wide sncRNA:target RNA interactions remain challenging and not widely adopted. We present CIMERA-seq, a robust strategy incorporating covalent ligation of sncRNAs to their target RNAs within the RNA-induced silencing complex (RISC) and direct detection of in vivo interactions by sequencing of the resulting chimeric RNAs. Modifications are incorporated to increase the capacity for processing low-abundance samples and permit cell-type-selective profiling of sncRNA:target RNA interactions, as demonstrated in mouse brain cortex. CIMERA-seq represents a cohesive and optimized method for unambiguously characterizing the in vivo network of sncRNA:target RNA interactions in numerous biological contexts and even subcellular fractions. Genome-wide and cell-type-selective CIMERA-seq enhances researchers' ability to study gene regulation by sncRNAs in diverse model systems and tissue types.
Collapse
Affiliation(s)
- Xinbei Li
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - William T Mills
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daniel S Jin
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mollie K Meffert
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
8
|
Krüssel S, Deb I, Son S, Ewall G, Chang M, Lee HK, Heo WD, Kwon HB. H-Ras induces exuberant de novo dendritic protrusion growth in mature neurons regardless of cell type. iScience 2024; 27:110535. [PMID: 39220408 PMCID: PMC11365382 DOI: 10.1016/j.isci.2024.110535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 05/03/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024] Open
Abstract
Dendritic protrusions, mainly spines and filopodia, correlate with excitatory synapses in pyramidal neurons (PyNs), but this relationship may not apply universally. We found that ectopic H-Ras expression increased protrusions across various cortical cell types, including layer 2/3 PyNs, parvalbumin (PV)-, and vasoactive intestinal peptide (VIP)-positive interneurons (INs) in the primary motor cortex. The probability of detecting protrusions correlated with local H-Ras activity, indicating its role in protrusion formation. H-Ras overexpression led to high turnover rates by adding protrusions. Two-photon photolysis of glutamate induced de novo spine formation in mature H-Ras expressing neurons, suggesting H-Ras's effect is not limited to early development. In PyNs and PV-INs, but not VIP-INs, spine neck lengths shifted to filopodia-like phenotypes. H-Ras primarily induced filopodia in PyNs and spines in PV- and VIP-INs. Increased protrusions in H-Ras-transfected PyNs lacked key excitatory synaptic proteins and did not affect miniature excitatory postsynaptic currents (mEPSCs), suggesting multifaceted roles beyond excitatory synapses.
Collapse
Affiliation(s)
- Sarah Krüssel
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ishana Deb
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Seungkyu Son
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Gabrielle Ewall
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Minhyeok Chang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hey-Kyoung Lee
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Won Do Heo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyung-Bae Kwon
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
9
|
Li H, Rajani V, Sengar AS, Salter MW. Src dependency of the regulation of LTP by alternative splicing of GRIN1 exon 5. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230236. [PMID: 38853562 PMCID: PMC11343231 DOI: 10.1098/rstb.2023.0236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/31/2024] [Accepted: 02/11/2024] [Indexed: 06/11/2024] Open
Abstract
Alternative splicing of Grin1 exon 5 regulates induction of long-term potentiation (LTP) at Schaffer collateral-CA1 synapses: LTP in mice lacking the GluN1 exon 5-encoded N1 cassette (GluN1a mice) is significantly increased compared with that in mice compulsorily expressing this exon (GluN1b mice). The mechanism underlying this difference is unknown. Here, we report that blocking the non-receptor tyrosine kinase Src prevents induction of LTP in GluN1a mice but not in GluN1b. We find that activating Src enhances pharmacologically isolated synaptic N-methyl-d-aspartate receptor (NMDAR) currents in GluN1a mice but not in GluN1b. Moreover, we observe that Src activation increases the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor component of Schaffer collateral-evoked excitatory post-synaptic potentials in GluN1a mice, but this increase is prevented by blocking NMDARs. We conclude that at these synapses, NMDARs in GluN1a mice are subject to upregulation by Src that mediates induction of LTP, whereas NMDARs in GluN1b mice are not regulated by Src, leading to Src-resistance of LTP. Thus, we have uncovered that a key regulatory mechanism for synaptic potentiation is gated by differential splicing of exon 5 of Grin1. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Hongbin Li
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ONM5G 1X8, Canada
| | - Vishaal Rajani
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ONM5G 1X8, Canada
| | - Ameet S. Sengar
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ONM5G 1X8, Canada
| | - Michael W. Salter
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ONM5G 1X8, Canada
- Department of Physiology, University of Toronto, Toronto, ONM5S 1A8, Canada
| |
Collapse
|
10
|
Yates EF, Mulkey SB. Viral infections in pregnancy and impact on offspring neurodevelopment: mechanisms and lessons learned. Pediatr Res 2024; 96:64-72. [PMID: 38509227 PMCID: PMC11257821 DOI: 10.1038/s41390-024-03145-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024]
Abstract
Pregnant individuals with viral illness may experience significant morbidity and have higher rates of pregnancy and neonatal complications. With the growing number of viral infections and new viral pandemics, it is important to examine the effects of infection during pregnancy on both the gestational parent and the offspring. Febrile illness and inflammation during pregnancy are correlated with risk for autism, attention deficit/hyperactivity disorder, and developmental delay in the offspring in human and animal models. Historical viral epidemics had limited follow-up of the offspring of affected pregnancies. Infants exposed to seasonal influenza and the 2009 H1N1 influenza virus experienced increased risks of congenital malformations and neuropsychiatric conditions. Zika virus exposure in utero can lead to a spectrum of abnormalities, ranging from severe microcephaly to neurodevelopmental delays which may appear later in childhood and in the absence of Zika-related birth defects. Vertical infection with severe acute respiratory syndrome coronavirus-2 has occurred rarely, but there appears to be a risk for developmental delays in the infants with antenatal exposure. Determining how illness from infection during pregnancy and specific viral pathogens can affect pregnancy and neurodevelopmental outcomes of offspring can better prepare the community to care for these children as they grow. IMPACT: Viral infections have impacted pregnant people and their offspring throughout history. Antenatal exposure to maternal fever and inflammation may increase risk of developmental and neurobehavioral disorders in infants and children. The recent SARS-CoV-2 pandemic stresses the importance of longitudinal studies to follow pregnancies and offspring neurodevelopment.
Collapse
Affiliation(s)
- Emma F Yates
- Frank H. Netter School of Medicine at Quinnipiac University, North Haven, CT, USA
| | - Sarah B Mulkey
- Children's National Hospital, Washington, DC, USA.
- Department of Neurology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
11
|
Moakley DF, Campbell M, Anglada-Girotto M, Feng H, Califano A, Au E, Zhang C. Reverse engineering neuron type-specific and type-orthogonal splicing-regulatory networks using single-cell transcriptomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.597128. [PMID: 38915499 PMCID: PMC11195221 DOI: 10.1101/2024.06.13.597128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Cell type-specific alternative splicing (AS) enables differential gene isoform expression between diverse neuron types with distinct identities and functions. Current studies linking individual RNA-binding proteins (RBPs) to AS in a few neuron types underscore the need for holistic modeling. Here, we use network reverse engineering to derive a map of the neuron type-specific AS regulatory landscape from 133 mouse neocortical cell types defined by single-cell transcriptomes. This approach reliably inferred the regulons of 350 RBPs and their cell type-specific activities. Our analysis revealed driving factors delineating neuronal identities, among which we validated Elavl2 as a key RBP for MGE-specific splicing in GABAergic interneurons using an in vitro ESC differentiation system. We also identified a module of exons and candidate regulators specific for long- and short-projection neurons across multiple neuronal classes. This study provides a resource for elucidating splicing regulatory programs that drive neuronal molecular diversity, including those that do not align with gene expression-based classifications.
Collapse
Affiliation(s)
- Daniel F Moakley
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
| | - Melissa Campbell
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
- Present address: Department of Neurosciences, University of California, San Diego, USA
| | - Miquel Anglada-Girotto
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
- Present address: Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Huijuan Feng
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
- Present address: Department of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Andrea Califano
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Edmund Au
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
- Columbia Translational Neuroscience Initiative Scholar, New York, NY 10032, USA
| | - Chaolin Zhang
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
| |
Collapse
|
12
|
Ciampi L, Serrano L, Irimia M. Unique transcriptomes of sensory and non-sensory neurons: insights from Splicing Regulatory States. Mol Syst Biol 2024; 20:296-310. [PMID: 38438733 PMCID: PMC10987577 DOI: 10.1038/s44320-024-00020-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 03/06/2024] Open
Abstract
Alternative Splicing (AS) programs serve as instructive signals of cell type specificity, particularly within the brain, which comprises dozens of molecularly and functionally distinct cell types. Among them, retinal photoreceptors stand out due to their unique transcriptome, making them a particularly well-suited system for studying how AS shapes cell type-specific molecular functions. Here, we use the Splicing Regulatory State (SRS) as a novel framework to discuss the splicing factors governing the unique AS pattern of photoreceptors, and how this pattern may aid in the specification of their highly specialized sensory cilia. In addition, we discuss how other sensory cells with ciliated structures, for which data is much scarcer, also rely on specific SRSs to implement a proteome specialized in the detection of sensory stimuli. By reviewing the general rules of cell type- and tissue-specific AS programs, firstly in the brain and subsequently in specialized sensory neurons, we propose a novel paradigm on how SRSs are established and how they can diversify. Finally, we illustrate how SRSs shape the outcome of mutations in splicing factors to produce cell type-specific phenotypes that can lead to various human diseases.
Collapse
Affiliation(s)
- Ludovica Ciampi
- Center for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Luis Serrano
- Center for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
- ICREA, Barcelona, Spain.
| | - Manuel Irimia
- Center for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
13
|
Rigter PMF, de Konink C, Dunn MJ, Proietti Onori M, Humberson JB, Thomas M, Barnes C, Prada CE, Weaver KN, Ryan TD, Caluseriu O, Conway J, Calamaro E, Fong CT, Wuyts W, Meuwissen M, Hordijk E, Jonkers CN, Anderson L, Yuseinova B, Polonia S, Beysen D, Stark Z, Savva E, Poulton C, McKenzie F, Bhoj E, Bupp CP, Bézieau S, Mercier S, Blevins A, Wentzensen IM, Xia F, Rosenfeld JA, Hsieh TC, Krawitz PM, Elbracht M, Veenma DCM, Schulman H, Stratton MM, Küry S, van Woerden GM. Role of CAMK2D in neurodevelopment and associated conditions. Am J Hum Genet 2024; 111:364-382. [PMID: 38272033 PMCID: PMC10870144 DOI: 10.1016/j.ajhg.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
The calcium/calmodulin-dependent protein kinase type 2 (CAMK2) family consists of four different isozymes, encoded by four different genes-CAMK2A, CAMK2B, CAMK2G, and CAMK2D-of which the first three have been associated recently with neurodevelopmental disorders. CAMK2D is one of the major CAMK2 proteins expressed in the heart and has been associated with cardiac anomalies. Although this CAMK2 isoform is also known to be one of the major CAMK2 subtypes expressed during early brain development, it has never been linked with neurodevelopmental disorders until now. Here we show that CAMK2D plays an important role in neurodevelopment not only in mice but also in humans. We identified eight individuals harboring heterozygous variants in CAMK2D who display symptoms of intellectual disability, delayed speech, behavioral problems, and dilated cardiomyopathy. The majority of the variants tested lead to a gain of function (GoF), which appears to cause both neurological problems and dilated cardiomyopathy. In contrast, loss-of-function (LoF) variants appear to induce only neurological symptoms. Together, we describe a cohort of individuals with neurodevelopmental disorders and cardiac anomalies, harboring pathogenic variants in CAMK2D, confirming an important role for the CAMK2D isozyme in both heart and brain function.
Collapse
Affiliation(s)
- Pomme M F Rigter
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam 3015 GD, the Netherlands; ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Charlotte de Konink
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam 3015 GD, the Netherlands; Department of Neuroscience, Erasmus Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Matthew J Dunn
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Martina Proietti Onori
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam 3015 GD, the Netherlands; Department of Neuroscience, Erasmus Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Jennifer B Humberson
- Pediatric Specialty Care, University of Virginia Health, Charlottesville, VA 22903, USA
| | - Matthew Thomas
- Division of Genetics, Department of Pediatrics, University of Virginia Children's, Charlottesville, VA 22903, USA
| | - Caitlin Barnes
- Division of Genetics, Department of Pediatrics, University of Virginia Children's, Charlottesville, VA 22903, USA
| | - Carlos E Prada
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA; Fundacion Cardiovascular de Colombia, Bucaramanga, Colombia
| | - K Nicole Weaver
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Thomas D Ryan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Oana Caluseriu
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada; Stollery Children's Hospital, Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Jennifer Conway
- Stollery Children's Hospital, Department of Pediatrics, Division of Pediatric Cardiology, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Emily Calamaro
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Chin-To Fong
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Wim Wuyts
- Department of Medical Genetics, University of Antwerp and University Hospital of Antwerp, 2650 Edegem, Belgium
| | - Marije Meuwissen
- Department of Medical Genetics, University of Antwerp and University Hospital of Antwerp, 2650 Edegem, Belgium
| | - Eva Hordijk
- Department of Neuroscience, Erasmus Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Carsten N Jonkers
- Department of Neuroscience, Erasmus Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Lucas Anderson
- Department of Neuroscience, Erasmus Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Berfin Yuseinova
- Department of Neuroscience, Erasmus Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Sarah Polonia
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Diane Beysen
- Department of Paediatric Neurology, University Hospital of Antwerp, 2650 Edegem, Belgium; Department of Translational Neurosciences, University of Antwerp, 2650 Edegem, Belgium
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Australian Genomics, Melbourne, VIC 3052, Australia
| | - Elena Savva
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Cathryn Poulton
- Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, WA 6008, Australia
| | - Fiona McKenzie
- Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, WA 6008, Australia; School of Paediatrics and Child Health, University of Western Australia, Perth, WA 6009, Australia
| | - Elizabeth Bhoj
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Caleb P Bupp
- Corewell Health & Helen DeVos Children's Hospital, Grand Rapids, MI 49503, USA
| | - Stéphane Bézieau
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Sandra Mercier
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | | | - Ingrid M Wentzensen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fan Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics Laboratories, Houston, TX 77021, USA
| | - Tzung-Chien Hsieh
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, 53127 Bonn, Germany
| | - Peter M Krawitz
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, 53127 Bonn, Germany
| | - Miriam Elbracht
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Danielle C M Veenma
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam 3015 GD, the Netherlands; Sophia Children's Hospital, Erasmus Medical Center, Rotterdam 3015 CN, the Netherlands
| | - Howard Schulman
- Department of Neurobiology, Stanford University, School of Medicine, Stanford, CA 94305, USA; Panorama Research Institute, Sunnyvale, CA 94089, USA
| | - Margaret M Stratton
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Sébastien Küry
- Corewell Health & Helen DeVos Children's Hospital, Grand Rapids, MI 49503, USA; Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France.
| | - Geeske M van Woerden
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam 3015 GD, the Netherlands; ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam 3015 GD, the Netherlands; Department of Neuroscience, Erasmus Medical Center, Rotterdam 3015 GD, the Netherlands.
| |
Collapse
|
14
|
Moore JR, Nemera MT, D’Souza RD, Hamagami N, Clemens AW, Beard DC, Urman A, Mendoza VR, Gabel HW. Non-CG DNA methylation and MeCP2 stabilize repeated tuning of long genes that distinguish closely related neuron types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.577861. [PMID: 38352532 PMCID: PMC10862856 DOI: 10.1101/2024.01.30.577861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The extraordinary diversity of neuron types in the mammalian brain is delineated at the highest resolution by subtle gene expression differences that may require specialized molecular mechanisms to be maintained. Neurons uniquely express the longest genes in the genome and utilize neuron-enriched non-CG DNA methylation (mCA) together with the Rett syndrome protein, MeCP2, to control gene expression, but the function of these unique gene structures and machinery in regulating finely resolved neuron type-specific gene programs has not been explored. Here, we employ epigenomic and spatial transcriptomic analyses to discover a major role for mCA and MeCP2 in maintaining neuron type-specific gene programs at the finest scale of cellular resolution. We uncover differential susceptibility to MeCP2 loss in neuronal populations depending on global mCA levels and dissect methylation patterns and intragenic enhancer repression that drive overlapping and distinct gene regulation between neuron types. Strikingly, we show that mCA and MeCP2 regulate genes that are repeatedly tuned to differentiate neuron types at the highest cellular resolution, including spatially resolved, vision-dependent gene programs in the visual cortex. These repeatedly tuned genes display genomic characteristics, including long length, numerous intragenic enhancers, and enrichment for mCA, that predispose them to regulation by MeCP2. Thus, long gene regulation by the MeCP2 pathway maintains differential gene expression between closely-related neurons to facilitate the exceptional cellular diversity in the complex mammalian brain.
Collapse
Affiliation(s)
- J. Russell Moore
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Mati T. Nemera
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Rinaldo D. D’Souza
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Nicole Hamagami
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Adam W. Clemens
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Diana C. Beard
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Alaina Urman
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Victoria Rodriguez Mendoza
- Opportunities in Genomic Research Program, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Harrison W. Gabel
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| |
Collapse
|
15
|
Cochran JD, Leathers TA, Maldosevic E, Siejda KW, Vitello J, Lee H, Bradley LA, Young A, Jomaa A, Wolf MJ. Cell cycle specific, differentially tagged ribosomal proteins to measure phase specific transcriptomes from asynchronously cycling cells. Sci Rep 2024; 14:1623. [PMID: 38238470 PMCID: PMC10796924 DOI: 10.1038/s41598-024-52085-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 01/13/2024] [Indexed: 01/22/2024] Open
Abstract
Asynchronously cycling cells pose a challenge to the accurate characterization of phase-specific gene expression. Current strategies, including RNAseq, survey the steady state gene expression across the cell cycle and are inherently limited by their inability to resolve dynamic gene regulatory networks. Single cell RNAseq (scRNAseq) can identify different cell cycle transcriptomes if enough cycling cells are present, however some cells are not amenable to scRNAseq. Therefore, we merged two powerful strategies, the CDT1 and GMNN degrons used in Fluorescent Ubiquitination-based Cell Cycle Indicator (FUCCI) cell cycle sensors and the ribosomal protein epitope tagging used in RiboTrap/Tag technologies to isolate cell cycle phase-specific mRNA for sequencing. The resulting cell cycle dependent, tagged ribosomal proteins (ccTaggedRP) were differentially expressed during the cell cycle, had similar subcellular locations as endogenous ribosomal proteins, incorporated into ribosomes and polysomes, and facilitated the recovery of cell cycle phase-specific RNA for sequencing. ccTaggedRP has broad applications to investigate phase-specific gene expression in complex cell populations.
Collapse
Affiliation(s)
- Jesse D Cochran
- Medical Scientist Training Program, University of Virginia, Charlottesville, VA, USA
| | - Tess A Leathers
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, USA
| | - Emir Maldosevic
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, USA
| | - Klara W Siejda
- Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Julian Vitello
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Haesol Lee
- Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Leigh A Bradley
- Department of Medicine, University of Virginia, Charlottesville, VA, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Alex Young
- Department of Medicine, University of Virginia, Charlottesville, VA, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Ahmad Jomaa
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, USA
| | - Matthew J Wolf
- Department of Medicine, University of Virginia, Charlottesville, VA, USA.
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA.
- Division of Cardiology, University of Virginia, Medical Research Building 5 (MR5), Room G213, 415 Lane Road, Charlottesville, VA, 22908, USA.
| |
Collapse
|
16
|
Hanson JE, Yuan H, Perszyk RE, Banke TG, Xing H, Tsai MC, Menniti FS, Traynelis SF. Therapeutic potential of N-methyl-D-aspartate receptor modulators in psychiatry. Neuropsychopharmacology 2024; 49:51-66. [PMID: 37369776 PMCID: PMC10700609 DOI: 10.1038/s41386-023-01614-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/24/2023] [Accepted: 05/15/2023] [Indexed: 06/29/2023]
Abstract
N-methyl-D-aspartate (NMDA) receptors mediate a slow component of excitatory synaptic transmission, are widely distributed throughout the central nervous system, and regulate synaptic plasticity. NMDA receptor modulators have long been considered as potential treatments for psychiatric disorders including depression and schizophrenia, neurodevelopmental disorders such as Rett Syndrome, and neurodegenerative conditions such as Alzheimer's disease. New interest in NMDA receptors as therapeutic targets has been spurred by the findings that certain inhibitors of NMDA receptors produce surprisingly rapid and robust antidepressant activity by a novel mechanism, the induction of changes in the brain that well outlast the presence of drug in the body. These findings are driving research into an entirely new paradigm for using NMDA receptor antagonists in a host of related conditions. At the same time positive allosteric modulators of NMDA receptors are being pursued for enhancing synaptic function in diseases that feature NMDA receptor hypofunction. While there is great promise, developing the therapeutic potential of NMDA receptor modulators must also navigate the potential significant risks posed by the use of such agents. We review here the emerging pharmacology of agents that target different NMDA receptor subtypes, offering new avenues for capturing the therapeutic potential of targeting this important receptor class.
Collapse
Affiliation(s)
- Jesse E Hanson
- Department of Neuroscience, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Riley E Perszyk
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Tue G Banke
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Hao Xing
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ming-Chi Tsai
- Department of Neuroscience, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Frank S Menniti
- MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, 02881, USA.
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
17
|
Dejanovic B, Sheng M, Hanson JE. Targeting synapse function and loss for treatment of neurodegenerative diseases. Nat Rev Drug Discov 2024; 23:23-42. [PMID: 38012296 DOI: 10.1038/s41573-023-00823-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2023] [Indexed: 11/29/2023]
Abstract
Synapse dysfunction and loss are hallmarks of neurodegenerative diseases that correlate with cognitive decline. However, the mechanisms and therapeutic strategies to prevent or reverse synaptic damage remain elusive. In this Review, we discuss recent advances in understanding the molecular and cellular pathways that impair synapses in neurodegenerative diseases, including the effects of protein aggregation and neuroinflammation. We also highlight emerging therapeutic approaches that aim to restore synaptic function and integrity, such as enhancing synaptic plasticity, preventing synaptotoxicity, modulating neuronal network activity and targeting immune signalling. We discuss the preclinical and clinical evidence for each strategy, as well as the challenges and opportunities for developing effective synapse-targeting therapeutics for neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Morgan Sheng
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jesse E Hanson
- Department of Neuroscience, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
18
|
Van Loh BM, Yaw AM, Breuer JA, Jackson B, Nguyen D, Jang K, Ramos F, Ho EV, Cui LJ, Gillette DLM, Sempere LF, Gorman MR, Tonsfeldt KJ, Mellon PL, Hoffmann HM. The transcription factor VAX1 in VIP neurons of the suprachiasmatic nucleus impacts circadian rhythm generation, depressive-like behavior, and the reproductive axis in a sex-specific manner in mice. Front Endocrinol (Lausanne) 2023; 14:1269672. [PMID: 38205198 PMCID: PMC10777845 DOI: 10.3389/fendo.2023.1269672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024] Open
Abstract
Background The suprachiasmatic nucleus (SCN) within the hypothalamus is a key brain structure required to relay light information to the body and synchronize cell and tissue level rhythms and hormone release. Specific subpopulations of SCN neurons, defined by their peptide expression, regulate defined SCN output. Here we focus on the vasoactive intestinal peptide (VIP) expressing neurons of the SCN. SCN VIP neurons are known to regulate circadian rhythms and reproductive function. Methods To specifically study SCN VIP neurons, we generated a novel knock out mouse line by conditionally deleting the SCN enriched transcription factor, Ventral Anterior Homeobox 1 (Vax1), in VIP neurons (Vax1Vip; Vax1fl/fl:VipCre). Results We found that Vax1Vip females presented with lengthened estrous cycles, reduced circulating estrogen, and increased depressive-like behavior. Further, Vax1Vip males and females presented with a shortened circadian period in locomotor activity and ex vivo SCN circadian period. On a molecular level, the shortening of the SCN period was driven, at least partially, by a direct regulatory role of VAX1 on the circadian clock genes Bmal1 and Per2. Interestingly, Vax1Vip females presented with increased expression of arginine vasopressin (Avp) in the paraventricular nucleus, which resulted in increased circulating corticosterone. SCN VIP and AVP neurons regulate the reproductive gonadotropin-releasing hormone (GnRH) and kisspeptin neurons. To determine how the reproductive neuroendocrine network was impacted in Vax1Vip mice, we assessed GnRH sensitivity to a kisspeptin challenge in vivo. We found that GnRH neurons in Vax1Vip females, but not males, had an increased sensitivity to kisspeptin, leading to increased luteinizing hormone release. Interestingly, Vax1Vip males showed a small, but significant increase in total sperm and a modest delay in pubertal onset. Both male and female Vax1Vip mice were fertile and generated litters comparable in size and frequency to controls. Conclusion Together, these data identify VAX1 in SCN VIP neurons as a neurological overlap between circadian timekeeping, female reproduction, and depressive-like symptoms in mice, and provide novel insight into the role of SCN VIP neurons.
Collapse
Affiliation(s)
- Brooke M. Van Loh
- Department of Animal Science and the Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, United States
| | - Alexandra M. Yaw
- Department of Animal Science and the Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, United States
| | - Joseph A. Breuer
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Brooke Jackson
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, United States
| | - Duong Nguyen
- Department of Animal Science and the Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, United States
| | - Krystal Jang
- Department of Animal Science and the Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, United States
| | - Fabiola Ramos
- Department of Animal Science and the Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, United States
| | - Emily V. Ho
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Laura J. Cui
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Dominique L. M. Gillette
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Lorenzo F. Sempere
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, United States
| | - Michael R. Gorman
- Department of Psychology, University of California, San Diego, La Jolla, CA, United States
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, United States
| | - Karen J. Tonsfeldt
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, United States
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, United States
| | - Pamela L. Mellon
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, United States
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, United States
| | - Hanne M. Hoffmann
- Department of Animal Science and the Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, United States
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
19
|
Wu E, Zhang J, Zhang J, Zhu S. Structural insights into gating mechanism and allosteric regulation of NMDA receptors. Curr Opin Neurobiol 2023; 83:102806. [PMID: 37950957 DOI: 10.1016/j.conb.2023.102806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/28/2023] [Accepted: 10/13/2023] [Indexed: 11/13/2023]
Abstract
N-methyl-d-aspartate receptors (NMDARs) belong to the ionotropic glutamate receptors (iGluRs) superfamily and act as coincidence detectors that are crucial to neuronal development and synaptic plasticity. They typically assemble as heterotetramers of two obligatory GluN1 subunits and two alternative GluN2 (from 2A to 2D) and/or GluN3 (3A and 3B) subunits. These alternative subunits mainly determine the diverse biophysical and pharmacological properties of different NMDAR subtypes. Over the past decade, the unprecedented advances in structure elucidation of these tetrameric NMDARs have provided atomic insights into channel gating, allosteric modulation and the action of therapeutic drugs. A wealth of structural and functional information would accelerate the artificial intelligence-based drug design to exploit more NMDAR subtype-specific molecules for the treatment of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Enjiang Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China. https://twitter.com/DuDaDa_Flower
| | - Jilin Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jiwei Zhang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Shujia Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
20
|
Yang Y, Yang R, Kang B, Qian S, He X, Zhang X. Single-cell long-read sequencing in human cerebral organoids uncovers cell-type-specific and autism-associated exons. Cell Rep 2023; 42:113335. [PMID: 37889749 PMCID: PMC10842930 DOI: 10.1016/j.celrep.2023.113335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/12/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Dysregulation of alternative splicing has been repeatedly associated with neurodevelopmental disorders, but the extent of cell-type-specific splicing in human neural development remains largely uncharted. Here, single-cell long-read sequencing in induced pluripotent stem cell (iPSC)-derived cerebral organoids identifies over 31,000 uncatalogued isoforms and 4,531 cell-type-specific splicing events. Long reads uncover coordinated splicing and cell-type-specific intron retention events, which are challenging to study with short reads. Retained neuronal introns are enriched in RNA splicing regulators, showing shorter lengths, higher GC contents, and weaker 5' splice sites. We use this dataset to explore the biological processes underlying neurological disorders, focusing on autism. In comparison with prior transcriptomic data, we find that the splicing program in autistic brains is closer to the progenitor state than differentiated neurons. Furthermore, cell-type-specific exons harbor significantly more de novo mutations in autism probands than in siblings. Overall, these results highlight the importance of cell-type-specific splicing in autism and neuronal gene regulation.
Collapse
Affiliation(s)
- Yalan Yang
- Department of Human Genetics, Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Runwei Yang
- Department of Human Genetics, Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Bowei Kang
- Department of Human Genetics, Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Sheng Qian
- Department of Human Genetics, Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Xin He
- Department of Human Genetics, Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA.
| | - Xiaochang Zhang
- Department of Human Genetics, Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
21
|
Zhao M, Kwon SE. Interneuron-Targeted Disruption of SYNGAP1 Alters Sensory Representations in the Neocortex and Impairs Sensory Learning. J Neurosci 2023; 43:6212-6226. [PMID: 37558489 PMCID: PMC10476640 DOI: 10.1523/jneurosci.1997-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/11/2023] Open
Abstract
SYNGAP1 haploinsufficiency in humans leads to severe neurodevelopmental disorders characterized by intellectual disability, autism, epilepsy, and sensory processing deficits. However, the circuit mechanisms underlying these disorders are not well understood. In mice, a decrease of SynGAP levels results in cognitive deficits by interfering with the development of excitatory glutamatergic connections. Recent evidence suggests that SynGAP also plays a crucial role in the development and function of GABAergic inhibitory interneurons. Nevertheless, it remains uncertain whether and to what extent the expression of SYNGAP1 in inhibitory interneurons contributes to cortical circuit function and related behaviors. The activity of cortical neurons has not been measured simultaneously with behavior. To address these gaps, we recorded from layer 2/3 neurons in the primary whisker somatosensory cortex (wS1) of mice while they learned to perform a whisker tactile detection task. Our results demonstrate that mice with interneuron-specific SYNGAP1 haploinsufficiency exhibit learning deficits characterized by heightened behavioral responses in the absence of relevant sensory input and premature responses to unrelated sensory stimuli not associated with reward acquisition. These behavioral deficits are accompanied by specific circuit abnormalities within wS1. Interneuron-specific SYNGAP1 haploinsufficiency increases detrimental neuronal correlations directly related to task performance and enhances responses to irrelevant sensory stimuli unrelated to the reward acquisition. In summary, our findings indicate that a reduction of SynGAP in inhibitory interneurons impairs sensory representation in the primary sensory cortex by disrupting neuronal correlations, which likely contributes to the observed cognitive deficits in mice with pan-neuronal SYNGAP1 haploinsufficiency.SIGNIFICANCE STATEMENT SYNGAP1 haploinsufficiency leads to severe neurodevelopmental disorders. The exact nature of neural circuit dysfunction caused by SYNGAP1 haploinsufficiency remains poorly understood. SynGAP plays a critical role in the function of GABAergic inhibitory interneurons as well as glutamatergic pyramidal neurons in the neocortex. Whether and how decreasing SYNGAP1 level in inhibitory interneurons disrupts a behaviorally relevant circuit remains unclear. We measure neural activity and behavior in mice learning a perceptual task. Mice with interneuron-targeted disruption of SYNGAP1 display increased detrimental neuronal correlations and elevated responses to irrelevant sensory inputs, which are related to impaired task performance. These results show that cortical interneuron dysfunction contributes to sensory deficits in SYNGAP1 haploinsufficiency with important implications for identifying therapeutic targets.
Collapse
Affiliation(s)
- Meiling Zhao
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Sung Eun Kwon
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
22
|
Krüssel S, Deb I, Son S, Ewall G, Chang M, Lee HK, do Heo W, Kwon HB. Exuberant de novo dendritic spine growth in mature neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.550095. [PMID: 37546796 PMCID: PMC10401948 DOI: 10.1101/2023.07.21.550095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Dendritic spines are structural correlates of excitatory synapses maintaining stable synaptic communications. However, this strong spine-synapse relationship was mainly characterized in excitatory pyramidal neurons (PyNs), raising a possibility that inferring synaptic density from dendritic spine number may not be universally applied to all neuronal types. Here we found that the ectopic expression of H-Ras increased dendritic spine numbers regardless of cortical cell types such as layer 2/3 pyramidal neurons (PyNs), parvalbumin (PV)- and vasoactive intestinal peptide (VIP)-positive interneurons (INs) in the primary motor cortex (M1). The probability of detecting dendritic spines was positively correlated with the magnitude of H-Ras activity, suggesting elevated local H-Ras activity is involved in the process of dendritic spine formation. H-Ras overexpression caused high spine turnover rate via adding more spines rather than eliminating them. Two-photon photolysis of glutamate triggered de novo dendritic spine formation in mature neurons, suggesting H-Ras induced spine formation is not restricted to the early development. In PyNs and PV-INs, but not VIP-INs, we observed a shift in average spine neck length towards longer filopodia-like phenotypes. The portion of dendritic spines lacking key excitatory synaptic proteins were significantly increased in H-Ras transfected neurons, suggesting that these increased spines have other distinct functions. High spine density caused by H-Ras did not result in change in the frequency or the amplitude of miniature excitatory postsynaptic currents (mEPSCs). Thus, our results propose that dendritic spines possess more multifaceted functions beyond the morphological proxy of excitatory synapse.
Collapse
Affiliation(s)
- Sarah Krüssel
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ishana Deb
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Seungkyu Son
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Gabrielle Ewall
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Minhyeok Chang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hey-Kyoung Lee
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, United States
| | - Won do Heo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyung-Bae Kwon
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
23
|
Huang TH, Lin YS, Hsiao CW, Wang LY, Ajibola MI, Abdulmajeed WI, Lin YL, Li YJ, Chen CY, Lien CC, Chiu CD, Cheng IHJ. Differential expression of GABA A receptor subunits δ and α6 mediates tonic inhibition in parvalbumin and somatostatin interneurons in the mouse hippocampus. Front Cell Neurosci 2023; 17:1146278. [PMID: 37545878 PMCID: PMC10397515 DOI: 10.3389/fncel.2023.1146278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/14/2023] [Indexed: 08/08/2023] Open
Abstract
Inhibitory γ-aminobutyric acid (GABA)-ergic interneurons mediate inhibition in neuronal circuitry and support normal brain function. Consequently, dysregulation of inhibition is implicated in various brain disorders. Parvalbumin (PV) and somatostatin (SST) interneurons, the two major types of GABAergic inhibitory interneurons in the hippocampus, exhibit distinct morpho-physiological properties and coordinate information processing and memory formation. However, the molecular mechanisms underlying the specialized properties of PV and SST interneurons remain unclear. This study aimed to compare the transcriptomic differences between these two classes of interneurons in the hippocampus using the ribosome tagging approach. The results revealed distinct expressions of genes such as voltage-gated ion channels and GABAA receptor subunits between PV and SST interneurons. Gabrd and Gabra6 were identified as contributors to the contrasting tonic GABAergic inhibition observed in PV and SST interneurons. Moreover, some of the differentially expressed genes were associated with schizophrenia and epilepsy. In conclusion, our results provide molecular insights into the distinct roles of PV and SST interneurons in health and disease.
Collapse
Affiliation(s)
- Tzu-Hsuan Huang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Sian Lin
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Program in Genetics and Genomics, Baylor College of Medicine, Houston, TX, United States
| | - Chiao-Wan Hsiao
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Liang-Yun Wang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Musa Iyiola Ajibola
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, College of Life Sciences, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Wahab Imam Abdulmajeed
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, College of Life Sciences, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Yu-Ling Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Jui Li
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cho-Yi Chen
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Chang Lien
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, College of Life Sciences, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Di Chiu
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
- Spine Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Irene Han-Juo Cheng
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
24
|
Bauer S, Chen CY, Jonson M, Kaczmarczyk L, Magadi SS, Jackson WS. Cerebellar granule neurons induce Cyclin D1 before the onset of motor symptoms in Huntington's disease mice. Acta Neuropathol Commun 2023; 11:17. [PMID: 36670467 PMCID: PMC9854201 DOI: 10.1186/s40478-022-01500-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/16/2022] [Indexed: 01/21/2023] Open
Abstract
Although Huntington's disease (HD) is classically defined by the selective vulnerability of striatal projection neurons, there is increasing evidence that cerebellar degeneration modulates clinical symptoms. However, little is known about cell type-specific responses of cerebellar neurons in HD. To dissect early disease mechanisms in the cerebellum and cerebrum, we analyzed translatomes of neuronal cell types from both regions in a new HD mouse model. For this, HdhQ200 knock-in mice were backcrossed with the calm 129S4 strain, to constrain experimental noise caused by variable hyperactivity of mice in a C57BL/6 background. Behavioral and neuropathological characterization showed that these S4-HdhQ200 mice had very mild behavioral abnormalities starting around 12 months of age that remained mild up to 18 months. By 9 months, we observed abundant Huntingtin-positive neuronal intranuclear inclusions (NIIs) in the striatum and cerebellum. The translatome analysis of GABAergic cells of the cerebrum further confirmed changes typical of HD-induced striatal pathology. Surprisingly, we observed the strongest response with 626 differentially expressed genes in glutamatergic neurons of the cerebellum, a population consisting primarily of granule cells, commonly considered disease resistant. Our findings suggest vesicular fusion and exocytosis, as well as differentiation-related pathways are affected in these neurons. Furthermore, increased expression of cyclin D1 (Ccnd1) in the granular layer and upregulated expression of polycomb group complex protein genes and cell cycle regulators Cbx2, Cbx4 and Cbx8 point to a putative role of aberrant cell cycle regulation in cerebellar granule cells in early disease.
Collapse
Affiliation(s)
- Susanne Bauer
- grid.5640.70000 0001 2162 9922Wallenberg Center for Molecular Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Room 463.10.30, Linköping, Sweden
| | - Chwen-Yu Chen
- grid.5640.70000 0001 2162 9922Wallenberg Center for Molecular Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Room 463.10.30, Linköping, Sweden
| | - Maria Jonson
- grid.5640.70000 0001 2162 9922Wallenberg Center for Molecular Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Room 463.10.30, Linköping, Sweden
| | - Lech Kaczmarczyk
- grid.5640.70000 0001 2162 9922Wallenberg Center for Molecular Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Room 463.10.30, Linköping, Sweden ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Srivathsa Subramanya Magadi
- grid.5640.70000 0001 2162 9922Wallenberg Center for Molecular Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Room 463.10.30, Linköping, Sweden
| | - Walker S. Jackson
- grid.5640.70000 0001 2162 9922Wallenberg Center for Molecular Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Room 463.10.30, Linköping, Sweden ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases, Bonn, Germany
| |
Collapse
|
25
|
Rigter PMF, de Konink C, van Woerden GM. Loss of CAMK2G affects intrinsic and motor behavior but has minimal impact on cognitive behavior. Front Neurosci 2023; 16:1086994. [PMID: 36685241 PMCID: PMC9853378 DOI: 10.3389/fnins.2022.1086994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/07/2022] [Indexed: 01/08/2023] Open
Abstract
Introduction The gamma subunit of calcium/calmodulin-dependent protein kinase 2 (CAMK2G) is expressed throughout the brain and is associated with neurodevelopmental disorders. Research on the role of CAMK2G is limited and attributes different functions to specific cell types. Methods To further expand on the role of CAMK2G in brain functioning, we performed extensive phenotypic characterization of a Camk2g knockout mouse. Results We found different CAMK2G isoforms that show a distinct spatial expression pattern in the brain. Additionally, based on our behavioral characterization, we conclude that CAMK2G plays a minor role in hippocampus-dependent learning and synaptic plasticity. Rather, we show that CAMK2G is required for motor function and that the loss of CAMK2G results in impaired nest-building and marble burying behavior, which are innate behaviors that are associated with impaired neurodevelopment. Discussion Taken together, our results provide evidence for a unique function of this specific CAMK2 isozyme in the brain and further support the role of CAMK2G in neurodevelopment.
Collapse
Affiliation(s)
- Pomme M. F. Rigter
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands
- Erfelijke Neuro-Cognitieve Ontwikkelingsstoornissen, Expertise Centre for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, Netherlands
| | - Charlotte de Konink
- Erfelijke Neuro-Cognitieve Ontwikkelingsstoornissen, Expertise Centre for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, Netherlands
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Geeske M. van Woerden
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands
- Erfelijke Neuro-Cognitieve Ontwikkelingsstoornissen, Expertise Centre for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, Netherlands
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
26
|
Boxer EE, Aoto J. Neurexins and their ligands at inhibitory synapses. Front Synaptic Neurosci 2022; 14:1087238. [PMID: 36618530 PMCID: PMC9812575 DOI: 10.3389/fnsyn.2022.1087238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Since the discovery of neurexins (Nrxns) as essential and evolutionarily conserved synaptic adhesion molecules, focus has largely centered on their functional contributions to glutamatergic synapses. Recently, significant advances to our understanding of neurexin function at GABAergic synapses have revealed that neurexins can play pleiotropic roles in regulating inhibitory synapse maintenance and function in a brain-region and synapse-specific manner. GABAergic neurons are incredibly diverse, exhibiting distinct synaptic properties, sites of innervation, neuromodulation, and plasticity. Different classes of GABAergic neurons often express distinct repertoires of Nrxn isoforms that exhibit differential alternative exon usage. Further, Nrxn ligands can be differentially expressed and can display synapse-specific localization patterns, which may contribute to the formation of a complex trans-synaptic molecular code that establishes the properties of inhibitory synapse function and properties of local circuitry. In this review, we will discuss how Nrxns and their ligands sculpt synaptic inhibition in a brain-region, cell-type and synapse-specific manner.
Collapse
Affiliation(s)
| | - Jason Aoto
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Denver, CO, United States
| |
Collapse
|
27
|
Zhu M, Perkins MG, Lennertz R, Abdulzahir A, Pearce RA. Dose-dependent suppression of hippocampal contextual memory formation, place cells, and spatial engrams by the NMDAR antagonist (R)-CPP. Neuropharmacology 2022; 218:109215. [PMID: 35977628 PMCID: PMC9673467 DOI: 10.1016/j.neuropharm.2022.109215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022]
Abstract
We recently reported that the competitive NMDAR antagonist (R,S)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP) does not suppress NMDAR-mediated field EPSPs (fEPSPNMDA) or long-term potentiation (LTP) in vitro at concentrations that block contextual conditioning in vivo. Here we tested one possible explanation for the mismatch - that the hippocampus is relatively resistant to CPP compared to other brain structures engaged in contextual fear conditioning. Using the context pre-exposure facilitation effect (CPFE) paradigm to separate the hippocampal and extra-hippocampal components of contextual learning, we found that the active enantiomer (R)-CPP suppressed the hippocampal component with an IC50 of 3.1 mg/kg, a dose that produces brain concentrations below those required to block fEPSPNMDA or LTP. Moreover, using in-vivo calcium imaging of place cells and spatial engrams to directly assess hippocampal spatial coding, we found that (R)-CPP dose-dependently reduced the development of place cells and interfered with the formation of stable spatial engrams when it was administered prior to exposing mice to a novel context. Both effects occurred at doses that interfered with freezing to context in CPFE experiments. We conclude that (R)-CPP blocks memory formation by interfering with hippocampal function, but that it does so by modulating NMDARs at sites that are not engaged in vitro in the same manner that they are in vivo - perhaps through interneuron circuits that do not contribute to fEPSPs and are not required to elicit LTP using standard induction protocols in vitro, but are essential for successful mnemonic function in vivo.
Collapse
Affiliation(s)
- Mengwen Zhu
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Mark G Perkins
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Richard Lennertz
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Alifayaz Abdulzahir
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Robert A Pearce
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
28
|
Ling JP, Bygrave AM, Santiago CP, Carmen-Orozco RP, Trinh VT, Yu M, Li Y, Liu Y, Bowden KD, Duncan LH, Han J, Taneja K, Dongmo R, Babola TA, Parker P, Jiang L, Leavey PJ, Smith JJ, Vistein R, Gimmen MY, Dubner B, Helmenstine E, Teodorescu P, Karantanos T, Ghiaur G, Kanold PO, Bergles D, Langmead B, Sun S, Nielsen KJ, Peachey N, Singh MS, Dalton WB, Rajaii F, Huganir RL, Blackshaw S. Cell-specific regulation of gene expression using splicing-dependent frameshifting. Nat Commun 2022; 13:5773. [PMID: 36182931 PMCID: PMC9526712 DOI: 10.1038/s41467-022-33523-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/21/2022] [Indexed: 01/29/2023] Open
Abstract
Precise and reliable cell-specific gene delivery remains technically challenging. Here we report a splicing-based approach for controlling gene expression whereby separate translational reading frames are coupled to the inclusion or exclusion of mutated, frameshifting cell-specific alternative exons. Candidate exons are identified by analyzing thousands of publicly available RNA sequencing datasets and filtering by cell specificity, conservation, and local intron length. This method, which we denote splicing-linked expression design (SLED), can be combined in a Boolean manner with existing techniques such as minipromoters and viral capsids. SLED can use strong constitutive promoters, without sacrificing precision, by decoupling the tradeoff between promoter strength and selectivity. AAV-packaged SLED vectors can selectively deliver fluorescent reporters and calcium indicators to various neuronal subtypes in vivo. We also demonstrate gene therapy utility by creating SLED vectors that can target PRPH2 and SF3B1 mutations. The flexibility of SLED technology enables creative avenues for basic and translational research.
Collapse
Affiliation(s)
- Jonathan P Ling
- Departments of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Alexei M Bygrave
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Clayton P Santiago
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Rogger P Carmen-Orozco
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Vickie T Trinh
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Minzhong Yu
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Yini Li
- Departments of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ying Liu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Kyra D Bowden
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Leighton H Duncan
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jeong Han
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Kamil Taneja
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Rochinelle Dongmo
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Travis A Babola
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Patrick Parker
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Lizhi Jiang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Patrick J Leavey
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jennifer J Smith
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Rachel Vistein
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Megan Y Gimmen
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Benjamin Dubner
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Eric Helmenstine
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Patric Teodorescu
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Theodoros Karantanos
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Gabriel Ghiaur
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Patrick O Kanold
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Dwight Bergles
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Ben Langmead
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Shuying Sun
- Departments of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Kristina J Nielsen
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, 21218, USA
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Neal Peachey
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, 44106, USA
| | - Mandeep S Singh
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - W Brian Dalton
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Fatemeh Rajaii
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Richard L Huganir
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
29
|
Srivastava M, Angel C, Kisvárday RE, Kocsis Z, Stelescu A, Talapka P, Kisvárday Z. Form, synapses and orientation topography of a new cell type in layer 6 of the cat’s primary visual cortex. Sci Rep 2022; 12:15428. [PMID: 36104476 PMCID: PMC9474457 DOI: 10.1038/s41598-022-19746-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/02/2022] [Indexed: 11/19/2022] Open
Abstract
Here we report the morpho-functional features of a novel type of deep-layer neuron. The neuron was selected from a large pool of intracellularly labelled cells based on the large cell body, numerous spine-free dendrites with an overall interneuron morphology. However, the axon gave off long-range axons up to 2.8 mm from the parent soma in layers 5/6 before entering the white matter. The boutons were uniformly distributed along the axon without forming distinct clusters. Dendritic length, surface area and volume values were at least 3 times larger than any known cortical neuron types with the exception of giant pyramidal cells of layer 5. Electron microscopy of the boutons revealed that they targeted dendritic spines (78%) and less frequently dendritic shafts (22%). Nearly half of the postsynaptic dendrites were immunopositive to GABA. Superimposing the axonal field on the orientation map obtained with optical imaging showed a preponderance of boutons to cross-orientations (38%) and an equal representation of iso- and oblique orientations (31%). The results suggest an integrating role for the layer 6 stellate neuron which projects to a functionally broad range of neurons in the deep cortical layers and to other cortical and/or subcortical regions.
Collapse
|
30
|
Fish KN, Joffe ME. Targeting prefrontal cortex GABAergic microcircuits for the treatment of alcohol use disorder. Front Synaptic Neurosci 2022; 14:936911. [PMID: 36105666 PMCID: PMC9465392 DOI: 10.3389/fnsyn.2022.936911] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Developing novel treatments for alcohol use disorders (AUDs) is of paramount importance for improving patient outcomes and alleviating the suffering related to the disease. A better understanding of the molecular and neurocircuit mechanisms through which alcohol alters brain function will be instrumental in the rational development of new efficacious treatments. Clinical studies have consistently associated the prefrontal cortex (PFC) function with symptoms of AUDs. Population-level analyses have linked the PFC structure and function with heavy drinking and/or AUD diagnosis. Thus, targeting specific PFC cell types and neural circuits holds promise for the development of new treatments. Here, we overview the tremendous diversity in the form and function of inhibitory neuron subtypes within PFC and describe their therapeutic potential. We then summarize AUD population genetics studies, clinical neurophysiology findings, and translational neuroscience discoveries. This study collectively suggests that changes in fast transmission through PFC inhibitory microcircuits are a central component of the neurobiological effects of ethanol and the core symptoms of AUDs. Finally, we submit that there is a significant and timely need to examine sex as a biological variable and human postmortem brain tissue to maximize the efforts in translating findings to new clinical treatments.
Collapse
Affiliation(s)
| | - Max E. Joffe
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
31
|
Wei Z, Qin Y, Fishell G, Li B. FACS-Based Neuronal Cell Type-Specific RNA Isolation and Alternative Splicing Analysis. Methods Mol Biol 2022; 2537:51-62. [PMID: 35895258 DOI: 10.1007/978-1-0716-2521-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Alternative splicing of pre-mRNAs expands the coding abilities of genomes by generating distinct transcription variants from individual genes. It contributes to the marvelous complexity of the transcriptome in neurons. Given the differential expression of alternative splicing regulators and diversity in alternative splicing programs in neuronal subpopulations, it is urgent and necessary to develop methods to efficiently isolate diverse subgroups of neurons and analyze their transcriptomic diversity. Here, we describe a protocol to isolate RNA from specific neuronal types using a fluorescence-activated cell sorting (FACS)-based method to analyze alternative splicing events in a cell type-specific manner. The method is universally applicable to analyze alternative splicing in fluorescent protein-labeled neuronal types. It was optimized to preserve the transcription state and improve efficiency in cell suspension purification. With our protocol, fluorescent protein-labeled neurons could be efficiently purified. The transcription states suitable for gene expression and alternative splicing analysis could be well-preserved.
Collapse
Affiliation(s)
- Zicheng Wei
- Department of Physiology, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yuxin Qin
- Department of Physiology, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Gordon Fishell
- Stanley Center for Psychiatric Research, The Broad Institute, Cambridge, MA, USA
| | - Boxing Li
- Department of Physiology, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
32
|
Heck J, Palmeira Do Amaral AC, Weißbach S, El Khallouqi A, Bikbaev A, Heine M. More than a pore: How voltage-gated calcium channels act on different levels of neuronal communication regulation. Channels (Austin) 2021; 15:322-338. [PMID: 34107849 PMCID: PMC8205089 DOI: 10.1080/19336950.2021.1900024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Voltage-gated calcium channels (VGCCs) represent key regulators of the calcium influx through the plasma membrane of excitable cells, like neurons. Activated by the depolarization of the membrane, the opening of VGCCs induces very transient and local changes in the intracellular calcium concentration, known as calcium nanodomains, that in turn trigger calcium-dependent signaling cascades and the release of chemical neurotransmitters. Based on their central importance as concierges of excitation-secretion coupling and therefore neuronal communication, VGCCs have been studied in multiple aspects of neuronal function and malfunction. However, studies on molecular interaction partners and recent progress in omics technologies have extended the actual concept of these molecules. With this review, we want to illustrate some new perspectives of VGCCs reaching beyond their function as calcium-permeable pores in the plasma membrane. Therefore, we will discuss the relevance of VGCCs as voltage sensors in functional complexes with ryanodine receptors, channel-independent actions of auxiliary VGCC subunits, and provide an insight into how VGCCs even directly participate in gene regulation. Furthermore, we will illustrate how structural changes in the intracellular C-terminus of VGCCs generated by alternative splicing events might not only affect the biophysical channel characteristics but rather determine their molecular environment and downstream signaling pathways.
Collapse
Affiliation(s)
- Jennifer Heck
- Functional Neurobiology, Johannes Gutenberg-University Mainz, Institute for Developmental Biology and Neurobiology, Mainz, Germany
| | - Ana Carolina Palmeira Do Amaral
- Functional Neurobiology, Johannes Gutenberg-University Mainz, Institute for Developmental Biology and Neurobiology, Mainz, Germany
| | - Stephan Weißbach
- Functional Neurobiology, Johannes Gutenberg-University Mainz, Institute for Developmental Biology and Neurobiology, Mainz, Germany
- Computational Genomics and Bioinformatics, Johannes Gutenberg-University Mainz, University Medical Center Mainz, Institute for Human Genetics, Mainz, Germany
| | - Abderazzaq El Khallouqi
- Functional Neurobiology, Johannes Gutenberg-University Mainz, Institute for Developmental Biology and Neurobiology, Mainz, Germany
| | - Arthur Bikbaev
- Functional Neurobiology, Johannes Gutenberg-University Mainz, Institute for Developmental Biology and Neurobiology, Mainz, Germany
| | - Martin Heine
- Functional Neurobiology, Johannes Gutenberg-University Mainz, Institute for Developmental Biology and Neurobiology, Mainz, Germany
| |
Collapse
|
33
|
Scher MS. Neurologic Sequelae Associated with Hypertensive Disorders of Pregnancy. CHILDREN (BASEL, SWITZERLAND) 2021; 8:945. [PMID: 34828658 PMCID: PMC8617864 DOI: 10.3390/children8110945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 11/23/2022]
Abstract
Hypertensive disorders of pregnancy (HDP) contribute to adverse gene-environment interactions prior to conception and continue throughout pregnancy. Embryonic/fetal brain disorders occur from interactions between genetic susceptibilities interacting with acquired diseases or conditions affecting the maternal/placental fetal (MPF) triad. Trimester-specific pathophysiological mechanisms, such as maternal immune activation and ischemic placental syndrome, contribute to adverse peripartum, neonatal and childhood outcomes. Two diagnostic approaches provide timelier diagnoses over the first 1000 days from conception until two years of age. Horizontal analyses assess the maturation of the triad, neonate and child. Vertical analyses consider systems-biology from genetic, molecular, cellular, tissue through organ networks during each developmental niche. Disease expressions associated with HDP have cumulative adverse effects across the lifespan when subjected to subsequent adverse events. Critical/sensitive periods of developmental neuroplasticity over the first 1000 days are more likely to result in permanent sequelae. Novel diagnostic approaches, beginning during pre-conception, will facilitate the development of effective preventive, rescue and reparative neurotherapeutic strategies in response to HDP-related trimester-specific disease pathways. Public health policies require the inclusion of women's health advocacy during and beyond their reproductive years to reduce sequelae experienced by mothers and their offspring. A lower global burden of neurologic disease from HDP will benefit future generations.
Collapse
Affiliation(s)
- Mark S. Scher
- Pediatrics and Neurology, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA;
- Department of Pediatrics, Division of Pediatric Neurology Fetal/Neonatal Neurology Program, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
34
|
Li L, Wei H, Zhang YW, Zhao S, Che G, Wang Y, Chen L. Differential expression of long non-coding RNAs as diagnostic markers for lung cancer and other malignant tumors. Aging (Albany NY) 2021; 13:23842-23867. [PMID: 34670194 PMCID: PMC8580341 DOI: 10.18632/aging.203523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/02/2021] [Indexed: 02/05/2023]
Abstract
Due to advances in chip and sequencing technology, several types and numbers of long non-coding RNAs (lncRNAs) have been identified. LncRNAs are defined as non-protein-coding RNA molecules longer than 200 nucleotides, and are now thought as a new frontier in the study of human malignant diseases including NSCLC. Diagnosis of numerous malignant tumors has been closely linked to the differential expression of certain lncRNAs. LncRNAs are involved in gene expression regulation at multiple levels of epigenetics, transcriptional regulation, and post-transcriptional regulation. Mutations, deletions, or abnormal expression levels lead to physiological abnormalities, disease occurrence and are closely associated with human tumor diseases. LncRNAs play a crucial role in cancerous processes as either oncogenes or tumor suppressor genes. The expression of lncRNAs can regulate tumor cell in the proliferation, migration, apoptosis, cycle, invasion, and metastasis. As such, lncRNAs are potential diagnostic and treatment targets for cancer. And that, tumor biomarkers need to be detectable in easily accessible body samples, should be characterized by high specificity and sufficient sensitivity. Herein, it is significant clinical importance to screen and supplement new biomarkers for early diagnosis of lung cancer. This study aimed at systematically describing lncRNAs from five aspects based on recent studies: concepts, classification, structure, molecular mechanism, signal pathway, as well as review lncRNA implications in malignant tumor.
Collapse
Affiliation(s)
- Li Li
- College of Nursing and Health, Henan University, Kaifeng, Henan 475004, China.,Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Haitao Wei
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Department of Thoracic Surgery, Huaihe Hospital, Henan University, Kaifeng, Henan 475001, China
| | - Yi Wei Zhang
- College of Nursing and Health, Henan University, Kaifeng, Henan 475004, China
| | - Shizhe Zhao
- Basic Medical College of Henan University, Kaifeng, Henan 475004, China
| | - Guowei Che
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yun Wang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Longqi Chen
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
35
|
Downregulation of kainate receptors regulating GABAergic transmission in amygdala after early life stress is associated with anxiety-like behavior in rodents. Transl Psychiatry 2021; 11:538. [PMID: 34663781 PMCID: PMC8523542 DOI: 10.1038/s41398-021-01654-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 01/06/2023] Open
Abstract
Early life stress (ELS) is a well-characterized risk factor for mood and anxiety disorders. GABAergic microcircuits in the amygdala are critically implicated in anxiety; however, whether their function is altered after ELS is not known. Here we identify a novel mechanism by which kainate receptors (KARs) modulate feedforward inhibition in the lateral amygdala (LA) and show that this mechanism is downregulated after ELS induced by maternal separation (MS). Specifically, we show that in control rats but not after MS, endogenous activity of GluK1 subunit containing KARs disinhibit LA principal neurons during activation of cortical afferents. GluK1 antagonism attenuated excitability of parvalbumin (PV)-expressing interneurons, resulting in loss of PV-dependent inhibitory control and an increase in firing of somatostatin-expressing interneurons. Inactivation of Grik1 expression locally in the adult amygdala reduced ongoing GABAergic transmission and was sufficient to produce a mild anxiety-like behavioral phenotype. Interestingly, MS and GluK1-dependent phenotypes showed similar gender specificity, being detectable in male but not female rodents. Our data identify a novel KAR-dependent mechanism for cell-type and projection-specific functional modulation of the LA GABAergic microcircuit and suggest that the loss of GluK1 KAR function contributes to anxiogenesis after ELS.
Collapse
|
36
|
Jiang ZJ, Li W, Yao LH, Saed B, Rao Y, Grewe BS, McGinley A, Varga K, Alford S, Hu YS, Gong LW. TRPM7 is critical for short-term synaptic depression by regulating synaptic vesicle endocytosis. eLife 2021; 10:e66709. [PMID: 34569930 PMCID: PMC8516418 DOI: 10.7554/elife.66709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 09/10/2021] [Indexed: 12/15/2022] Open
Abstract
Transient receptor potential melastatin 7 (TRPM7) contributes to a variety of physiological and pathological processes in many tissues and cells. With a widespread distribution in the nervous system, TRPM7 is involved in animal behaviors and neuronal death induced by ischemia. However, the physiological role of TRPM7 in central nervous system (CNS) neuron remains unclear. Here, we identify endocytic defects in neuroendocrine cells and neurons from TRPM7 knockout (KO) mice, indicating a role of TRPM7 in synaptic vesicle endocytosis. Our experiments further pinpoint the importance of TRPM7 as an ion channel in synaptic vesicle endocytosis. Ca2+ imaging detects a defect in presynaptic Ca2+ dynamics in TRPM7 KO neuron, suggesting an importance of Ca2+ influx via TRPM7 in synaptic vesicle endocytosis. Moreover, the short-term depression is enhanced in both excitatory and inhibitory synaptic transmissions from TRPM7 KO mice. Taken together, our data suggests that Ca2+ influx via TRPM7 may be critical for short-term plasticity of synaptic strength by regulating synaptic vesicle endocytosis in neurons.
Collapse
Affiliation(s)
- Zhong-Jiao Jiang
- Department of Biological Sciences, University of Illinois at ChicagoChicagoUnited States
| | - Wenping Li
- Department of Biological Sciences, University of Illinois at ChicagoChicagoUnited States
| | - Li-Hua Yao
- Department of Biological Sciences, University of Illinois at ChicagoChicagoUnited States
- School of Life Science, Jiangxi Science & Technology Normal UniversityNanchangChina
| | - Badeia Saed
- Department of Chemistry, University of Illinois at ChicagoChicagoUnited States
| | - Yan Rao
- Department of Biological Sciences, University of Illinois at ChicagoChicagoUnited States
| | - Brian S Grewe
- Department of Biological Sciences, University of Illinois at ChicagoChicagoUnited States
| | - Andrea McGinley
- Department of Biological Sciences, University of Illinois at ChicagoChicagoUnited States
| | - Kelly Varga
- Department of Biological Sciences, University of Illinois at ChicagoChicagoUnited States
- Department of Biological Sciences, University of North Texas at DallasDallasUnited States
| | - Simon Alford
- Department of Anatomy and Cell Biology, University of Illinois at ChicagoChicagoUnited States
| | - Ying S Hu
- Department of Chemistry, University of Illinois at ChicagoChicagoUnited States
| | - Liang-Wei Gong
- Department of Biological Sciences, University of Illinois at ChicagoChicagoUnited States
| |
Collapse
|
37
|
Somatostatin Interneurons of the Insula Mediate QR2-Dependent Novel Taste Memory Enhancement. eNeuro 2021; 8:ENEURO.0152-21.2021. [PMID: 34518366 PMCID: PMC8482851 DOI: 10.1523/eneuro.0152-21.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 11/21/2022] Open
Abstract
Forming long-term memories is crucial for adaptive behavior and survival in changing environments. The molecular consolidation processes which underlie the formation of these long-term memories are dependent on protein synthesis in excitatory and SST-expressing neurons. A centrally important, parallel process to this involves the removal of the memory constraint quinone reductase 2 (QR2), which has been recently shown to enhance memory consolidation for novel experiences in the cortex and hippocampus, via redox modulation. However, it is unknown within which cell type in the cortex removal of QR2 occurs, nor how this affects neuronal function. Here, we use novel taste learning in the mouse anterior insular cortex (aIC) to show that similarly to mRNA translation, QR2 removal occurs in excitatory and SST-expressing neurons. Interestingly, both novel taste and QR2 inhibition reduce excitability specifically within SST, but not excitatory neurons. Furthermore, reducing QR2 expression in SST, but not in PV or excitatory neurons, is sufficient to enhance taste memory. Thus, QR2 mediated intrinsic property changes of SST interneurons in the aIC is a central removable factor to allow novel taste memory formation. This previously unknown involvement of QR2 and SST interneurons in resetting aIC activity hours following learning, describes a molecular mechanism to define cell circuits for novel information. Therefore, the QR2 pathway in SST interneurons provides a fresh new avenue by which to tackle age-related cognitive deficits, while shedding new light onto the functional machinations of long-term memory formation for novel information.
Collapse
|
38
|
Complexity and graded regulation of neuronal cell-type-specific alternative splicing revealed by single-cell RNA sequencing. Proc Natl Acad Sci U S A 2021; 118:2013056118. [PMID: 33674385 DOI: 10.1073/pnas.2013056118] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The enormous cellular diversity in the mammalian brain, which is highly prototypical and organized in a hierarchical manner, is dictated by cell-type-specific gene-regulatory programs at the molecular level. Although prevalent in the brain, the contribution of alternative splicing (AS) to the molecular diversity across neuronal cell types is just starting to emerge. Here, we systematically investigated AS regulation across over 100 transcriptomically defined neuronal types of the adult mouse cortex using deep single-cell RNA-sequencing data. We found distinct splicing programs between glutamatergic and GABAergic neurons and between subclasses within each neuronal class. These programs consist of overlapping sets of alternative exons showing differential splicing at multiple hierarchical levels. Using an integrative approach, our analysis suggests that RNA-binding proteins (RBPs) Celf1/2, Mbnl2, and Khdrbs3 are preferentially expressed and more active in glutamatergic neurons, while Elavl2 and Qk are preferentially expressed and more active in GABAergic neurons. Importantly, these and additional RBPs also contribute to differential splicing between neuronal subclasses at multiple hierarchical levels, and some RBPs contribute to splicing dynamics that do not conform to the hierarchical structure defined by the transcriptional profiles. Thus, our results suggest graded regulation of AS across neuronal cell types, which may provide a molecular mechanism to specify neuronal identity and function that are orthogonal to established classifications based on transcriptional regulation.
Collapse
|
39
|
Speigel IA, Hemmings HC. Selective inhibition of gamma aminobutyric acid release from mouse hippocampal interneurone subtypes by the volatile anaesthetic isoflurane. Br J Anaesth 2021; 127:587-599. [PMID: 34384592 DOI: 10.1016/j.bja.2021.06.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The cellular and molecular mechanisms by which general anaesthesia occurs is poorly understood. Hippocampal interneurone subpopulations, which are critical regulators of cognitive function, have diverse neurophysiological and synaptic properties, but their responses to anaesthetics are unclear. METHODS We used live-cell imaging of fluorescent biosensors expressed in mouse hippocampal neurones to delineate interneurone subtype-specific effects of isoflurane on synaptic vesicle exocytosis. The role of voltage-gated sodium channel (Nav) subtype expression in determining isoflurane sensitivity was probed by overexpression or knockdown of specific Nav subtypes in identified interneurones. RESULTS Clinically relevant concentrations of isoflurane differentially inhibited synaptic vesicle exocytosis: to 83.1% (11.7%) of control in parvalbumin-expressing interneurones, and to 58.6% (13.3%) and 64.5% (8.5%) of control in somatostatin-expressing interneurones and glutamatergic neurones, respectively. The relative expression of Nav1.1 (associated with lower sensitivity) and Nav1.6 (associated with higher sensitivity) determined the sensitivity of exocytosis to isoflurane. CONCLUSIONS Isoflurane inhibits synaptic vesicle exocytosis from hippocampal glutamatergic neurones and GABAergic interneurones in a cell-type-specific manner depending on their expression of voltage-gated sodium channel subtypes.
Collapse
Affiliation(s)
- Iris A Speigel
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA.
| | - Hugh C Hemmings
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
40
|
Alternative splicing of GluN1 gates glycine site-dependent nonionotropic signaling by NMDAR receptors. Proc Natl Acad Sci U S A 2021; 118:2026411118. [PMID: 34187890 PMCID: PMC8271567 DOI: 10.1073/pnas.2026411118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs), which are critical in the brain, are increasingly being shown to signal without ion flux (i.e., “metabotropically”). What controls the metabotropic function of NMDARs is unknown. We discovered that a form of metabotropic signaling—glycine priming—is controlled by alternative splicing of the mRNA encoding one NMDAR subunit, GluN1. Our discovery was surprising because the spliced exon encodes a peptide cassette in the extracellular region of GluN1 far from the plasma membrane, and yet, metabotropic function requires signaling across the neuronal membrane. Moreover, we found that this metabotropic function of NMDARs is neuron cell–type specific: excitatory neurons show glycine priming, whereas inhibitory neurons do not. These findings have widespread implications for NMDARs in health and disease. N-methyl-D-aspartate (NMDA) receptors (NMDARs), a principal subtype of excitatory neurotransmitter receptor, are composed as tetrameric assemblies of two glycine-binding GluN1 subunits and two glutamate-binding GluN2 subunits. NMDARs can signal nonionotropically through binding of glycine alone to its cognate site on GluN1. A consequence of this signaling by glycine is that NMDARs are primed such that subsequent gating, produced by glycine and glutamate, drives receptor internalization. The GluN1 subunit contains eight alternatively spliced isoforms produced by including or excluding the N1 and the C1, C2, or C2’ polypeptide cassettes. Whether GluN1 alternative splicing affects nonionotropic signaling by NMDARs is a major outstanding question. Here, we discovered that glycine priming of recombinant NMDARs critically depends on GluN1 isoforms lacking the N1 cassette; glycine priming is blocked in splice variants containing N1. On the other hand, the C-terminal cassettes—C1, C2, or C2’—each permit glycine signaling. In wild-type mice, we found glycine-induced nonionotropic signaling at synaptic NMDARs in CA1 hippocampal pyramidal neurons. This nonionotropic signaling by glycine to synaptic NMDARs was prevented in mice we engineered, such that GluN1 obligatorily contained N1. We discovered in wild-type mice that, in contrast to pyramidal neurons, synaptic NMDARs in CA1 inhibitory interneurons were resistant to glycine priming. But we recapitulated glycine priming in inhibitory interneurons in mice engineered such that GluN1 obligatorily lacked the N1 cassette. Our findings reveal a previously unsuspected molecular function for alternative splicing of GluN1 in controlling nonionotropic signaling of NMDARs by activating the glycine site.
Collapse
|
41
|
Herbrechter R, Hube N, Buchholz R, Reiner A. Splicing and editing of ionotropic glutamate receptors: a comprehensive analysis based on human RNA-Seq data. Cell Mol Life Sci 2021; 78:5605-5630. [PMID: 34100982 PMCID: PMC8257547 DOI: 10.1007/s00018-021-03865-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/12/2021] [Accepted: 05/22/2021] [Indexed: 12/11/2022]
Abstract
Ionotropic glutamate receptors (iGluRs) play key roles for signaling in the central nervous system. Alternative splicing and RNA editing are well-known mechanisms to increase iGluR diversity and to provide context-dependent regulation. Earlier work on isoform identification has focused on the analysis of cloned transcripts, mostly from rodents. We here set out to obtain a systematic overview of iGluR splicing and editing in human brain based on RNA-Seq data. Using data from two large-scale transcriptome studies, we established a workflow for the de novo identification and quantification of alternative splice and editing events. We detected all canonical iGluR splice junctions, assessed the abundance of alternative events described in the literature, and identified new splice events in AMPA, kainate, delta, and NMDA receptor subunits. Notable events include an abundant transcript encoding the GluA4 amino-terminal domain, GluA4-ATD, a novel C-terminal GluD1 (delta receptor 1) isoform, GluD1-b, and potentially new GluK4 and GluN2C isoforms. C-terminal GluN1 splicing may be controlled by inclusion of a cassette exon, which shows preference for one of the two acceptor sites in the last exon. Moreover, we identified alternative untranslated regions (UTRs) and species-specific differences in splicing. In contrast, editing in exonic iGluR regions appears to be mostly limited to ten previously described sites, two of which result in silent amino acid changes. Coupling of proximal editing/editing and editing/splice events occurs to variable degree. Overall, this analysis provides the first inventory of alternative splicing and editing in human brain iGluRs and provides the impetus for further transcriptome-based and functional investigations.
Collapse
Affiliation(s)
- Robin Herbrechter
- Department of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Nadine Hube
- Department of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Raoul Buchholz
- Department of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Andreas Reiner
- Department of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany.
| |
Collapse
|
42
|
Booker SA, Wyllie DJA. NMDA receptor function in inhibitory neurons. Neuropharmacology 2021; 196:108609. [PMID: 34000273 DOI: 10.1016/j.neuropharm.2021.108609] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/26/2022]
Abstract
N-methyl-d-aspartate receptors (NMDARs) are present in the majority of brain circuits and play a key role in synaptic information transfer and synaptic plasticity. A key element of many brain circuits are inhibitory GABAergic interneurons that in themselves show diverse and cell-type-specific NMDAR expression and function. Indeed, NMDARs located on interneurons control cellular excitation in a synapse-type specific manner which leads to divergent dendritic integration properties amongst the plethora of interneuron subtypes known to exist. In this review, we explore the documented diversity of NMDAR subunit expression in identified subpopulations of interneurons and assess the NMDAR subtype-specific control of their function. We also highlight where knowledge still needs to be obtained, if a full appreciation is to be gained of roles played by NMDARs in controlling GABAergic modulation of synaptic and circuit function. This article is part of the 'Special Issue on Glutamate Receptors - NMDA receptors'.
Collapse
Affiliation(s)
- Sam A Booker
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, UK; Patrick Wild Centre for Research into Autism, Fragile X Syndrome & Intellectual Disabilities, University of Edinburgh, Edinburgh, EH8 9XD, UK; Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK.
| | - David J A Wyllie
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, UK; Patrick Wild Centre for Research into Autism, Fragile X Syndrome & Intellectual Disabilities, University of Edinburgh, Edinburgh, EH8 9XD, UK; Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK; Centre for Brain Development and Repair, InStem, Bangalore, 560065, India.
| |
Collapse
|
43
|
Kainate receptors in the developing neuronal networks. Neuropharmacology 2021; 195:108585. [PMID: 33910033 DOI: 10.1016/j.neuropharm.2021.108585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022]
Abstract
Kainate receptors (KARs) are highly expressed in the immature brain and have unique developmentally regulated functions that may be important in linking neuronal activity to morphogenesis during activity-dependent fine-tuning of the synaptic connectivity. Altered expression of KARs in the developing neural network leads to changes in glutamatergic connectivity and network excitability, which may lead to long-lasting changes in behaviorally relevant circuitries in the brain. Here, we summarize the current knowledge on physiological and morphogenic functions described for different types of KARs at immature neural circuitries, focusing on their roles in modulating synaptic transmission and plasticity as well as circuit maturation in the rodent hippocampus and amygdala. Finally, we discuss the emerging evidence suggesting that malfunction of KARs in the immature brain may contribute to the pathophysiology underlying developmentally originating neurological disorders.
Collapse
|
44
|
Wang J, Tang J, Liang X, Luo Y, Zhu P, Li Y, Xiao K, Jiang L, Yang H, Xie Y, Zhang L, Deng Y, Li J, Tang Y. Hippocampal PGC-1α-mediated positive effects on parvalbumin interneurons are required for the antidepressant effects of running exercise. Transl Psychiatry 2021; 11:222. [PMID: 33859158 PMCID: PMC8050070 DOI: 10.1038/s41398-021-01339-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 12/29/2022] Open
Abstract
Running exercise was shown to have a positive effect on depressive-like symptoms in many studies, but the underlying mechanism of running exercise in the treatment of depression has not been determined. Parvalbumin-positive interneurons (PV+ interneurons), a main subtype of GABA neurons, were shown to be decreased in the brain during the depression. PGC-1α, a molecule that is strongly related to running exercise, was shown to regulate PV+ interneurons. In the present study, we found that running exercise increased the expression of PGC-1α in the hippocampus of depressed mice. Adult male mice with PGC-1α gene silencing in the hippocampus ran on a treadmill for 4 weeks. Then, depression-like behavior was evaluated by the behavioral tests, and the PV+ interneurons in the hippocampus were investigated. We found that running exercise could not improve depressive-like symptoms or increase the gene expression of PV because of the lack of PGC-1α in the hippocampus. Moreover, a lack of PGC-1α in the hippocampus decreased the number and activity of PV+ interneurons in the CA3 subfield of the hippocampus, and running exercise could not reverse the pathological changes because of the lack of PGC-1α. The present study demonstrated that running exercise regulates PV+ interneurons through PGC-1α in the hippocampus of mice to reverse depressive-like behaviors. These data indicated that hippocampal PGC-1α-mediated positive effects on parvalbumin interneurons are required for the antidepressant actions of running exercise. Our results will help elucidate the antidepressant mechanism of running exercise and identify new targets for antidepressant treatment.
Collapse
Affiliation(s)
- Jin Wang
- grid.203458.80000 0000 8653 0555Laboratory of Stem Cells and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, 400016 Chongqing, People’s Republic of China ,grid.203458.80000 0000 8653 0555Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, 400016 Chongqing, People’s Republic of China
| | - Jing Tang
- grid.203458.80000 0000 8653 0555Laboratory of Stem Cells and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, 400016 Chongqing, People’s Republic of China ,grid.203458.80000 0000 8653 0555Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, 400016 Chongqing, People’s Republic of China
| | - Xin Liang
- grid.203458.80000 0000 8653 0555Laboratory of Stem Cells and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, 400016 Chongqing, People’s Republic of China ,grid.203458.80000 0000 8653 0555Department of Pathophysiology, Faculty of Basic Medical Sciences, Chongqing Medical University, 400016 Chongqing, People’s Republic of China
| | - Yanmin Luo
- grid.203458.80000 0000 8653 0555Laboratory of Stem Cells and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, 400016 Chongqing, People’s Republic of China ,grid.203458.80000 0000 8653 0555Department of Physiology, Faculty of Basic Medical Sciences, Chongqing Medical University, 400016 Chongqing, People’s Republic of China
| | - Peilin Zhu
- grid.203458.80000 0000 8653 0555Laboratory of Stem Cells and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, 400016 Chongqing, People’s Republic of China ,grid.203458.80000 0000 8653 0555Department of Physiology, Faculty of Basic Medical Sciences, Chongqing Medical University, 400016 Chongqing, People’s Republic of China
| | - Yue Li
- grid.203458.80000 0000 8653 0555Laboratory of Stem Cells and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, 400016 Chongqing, People’s Republic of China ,grid.203458.80000 0000 8653 0555Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, 400016 Chongqing, People’s Republic of China
| | - Kai Xiao
- grid.203458.80000 0000 8653 0555Laboratory of Stem Cells and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, 400016 Chongqing, People’s Republic of China ,grid.203458.80000 0000 8653 0555Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, 400016 Chongqing, People’s Republic of China
| | - Lin Jiang
- grid.203458.80000 0000 8653 0555Laboratory of Stem Cells and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, 400016 Chongqing, People’s Republic of China ,grid.203458.80000 0000 8653 0555Lab Teaching & Management Center, Chongqing Medical University, 400016 Chongqing, People’s Republic of China
| | - Hao Yang
- grid.203458.80000 0000 8653 0555Laboratory of Stem Cells and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, 400016 Chongqing, People’s Republic of China ,grid.203458.80000 0000 8653 0555Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, 400016 Chongqing, People’s Republic of China
| | - Yuhan Xie
- grid.203458.80000 0000 8653 0555Laboratory of Stem Cells and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, 400016 Chongqing, People’s Republic of China ,grid.203458.80000 0000 8653 0555Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, 400016 Chongqing, People’s Republic of China
| | - Lei Zhang
- grid.203458.80000 0000 8653 0555Laboratory of Stem Cells and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, 400016 Chongqing, People’s Republic of China ,grid.203458.80000 0000 8653 0555Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, 400016 Chongqing, People’s Republic of China
| | - Yuhui Deng
- grid.203458.80000 0000 8653 0555Laboratory of Stem Cells and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, 400016 Chongqing, People’s Republic of China ,grid.203458.80000 0000 8653 0555Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, 400016 Chongqing, People’s Republic of China
| | - Jing Li
- grid.203458.80000 0000 8653 0555Laboratory of Stem Cells and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, 400016 Chongqing, People’s Republic of China ,grid.203458.80000 0000 8653 0555Department of Physiology, Faculty of Basic Medical Sciences, Chongqing Medical University, 400016 Chongqing, People’s Republic of China
| | - Yong Tang
- Laboratory of Stem Cells and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, 400016, Chongqing, People's Republic of China. .,Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, 400016, Chongqing, People's Republic of China.
| |
Collapse
|
45
|
Collins SA, Ninan I. Development-Dependent Plasticity in Vasoactive Intestinal Polypeptide Neurons in the Infralimbic Cortex. Cereb Cortex Commun 2021; 2:tgab007. [PMID: 33738453 PMCID: PMC7948133 DOI: 10.1093/texcom/tgab007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 11/15/2022] Open
Abstract
The onset of several neuropsychiatric disorders including anxiety disorders coincides with adolescence. Consistently, threat extinction, which plays a key role in the regulation of anxiety-related behaviors, is diminished during adolescence. Furthermore, this attenuated threat extinction during adolescence is associated with an altered synaptic plasticity in the infralimbic medial prefrontal cortex (IL-mPFC), a brain region critical for threat extinction. However, the mechanism underlying the altered plasticity in the IL-mPFC during adolescence is unclear. Given the purported role of vasoactive intestinal polypeptide expressing interneurons (VIPINs) in disinhibition and hence their potential to affect cortical plasticity, we examined whether VIPINs exhibit an adolescence-specific plasticity in the IL-mPFC. We observed an increase in GABAergic transmission and a decrease in excitability in VIPINs during adolescence. Male mice show a significantly higher VIPIN-pyramidal neuron GABAergic transmission compared with female mice. The observed increase in GABAergic transmission and a decrease in membrane excitability in VIPINs during adolescence could play a role in the altered plasticity in the adolescent IL-mPFC. Furthermore, the suppression of VIPIN-mediated GABAergic transmission in females might be relevant to sex differences in anxiety disorders.
Collapse
Affiliation(s)
- Stuart A Collins
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Ipe Ninan
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| |
Collapse
|
46
|
Naro C, Cesari E, Sette C. Splicing regulation in brain and testis: common themes for highly specialized organs. Cell Cycle 2021; 20:480-489. [PMID: 33632061 PMCID: PMC8018374 DOI: 10.1080/15384101.2021.1889187] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/17/2021] [Accepted: 02/07/2021] [Indexed: 12/26/2022] Open
Abstract
Expansion of the coding and regulatory capabilities of eukaryotic transcriptomes by alternative splicing represents one of the evolutionary forces underlying the increased structural complexity of metazoans. Brain and testes stand out as the organs that mostly exploit the potential of alternative splicing, thereby expressing the largest repertoire of splice variants. Herein, we will review organ-specific as well as common mechanisms underlying the high transcriptome complexity of these organs and discuss the impact exerted by this widespread alternative splicing regulation on the functionality and differentiation of brain and testicular cells.
Collapse
Affiliation(s)
- Chiara Naro
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy
- Organoids Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Eleonora Cesari
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy
- Organoids Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy
- Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
47
|
Lee MJ, Lee WT, Jeon CJ. Organization of Neuropeptide Y-Immunoreactive Cells in the Mongolian gerbil ( Meriones unguiculatus) Visual Cortex. Cells 2021; 10:cells10020311. [PMID: 33546356 PMCID: PMC7913502 DOI: 10.3390/cells10020311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 01/03/2023] Open
Abstract
Neuropeptide Y (NPY) is found throughout the central nervous system where it appears to be involved in the regulation of a wide range of physiological effects. The Mongolian gerbil, a member of the rodent family Muridae, is a diurnal animal and has been widely used in various aspects of biomedical research. This study was conducted to investigate the organization of NPY-immunoreactive (IR) neurons in the gerbil visual cortex using NPY immunocytochemistry. The highest density of NPY-IR neurons was located in layer V (50.58%). The major type of NPY-IR neuron was a multipolar round/oval cell type (44.57%). Double-color immunofluorescence revealed that 89.55% and 89.95% of NPY-IR neurons contained gamma-aminobutyric acid (GABA) or somatostatin, respectively. Several processes of the NPY-IR neurons surrounded GABAergic interneurons. Although 30.81% of the NPY-IR neurons contained calretinin, NPY and calbindin-D28K-IR neurons were co-expressed rarely (3.75%) and NPY did not co-express parvalbumin. Triple-color immunofluorescence with anti-GluR2 or CaMKII antibodies suggested that some non-GABAergic NPY-IR neurons may make excitatory synaptic contacts. This study indicates that NPY-IR neurons have a notable architecture and are unique subpopulations of the interneurons of the gerbil visual cortex, which could provide additional valuable data for elucidating the role of NPY in the visual process in diurnal animals.
Collapse
|
48
|
Scher MS. "The First Thousand Days" Define a Fetal/Neonatal Neurology Program. Front Pediatr 2021; 9:683138. [PMID: 34408995 PMCID: PMC8365757 DOI: 10.3389/fped.2021.683138] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/27/2021] [Indexed: 01/11/2023] Open
Abstract
Gene-environment interactions begin at conception to influence maternal/placental/fetal triads, neonates, and children with short- and long-term effects on brain development. Life-long developmental neuroplasticity more likely results during critical/sensitive periods of brain maturation over these first 1,000 days. A fetal/neonatal program (FNNP) applying this perspective better identifies trimester-specific mechanisms affecting the maternal/placental/fetal (MPF) triad, expressed as brain malformations and destructive lesions. Maladaptive MPF triad interactions impair progenitor neuronal/glial populations within transient embryonic/fetal brain structures by processes such as maternal immune activation. Destructive fetal brain lesions later in pregnancy result from ischemic placental syndromes associated with the great obstetrical syndromes. Trimester-specific MPF triad diseases may negatively impact labor and delivery outcomes. Neonatal neurocritical care addresses the symptomatic minority who express the great neonatal neurological syndromes: encephalopathy, seizures, stroke, and encephalopathy of prematurity. The asymptomatic majority present with neurologic disorders before 2 years of age without prior detection. The developmental principle of ontogenetic adaptation helps guide the diagnostic process during the first 1,000 days to identify more phenotypes using systems-biology analyses. This strategy will foster innovative interdisciplinary diagnostic/therapeutic pathways, educational curricula, and research agenda among multiple FNNP. Effective early-life diagnostic/therapeutic programs will help reduce neurologic disease burden across the lifespan and successive generations.
Collapse
Affiliation(s)
- Mark S Scher
- Division of Pediatric Neurology, Department of Pediatrics, Fetal/Neonatal Neurology Program, Emeritus Scholar Tenured Full Professor in Pediatrics and Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
49
|
Ashraf U, Benoit-Pilven C, Navratil V, Ligneau C, Fournier G, Munier S, Sismeiro O, Coppée JY, Lacroix V, Naffakh N. Influenza virus infection induces widespread alterations of host cell splicing. NAR Genom Bioinform 2020; 2:lqaa095. [PMID: 33575639 PMCID: PMC7680258 DOI: 10.1093/nargab/lqaa095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/24/2020] [Accepted: 11/01/2020] [Indexed: 12/22/2022] Open
Abstract
Influenza A viruses (IAVs) use diverse mechanisms to interfere with cellular gene expression. Although many RNA-seq studies have documented IAV-induced changes in host mRNA abundance, few were designed to allow an accurate quantification of changes in host mRNA splicing. Here, we show that IAV infection of human lung cells induces widespread alterations of cellular splicing, with an overall increase in exon inclusion and decrease in intron retention. Over half of the mRNAs that show differential splicing undergo no significant changes in abundance or in their 3' end termination site, suggesting that IAVs can specifically manipulate cellular splicing. Among a randomly selected subset of 21 IAV-sensitive alternative splicing events, most are specific to IAV infection as they are not observed upon infection with VSV, induction of interferon expression or induction of an osmotic stress. Finally, the analysis of splicing changes in RED-depleted cells reveals a limited but significant overlap with the splicing changes in IAV-infected cells. This observation suggests that hijacking of RED by IAVs to promote splicing of the abundant viral NS1 mRNAs could partially divert RED from its target mRNAs. All our RNA-seq datasets and analyses are made accessible for browsing through a user-friendly Shiny interface (http://virhostnet.prabi.fr:3838/shinyapps/flu-splicing or https://github.com/cbenoitp/flu-splicing).
Collapse
Affiliation(s)
- Usama Ashraf
- Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, CNRS UMR3569, Université de Paris, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 75013 Paris, France
| | - Clara Benoit-Pilven
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, 69675 Bron, France
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR5558, Université Lyon 1, 69622 Villeurbanne, France
- EPI ERABLE, INRIA Grenoble Rhône-Alpes, 38330 Montbonnot-Saint-Martin France
| | - Vincent Navratil
- PRABI, Rhône-Alpes Bioinformatics Center, Université Lyon 1, 69622 Villeurbanne, France
- European Virus Bioinformatics Center, 07743 Jena, Germany
- Institut Français de Bioinformatique, IFB-core, UMS 3601, 91057 Évry, France
| | - Cécile Ligneau
- Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, CNRS UMR3569, Université de Paris, 75015 Paris, France
| | - Guillaume Fournier
- Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, CNRS UMR3569, Université de Paris, 75015 Paris, France
| | - Sandie Munier
- Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, CNRS UMR3569, Université de Paris, 75015 Paris, France
| | - Odile Sismeiro
- Institut Pasteur, Pôle BIOMICS, Plateforme Transcriptome et Epigenome, 75015 Paris, France
| | - Jean-Yves Coppée
- Institut Pasteur, Pôle BIOMICS, Plateforme Transcriptome et Epigenome, 75015 Paris, France
| | - Vincent Lacroix
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR5558, Université Lyon 1, 69622 Villeurbanne, France
- EPI ERABLE, INRIA Grenoble Rhône-Alpes, 38330 Montbonnot-Saint-Martin France
| | - Nadia Naffakh
- Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, CNRS UMR3569, Université de Paris, 75015 Paris, France
| |
Collapse
|
50
|
Hunter D, Jamet Z, Groc L. Autoimmunity and NMDA receptor in brain disorders: Where do we stand? Neurobiol Dis 2020; 147:105161. [PMID: 33166697 DOI: 10.1016/j.nbd.2020.105161] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 01/07/2023] Open
Abstract
Over the past decades, the identification of autoimmune encephalitis in which patients express autoantibodies directed against neurotransmitter receptors has generated great hope to shed new light on the molecular mechanisms underpinning neurological and psychiatric conditions. Among these autoimmune encephalitides, the discovery of autoantibodies directed against the glutamatergic NMDA receptor (NMDAR-Ab), in the anti-NMDAR encephalitis, has provided some key information on how complex neuropsychiatric symptoms can be caused by a deficit in NMDAR signalling. Yet, NMDAR-Abs have also been detected in several neurological and psychiatric conditions, as well as in healthy individuals. In addition, these various NMDAR-Abs appear to have different molecular properties and pathogenicities onto receptors and synaptic functions. Here, we discuss the current view on the variety of NMDAR-Abs and, in particular, how these autoantibodies can lead to receptor dysfunction in neuronal networks. Since our mechanistic understanding on patients' NMDAR-Abs is still in its infancy, several complementary processes can be proposed and further in-depth molecular and cellular investigations will surely reveal key insights. Autoantibodies represent a great opportunity to gain knowledge on the etiology of neuropsychiatric disorders and pave the way for innovative therapeutic strategies. ONE SENTENCE SUMMARY: Current view on patients' autoantibody against NMDAR.
Collapse
Affiliation(s)
- Daniel Hunter
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France
| | - Zoe Jamet
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France
| | - Laurent Groc
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France.
| |
Collapse
|