1
|
Paryani F, Kwon JS, Ng CW, Jakubiak K, Madden N, Ofori K, Tang A, Lu H, Xia S, Li J, Mahajan A, Davidson SM, Basile AO, McHugh C, Vonsattel JP, Hickman R, Zody MC, Housman DE, Goldman JE, Yoo AS, Menon V, Al-Dalahmah O. Multi-omic analysis of Huntington's disease reveals a compensatory astrocyte state. Nat Commun 2024; 15:6742. [PMID: 39112488 PMCID: PMC11306246 DOI: 10.1038/s41467-024-50626-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
The mechanisms underlying the selective regional vulnerability to neurodegeneration in Huntington's disease (HD) have not been fully defined. To explore the role of astrocytes in this phenomenon, we used single-nucleus and bulk RNAseq, lipidomics, HTT gene CAG repeat-length measurements, and multiplexed immunofluorescence on HD and control post-mortem brains. We identified genes that correlated with CAG repeat length, which were enriched in astrocyte genes, and lipidomic signatures that implicated poly-unsaturated fatty acids in sensitizing neurons to cell death. Because astrocytes play essential roles in lipid metabolism, we explored the heterogeneity of astrocytic states in both protoplasmic and fibrous-like (CD44+) astrocytes. Significantly, one protoplasmic astrocyte state showed high levels of metallothioneins and was correlated with the selective vulnerability of distinct striatal neuronal populations. When modeled in vitro, this state improved the viability of HD-patient-derived spiny projection neurons. Our findings uncover key roles of astrocytic states in protecting against neurodegeneration in HD.
Collapse
Affiliation(s)
- Fahad Paryani
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ji-Sun Kwon
- Department of Developmental Biology Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Christopher W Ng
- Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, MA, USA
| | - Kelly Jakubiak
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Nacoya Madden
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kenneth Ofori
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Alice Tang
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Hong Lu
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Shengnan Xia
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Juncheng Li
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Aayushi Mahajan
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Shawn M Davidson
- Northwestern Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | | | | | - Jean Paul Vonsattel
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Richard Hickman
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | | | - David E Housman
- Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, MA, USA
| | - James E Goldman
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Andrew S Yoo
- Department of Developmental Biology Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Vilas Menon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA.
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA.
| | - Osama Al-Dalahmah
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA.
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA.
| |
Collapse
|
2
|
Paryani F, Kwon JS, Ng CW, Madden N, Ofori K, Tang A, Lu H, Li J, Mahajan A, Davidson SM, Basile A, McHugh C, Vonsattel JP, Hickman R, Zody M, Houseman DE, Goldman JE, Yoo AS, Menon V, Al-Dalahmah O. Multi-OMIC analysis of Huntington disease reveals a neuroprotective astrocyte state. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.08.556867. [PMID: 37745577 PMCID: PMC10515780 DOI: 10.1101/2023.09.08.556867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Huntington disease (HD) is an incurable neurodegenerative disease characterized by neuronal loss and astrogliosis. One hallmark of HD is the selective neuronal vulnerability of striatal medium spiny neurons. To date, the underlying mechanisms of this selective vulnerability have not been fully defined. Here, we employed a multi-omic approach including single nucleus RNAseq (snRNAseq), bulk RNAseq, lipidomics, HTT gene CAG repeat length measurements, and multiplexed immunofluorescence on post-mortem brain tissue from multiple brain regions of HD and control donors. We defined a signature of genes that is driven by CAG repeat length and found it enriched in astrocytic and microglial genes. Moreover, weighted gene correlation network analysis showed loss of connectivity of astrocytic and microglial modules in HD and identified modules that correlated with CAG-repeat length which further implicated inflammatory pathways and metabolism. We performed lipidomic analysis of HD and control brains and identified several lipid species that correlate with HD grade, including ceramides and very long chain fatty acids. Integration of lipidomics and bulk transcriptomics identified a consensus gene signature that correlates with HD grade and HD lipidomic abnormalities and implicated the unfolded protein response pathway. Because astrocytes are critical for brain lipid metabolism and play important roles in regulating inflammation, we analyzed our snRNAseq dataset with an emphasis on astrocyte pathology. We found two main astrocyte types that spanned multiple brain regions; these types correspond to protoplasmic astrocytes, and fibrous-like - CD44-positive, astrocytes. HD pathology was differentially associated with these cell types in a region-specific manner. One protoplasmic astrocyte cluster showed high expression of metallothionein genes, the depletion of this cluster positively correlated with the depletion of vulnerable medium spiny neurons in the caudate nucleus. We confirmed that metallothioneins were increased in cingulate HD astrocytes but were unchanged or even decreased in caudate astrocytes. We combined existing genome-wide association studies (GWAS) with a GWA study conducted on HD patients from the original Venezuelan cohort and identified a single-nucleotide polymorphism in the metallothionein gene locus associated with delayed age of onset. Functional studies found that metallothionein overexpressing astrocytes are better able to buffer glutamate and were neuroprotective of patient-derived directly reprogrammed HD MSNs as well as against rotenone-induced neuronal death in vitro. Finally, we found that metallothionein-overexpressing astrocytes increased the phagocytic activity of microglia in vitro and increased the expression of genes involved in fatty acid binding. Together, we identified an astrocytic phenotype that is regionally-enriched in less vulnerable brain regions that can be leveraged to protect neurons in HD.
Collapse
Affiliation(s)
- Fahad Paryani
- Department of Neurology, Columbia University Irving Medical Center
| | - Ji-Sun Kwon
- Washington University School of Medicine in St. Louis
| | - Chris W Ng
- Massachusetts Institute of Technology, Department of Biological Engineering
| | - Nacoya Madden
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center
| | - Kenneth Ofori
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center
| | - Alice Tang
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center
| | - Hong Lu
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center
| | - Juncheng Li
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center
| | - Aayushi Mahajan
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center
| | - Shawn M. Davidson
- Princeton University, Lewis-Sigler Institute for Integrative Genomics
| | | | | | - Jean Paul Vonsattel
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center
| | - Richard Hickman
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center
| | | | - David E. Houseman
- Massachusetts Institute of Technology, Department of Biological Engineering
| | - James E. Goldman
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center
| | - Andrew S. Yoo
- Washington University School of Medicine in St. Louis
| | - Vilas Menon
- Department of Neurology, Columbia University Irving Medical Center
| | - Osama Al-Dalahmah
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center
| |
Collapse
|
3
|
Lakha R, Hachicho C, Mehlenbacher MR, Wilcox DE, Austin RN, Vizcarra CL. Metallothionein-3 attenuates the effect of Cu 2+ ions on actin filaments. J Inorg Biochem 2023; 242:112157. [PMID: 36801620 DOI: 10.1016/j.jinorgbio.2023.112157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
Metallothionein 3 (MT-3) is a cysteine-rich metal-binding protein that is expressed in the mammalian central nervous system and kidney. Various reports have posited a role for MT-3 in regulating the actin cytoskeleton by promoting the assembly of actin filaments. We generated purified, recombinant mouse MT-3 of known metal compositions, either with zinc (Zn), lead (Pb), or copper/zinc (Cu/Zn) bound. None of these forms of MT-3 accelerated actin filament polymerization in vitro, either with or without the actin binding protein profilin. Furthermore, using a co-sedimentation assay, we did not observe Zn-bound MT-3 in complex with actin filaments. Cu2+ ions on their own induced rapid actin polymerization, an effect that we attribute to filament fragmentation. This effect of Cu2+ is reversed by adding either EGTA or Zn-bound MT-3, indicating that either molecule can chelate Cu2+ from actin. Altogether, our data indicate that purified recombinant MT-3 does not directly bind actin but it does attenuate the Cu-induced fragmentation of actin filaments.
Collapse
Affiliation(s)
- Rabina Lakha
- Department of Chemistry, Barnard College, New York, NY 10027, USA
| | - Carla Hachicho
- Department of Chemistry, Barnard College, New York, NY 10027, USA
| | | | - Dean E Wilcox
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | - Rachel N Austin
- Department of Chemistry, Barnard College, New York, NY 10027, USA
| | | |
Collapse
|
4
|
Mehlenbacher MR, Elsiesy R, Lakha R, Villones RLE, Orman M, Vizcarra CL, Meloni G, Wilcox DE, Austin RN. Metal binding and interdomain thermodynamics of mammalian metallothionein-3: enthalpically favoured Cu + supplants entropically favoured Zn 2+ to form Cu 4 + clusters under physiological conditions. Chem Sci 2022; 13:5289-5304. [PMID: 35655557 PMCID: PMC9093145 DOI: 10.1039/d2sc00676f] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/01/2022] [Indexed: 01/02/2023] Open
Abstract
Metallothioneins (MTs) are a ubiquitous class of small metal-binding proteins involved in metal homeostasis and detoxification. While known for their high affinity for d10 metal ions, there is a surprising dearth of thermodynamic data on metals binding to MTs. In this study, Zn2+ and Cu+ binding to mammalian metallothionein-3 (MT-3) were quantified at pH 7.4 by isothermal titration calorimetry (ITC). Zn2+ binding was measured by chelation titrations of Zn7MT-3, while Cu+ binding was measured by Zn2+ displacement from Zn7MT-3 with competition from glutathione (GSH). Titrations in multiple buffers enabled a detailed analysis that yielded condition-independent values for the association constant (K) and the change in enthalpy (ΔH) and entropy (ΔS) for these metal ions binding to MT-3. Zn2+ was also chelated from the individual α and β domains of MT-3 to quantify the thermodynamics of inter-domain interactions in metal binding. Comparative titrations of Zn7MT-2 with Cu+ revealed that both MT isoforms have similar Cu+ affinities and binding thermodynamics, indicating that ΔH and ΔS are determined primarily by the conserved Cys residues. Inductively coupled plasma mass spectrometry (ICP-MS) analysis and low temperature luminescence measurements of Cu-replete samples showed that both proteins form two Cu4 +-thiolate clusters when Cu+ displaces Zn2+ under physiological conditions. Comparison of the Zn2+ and Cu+ binding thermodynamics reveal that enthalpically-favoured Cu+, which forms Cu4 +-thiolate clusters, displaces the entropically-favoured Zn2+. These results provide a detailed thermodynamic analysis of d10 metal binding to these thiolate-rich proteins and quantitative support for, as well as molecular insight into, the role that MT-3 plays in the neuronal chemistry of copper.
Collapse
Affiliation(s)
| | - Rahma Elsiesy
- Department of Chemistry, Barnard College of Columbia University New York NY 10027 USA
| | - Rabina Lakha
- Department of Chemistry, Barnard College of Columbia University New York NY 10027 USA
| | - Rhiza Lyne E Villones
- Department of Chemistry and Biochemistry, University of Texas at Dallas Richardson TX 75080 USA
| | - Marina Orman
- Department of Chemistry, Barnard College of Columbia University New York NY 10027 USA
| | - Christina L Vizcarra
- Department of Chemistry, Barnard College of Columbia University New York NY 10027 USA
| | - Gabriele Meloni
- Department of Chemistry and Biochemistry, University of Texas at Dallas Richardson TX 75080 USA
| | - Dean E Wilcox
- Department of Chemistry, Dartmouth College Hanover NH 03755 USA
| | - Rachel N Austin
- Department of Chemistry, Barnard College of Columbia University New York NY 10027 USA
| |
Collapse
|
5
|
del Pozo A, Lehmann L, Knox KM, Barker-Haliski M. Can Old Animals Reveal New Targets? The Aging and Degenerating Brain as a New Precision Medicine Opportunity for Epilepsy. Front Neurol 2022; 13:833624. [PMID: 35572927 PMCID: PMC9096090 DOI: 10.3389/fneur.2022.833624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/07/2022] [Indexed: 02/02/2023] Open
Abstract
Older people represent the fastest growing group with epilepsy diagnosis. For example, cerebrovascular disease may underlie roughly 30-50% of epilepsy in older adults and seizures are also an underrecognized comorbidity of Alzheimer's disease (AD). As a result, up to 10% of nursing home residents may take antiseizure medicines (ASMs). Despite the greater incidence of epilepsy in older individuals and increased risk of comorbid seizures in people with AD, aged animals with seizures are strikingly underrepresented in epilepsy drug discovery practice. Increased integration of aged animals into preclinical epilepsy drug discovery could better inform the potential tolerability and pharmacokinetic interactions in aged individuals as the global population becomes increasingly older. Quite simply, the ASMs on the market today were brought forth based on efficacy in young adult, neurologically intact rodents; preclinical information concerning the efficacy and safety of promising ASMs is not routinely evaluated in aged animals. Integrating aged animals more often into basic epilepsy research may also uncover novel treatments for hyperexcitability. For example, cannabidiol and fenfluramine demonstrated clear efficacy in syndrome-specific pediatric models that led to a paradigm shift in the perceived value of pediatric models for ASM discovery practice; aged rodents with seizures or rodents with aging-related neuropathology represent an untapped resource that could similarly change epilepsy drug discovery. This review, therefore, summarizes how aged rodent models have thus far been used for epilepsy research, what studies have been conducted to assess ASM efficacy in aged rodent seizure and epilepsy models, and lastly to identify remaining gaps to engage aging-related neurological disease models for ASM discovery, which may simultaneously reveal novel mechanisms associated with epilepsy.
Collapse
Affiliation(s)
| | | | | | - Melissa Barker-Haliski
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA, United States
| |
Collapse
|
6
|
Bu S, Lv Y, Liu Y, Qiao S, Wang H. Zinc Finger Proteins in Neuro-Related Diseases Progression. Front Neurosci 2021; 15:760567. [PMID: 34867169 PMCID: PMC8637543 DOI: 10.3389/fnins.2021.760567] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/11/2021] [Indexed: 01/02/2023] Open
Abstract
Zinc finger proteins (ZNF) are among the most abundant proteins in eukaryotic genomes. It contains several zinc finger domains that can selectively bind to certain DNA or RNA and associate with proteins, therefore, ZNF can regulate gene expression at the transcriptional and translational levels. In terms of neurological diseases, numerous studies have shown that many ZNF are associated with neurological diseases. The purpose of this review is to summarize the types and roles of ZNF in neuropsychiatric disorders. We will describe the structure and classification of ZNF, then focus on the pathophysiological role of ZNF in neuro-related diseases and summarize the mechanism of action of ZNF in neuro-related diseases.
Collapse
Affiliation(s)
- Siyuan Bu
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Yihan Lv
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Yusheng Liu
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Sen Qiao
- Department of Pharmacology, Center for Molecular Signaling (PZMS), School of Medicine, Saarland University, Homburg, Germany
| | - Hongmei Wang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
7
|
The Function of Transthyretin Complexes with Metallothionein in Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21239003. [PMID: 33256250 PMCID: PMC7730073 DOI: 10.3390/ijms21239003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is one of the most frequently diagnosed types of dementia in the elderly. An important pathological feature in AD is the aggregation and deposition of the β-amyloid (Aβ) in extracellular plaques. Transthyretin (TTR) can cleave Aβ, resulting in the formation of short peptides with less activity of amyloid plaques formation, as well as being able to degrade Aβ peptides that have already been aggregated. In the presence of TTR, Aβ aggregation decreases and toxicity of Aβ is abolished. This may prevent amyloidosis but the malfunction of this process leads to the development of AD. In the context of Aβplaque formation in AD, we discuss metallothionein (MT) interaction with TTR, the effects of which depend on the type of MT isoform. In the brains of patients with AD, the loss of MT-3 occurs. On the contrary, MT-1/2 level has been consistently reported to be increased. Through interaction with TTR, MT-2 reduces the ability of TTR to bind to Aβ, while MT-3 causes the opposite effect. It increases TTR-Aβ binding, providing inhibition of Aβ aggregation. The protective effect, assigned to MT-3 against the deposition of Aβ, relies also on this mechanism. Additionally, both Zn7MT-2 and Zn7MT-3, decrease Aβ neurotoxicity in cultured cortical neurons probably because of a metal swap between Zn7MT and Cu(II)Aβ. Understanding the molecular mechanism of metals transfer between MT and other proteins as well as cognition of the significance of TTR interaction with different MT isoforms can help in AD treatment and prevention.
Collapse
|
8
|
Krzywoszyńska K, Witkowska D, Świątek-Kozłowska J, Szebesczyk A, Kozłowski H. General Aspects of Metal Ions as Signaling Agents in Health and Disease. Biomolecules 2020; 10:biom10101417. [PMID: 33036384 PMCID: PMC7600656 DOI: 10.3390/biom10101417] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023] Open
Abstract
This review focuses on the current knowledge on the involvement of metal ions in signaling processes within the cell, in both physiological and pathological conditions. The first section is devoted to the recent discoveries on magnesium and calcium-dependent signal transduction-the most recognized signaling agents among metals. The following sections then describe signaling pathways where zinc, copper, and iron play a key role. There are many systems in which changes in intra- and extra-cellular zinc and copper concentrations have been linked to important downstream events, especially in nervous signal transduction. Iron signaling is mostly related with its homeostasis. However, it is also involved in a recently discovered type of programmed cell death, ferroptosis. The important differences in metal ion signaling, and its disease-leading alterations, are also discussed.
Collapse
Affiliation(s)
- Karolina Krzywoszyńska
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
- Correspondence: (K.K.); (D.W.); Tel.: +48-77-44-23-549 (K.K); +48-77-44-23-548 (D.W.)
| | - Danuta Witkowska
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
- Correspondence: (K.K.); (D.W.); Tel.: +48-77-44-23-549 (K.K); +48-77-44-23-548 (D.W.)
| | - Jolanta Świątek-Kozłowska
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
| | - Agnieszka Szebesczyk
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
| | - Henryk Kozłowski
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50-383 Wrocław, Poland
| |
Collapse
|
9
|
Perez DM. α 1-Adrenergic Receptors in Neurotransmission, Synaptic Plasticity, and Cognition. Front Pharmacol 2020; 11:581098. [PMID: 33117176 PMCID: PMC7553051 DOI: 10.3389/fphar.2020.581098] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
α1-adrenergic receptors are G-Protein Coupled Receptors that are involved in neurotransmission and regulate the sympathetic nervous system through binding and activating the neurotransmitter, norepinephrine, and the neurohormone, epinephrine. There are three α1-adrenergic receptor subtypes (α1A, α1B, α1D) that are known to play various roles in neurotransmission and cognition. They are related to two other adrenergic receptor families that also bind norepinephrine and epinephrine, the β- and α2-, each with three subtypes (β1, β2, β3, α2A, α2B, α2C). Previous studies assessing the roles of α1-adrenergic receptors in neurotransmission and cognition have been inconsistent. This was due to the use of poorly-selective ligands and many of these studies were published before the characterization of the cloned receptor subtypes and the subsequent development of animal models. With the availability of more-selective ligands and the development of animal models, a clearer picture of their role in cognition and neurotransmission can be assessed. In this review, we highlight the significant role that the α1-adrenergic receptor plays in regulating synaptic efficacy, both short and long-term synaptic plasticity, and its regulation of different types of memory. We will also present evidence that the α1-adrenergic receptors, and particularly the α1A-adrenergic receptor subtype, are a potentially good target to treat a wide variety of neurological conditions with diminished cognition.
Collapse
Affiliation(s)
- Dianne M Perez
- The Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
10
|
Yin HZ, Wang HL, Ji SG, Medvedeva YV, Tian G, Bazrafkan AK, Maki NZ, Akbari Y, Weiss JH. Rapid Intramitochondrial Zn2+ Accumulation in CA1 Hippocampal Pyramidal Neurons After Transient Global Ischemia: A Possible Contributor to Mitochondrial Disruption and Cell Death. J Neuropathol Exp Neurol 2020; 78:655-664. [PMID: 31150090 DOI: 10.1093/jnen/nlz042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial Zn2+ accumulation, particularly in CA1 neurons, occurs after ischemia and likely contributes to mitochondrial dysfunction and subsequent neurodegeneration. However, the relationship between mitochondrial Zn2+ accumulation and their disruption has not been examined at the ultrastructural level in vivo. We employed a cardiac arrest model of transient global ischemia (TGI), combined with Timm's sulfide silver labeling, which inserts electron dense metallic silver granules at sites of labile Zn2+ accumulation, and used transmission electron microscopy (TEM) to examine subcellular loci of the Zn2+ accumulation. In line with prior studies, TGI-induced damage to CA1 was far greater than to CA3 pyramidal neurons, and was substantially progressive in the hours after reperfusion (being significantly greater after 4- than 1-hour recovery). Intriguingly, TEM examination of Timm's-stained sections revealed substantial Zn2+ accumulation in many postischemic CA1 mitochondria, which was strongly correlated with their swelling and disruption. Furthermore, paralleling the evolution of neuronal injury, both the number of mitochondria containing Zn2+ and the degree of their disruption were far greater at 4- than 1-hour recovery. These data provide the first direct characterization of Zn2+ accumulation in CA1 mitochondria after in vivo TGI, and support the idea that targeting these events could yield therapeutic benefits.
Collapse
Affiliation(s)
| | | | - Sung G Ji
- Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, California
| | | | | | | | | | | | - John H Weiss
- Department of Neurology
- Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, California
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| |
Collapse
|
11
|
Comes G, Fernandez-Gayol O, Molinero A, Giralt M, Capdevila M, Atrian S, Hidalgo J. Mouse metallothionein-1 and metallothionein-2 are not biologically interchangeable in an animal model of multiple sclerosis, EAE. Metallomics 2020; 11:327-337. [PMID: 30543238 DOI: 10.1039/c8mt00285a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mouse metallothionein-1 and 2 (MT1 and MT2) are often considered physiologically equivalent, because they are normally regulated coordinately by a wide range of stimuli, and it is assumed that in vivo they will be normally fully loaded with zinc(ii) (Zn7-MT1/2), although other metal ions, such as copper(i), may be eventually found as well. However, mouse MT2, in contrast to MT1, exhibits a preference for Zn(ii) coordination in comparison to that for Cu(i), which might underlie putatively different biological functions for these two mammalian isoforms. We have characterized the effects of exogenously administered mouse MT1 and MT2, and of transgenic Mt1 overexpression, in an animal model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE), by active immunization with MOG35-55 peptide. Mice treated daily with MT2 showed a significant amelioration of the clinical course, with decreased peak and cumulative scores and delayed onset of EAE. In contrast, treatment with MT1 or its transgenic overexpression only caused a non-significant trend. MT2 treatment preserved better the myelin of the spinal cord, and the pattern of leukocyte infiltrates and gene expression are compatible with an inhibitory effect on neuroinflammation. Splenocytes from these animals in culture responded adequately to MOG35-55 peptide, but a bias for a Th2 profile seemed to be present in the MT2-treated mice. Interestingly, MT1 but not MT2 decreased the number of cytokines in the serum. The present results indicate that mouse MT1 and MT2 are not biologically interchangeable in the EAE model.
Collapse
Affiliation(s)
- Gemma Comes
- Animal Physiology Unit, C/Vall Moronta s/n, Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, and Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
12
|
A role of metallothionein-3 in radiation-induced autophagy in glioma cells. Sci Rep 2020; 10:2015. [PMID: 32029749 PMCID: PMC7005189 DOI: 10.1038/s41598-020-58237-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 01/13/2020] [Indexed: 11/08/2022] Open
Abstract
Although metallothionein-3 (MT3), a brain-enriched form of metallothioneins, has been linked to Alzheimer's disease, little is known regarding the role of MT3 in glioma. As MT3 plays a role in autophagy in astrocytes, here, we investigated its role in irradiated glioma cells. Irradiation increased autophagy flux in GL261 glioma cells as evidenced by increased levels of LC3-II but decreased levels of p62 (SQSTM1). Indicating that autophagy plays a cytoprotective role in glioma cell survival following irradiation, measures inhibiting autophagy flux at various steps decreased their clonogenic survival of irradiated GL261 as well as SF295 and U251 glioma cells. Knockdown of MT3 with siRNA in irradiated glioma cells induced arrested autophagy, and decreased cell survival. At the same time, the accumulation of labile zinc in lysosomes was markedly attenuated by MT3 knockdown. Indicating that such zinc accumulation was important in autophagy flux, chelation of zinc with tetrakis-(2-pyridylmethyl)ethylenediamine (TPEN), induced arrested autophagy in and reduced survival of GL261 cells following irradiation. Suggesting a possible mechanism for arrested autophagy, MT3 knockdown and zinc chelation were found to impair lysosomal acidification. Since autophagy flux plays a cytoprotective role in irradiated glioma cells, present results suggest that MT3 and zinc may be regarded as possible therapeutic targets to sensitize glioma cells to ionizing radiation therapy.
Collapse
|
13
|
Ji SG, Medvedeva YV, Weiss JH. Zn 2+ entry through the mitochondrial calcium uniporter is a critical contributor to mitochondrial dysfunction and neurodegeneration. Exp Neurol 2019; 325:113161. [PMID: 31881218 DOI: 10.1016/j.expneurol.2019.113161] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/19/2019] [Accepted: 12/21/2019] [Indexed: 12/19/2022]
Abstract
Excitotoxic Ca2+ accumulation contributes to ischemic neurodegeneration, and Ca2+ can enter the mitochondria through the mitochondrial calcium uniporter (MCU) to promote mitochondrial dysfunction. Yet, Ca2+-targeted therapies have met limited success. A growing body of evidence has highlighted the underappreciated importance of Zn2+, which also accumulates in neurons after ischemia and can induce mitochondrial dysfunction and cell death. While studies have indicated that Zn2+ can also enter the mitochondria through the MCU, the specificity of the pore's role in Zn2+-triggered injury is still debated. Present studies use recently available MCU knockout mice to examine how the deletion of this channel impacts deleterious effects of cytosolic Zn2+ loading. In cultured cortical neurons from MCU knockout mice, we find significantly reduced mitochondrial Zn2+ accumulation. Correspondingly, these neurons were protected from both acute and delayed Zn2+-triggered mitochondrial dysfunction, including mitochondrial reactive oxygen species generation, depolarization, swelling and inhibition of respiration. Furthermore, when toxic extramitochondrial effects of Ca2+ entry were moderated, both cultured neurons (exposed to Zn2+) and CA1 neurons of hippocampal slices (subjected to prolonged oxygen glucose deprivation to model ischemia) from MCU knockout mice displayed decreased neurodegeneration. Finally, to examine the therapeutic applicability of these findings, we added an MCU blocker after toxic Zn2+ exposure in wildtype neurons (to induce post-insult MCU blockade). This significantly attenuated the delayed evolution of both mitochondrial dysfunction and neurotoxicity. These data-combining both genetic and pharmacologic tools-support the hypothesis that Zn2+ entry through the MCU is a critical contributor to ischemic neurodegeneration that could be targeted for neuroprotection.
Collapse
Affiliation(s)
- Sung G Ji
- Department of Anatomy & Neurobiology, University of California, Irvine, United States of America
| | - Yuliya V Medvedeva
- Department of Neurology, University of California, Irvine, United States of America
| | - John H Weiss
- Department of Anatomy & Neurobiology, University of California, Irvine, United States of America; Department of Neurology, University of California, Irvine, United States of America.
| |
Collapse
|
14
|
Dyer-Reaves K, Goodman AM, Nelson AR, McMahon LL. Alpha1-Adrenergic Receptor Mediated Long-Term Depression at CA3-CA1 Synapses Can Be Induced via Accumulation of Endogenous Norepinephrine and Is Preserved Following Noradrenergic Denervation. Front Synaptic Neurosci 2019; 11:27. [PMID: 31649525 PMCID: PMC6794465 DOI: 10.3389/fnsyn.2019.00027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 09/20/2019] [Indexed: 12/27/2022] Open
Abstract
Locus coeruleus (LC) provides the sole source of noradrenergic (NA) innervation to hippocampus, and it undergoes significant degeneration early in Alzheimer's disease (AD). Norepinephrine (NE) modulates synaptic transmission and plasticity at hippocampal synapses which likely contributes to hippocampus-dependent learning and memory. We previously reported that pharmacological activation of α1 adrenergic receptors (α1ARs) induces long-term depression (LTD) at CA3-CA1 synapses. Here, we investigated whether accumulation of endogenous NE via pharmacological blockade of norepinephrine transporters (NETs) and the NE degradative enzyme, monoamine oxidase (MAO), can induce α1AR LTD, as these inhibitors are used clinically. Further, we sought to determine how degeneration of hippocampal NA innervation, as occurs in AD, impacts α1AR function and α1AR LTD. Bath application of NET and MAO inhibitors in slices from control rats reliably induced α1AR LTD when β adrenergic receptors were inhibited. To induce degeneration of LC-NA innervation, rats were treated with the specific NA neurotoxin DSP-4 and recordings performed 1-3 weeks later when NA axon degeneration had stabilized. Even with 85% loss of hippocampal NA innervation, α1AR LTD was successfully induced using either the α1AR agonist phenylephrine or the combined NET and MAO inhibitors, and importantly, the LTD magnitude was not different from saline-treated control. These data suggest that despite significant decreases in NA input to hippocampus, the mechanisms necessary for the induction of α1AR LTD remain functional. Furthermore, we posit that α1AR activation could be a viable therapeutic target for pharmacological intervention in AD and other diseases involving malfunctions of NA neurotransmission.
Collapse
Affiliation(s)
- Katie Dyer-Reaves
- Department of Cell, Developmental, and Integrative Biology (CDIB), School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anthoni M. Goodman
- Department of Cell, Developmental, and Integrative Biology (CDIB), School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Amy R. Nelson
- Department of Cell, Developmental, and Integrative Biology (CDIB), School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Lori L. McMahon
- Department of Cell, Developmental, and Integrative Biology (CDIB), School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
15
|
Effect of Metallothionein-III on Mercury-Induced Chemokine Gene Expression. TOXICS 2018; 6:toxics6030048. [PMID: 30103553 PMCID: PMC6161308 DOI: 10.3390/toxics6030048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/02/2018] [Accepted: 08/07/2018] [Indexed: 11/16/2022]
Abstract
Mercury compounds are known to cause central nervous system disorders; however the detailed molecular mechanisms of their actions remain unclear. Methylmercury increases the expression of several chemokine genes, specifically in the brain, while metallothionein-III (MT-III) has a protective role against various brain diseases. In this study, we investigated the involvement of MT-III in chemokine gene expression changes in response to methylmercury and mercury vapor in the cerebrum and cerebellum of wild-type mice and MT-III null mice. No difference in mercury concentration was observed between the wild-type mice and MT-III null mice in any brain tissue examined. The expression of Ccl3 in the cerebrum and of Cxcl10 in the cerebellum was increased by methylmercury in the MT-III null but not the wild-type mice. The expression of Ccl7 in the cerebellum was increased by mercury vapor in the MT-III null mice but not the wild-type mice. However, the expression of Ccl12 and Cxcl12 was increased in the cerebrum by methylmercury only in the wild-type mice and the expression of Ccl3 in the cerebellum was increased by mercury vapor only in the wild-type mice. These results indicate that MT-III does not affect mercury accumulation in the brain, but that it affects the expression of some chemokine genes in response to mercury compounds.
Collapse
|
16
|
De Sanctis C, Bellenchi GC, Viggiano D. A meta-analytic approach to genes that are associated with impaired and elevated spatial memory performance. Psychiatry Res 2018; 261:508-516. [PMID: 29395873 DOI: 10.1016/j.psychres.2018.01.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 01/15/2018] [Accepted: 01/15/2018] [Indexed: 12/11/2022]
Abstract
Spatial memory deficits are a common hallmark of psychiatric conditions, possibly due to a genetic predisposition. Thus, unravelling the relationship between genes and memory might suggest novel therapeutic targets and pathogenetic pathways. Genetic deletions are known to lead to memory deficits (post-deletion "forgetfulness" genes, PDF), or, in few instances to improve spatial memory (post-deletion "hypermnesic" genes, PDH). To assess this topic, we performed a meta-analytic approach on memory behavior in knock-out mice. We screened 300 studies from PubMed and retrieved 87 genes tested for possible effects on spatial memory. This database was crossed with the Allen Brain Atlas (brain distribution) and the Enrichr (gene function) databases. The results show that PDF genes have higher expression level in several ventral brain structures, particularly the encephalic trunk and in the hypothalamus. Moreover, part of these genes are implicated in synaptic functions. Conversely, the PDH genes are associated to G-protein coupled receptors downstream signalling. Some candidate drugs were also found to interfere with some of the PDH genes, further suggesting that this approach might help in identifying drugs to improve memory performance in psychiatric conditions.
Collapse
Affiliation(s)
- Claudia De Sanctis
- IRCCS Neuromed, Pozzilli, IS 86077, Italy; Department of Medicine and Health Sciences, University of Molise, Via De Sanctis, Campobasso 86100, Italy
| | | | - Davide Viggiano
- Department of Medicine and Health Sciences, University of Molise, Via De Sanctis, Campobasso 86100, Italy.
| |
Collapse
|
17
|
Takeda A, Tamano H, Hashimoto W, Kobuchi S, Suzuki H, Murakami T, Tempaku M, Koike Y, Adlard PA, Bush AI. Novel Defense by Metallothionein Induction Against Cognitive Decline: From Amyloid β 1-42-Induced Excess Zn 2+ to Functional Zn 2+ Deficiency. Mol Neurobiol 2018; 55:7775-7788. [PMID: 29460269 DOI: 10.1007/s12035-018-0948-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/31/2018] [Indexed: 02/07/2023]
Abstract
The role of metallothioneins (MTs) in cognitive decline associated with intracellular Zn2+ dysregulation remains unclear. Here, we report that hippocampal MT induction defends cognitive decline, which was induced by amyloid β1-42 (Aβ1-42)-mediated excess Zn2+ and functional Zn2+ deficiency. Excess increase in intracellular Zn2+, which was induced by local injection of Aβ1-42 into the dentate granule cell layer, attenuated in vivo perforant pathway LTP, while the attenuation was rescued by preinjection of MT inducers into the same region. Intraperitoneal injection of dexamethasone, which increased hippocampal MT proteins and blocked Aβ1-42-mediated Zn2+ uptake, but not Aβ1-42 uptake, into dentate granule cells, also rescued Aβ1-42-induced impairment of memory via attenuated LTP. The present study indicates that hippocampal MT induction blocks rapid excess increase in intracellular Zn2+ in dentate granule cells, which originates in Zn2+ released from Aβ1-42, followed by rescuing Aβ1-42-induced cognitive decline. Furthermore, LTP was vulnerable to Aβ1-42 in the aged dentate gyrus, consistent with enhanced Aβ1-42-mediated Zn2+ uptake into aged dentate granule cells, suggesting that Aβ1-42-induced cognitive decline, which is caused by excess intracellular Zn2+, can more frequently occur along with aging. On the other hand, attenuated LTP under functional Zn2+ deficiency in dentate granule cells was also rescued by MT induction. Hippocampal MT induction may rescue cognitive decline under lack of cellular transient changes in functional Zn2+ concentration, while its induction is an attractive defense strategy against Aβ1-42-induced cognitive decline.
Collapse
Affiliation(s)
- Atsushi Takeda
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| | - Haruna Tamano
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Wakana Hashimoto
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Shuhei Kobuchi
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Hiroki Suzuki
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Taku Murakami
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Munekazu Tempaku
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Yuta Koike
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Paul A Adlard
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
| |
Collapse
|
18
|
Rahman A, Khan KM, Rao MS. Exposure to low level of lead during preweaning period increases metallothionein-3 expression and dysregulates divalent cation levels in the brain of young rats. Neurotoxicology 2018; 65:135-143. [PMID: 29452138 DOI: 10.1016/j.neuro.2018.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/11/2018] [Accepted: 02/12/2018] [Indexed: 12/11/2022]
Abstract
Lead (Pb) is a neurotoxic heavy metal, but the mechanism of its neurotoxicity is not clearly understood. Expression of metallothioneins (MTs) is induced in response to heavy metal exposure as a protective mechanism against heavy metal toxicity. There are several isoforms of MTs (MT-1 to 4), of which MT-3 is the neuron specific isoform, which also has neurite growth inhibitory effects. Whereas, the induction of MT-1 and 2 in response to Pb has been reported, the effect of Pb on the expression of MT-3 in the brain has not been documented. This study aimed at investigating the effect of Pb exposure on the expression of MT-3 in the cerebrum and hippocampus. Wistar rat pups were exposed to Pb via their dams' drinking water (0.2% lead acetate in deionized water) from postnatal day (PND) 0 to 21 and directly via drinking water until PND30. Expression of MT-3 was measured by Western blot and quantitative RT-PCR. MT-3 localization was done by immunohistochemistry. Divalent metal ions were analysed by atomic absorption spectrophotometry. Levels of Pb in blood and cerebrum were significantly increased, while that of copper (Cu), zinc (Zn) and manganese (Mn) were significantly decreased in the Pb-exposed rats at both PND21 and PND30. MT-3 protein was significantly increased in the cerebrum (by 2.5-fold) and in hippocampus (1.4 to 3.2-fold) in both PND21 and PND30 Pb-exposed rats over controls. MT-3 gene expression also increased in the cerebrum (by 42%), and in the hippocampus (by 65% and 43% in the PND21 and PND30 rats, respectively), in the Pb-exposed rats over controls, but the increase was statistically significant (p < 0.05) only in the PND30 rats. Pb exposure significantly increased (p < 0.05) percentage of MT-3 immunoreactive cells in Cornu Ammonis and dentate gyrus regions in the PND21 rats, and in the Cornu Ammonis 1, dentate gyrus and cortex regions in the PND30 rats. Our data thus provide convincing evidence that exposure to low levels of Pb during preweaning period increases the expression of MT-3 in the brain of rats.
Collapse
Affiliation(s)
- Abdur Rahman
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Kuwait.
| | - Khalid M Khan
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait
| | - Muddanna S Rao
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait
| |
Collapse
|
19
|
Ji SG, Weiss JH. Zn 2+-induced disruption of neuronal mitochondrial function: Synergism with Ca 2+, critical dependence upon cytosolic Zn 2+ buffering, and contributions to neuronal injury. Exp Neurol 2018; 302:181-195. [PMID: 29355498 DOI: 10.1016/j.expneurol.2018.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 12/15/2017] [Accepted: 01/15/2018] [Indexed: 10/18/2022]
Abstract
Excitotoxic Zn2+ and Ca2+ accumulation contributes to neuronal injury after ischemia or prolonged seizures. Synaptically released Zn2+ can enter postsynaptic neurons via routes including voltage sensitive Ca2+ channels (VSCC), and, more rapidly, through Ca2+ permeable AMPA channels. There are also intracellular Zn2+ binding proteins which can either buffer neuronal Zn2+ influx or release bound Zn2+ into the cytosol during pathologic conditions. Studies in culture highlight mitochondria as possible targets of Zn2+; cytosolic Zn2+ can enter mitochondria and induce effects including loss of mitochondrial membrane potential (ΔΨm), mitochondrial swelling, and reactive oxygen species (ROS) generation. While brief (5 min) neuronal depolarization (to activate VSCC) in the presence of 300 μM Zn2+ causes substantial delayed neurodegeneration, it only mildly impacts acute mitochondrial function, raising questions as to contributions of Zn2+-induced mitochondrial dysfunction to neuronal injury. Using brief high (90 mM) K+/Zn2+ exposures to mimic neuronal depolarization and extracellular Zn2+ accumulation as may accompany ischemia in vivo, we examined effects of disrupted cytosolic Zn2+ buffering and/or the presence of Ca2+, and made several observations: 1. Mild disruption of cytosolic Zn2+ buffering-while having little effects alone-markedly enhanced mitochondrial Zn2+ accumulation and dysfunction (including loss of ∆Ψm, ROS generation, swelling and respiratory inhibition) caused by relatively low (10-50 μM) Zn2+ with high K+. 2. The presence of Ca2+ during the Zn2+ exposure decreased cytosolic and mitochondrial Zn2+ accumulation, but markedly exacerbated the consequent dysfunction. 3. Paralleling effects on mitochondria, disruption of buffering and presence of Ca2+ enhanced Zn2+-induced neurodegeneration. 4. Zn2+ chelation after the high K+/Zn2+ exposure attenuated both ROS production and neurodegeneration, supporting the potential utility of delayed interventions. Taken together, these data lend credence to the idea that in pathologic states that impair cytosolic Zn2+ buffering, slow uptake of Zn2+ along with Ca2+ into neurons via VSCC can disrupt the mitochondria and induce neurodegeneration.
Collapse
Affiliation(s)
- Sung G Ji
- Department of Anatomy & Neurobiology, University of California, Irvine, USA
| | - John H Weiss
- Department of Anatomy & Neurobiology, University of California, Irvine, USA; Department of Neurology, University of California, Irvine, USA.
| |
Collapse
|
20
|
Carpenter MC, Shami Shah A, DeSilva S, Gleaton A, Su A, Goundie B, Croteau ML, Stevenson MJ, Wilcox DE, Austin RN. Thermodynamics of Pb(ii) and Zn(ii) binding to MT-3, a neurologically important metallothionein. Metallomics 2017; 8:605-17. [PMID: 26757944 DOI: 10.1039/c5mt00209e] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Isothermal titration calorimetry (ITC) was used to quantify the thermodynamics of Pb(2+) and Zn(2+) binding to metallothionein-3 (MT-3). Pb(2+) binds to zinc-replete Zn7MT-3 displacing each zinc ion with a similar change in free energy (ΔG) and enthalpy (ΔH). EDTA chelation measurements of Zn7MT-3 and Pb7MT-3 reveal that both metal ions are extracted in a tri-phasic process, indicating that they bind to the protein in three populations with different binding thermodynamics. Metal binding is entropically favoured, with an enthalpic penalty that reflects the enthalpic cost of cysteine deprotonation accompanying thiolate ligation of the metal ions. These data indicate that Pb(2+) binding to both apo MT-3 and Zn7MT-3 is thermodynamically favourable, and implicate MT-3 in neuronal lead biochemistry.
Collapse
Affiliation(s)
- M C Carpenter
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA.
| | - A Shami Shah
- Department of Chemistry, Bates College, Lewiston, ME 04240, USA
| | - S DeSilva
- Department of Chemistry, Bates College, Lewiston, ME 04240, USA
| | - A Gleaton
- Department of Chemistry, Bates College, Lewiston, ME 04240, USA
| | - A Su
- Department of Chemistry, Bates College, Lewiston, ME 04240, USA
| | - B Goundie
- Department of Chemistry, Bates College, Lewiston, ME 04240, USA
| | - M L Croteau
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA.
| | - M J Stevenson
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA.
| | - D E Wilcox
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA.
| | - R N Austin
- Department of Chemistry, Bates College, Lewiston, ME 04240, USA and Department of Chemistry, Barnard College, Columbia University, NY, NY 10027, USA.
| |
Collapse
|
21
|
Metallothionein in Brain Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5828056. [PMID: 29085556 PMCID: PMC5632493 DOI: 10.1155/2017/5828056] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/17/2017] [Accepted: 08/03/2017] [Indexed: 12/22/2022]
Abstract
Metallothioneins are a family of proteins which are able to bind metals intracellularly, so their main function is to regulate the cellular metabolism of essential metals. There are 4 major isoforms of MTs (I-IV), three of which have been localized in the central nervous system. MT-I and MT-II have been localized in the spinal cord and brain, mainly in astrocytes, whereas MT-III has been found mainly in neurons. MT-I and MT-II have been considered polyvalent proteins whose main function is to maintain cellular homeostasis of essential metals such as zinc and copper, but other functions have also been considered: detoxification of heavy metals, regulation of gene expression, processes of inflammation, and protection against free radicals generated by oxidative stress. On the other hand, the MT-III has been related in events of pathogenesis of neurodegenerative diseases such as Parkinson and Alzheimer. Likewise, the participation of MTs in other neurological disorders has also been reported. This review shows recent evidence about the role of MT in the central nervous system and its possible role in neurodegenerative diseases as well as in brain disorders.
Collapse
|
22
|
Hidalgo J, Penkowa M, Espejo C, Martínez-Cáceres EM, Carrasco J, Quintana A, Molinero A, Florit S, Giralt M, Ortega-Aznar A. Expression of Metallothionein-I, -II, and -III in Alzheimer Disease and Animal Models of Neuroinflammation. Exp Biol Med (Maywood) 2016; 231:1450-8. [PMID: 17018866 DOI: 10.1177/153537020623100902] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In recent years it has become increasingly clear that the metallothionein (MT) family of proteins is important in neurobiology. MT-I and MT-II are normally dramatically up-regulated by neuroinflammation. Results for MT-III are less clear. MTs could also be relevant in human neuropathology. In Alzheimer disease (AD), a major neurodegenerative disease, clear signs of inflammation and oxidative stress were detected associated with amyloid plaques. Furthermore, the number of cells expressing apoptotic markers was also significantly increased in these plaques. As expected, MT-I and MT-II immunostaining was dramatically increased in cells surrounding the plaques, consistent with astrocytosis and microgliosis, as well as the increased oxidative stress elicited by the amyloid deposits. MT-III, In contrast, remained essentially unaltered, which agrees with some but not all studies, of AD. In situ hybridization results in a transgenic mouse model of AD amyloid deposits, the Tg2576 mouse, which expresses human Aβ precursor protein harboring the Swedish K670N/M671L mutations, are in accordance with results in human brains. Overall, these and other studies strongly suggest specific roles for MT-I, MT-II, and MT-III in brain physiology.
Collapse
Affiliation(s)
- Juan Hidalgo
- Institute of Neurosciences, Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Sciences, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain 08193.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
El Ghazi I, Martin BL, Armitage IM. Metallothionein-3 Is a Component of a Multiprotein Complex in the Mouse Brain. Exp Biol Med (Maywood) 2016; 231:1500-6. [PMID: 17018872 DOI: 10.1177/153537020623100908] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Metallothlonein (MT)-3, originally called growth inhibitory factor (GIF), was initially identified through its ability to Inhibit the growth of neuronal cells in the presence of brain extract. MT-3 is the brain specific isoform of the MT family whose specific biological activity associates it with neurological disorders. Indeed, studies report that MT-3 is decreased by ~30% in brains of patients with Alzheimer disease (AD). Furthermore, many lines of evidence suggest that MT-3 engages in specific protein interactions. To address this, we conducted Immunoaffinity chromatography experiments using an immobilized anti-mouse MT-3 antibody. We identified five associated proteins from the pool of sixteen recovered using mass spectrometry and tandem mass spectrometry after in-gel trypsin digestion of bands from the affinity chromatography. The proteins identified were: heat shock protein 84 (HSP84), heat shock protein 70 (HSP70), dihydropyrimidinase-like protein-2 (DRP-2), creatine kinase (CK) and β-actin. Coimmunoprecipitation experiments, also conducted on whole mouse brain extract using the anti-mouse MT-3 antibody along with commercially available antibodies against HSP84 and CK, confirmed that these three proteins were in a single protein complex. Immunohistochemical experiments were then conducted on the perfused mouse brain that confirmed the in situ colocallzation of CK and MT-3 in the hippocampus region. These data provide new Insights into the involvement of MT-3 in a multiprotein complex, which will be used to understand the biological activity of MT-3 and its role in neurological disease.
Collapse
Affiliation(s)
- I El Ghazi
- Department of Biochemistry, Molecular Biology, and Biophysics, 6-155 Jackson Hall, 321 Church Street, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
24
|
Tamano H, Koike Y, Nakada H, Shakushi Y, Takeda A. Significance of synaptic Zn 2+ signaling in zincergic and non-zincergic synapses in the hippocampus in cognition. J Trace Elem Med Biol 2016; 38:93-98. [PMID: 26995290 DOI: 10.1016/j.jtemb.2016.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/07/2016] [Accepted: 03/07/2016] [Indexed: 11/24/2022]
Abstract
A portion of zinc concentrates in the synaptic vesicles in the brain and is released from glutamatergic (zincergic) neuron terminals. It serves as a signaling factor (in a form of free Zn2+). Both extracellular Zn2+ signaling, which predominantly originates in Zn2+ release from zincergic neuron terminals, and intracellular Zn2+ signaling, which is often linked to extracellular Zn2+ signaling, are involved in hippocampus-dependent memory. At mossy fiber-CA3 pyramidal cell synapses and Schaffer collateral-CA1 pyramidal cell synapses, which are zincergic, extracellular Zn2+ signaling leads to intracellular Zn2+ signaling and is involved in learning and memory. At medial perforant pathway-dentate granule cell synapses, which are non-zincergic, intracellular Zn2+ signaling, which originates in the internal stores containing Zn2+, is involved in learning and memory. The blockade of Zn2+ signaling with Zn2+ chelators induces memory deficit, while the optimal amount range of Zn2+ signaling is unknown. It is possible that the degree and frequency of Zn2+ signaling, which determine the increased Zn2+ levels, modulates learning and memory as well as intracellular Ca2+ signaling. To understand the precise role of synaptic Zn2+ signaling in the hippocampus, the present paper summarizes the current knowledge on Zn2+ signaling at zincergic and non-zincergic synapses in the hippocampus in cognition and involvement of zinc transporters and zinc-binding proteins in synaptic Zn2+ signaling.
Collapse
Affiliation(s)
- Hanuna Tamano
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yuta Koike
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiroyuki Nakada
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yukina Shakushi
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Atsushi Takeda
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
25
|
|
26
|
Szrok S, Stelmanska E, Turyn J, Bielicka-Gieldon A, Sledzinski T, Swierczynski J. Metallothioneins 1 and 2, but not 3, are regulated by nutritional status in rat white adipose tissue. GENES AND NUTRITION 2016; 11:18. [PMID: 27551319 PMCID: PMC4968437 DOI: 10.1186/s12263-016-0533-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/10/2016] [Indexed: 11/23/2022]
Abstract
Background Cumulating evidence underlines the role of adipose tissue metallothionein (MT) in the development of obesity and type 2 diabetes. Fasting/refeeding was shown to affect MT gene expression in the rodent liver. The influence of nutritional status on MT gene expression in white adipose tissue (WAT) is inconclusive. The aim of this study was to verify if fasting and fasting/refeeding may influence expression of MT genes in WAT of rats. Results Fasting resulted in a significant increase in MT1 and MT2 gene expressions in retroperitoneal, epididymal, and inguinal WAT of rats, and this effect was reversed by refeeding. Altered expressions of MT1 and MT2 genes in all main fat depots were reflected by changes in serum MT1 and MT2 levels. MT1 and MT2 messenger RNA (mRNA) levels in WAT correlated inversely with serum insulin concentration. Changes in MT1 and MT2 mRNA levels were apparently not related to total zinc concentrations and MTF1 and Zn transporter mRNA levels in WAT. Fasting or fasting/refeeding exerted no effect on the expression of MT3 gene in WAT. Addition of insulin to isolated adipocytes resulted in a significant decrease in MT1 and MT2 gene expressions. In contrast, forskolin or dibutyryl-cAMP (dB-cAMP) enhanced the expressions of MT1 and MT2 genes in isolated adipocytes. Insulin partially reversed the effect of dB-cAMP on MT1 and MT2 gene expressions. Conclusions This study showed that the expressions of MT1 and MT2 genes in WAT are regulated by nutritional status, and the regulation may be independent of total zinc concentration. Electronic supplementary material The online version of this article (doi:10.1186/s12263-016-0533-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sylwia Szrok
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| | - Ewa Stelmanska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| | - Jacek Turyn
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| | | | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| | - Julian Swierczynski
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| |
Collapse
|
27
|
Adam P, Křížková S, Heger Z, Babula P, Pekařík V, Vaculovičoá M, Gomes CM, Kizek R, Adam V. Metallothioneins in Prion- and Amyloid-Related Diseases. J Alzheimers Dis 2016; 51:637-56. [DOI: 10.3233/jad-150984] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Pavlína Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka, Brno, Czech Republic
| | - Soňa Křížková
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka, Brno, Czech Republic
| | - Zbyněk Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka, Brno, Czech Republic
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice, Brno, Czech Republic
| | - Vladimír Pekařík
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka, Brno, Czech Republic
| | - Markéta Vaculovičoá
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka, Brno, Czech Republic
| | - Cláudio M. Gomes
- Faculdade de Ciências Universidade de Lisboa, Biosystems and Integrative Sciences Institute and Department of Chemistry and Biochemistry, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - René Kizek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka, Brno, Czech Republic
| | - Vojtěch Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka, Brno, Czech Republic
| |
Collapse
|
28
|
Lee SJ, Seo BR, Koh JY. Metallothionein-3 modulates the amyloid β endocytosis of astrocytes through its effects on actin polymerization. Mol Brain 2015; 8:84. [PMID: 26637294 PMCID: PMC4670512 DOI: 10.1186/s13041-015-0173-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/30/2015] [Indexed: 12/30/2022] Open
Abstract
Background Astrocytes may play important roles in the pathogenesis of Alzheimer’s disease (AD) by clearing extracellular amyloid beta (Aβ) through endocytosis and degradation. We recently showed that metallothionein 3 (Mt3), a zinc-binding metallothionein that is enriched in the central nervous system, contributes to actin polymerization in astrocytes. Because actin is likely involved in the endocytosis of Aβ, we investigated the possible role of Mt3 in Aβ endocytosis by cortical astrocytes in this study. Results To assess the route of Aβ uptake, we exposed cultured astrocytes to fluorescently labeled Aβ1–40 or Aβ1–42 together with chloropromazine (CP) or methyl-beta-cyclodextrin (MβCD), inhibitors of clathrin- and caveolin-dependent endocytosis, respectively. CP treatment almost completely blocked Aβ1–40 and Aβ1–42 endocytosis, whereas exposure to MβCD had no significant effect. Actin disruption with cytochalasin D (CytD) or latrunculin B also completely blocked Aβ1–40 and Aβ1–42 endocytosis. Because the absence of Mt3 also results in actin disruption, we examined Aβ1–40 and Aβ1–42 uptake and expression in Mt3−/− astrocytes. Compared with wild-type (WT) cells, Mt3−/− cells exhibited markedly reduced Aβ1–40 and Aβ1–42 endocytosis and expression of Aβ1-42 monomers and oligomers. A similar reduction was observed in CytD-treated WT cells. Finally, actin disruption and Mt3 knockout each increased the overall levels of clathrin and the associated protein phosphatidylinositol-binding clathrin assembly protein (PICALM) in astrocytes. Conclusions Our results suggest that the absence of Mt3 reduces Aβ uptake in astrocytes through an abnormality in actin polymerization. In light of evidence that Mt3 is downregulated in AD, our findings indicate that this mechanism may contribute to the extracellular accumulation of Aβ in this disease.
Collapse
Affiliation(s)
- Sook-Jeong Lee
- Neural Injury Research Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, South Korea. .,Present address: Department of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong, Daejeon, 34134, South Korea.
| | - Bo-Ra Seo
- Neural Injury Research Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, South Korea.
| | - Jae-Young Koh
- Neural Injury Research Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, South Korea. .,Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-Gil, Songpa-Gu, Seoul, 05505, South Korea.
| |
Collapse
|
29
|
Byun HR, Choi JA, Koh JY. The role of metallothionein-3 in streptozotocin-induced beta-islet cell death and diabetes in mice. Metallomics 2015; 6:1748-57. [PMID: 25054451 DOI: 10.1039/c4mt00143e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Metallothionein-3 (Mt3), a zinc (Zn)-regulatory protein mainly expressed in the central nervous system, may contribute to oxidative cell death. In the present study, we examined the possible role of Mt3 in streptozotocin (STZ)-induced islet cell death and consequent hyperglycemia. Quantitative real-time polymerase chain reaction (RT-PCR) confirmed that islet cells expressed Mt3 mRNA. In all cases, wild-type (WT) mice injected with STZ exhibited hyperglycemia 7-21 days later. In stark contrast, all Mt3-null mice remained normoglycemic following STZ injection. STZ treatment increased free Zn levels in islet cells and induced their death in WT mice, but failed to do so in Mt3-null mice. Consistent with this, cultured Mt3-null islet cells exhibited striking resistance to STZ toxicity. Notably, PDE3a (phosphodiesterase 3A) was downregulated in islets of Mt3-null mice compared to those of WT mice, and was not induced by STZ treatment. Moreover, the PDE3 inhibitor cilostazol reduced islet cell death, likely by increasing cAMP levels, further supporting a role for PDE3 in STZ-induced islet cell death. Collectively, these results demonstrate that Mt3 may act through PDE3a to play a key role in Zn dyshomeostasis and cell death in STZ-treated islets.
Collapse
Affiliation(s)
- Hyae-Ran Byun
- Neural Injury Research Center, Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul, Korea
| | | | | |
Collapse
|
30
|
Hagmeyer S, Haderspeck JC, Grabrucker AM. Behavioral impairments in animal models for zinc deficiency. Front Behav Neurosci 2015; 8:443. [PMID: 25610379 PMCID: PMC4285094 DOI: 10.3389/fnbeh.2014.00443] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/08/2014] [Indexed: 01/12/2023] Open
Abstract
Apart from teratogenic and pathological effects of zinc deficiency such as the occurrence of skin lesions, anorexia, growth retardation, depressed wound healing, altered immune function, impaired night vision, and alterations in taste and smell acuity, characteristic behavioral changes in animal models and human patients suffering from zinc deficiency have been observed. Given that it is estimated that about 17% of the worldwide population are at risk for zinc deficiency and that zinc deficiency is associated with a variety of brain disorders and disease states in humans, it is of major interest to investigate, how these behavioral changes will affect the individual and a putative course of a disease. Thus, here, we provide a state of the art overview about the behavioral phenotypes observed in various models of zinc deficiency, among them environmentally produced zinc deficient animals as well as animal models based on a genetic alteration of a particular zinc homeostasis gene. Finally, we compare the behavioral phenotypes to the human condition of mild to severe zinc deficiency and provide a model, how zinc deficiency that is associated with many neurodegenerative and neuropsychological disorders might modify the disease pathologies.
Collapse
Affiliation(s)
- Simone Hagmeyer
- WG Molecular Analysis of Synaptopathies, Neurology Department, Neurocenter of Ulm University Ulm, Germany
| | - Jasmin Carmen Haderspeck
- WG Molecular Analysis of Synaptopathies, Neurology Department, Neurocenter of Ulm University Ulm, Germany
| | - Andreas Martin Grabrucker
- WG Molecular Analysis of Synaptopathies, Neurology Department, Neurocenter of Ulm University Ulm, Germany ; Institute for Anatomy and Cell Biology, Ulm University Ulm, Germany
| |
Collapse
|
31
|
High level expression, efficient purification, and bioactivity of recombinant human metallothionein 3 (rhMT3) from methylotrophic yeast Pichia pastoris. Protein Expr Purif 2014; 101:121-6. [DOI: 10.1016/j.pep.2014.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/10/2014] [Accepted: 06/17/2014] [Indexed: 11/21/2022]
|
32
|
Hancock SM, Finkelstein DI, Adlard PA. Glia and zinc in ageing and Alzheimer's disease: a mechanism for cognitive decline? Front Aging Neurosci 2014; 6:137. [PMID: 25009495 PMCID: PMC4069481 DOI: 10.3389/fnagi.2014.00137] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 06/09/2014] [Indexed: 11/13/2022] Open
Abstract
Normal ageing is characterized by cognitive decline across a range of neurological functions, which are further impaired in Alzheimer’s disease (AD). Recently, alterations in zinc (Zn) concentrations, particularly at the synapse, have emerged as a potential mechanism underlying the cognitive changes that occur in both ageing and AD. Zn is now accepted as a potent neuromodulator, affecting a variety of signaling pathways at the synapse that are critical to normal cognition. While the focus has principally been on the neuron: Zn interaction, there is a growing literature suggesting that glia may also play a modulatory role in maintaining both Zn ion homeostasis and the normal function of the synapse. Indeed, zinc transporters (ZnT’s) have been demonstrated in glial cells where Zn has also been shown to have a role in signaling. Furthermore, there is increasing evidence that the pathogenesis of AD critically involves glial cells (such as astrocytes), which have been reported to contribute to amyloid-beta (Aβ) neurotoxicity. This review discusses the current evidence supporting a complex interplay of glia, Zn dyshomeostasis and synaptic function in ageing and AD.
Collapse
Affiliation(s)
- Sara M Hancock
- Synaptic Neurobiology Laboratory, Florey Institute of Neuroscience and Mental Health Parkville, VIC, Australia
| | - David I Finkelstein
- Parkinson's Disease Laboratory, Florey Institute of Neuroscience and Mental Health Parkville, VIC, Australia
| | - Paul A Adlard
- Synaptic Neurobiology Laboratory, Florey Institute of Neuroscience and Mental Health Parkville, VIC, Australia
| |
Collapse
|
33
|
Lago N, Quintana A, Carrasco J, Giralt M, Hidalgo J, Molinero A. Absence of metallothionein-3 produces changes on MT-1/2 regulation in basal conditions and alters hypothalamic-pituitary-adrenal (HPA) axis. Neurochem Int 2014; 74:65-73. [PMID: 24969724 DOI: 10.1016/j.neuint.2014.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 06/05/2014] [Accepted: 06/16/2014] [Indexed: 12/31/2022]
Abstract
Metallothioneins (MTs) are multipurpose proteins with clear antioxidant, anti-inflammatory and metal homeostasis properties. The roles of brain MT-1 and MT-2 are similar to those described in the periphery, and are inducible by metals, inflammatory and stress stimuli. MT-3, originally named growth inhibitory factor, exists mainly in the central nervous system, is hardly ever inducible and its functional role and regulation are poorly understood and controversial. In the present study we examined how absence of MT-3 affects phenotypic characteristics and its effects on MT1/2 expression in basal situation and after induction. Hyperactive behavior was found only in young male Mt-3 KO mice and disappeared in the older ones. Absence of MT-3 was associated with a significant increase of MT-1/2 protein levels in several brain areas but decreased MT-1 mRNA levels, which might be related to lower corticosterone levels. The response to stress or inflammation on corticosterone plasma levels was similar in wild type and Mt-3 KO mice, suggesting that the relevant MT-3 role as MT-1/2 regulator in basal conditions is lost when other important regulatory factors such as glucocorticoids or cytokines appear.
Collapse
Affiliation(s)
- Natalia Lago
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain
| | - Albert Quintana
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain
| | - Javier Carrasco
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain
| | - Mercedes Giralt
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain
| | - Juan Hidalgo
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain
| | - Amalia Molinero
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain.
| |
Collapse
|
34
|
Zhang Z, Bi C, Fan Y, Zhang X, Zhang N, Yan X, Zuo J. Crystal Structure, Fluorescence Property and Theoretical Calculation of the Zn(II) Complex with o-Aminobenzoic Acid and 1,10-Phenanthroline. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.6.1697] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Choi JA, Hwang JU, Yoon YH, Koh JY. Methallothionein-3 contributes to vascular endothelial growth factor induction in a mouse model of choroidal neovascularization. Metallomics 2014; 5:1387-96. [PMID: 23962989 DOI: 10.1039/c3mt00150d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present study, we investigated possible roles of the zinc (Zn)-binding protein metallothionein-3 (MT3) and cellular Zn in a mouse model of laser-induced choroidal neovascularization (CNV) using wild-type (WT) and MT3-knockout (KO) mice. Quantitative RT-PCR was used for the detection of MT3 mRNA. CNV was induced in mice between 8 and 12 weeks of age by disrupting the Bruch's membrane using an argon laser. Fundus photography and fluorescein angiography (FA) were performed 2 weeks following laser photocoagulation. The possible connection between MT3 and vascular endothelial growth factor (VEGF) expression was explored by quantifying VEGF levels in WT and MT3-KO mouse retinas by enzyme-linked immunosorbent assay. The role of Zn in VEGF expression was tested in WT and MT3-KO cells treated with pyrithione, with or without additional Zn, using immunoblotting and fluorescence photomicrography. Following laser-treatment, MT3-KO mice exhibited substantially smaller areas of CNV compared to WT mice. In addition, retinal angiograms revealed less severe fluorescein leakage in MT3-KO mice than in WT mice. On day 14 following the induction of CNV, VEGF expression was markedly increased in WT mice, but remained unchanged in MT3-KO mice. Consistent with the possible involvement of Zn released from MT3, raising intracellular Zn levels increased VEGF levels and activated its receptor, Flk-1, in both WT and MT3-KO retinal cells. Present results demonstrated that neural retinal cells express high levels of MT3, which might play a role in the process of CNV development. Moreover, Zn released from MT3 may contribute to VEGF induction.
Collapse
Affiliation(s)
- Jeong A Choi
- Neural Injury Research Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | |
Collapse
|
36
|
Significance of metallothioneins in aging brain. Neurochem Int 2014; 65:40-8. [DOI: 10.1016/j.neuint.2013.12.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/01/2013] [Accepted: 12/26/2013] [Indexed: 12/14/2022]
|
37
|
Grabrucker S, Jannetti L, Eckert M, Gaub S, Chhabra R, Pfaender S, Mangus K, Reddy PP, Rankovic V, Schmeisser MJ, Kreutz MR, Ehret G, Boeckers TM, Grabrucker AM. Zinc deficiency dysregulates the synaptic ProSAP/Shank scaffold and might contribute to autism spectrum disorders. Brain 2013; 137:137-52. [DOI: 10.1093/brain/awt303] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
38
|
Chang X, Lu W, Dou T, Wang X, Lou D, Sun X, Zhou Z. Paraquat inhibits cell viability via enhanced oxidative stress and apoptosis in human neural progenitor cells. Chem Biol Interact 2013; 206:248-55. [DOI: 10.1016/j.cbi.2013.09.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 08/02/2013] [Accepted: 09/11/2013] [Indexed: 12/19/2022]
|
39
|
Grabrucker AM. A role for synaptic zinc in ProSAP/Shank PSD scaffold malformation in autism spectrum disorders. Dev Neurobiol 2013; 74:136-46. [PMID: 23650259 PMCID: PMC4272576 DOI: 10.1002/dneu.22089] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 03/27/2013] [Accepted: 04/25/2013] [Indexed: 12/11/2022]
Abstract
The establishment and maintenance of synaptic contacts as well as synaptic plasticity are crucial factors for normal brain function. The functional properties of a synapse are largely dependent on the molecular setup of synaptic proteins. Multidomain proteins of the ProSAP/Shank family act as major organizing scaffolding elements of the postsynaptic density (PSD). Interestingly, ProSAP/Shank proteins at glutamatergic synapses have been linked to a variety of Autism Spectrum Disorders (ASDs) including Phelan McDermid Syndrome, and deregulation of ProSAP/Shank has been reported in Alzheimer's disease. Although the precise molecular mechanism of the dysfunction of these proteins remains unclear, an emerging model is that mutations or deletions impair neuronal circuitry by disrupting the formation, plasticity and maturation of glutamatergic synapses. Several PSD proteins associated with ASDs are part of a complex centered around ProSAP/Shank proteins and many ProSAP/Shank interaction partners play a role in signaling within dendritic spines. Interfering with any one of the members of this signaling complex might change the output and drive the system towards synaptic dysfunction. Based on recent data, it is possible that the concerted action of ProSAP/Shank and Zn2+ is essential for the structural integrity of the PSD. This interplay might regulate postsynaptic receptor composition, but also transsynaptic signaling. It might be possible that environmental factors like nutritional Zn2+ status or metal ion homeostasis in general intersect with this distinct pathway centered around ProSAP/Shank proteins and the deregulation of any of these two factors may lead to ASDs.
Collapse
Affiliation(s)
- Andreas M Grabrucker
- Neurology Department, WG Molecular Analysis of Synaptopathies, Neurocenter of Ulm University, Ulm, Germany; Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| |
Collapse
|
40
|
Saito H, Nakazato K, Kato M, Kodaira T, Akutsu T, Tokita Y, Suzuki K, Nagamine T, Nakajima K. Determination of metallothionein-3 by a competitive enzyme-linked immunosorbent assay in experimental animals. J Toxicol Sci 2013; 38:83-91. [DOI: 10.2131/jts.38.83] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
| | | | | | | | - Taito Akutsu
- Graduate School of Health Sciences, Gunma University
| | | | - Keiji Suzuki
- Graduate School of Health Sciences, Gunma University
| | | | | |
Collapse
|
41
|
Manso Y, Carrasco J, Comes G, Meloni G, Adlard PA, Bush AI, Vašák M, Hidalgo J. Characterization of the role of metallothionein-3 in an animal model of Alzheimer's disease. Cell Mol Life Sci 2012; 69:3683-700. [PMID: 22722772 PMCID: PMC11114720 DOI: 10.1007/s00018-012-1047-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/21/2012] [Accepted: 05/31/2012] [Indexed: 01/02/2023]
Abstract
Among the dementias, Alzheimer's disease (AD) is the most commonly diagnosed, but there are still no effective drugs available for its treatment. It has been suggested that metallothionein-3 (MT-3) could be somehow involved in the etiology of AD, and in fact very promising results have been found in in vitro studies, but the role of MT-3 in vivo needs further analysis. In this study, we analyzed the role of MT-3 in a mouse model of AD, Tg2576 mice, which overexpress human Amyloid Precursor Protein (hAPP) with the Swedish mutation. MT-3 deficiency partially rescued the APP-induced mortality of females, and mildly affected APP-induced changes in behavior assessed in the hole-board and plus-maze tests in a gender-dependent manner. Amyloid plaque burden and/or hAPP expression were decreased in the cortex and hippocampus of MT-3-deficient females. Interestingly, exogenously administered Zn(7)MT-3 increased soluble Aβ40 and Aβ42 and amyloid plaques and gliosis, particularly in the cortex, and changed several behavioral traits (increased deambulation and exploration and decreased anxiety). These results highlight that the control of the endogenous production and/or action of MT-3 could represent a powerful therapeutic target in AD.
Collapse
Affiliation(s)
- Yasmina Manso
- Unidad de Fisiología Animal, Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Biociencias, Universidad Autónoma de Barcelona, Edificio C, Bellaterra, 08193 Barcelona, Spain
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Javier Carrasco
- Unidad de Fisiología Animal, Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Biociencias, Universidad Autónoma de Barcelona, Edificio C, Bellaterra, 08193 Barcelona, Spain
| | - Gemma Comes
- Unidad de Fisiología Animal, Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Biociencias, Universidad Autónoma de Barcelona, Edificio C, Bellaterra, 08193 Barcelona, Spain
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Gabriele Meloni
- Department of Biochemistry, University of Zürich, 8057 Zurich, Switzerland
- Present Address: Division of Chemistry and Chemical Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125 USA
| | - Paul A. Adlard
- Oxidation Biology Laboratory, The Mental Health Research Institute, The University of Melbourne, Parkville, VIC 3052 Australia
- Synaptic Neurobiology Laboratory, The Mental Health Research Institute, The University of Melbourne, Parkville, VIC 3052 Australia
| | - Ashley I. Bush
- Synaptic Neurobiology Laboratory, The Mental Health Research Institute, The University of Melbourne, Parkville, VIC 3052 Australia
| | - Milan Vašák
- Department of Biochemistry, University of Zürich, 8057 Zurich, Switzerland
| | - Juan Hidalgo
- Unidad de Fisiología Animal, Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Biociencias, Universidad Autónoma de Barcelona, Edificio C, Bellaterra, 08193 Barcelona, Spain
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
42
|
Metallothioneins and brain injury: What transgenic mice tell us. Environ Health Prev Med 2012; 9:87-94. [PMID: 21432316 DOI: 10.1007/bf02898066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Accepted: 03/18/2004] [Indexed: 10/21/2022] Open
Abstract
In rodents, the metallothionein (MT) family is composed of four members, MT-1 to MT-4. MT-1&2 are expressed in virtually all tissues including those of the Central Nervous System (CNS), while MT-3 (also called Growth Inhibitory Factor) and MT-4 are expressed prominently in the brain and in keratinizing epithelia, respectively. For the understanding of the physiological functions of these proteins in the brain, the use of transgenic mice has provided essential information. Results obtained inMT-1&2-null mice and in MT-1-overexpressing mice strongly suggeset that these MT isoforms are important antioxidant, anti-inflammatory and antiapoptotic proteins in the brain. Results inMT-3-null mice show a very different pattern, with no support for MT-1&2-like functions. Rather, MT-3 could be involved in neuronal sprouting and survival. Results obtained in a model of peripheral nervous system injury also suggest that MT-3 could be involved in the control of nerve growth.
Collapse
|
43
|
Sohn EJ, Kim DW, Kim MJ, Jeong HJ, Shin MJ, Ahn EH, Kwon SW, Kim YN, Kim DS, Han KH, Park J, Hwang HS, Eum WS, Choi SY. PEP-1–metallothionein-III protein ameliorates the oxidative stress-induced neuronal cell death and brain ischemic insults. Biochim Biophys Acta Gen Subj 2012; 1820:1647-55. [DOI: 10.1016/j.bbagen.2012.06.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 06/06/2012] [Accepted: 06/19/2012] [Indexed: 01/13/2023]
|
44
|
Marx G, Gilon C. The molecular basis of memory. ACS Chem Neurosci 2012; 3:633-42. [PMID: 23050060 DOI: 10.1021/cn300097b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 07/17/2012] [Indexed: 11/28/2022] Open
Abstract
We propose a tripartite biochemical mechanism for memory. Three physiologic components are involved, namely, the neuron (individual and circuit), the surrounding neural extracellular matrix, and the various trace metals distributed within the matrix. The binding of a metal cation affects a corresponding nanostructure (shrinking, twisting, expansion) and dielectric sensibility of the chelating node (address) within the matrix lattice, sensed by the neuron. The neural extracellular matrix serves as an electro-elastic lattice, wherein neurons manipulate multiple trace metals (n > 10) to encode, store, and decode coginive information. The proposed mechanism explains brains low energy requirements and high rates of storage capacity described in multiples of Avogadro number (N(A) = 6 × 10(23)). Supportive evidence correlates memory loss to trace metal toxicity or deficiency, or breakdown in the delivery/transport of metals to the matrix, or its degradation. Inherited diseases revolving around dysfunctional trace metal metabolism and memory dysfunction, include Alzheimer's disease (Al, Zn, Fe), Wilson's disease (Cu), thalassemia (Fe), and autism (metallothionein). The tripartite mechanism points to the electro-elastic interactions of neurons with trace metals distributed within the neural extracellular matrix, as the molecular underpinning of "synaptic plasticity" affecting short-term memory, long-term memory, and forgetting.
Collapse
Affiliation(s)
| | - Chaim Gilon
- Institute of Chemistry, Hebrew University, Jerusalem, Israel
| |
Collapse
|
45
|
Affiliation(s)
- Kasper P Kepp
- DTU Chemistry, Technical University of Denmark, DK 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
46
|
Sheline CT, Zhu J, Zhang W, Shi C, Cai AL. Mitochondrial inhibitor models of Huntington's disease and Parkinson's disease induce zinc accumulation and are attenuated by inhibition of zinc neurotoxicity in vitro or in vivo. NEURODEGENER DIS 2012; 11:49-58. [PMID: 22627004 DOI: 10.1159/000336558] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 01/12/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Inhibition of mitochondrial function occurs in many neurodegenerative diseases, and inhibitors of mitochondrial complexes I and II are used to model them. The complex II inhibitor, 3-nitroproprionic acid (3-NPA), kills the striatal neurons susceptible in Huntington's disease. The complex I inhibitor N-methyl-4-phenylpyridium (MPP(+)) and 6-hydroxydopamine (6-OHDA) are used to model Parkinson's disease. Zinc (Zn(2+)) accumulates after 3-NPA, 6-OHDA and MPP(+) in situ or in vivo. OBJECTIVE We will investigate the role of Zn(2+) neurotoxicity in 3-NPA, 6-OHDA and MPP(+). METHODS Murine striatal/midbrain tyrosine hydroxylase positive, or near-pure cortical neuronal cultures, or animals were exposed to 3-NPA or MPP(+) and 6-OHDA with or without neuroprotective compounds. Intracellular zinc ([Zn(2+)](i)), nicotinamide adenine dinucleotide (NAD(+)), NADH, glycolytic intermediates and neurotoxicity were measured. RESULTS We showed that compounds or genetics which restore NAD(+) and attenuate Zn(2+) neurotoxicity (pyruvate, nicotinamide, NAD(+), increased NAD(+) synthesis, sirtuin inhibition or Zn(2+) chelation) attenuated the neuronal death induced by these toxins. The increase in [Zn(2+)](i) preceded a reduction in the NAD(+)/NADH ratio that caused a reversible glycolytic inhibition. Pyruvate, nicotinamide and NAD(+) reversed the reductions in the NAD(+)/NADH ratio, glycolysis and neuronal death after challenge with 3-NPA, 6-OHDA or MPP(+), as was previously shown for exogenous Zn(2+). To test efficacy in vivo, we injected 3-NPA into the striatum of rats and systemically into mice, with or without pyruvate. We observed early striatal Zn(2+) fluorescence, and pyruvate significantly attenuated the 3-NPA-induced lesion and restored behavioral scores. CONCLUSIONS Together, these studies suggest that Zn(2+) accumulation caused by MPP(+) and 3-NPA is a novel preventable mechanism of the resultant neurotoxicity.
Collapse
Affiliation(s)
- Christian T Sheline
- Department of Ophthalmology and the Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA. csheli @ lsuhsc.edu
| | | | | | | | | |
Collapse
|
47
|
Hare DJ, Lee JK, Beavis AD, van Gramberg A, George J, Adlard PA, Finkelstein DI, Doble PA. Three-dimensional atlas of iron, copper, and zinc in the mouse cerebrum and brainstem. Anal Chem 2012; 84:3990-7. [PMID: 22462591 DOI: 10.1021/ac300374x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Atlases depicting molecular and functional features of the brain are becoming an integral part of modern neuroscience. In this study we used laser ablation-inductively coupled plasma-mass spectrometry (LA-ICPMS) to quantitatively measure iron (Fe), copper (Cu), and zinc (Zn) levels in a serially sectioned C57BL/6 mouse brain (cerebrum and brainstem). Forty-six sections were analyzed in a single experiment of approximately 158 h in duration. We constructed a 46-plate reference atlas by aligning quantified images of metal distribution with corresponding coronal sections from the Allen Mouse Brain Reference Atlas. The 46 plates were also used to construct three-dimensional models of Fe, Cu, and Zn distribution. This atlas represents the first reconstruction of quantitative trace metal distribution through the brain by LA-ICPMS and will facilitate the study of trace metals in the brain and help to elucidate their role in neurobiology.
Collapse
Affiliation(s)
- Dominic J Hare
- Elemental Bio-imaging Facility, University of Technology, Sydney, New South Wales, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Zhang L, Wu J, Wang X, Liu B, Ma B. Isolation of metallothionein genes and in silico structural characterization of their proteins using molecular modeling from yak (Bos grunniens). Biochem Genet 2012; 50:585-99. [PMID: 22399135 DOI: 10.1007/s10528-012-9503-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 12/01/2011] [Indexed: 11/27/2022]
Abstract
Yak metallothioneins (BgMTs) are cysteine-rich metal-chelating proteins with highly conserved cysteine residues in their amino acid sequences. The 3D structures of the Cd(7)-BgMTs reconstructed by molecular modeling included two domains: the β-domain with M(3)(S(cys))(9) metal-thiolate clusters and the α-domain with M(4)(S(cys))(11) metal-thiolate clusters. An unusual variant was found at position 30 (Cys30→Ser30) in BgMT-III, which is usually conserved in the mammalian MT-I/-II (Cys29) and MT-III (Cys30). The variant residue of BgMT-III may play a key role in yak genetic evolution, metal-binding activity, dynamic conformation, and heavy metal metabolism. BgMT-III contained a Thr insertion at position 5 (T(5)), which may loosen the structure of the β-domain of BgMT-III, and a conserved C(6)PCP(9) motif, which may provide an interacting surface for protein-protein interactions. There is also an acidic hexapeptide insertion (E(55)GAEAE(60)) that could regulate the particular interdomain interactions and lead to the conformational change in the β-domain.
Collapse
Affiliation(s)
- Liping Zhang
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, China
| | | | | | | | | |
Collapse
|
49
|
Nakazato K, Nakajima K, Nakano T, Kodaira T, Nakayama K, Satoh M, Nagamine T. Metallothionein (MT) 1/2 expression in MT 1/2 and MT 3 knock-out mice and Long-Evans Cinnamon (LEC) rats. J Toxicol Sci 2012; 37:169-75. [DOI: 10.2131/jts.37.169] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
| | | | | | | | - Kenji Nakayama
- Graduate School of Pharmaceutical Sciences, Kyoto University
| | | | | |
Collapse
|
50
|
Santos CRA, Martinho A, Quintela T, Gonçalves I. Neuroprotective and neuroregenerative properties of metallothioneins. IUBMB Life 2011; 64:126-35. [DOI: 10.1002/iub.585] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 09/09/2011] [Indexed: 12/30/2022]
|