1
|
Plasticity in exocytosis revealed through the effects of repetitive stimuli affect the content of nanometer vesicles and the fraction of transmitter released. Proc Natl Acad Sci U S A 2019; 116:21409-21415. [PMID: 31570594 DOI: 10.1073/pnas.1910859116] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Electrochemical techniques with disk and nano-tip electrodes, together with calcium imaging, were used to examine the effect of short-interval repetitive stimuli on both exocytosis and vesicular content in a model cell line. We show that the number of events decreases markedly with repeated stimuli suggesting a depletion of exocytosis machinery. However, repetitive stimuli induce a more stable fusion pore, leading to an increased amount of neurotransmitter release. In contrast, the total neurotransmitter content inside the vesicles decreases after repetitive stimuli, resulting in a higher average release fraction from each event. We suggest a possible mechanism regarding a link between activity-induced plasticity and fraction of release.
Collapse
|
2
|
Noga BR, Pinzon A. Spontaneous and electrically-evoked catecholamine secretion from long-term cultures of bovine adrenal chromaffin cells. Brain Res 2013; 1529:209-22. [PMID: 23891791 DOI: 10.1016/j.brainres.2013.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 07/03/2013] [Accepted: 07/18/2013] [Indexed: 11/19/2022]
Abstract
Catecholamine release was measured from bovine adrenal medullary chromaffin cell (CC) cultures maintained over a period of three months. Cells were plated over simple biocompatible cell platforms with electrical stimulation capability and at specified times transferred to an acrylic superfusion chamber designed to allow controlled flow of superfusate over the culture. Catecholamine release was measured from the superfusates using fast cyclic voltammetry before, during and after electrical stimulation of the cells. Immunocytochemical staining of CC cultures revealed that they were composed of epinephrine (EP) and/or norepinephrine (NE) type cells. Both spontaneous and evoked-release of catecholamines from CCs were observed throughout the testing period. EP predominated during spontaneous release, whereas NE was more prevalent during electrically-evoked release. Electrical stimulation for 20 s, increased total catecholamine release by 60-130% (measured over a period of 500 s) compared to that observed for an equivalent 20 s period of spontaneous release. Stimulus intensity was correlated with the amount of evoked release, up to a plateau which was observed near the highest intensities. Shorter intervals between stimulation trials did not significantly affect the initial amount of release, and the amount of evoked release was relatively stable over time and did not decrease significantly with age of the culture. The present study demonstrates long-term survival of CC cultures in vitro and describes a technique useful for rapid assessment of cell functionality and release properties of cultured monoaminergic cell types that later can be transplanted for neurotransmitter replacement following injury or disease.
Collapse
Affiliation(s)
- Brian R Noga
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA.
| | | |
Collapse
|
3
|
Cytosolic organelles shape calcium signals and exo–endocytotic responses of chromaffin cells. Cell Calcium 2012; 51:309-20. [DOI: 10.1016/j.ceca.2011.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 12/02/2011] [Accepted: 12/05/2011] [Indexed: 01/09/2023]
|
4
|
On depolarization-evoked exocytosis as a function of calcium entry: possibilities and pitfalls. Biophys J 2011; 101:793-802. [PMID: 21843469 DOI: 10.1016/j.bpj.2011.06.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 06/16/2011] [Accepted: 06/29/2011] [Indexed: 11/23/2022] Open
Abstract
Secretion from many endocrine cells is a result of calcium-regulated exocytosis due to Ca²⁺ influx. Using the patch-clamp technique, voltage pulses can be applied to the cells to open Ca²⁺ channels, resulting in a measurable Ca²⁺ current, and evoke exocytosis, which can be seen as an increase in membrane capacitance. A common tool for evaluating the relation between Ca²⁺ influx and exocytosis is to plot the increase in capacitance (ΔC(m)) as a function of the integral of the measured Ca²⁺current (Q). When depolarizations of different lengths are imposed, the rate of exocytosis is typically higher for shorter than for longer pulses, which has been suggested to result from depletion of a granule pool or from Ca²⁺ current inactivation. It is here demonstrated that ΔC(m) as a function of Q can reveal whether Ca²⁺ current inactivation masquerades as pool depletion. Moreover, it is shown that a convex, cooperativity-like, relation between ΔC(m) and Q surprisingly cannot occur as a result of cooperative effects, but can result from delays in the exocytotic process or in Ca²⁺dynamics. An overview of expected ΔC(m)-versus-Q relations for a range of explicit situations is given, which should help in the interpretation of data of depolarization-evoked exocytosis in endocrine cells.
Collapse
|
5
|
Xu S, Shimahara T, Cooke IM. Capacitance increases of dissociated tilapia prolactin cells in response to hyposmotic and depolarizing stimuli. Gen Comp Endocrinol 2011; 173:38-47. [PMID: 21549709 DOI: 10.1016/j.ygcen.2011.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 04/07/2011] [Accepted: 04/19/2011] [Indexed: 11/25/2022]
Abstract
Prolactin (PRL) is the major hormonal mediator of adaptation to hyposmotic conditions. In tilapia (Oreochromis mossambicus), PRL cells are segregated to the rostral pars distalis of the anterior pituitary facilitating the nearly pure culture of dissociated PRL cells. Membrane capacitance (C(m)) was recorded at 1Hz or higher for tens of minutes as a surrogate monitor of PRL secretion by exocytosis from cells under perforated patch clamp. The study compares secretory responses to trains of depolarizing clamps (100 at 2.5 Hz, from -70 to +10 mV for 100 ms) to the physiological stimulus, exposure to hyposmotic medium, here a switch from 350 to 300 mOsm saline ([Ca²⁺] 15 mM). Two-thirds of cells tested with each stimulus responded. In response to depolarizing clamps, C(m) increased linearly at an average rate of 7.2 fF/s. The increase was also linear in response to hyposmotic perfusion, but the average rate was 0.68 fF/s. Response to depolarization was reversibly blocked in Ca²⁺-omitted saline, or in saline with 30 μM Cd²⁺. It was unaffected by 0.1 μM tetrodotoxin. By contrast, responses were reduced but not absent during perfusion of hyposmotic saline with Ca²⁺-omitted; 30 μM Cd²⁺ appeared to enhance the hyposmotic response. BAPTA-AM eliminated responses to both stimuli, confirming that secretion was dependent on increases of intracellular [Ca²⁺]. Together with previous observations from this laboratory of [Ca²⁺](i) with simultaneous collection and immunoassay of perfusate for PRL, we conclude that depolarization and hyposmotic stimuli initiate secretion by independent mechanisms.
Collapse
Affiliation(s)
- Shenghong Xu
- Békésy Laboratory of Neurobiology, University of Hawaii, Honolulu, HI 96822, USA
| | | | | |
Collapse
|
6
|
Marrero HG, Lemos JR. Ionic conditions modulate stimulus-induced capacitance changes in isolated neurohypophysial terminals of the rat. J Physiol 2009; 588:287-300. [PMID: 19933755 DOI: 10.1113/jphysiol.2009.180778] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Peptidergic nerve terminals of the neurohypophysis (NH) secrete both oxytocin and vasopressin upon stimulation with peptide-specific bursts of action potentials from magnocellular neurons. These bursts vary in both frequency and action potential duration and also induce in situ ionic changes both inside and outside the terminals in the NH. These temporary effects include the increase of external potassium and decrease of external calcium, as well as the increase in internal sodium and chloride concentrations. In order to determine any mechanism of action that these ionic changes might have on secretion, stimulus-induced capacitance recordings were performed on isolated terminals of the NH using action potential burst patterns of varying frequency and action potential width. The results indicate that in NH terminals: (1) increased internal chloride concentration improves the efficiency of action potential-induced capacitance changes, (2) increasing external potassium increases stimulus-induced capacitance changes, (3) decreasing external calcium decreases the capacitance induced by low frequency broadened action potentials, while no capacitance change is observed with high frequency un-broadened action potentials, and (4) increasing internal sodium increases the capacitance change induced by low frequency bursts of broadened action potentials, more than for high frequency bursts of narrow action potentials. These results are consistent with previous models of stimulus-induced secretion, where optimal secretory efficacy is determined by particular characteristics of action potentials within a burst. Our results suggest that positive effects of increased internal sodium and external potassium during a burst may serve as a compensatory mechanism for secretion, counterbalancing the negative effects of reduced external calcium. In this view, high frequency un-broadened action potentials (initial burst phase) would condition the terminals by increasing internal sodium for optimal secretion by the physiological later phase of broadened action potentials. Thus, ionic changes occurring during a burst may help to make such stimulation more efficient at inducing secretion. Furthermore, these effects are thought to occur within the initial few seconds of incoming burst activity at both oxytocin and vasopressin types of NH nerve terminals.
Collapse
Affiliation(s)
- Héctor G Marrero
- Physiology Department & Program in Neuroscience, University of Massachusetts, Medical School, Worcester, MA 01655, USA.
| | | |
Collapse
|
7
|
Park Y, Kim KT. Short-term plasticity of small synaptic vesicle (SSV) and large dense-core vesicle (LDCV) exocytosis. Cell Signal 2009; 21:1465-70. [PMID: 19249357 DOI: 10.1016/j.cellsig.2009.02.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 02/17/2009] [Indexed: 10/21/2022]
Abstract
Synaptic plasticity results from changes in the strength of synaptic transmission upon repetitive stimulation. The amount of neurotransmitter released from presynaptic terminals can regulate short-term plasticity that lasts for a few minutes. This review focuses on short-term plasticity of small synaptic vesicle (SSV) and large dense-core vesicle (LDCV) exocytosis. Whereas SSVs contain classical neurotransmitters and activate ion channels, LDCVs contain neuropeptides and hormones which primarily activate G protein-coupled receptors (GPCRs). Thus, LDCV exocytosis is mainly associated with modulation of synaptic activity and cannot induce synaptic activity by itself. As in SSV exocytosis, repetitive stimulation leads to short-term enhancement of LDCV exocytosis: i.e., activity-dependent potentiation (ADP) which represents potentiation of neurotransmitter release. Short-term plasticity of SSV exocytosis results from Ca2+ accumulation, but ADP of LDCV exocytosis does not. Here, we review the signaling mechanisms and differences of short-term plasticity in exocytotic processes of SSV and LDCV.
Collapse
Affiliation(s)
- Yongsoo Park
- Department of Life Science, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | | |
Collapse
|
8
|
de Diego AMG, Arnáiz-Cot JJ, Hernández-Guijo JM, Gandía L, García AG. Differential variations in Ca2+ entry, cytosolic Ca2+ and membrane capacitance upon steady or action potential depolarizing stimulation of bovine chromaffin cells. Acta Physiol (Oxf) 2008; 194:97-109. [PMID: 18485124 DOI: 10.1111/j.1748-1716.2008.01871.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS This study looks into the physiology of the exocytosis of catecholamines released by adrenal medullary chromaffin cells. We have comparatively explored the exocytotic responses elicited by two different patterns of depolarizing stimulation: the widely employed square depolarizing pulses (DPs) and trains of acetylcholine-like action potentials (APs), likely the physiological mode of stimulation in the intact innervated adrenal medulla. APs were applied at 30 Hz, a frequency similar to that produced in a stressful situation. METHODS Patch-clamp, cell membrane capacitance, single cell amperometry and fluorescence were the techniques used. The variations of calcium entry measured as the integral of the calcium current, cytosolic calcium (measured with the calcium-sensitive fluorescent probe fluo-4) and exo-endocytosis (membrane capacitance variations) were the parameters measured. RESULTS Trains of AP depolarizations produced distinct responses compared to those of square depolarizations: (1) Calcium current amplitude decreased to a lesser extent along the AP train; (2) calcium entry and capacitance increments raised linearly with stimulation time whereas they deviated from linearity when square depolarizations were used; (3) slower activation and faster delayed decay phase of cytosolic calcium transients; (4) capacitance increments varied linearly with calcium entry with APs and deviated from linearity with longer depolarizations; (5) little endocytosis after stimulation with longer trains of APs and pronounced endocytosis with longer square depolarizations. CONCLUSIONS Stimulation of chromaffin cells with trains of APs produced patterns of cytosolic calcium transients, exocytotic and endocytotic responses quite different from those elicited by the widely employed DPs. Our study is relevant from the methodological and physiological points of view.
Collapse
Affiliation(s)
- A M G de Diego
- Facultad de Medicina, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain.
| | | | | | | | | |
Collapse
|
9
|
Jansen EJR, Scheenen WJJM, Hafmans TGM, Martens GJM. Accessory subunit Ac45 controls the V-ATPase in the regulated secretory pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2301-10. [PMID: 18657579 DOI: 10.1016/j.bbamcr.2008.06.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 06/26/2008] [Accepted: 06/26/2008] [Indexed: 10/21/2022]
Abstract
The vacuolar (H(+))-ATPase (V-ATPase) is crucial for multiple processes within the eukaryotic cell, including membrane transport and neurotransmitter secretion. How the V-ATPase is regulated, e.g. by an accessory subunit, remains elusive. Here we explored the role of the neuroendocrine V-ATPase accessory subunit Ac45 via its transgenic expression specifically in the Xenopus intermediate pituitary melanotrope cell model. The Ac45-transgene product did not affect the levels of the prohormone proopiomelanocortin nor of V-ATPase subunits, but rather caused an accumulation of the V-ATPase at the plasma membrane. Furthermore, a higher abundance of secretory granules, protrusions of the plasma membrane and an increased Ca(2+)-dependent secretion efficiency were observed in the Ac45-transgenic cells. We conclude that in neuroendocrine cells Ac45 guides the V-ATPase through the secretory pathway, thereby regulating the V-ATPase-mediated process of Ca(2+)-dependent peptide secretion.
Collapse
Affiliation(s)
- Eric J R Jansen
- Department of Molecular Animal Physiology, Donders Centre for Neuroscience, Faculty of Science, Radboud University, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
10
|
Amatore C, Arbault S, Guille M, Lemaître F. Electrochemical Monitoring of Single Cell Secretion: Vesicular Exocytosis and Oxidative Stress. Chem Rev 2008; 108:2585-621. [DOI: 10.1021/cr068062g] [Citation(s) in RCA: 316] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Borges R, Camacho M, Gillis KD. Measuring secretion in chromaffin cells using electrophysiological and electrochemical methods. Acta Physiol (Oxf) 2008; 192:173-84. [PMID: 18021323 DOI: 10.1111/j.1748-1716.2007.01814.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Our present understanding of exocytosis of catecholamines has benefited tremendously from the arrival of single-cell electrochemical methods (amperometry and voltammetry), electrophysiological techniques (whole-cell and patch capacitance) and from the combination of both techniques (patch amperometry). In this brief review, we will outline the strengths and limitations of amperometric and electrophysiological methods and highlight the major contribution obtained with the use of these techniques in chromaffin cells.
Collapse
Affiliation(s)
- R Borges
- Unidad de Farmacología, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain.
| | | | | |
Collapse
|
12
|
de Diego AMG, Gandía L, García AG. A physiological view of the central and peripheral mechanisms that regulate the release of catecholamines at the adrenal medulla. Acta Physiol (Oxf) 2008; 192:287-301. [PMID: 18005392 DOI: 10.1111/j.1748-1716.2007.01807.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Here we review the tight neural control of the differential secretion into the circulation, of the adrenal medullary hormones adrenaline and noradrenaline. One or the other catecholamines are differentially released on various stress conditions. This is specifically controlled by central nervous system nuclei at the cortex, hypothalamus and spinal cord. Different firing patterns of splanchnic nerves and nicotinic or muscarinic receptors cause the selective release of noradrenaline or adrenaline, to adapt the body to the 'fight or flight' reaction, or during severe hypoglycaemia, haemorrhage, cold, acute myocardial infarction or other severe stressful conflicts. Endogenously acetylcholine (ACh) released at the splanchnic nerve-chromaffin cell synapse, acting on muscarinic and nicotinic receptors, causes membrane depolarization and action potentials (AP) in chromaffin cells. These changes vary with the animal species, the cell preparation (intact bisected adrenal, adrenal slices, or isolated fresh or cultured cells) or the recording technique (intracellular microelectrodes, patch-clamp, perforated-patch, cell-attached). Conflicting results leave many open questions concerning the actions of ACh on chromaffin cell excitability. The use of adrenal slices and field electrical stimulation will surely provide new insights into these mechanisms. Chromaffin cells have been thoroughly used as models to study the relationship between Ca2+ entry, cytosolic Ca2+ signals, exocytosis and endocytosis, using patch-clamp and amperometric techniques. Cells have been stimulated with single depolarizing pulses (DPs), DP trains and with simulated AP waveforms. These approaches have provided useful information but we have no data on APs generated by pulsatile secretory quanta of ACh, trying to mimic the intermittent and repetitive splanchnic nerve discharge of the neurotransmitter. We present some recent experiments using ultrashort ACh pulses (25 ms), that cause non-desensitizing repetitive APs with each ACh pulse, at low ACh concentrations (30 microM). Ultrashort pulses of a high ACh concentration (1000 microM) causes a single AP followed by a prolonged depolarization. It could be interesting trying to correlate these 'patterns of splanchnic nerve discharge' with Ca2+ signals and exocytosis. This, together with the use of adrenal slices and transmural electrical stimulation of splanchnic nerves will provide new physiologically sound data on the regulation of adrenal medullary secretion.
Collapse
Affiliation(s)
- A M G de Diego
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | |
Collapse
|
13
|
García AG, García-De-Diego AM, Gandía L, Borges R, García-Sancho J. Calcium Signaling and Exocytosis in Adrenal Chromaffin Cells. Physiol Rev 2006; 86:1093-131. [PMID: 17015485 DOI: 10.1152/physrev.00039.2005] [Citation(s) in RCA: 259] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
At a given cytosolic domain of a chromaffin cell, the rate and amplitude of the Ca2+concentration ([Ca2+]c) depends on at least four efficient regulatory systems: 1) plasmalemmal calcium channels, 2) endoplasmic reticulum, 3) mitochondria, and 4) chromaffin vesicles. Different mammalian species express different levels of the L, N, P/Q, and R subtypes of high-voltage-activated calcium channels; in bovine and humans, P/Q channels predominate, whereas in felines and murine species, L-type channels predominate. The calcium channels in chromaffin cells are regulated by G proteins coupled to purinergic and opiate receptors, as well as by voltage and the local changes of [Ca2+]c. Chromaffin cells have been particularly useful in studying calcium channel current autoregulation by materials coreleased with catecholamines, such as ATP and opiates. Depending on the preparation (cultured cells, adrenal slices) and the stimulation pattern (action potentials, depolarizing pulses, high K+, acetylcholine), the role of each calcium channel in controlling catecholamine release can change drastically. Targeted aequorin and confocal microscopy shows that Ca2+entry through calcium channels can refill the endoplasmic reticulum (ER) to nearly millimolar concentrations, and causes the release of Ca2+(CICR). Depending on its degree of filling, the ER may act as a sink or source of Ca2+that modulates catecholamine release. Targeted aequorins with different Ca2+affinities show that mitochondria undergo surprisingly rapid millimolar Ca2+transients, upon stimulation of chromaffin cells with ACh, high K+, or caffeine. Physiological stimuli generate [Ca2+]cmicrodomains in which the local subplasmalemmal [Ca2+]crises abruptly from 0.1 to ∼50 μM, triggering CICR, mitochondrial Ca2+uptake, and exocytosis at nearby secretory active sites. The fact that protonophores abolish mitochondrial Ca2+uptake, and increase catecholamine release three- to fivefold, support the earlier observation. This increase is probably due to acceleration of vesicle transport from a reserve pool to a ready-release vesicle pool; this transport might be controlled by Ca2+redistribution to the cytoskeleton, through CICR, and/or mitochondrial Ca2+release. We propose that chromaffin cells have developed functional triads that are formed by calcium channels, the ER, and the mitochondria and locally control the [Ca2+]cthat regulate the early and late steps of exocytosis.
Collapse
Affiliation(s)
- Antonio G García
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, and Servicio de Farmacología Clínica e Instituto Universitario de Investigación Gerontológica y Metabólica, Hospital Universitario de la Princesa, Madrid, Spain.
| | | | | | | | | |
Collapse
|
14
|
Park YS, Jun DJ, Hur EM, Lee SK, Suh BS, Kim KT. Activity-dependent potentiation of large dense-core vesicle release modulated by mitogen-activated protein kinase/extracellularly regulated kinase signaling. Endocrinology 2006; 147:1349-56. [PMID: 16306081 DOI: 10.1210/en.2005-0959] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Large dense-core vesicles (LDCVs), containing neuropeptides, hormones, and amines, play a crucial role in the activation of the sympathetic nervous system and synaptic modulation. In some secretory cells, LDCVs show activity-dependent potentiation (ADP), which represents enhancement of subsequent exocytosis, compared with the previous one. Here we report the signaling mechanism involved in ADP of LDCV release. First, ADP of LDCV release, induced by repetitive stimulation of nicotinic acetylcholine receptors (nAChRs), was augmented by increasing calcium influx, showing calcium dependence of ADP. Second, translocation of vesicles was involved in ADP. Electron microscope analysis revealed that nAChR stimulation resulted in LDCV translocation to the plasma membrane and increase of fused LDCVs in response to repetitive stimulation was observed by amperometry. Third, we provide evidence for involvement of MAPK signaling in ADP. MAPK signaling was activated by nAChR-induced calcium influx, and ADP as well as vesicle translocation was suppressed by inhibition of MAPK signaling with MAPK kinase blockers, such as PD 098059 and U0126. Fourth, PD 098059 inhibited nAChR stimulation-induced F-actin disassembly, which has been reported to control vesicle translocation. Taken together, we suggest that ADP of LDCV release is modulated by calcium-dependent activation of MAPK signaling via regulating F-actin disassembly.
Collapse
Affiliation(s)
- Yong-Soo Park
- Department of Life Science, Pohang University of Science and Technology, San 31, Hyoja Dong, Pohang 790-784, Republic of Korea
| | | | | | | | | | | |
Collapse
|
15
|
Thiagarajan R, Wilhelm J, Tewolde T, Li Y, Rich MM, Engisch KL. Enhancement of Asynchronous and Train-Evoked Exocytosis in Bovine Adrenal Chromaffin Cells Infected With a Replication Deficient Adenovirus. J Neurophysiol 2005; 94:3278-91. [PMID: 16033942 DOI: 10.1152/jn.00336.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bovine adrenal chromaffin cells share many characteristics with neurons and are often used as a simple model system to study ion channels and neurotransmitter release. We infected bovine adrenal chromaffin cells with a replication deficient adenovirus that induces expression of the common reporters β-galactosidase and Green Fluorescent Protein via a bicistronic sequence. In perforated-patch recordings performed 48-h postinfection, peak calcium currents were reduced 32%, primarily due to loss of ω-conotoxin-GVIA-sensitive current. In contrast, sodium currents were increased 17%. Exocytosis, detected as an increase in membrane capacitance immediately after a single step depolarization, was reduced in proportion to the decrease in calcium influx. However, capacitance continued to increase for seconds after the depolarization. The amplitude of this poststimulus drift, or asynchronous exocytosis, was approximately three times that which occurred in a small fraction of control cells. Exocytosis evoked by repetitive stimulation with a train of brief depolarizations was increased 50%. Intracellular calcium levels measured during and after stimulation were lower, not higher, in adenovirus-infected cells. Electroporated cells showed reduced calcium currents but no enhancement of exocytosis. Cells infected with UV-irradiated virus showed reduced calcium currents and enhancement of exocytosis, but the changes were smaller than those caused by intact virus. Our results are consistent with the idea that adenovirus capsid and adenoviral DNA contribute to a Ca2+influx- and [Ca2+]i-independent enhancement of exocytosis in bovine chromaffin cells.
Collapse
|
16
|
Chan SA, Polo-Parada L, Landmesser LT, Smith C. Adrenal Chromaffin Cells Exhibit Impaired Granule Trafficking in NCAM Knockout Mice. J Neurophysiol 2005; 94:1037-47. [PMID: 15800072 DOI: 10.1152/jn.01213.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neural cell adhesion molecule (NCAM) plays several critical roles in neuron path-finding and intercellular communication during development. In the clinical setting, serum NCAM levels are altered in both schizophrenic and autistic patients. NCAM knockout mice have been shown to exhibit deficits in neuronal functions including impaired hippocampal long term potentiation and motor coordination. Recent studies in NCAM null mice have indicated that synaptic vesicle trafficking and active zone targeting are impaired, resulting in periodic synaptic transmission failure under repetitive physiological stimulation. In this study, we tested whether NCAM plays a role in vesicle trafficking that is limited to the neuromuscular junction or whether it may also play a more general role in transmitter release from other cell systems. We tested catecholamine release from neuroendocrine chromaffin cells in the mouse adrenal tissue slice preparation. We utilize electrophysiological and electrochemical measures to assay granule recruitment and targeting in wild-type and NCAM −/− mice. Our data show that NCAM −/− mice exhibit deficits in normal granule trafficking between the readily releasable pool and the highly release-competent immediately releasable pool. This defect results in a decreased rate of granule fusion and thus catecholamine release under physiological stimulation. Our data indicate that NCAM plays a basic role in the transmitter release mechanism in neuroendocrine cells through mediation of granule recruitment and is not limited to the neuromuscular junction and central synapse active zones.
Collapse
Affiliation(s)
- Shyue-An Chan
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106-4970, USA
| | | | | | | |
Collapse
|
17
|
Marengo FD. Calcium gradients and exocytosis in bovine adrenal chromaffin cells. Cell Calcium 2005; 38:87-99. [PMID: 16076487 DOI: 10.1016/j.ceca.2005.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 05/15/2005] [Accepted: 06/01/2005] [Indexed: 10/25/2022]
Abstract
The relationship between the localized Ca(2+) concentration and depolarization-induced exocytosis was studied in patch-clamped adrenal chromaffin cells using pulsed-laser Ca(2+) imaging and membrane capacitance measurements. Short depolarizing voltage steps induced Ca(2+) gradients and small "synchronous" increases in capacitance during the pulses. Longer pulses increased the capacitance changes, which saturated at 16 fF, suggesting the presence of a small immediately releasable pool of fusion-ready vesicles. A Hill plot of the capacitance changes versus the estimated Ca(2+) concentration in a thin (100 nm) shell beneath the membrane gave n = 2.3 and K(d) = 1.4 microM. Repetitive stimulation elicited a more complex pattern of exocytosis: early pulses induced synchronous capacitance increases, but after five or more pulses there was facilitation of the synchronous responses and gradual increases in capacitance continued between pulses (asynchronous exocytosis) as the steep submembrane Ca(2+) gradients collapsed. Raising the pipette Ca(2+) concentration led to early facilitation of the synchronous response and early appearance of asynchronous exocytosis. We used this data to develop a kinetic model of depolarization-induced exocytosis, where Ca(2+)-dependent fusion of vesicles occurs from a small immediately releasable pool with an affinity of 1-2 microM and vesicles are mobilized to this pool in a Ca(2+)-dependent manner.
Collapse
Affiliation(s)
- Fernando D Marengo
- Department of Physiology, UCLA, School of Medicine, Los Angeles, CA 90095, USA.
| |
Collapse
|
18
|
Xu J, Tang KS, Lu VB, Weerasinghe CP, Tse A, Tse FW. Maintenance of quantal size and immediately releasable granules in rat chromaffin cells by glucocorticoid. Am J Physiol Cell Physiol 2005; 289:C1122-33. [PMID: 15930142 DOI: 10.1152/ajpcell.00514.2004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucocorticoid is reported to regulate catecholamine synthesis and storage. However, it is not clear whether the actual amount of catecholamine released from individual granules (quantal size, Q) in mature chromaffin cells is affected by glucocorticoid. Using carbon fiber amperometry, we found that dexamethasone did not affect mean cellular Q or the proportional release from different populations of granules in rat chromaffin cells cultured for 1 day in a serum-free defined medium. After two extra days of culture in the defined medium, there was a rundown in mean cellular Q, and it was associated with a shift in the proportional release from the different granule populations. This phenomenon could not be rescued by serum supplementation but could be prevented by dexamethasone via an action that was independent of changes in voltage-gated Ca(2+) channel (VGCC) density. Using simultaneous measurements of membrane capacitance and cytosolic Ca(2+) concentration, we found that for cells cultured in defined medium dexamethasone enhanced the exocytotic response triggered by a brief depolarization (50 ms) without affecting the VGCC density or the fast exocytotic response triggered via flash photolysis of caged Ca(2+). Thus glucocorticoid may regulate the number of immediately releasable granules that are in close proximity to a subset of VGCC. Because chromaffin cells in vivo are exposed to high concentrations of glucocorticoid, our findings suggest that the paracrine actions of glucocorticoid maintain the mean catecholamine content in chromaffin cell granules as well as the colocalization of releasable granules with VGCCs.
Collapse
Affiliation(s)
- Jianhua Xu
- Department of Pharmacology, 9-70 Medical Sciences Bldg., University of Alberta, Edmonton, AB T6G 2H7, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Hur EM, Park YS, Lee BD, Jang IH, Kim HS, Kim TD, Suh PG, Ryu SH, Kim KT. Sensitization of Epidermal Growth Factor-induced Signaling by Bradykinin Is Mediated by c-Src. J Biol Chem 2004; 279:5852-60. [PMID: 14630916 DOI: 10.1074/jbc.m311687200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Communication between receptor tyrosine kinase (RTK)- and G protein-coupled receptor (GPCR)-mediated signaling systems has received increasing attention in recent years. Here, we report that activation of G protein-coupled bradykinin B2 receptor induces an up-regulation of cellular responses mediated by epidermal growth factor receptor (EGFR) and provide essential mechanistic characteristics of this sensitization process. EGF, which failed to evoke detectable amount of calcium increase and neurotransmitter release when administrated alone in primary cultures of rat adrenal chromaffin cells and PC12 cells, became capable of inducing these responses specifically after bradykinin pretreatment. Both EGFR and non-receptor tyrosine kinase p60Src, whose kinase activities were required in the sensitization, were found to be enriched in cholesterol-rich lipid rafts. Bradykinin caused activation of p60Src and Src-dependent phosphorylation of the EGFR on Tyr-845 in lipid rafts, as well as recruitment of phospholipase C (PLC) gamma1 to the rafts. Depletion of cholesterol by methyl-beta-cyclodextrin disrupted the raft localization of EGFR and Src, as well as bradykinin-induced translocation of PLCgamma1. Furthermore, sensitization, which was impaired by cholesterol depletion, was restored by repletion of cholesterol. Therefore, we suggest that lipid rafts are essential participants in the regulation of receptor-mediated signal transduction and cross-talk via organizing signaling complexes in membrane microdomains.
Collapse
Affiliation(s)
- Eun-Mi Hur
- Department of Life Science, Division of Molecular and Life Sciences, Pohang University of Science and Technology, San 31, Hyoja Dong, Pohang 790-784, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Thiagarajan R, Tewolde T, Li Y, Becker PL, Rich MM, Engisch KL. Rab3A negatively regulates activity-dependent modulation of exocytosis in bovine adrenal chromaffin cells. J Physiol 2003; 555:439-57. [PMID: 14694148 PMCID: PMC1664839 DOI: 10.1113/jphysiol.2003.056333] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Members of the Rab family of monomeric GTPases have been implicated in vesicle trafficking, and Rab3A, located on synaptic vesicles in neurones and secretory vesicles in neuroendocrine cells, is likely to be involved in vesicle fusion leading to neurotransmitter release. A hydrolysis-deficient mutant of Rab3A, Rab3AQ81L, has been shown to potently inhibit hormone release. Here we show that the inhibition of hormone release by Rab3AQ81L is activity-dependent. Bovine adrenal chromaffin cells were induced to express Rab3AQ81L and green fluorescent protein by adenoviral gene transfer of a bicistronic construct. Fluorescent cells were stimulated with single depolarizations and trains of depolarizing pulses in whole cell perforated patch clamp recordings, and exocytosis was detected with cell capacitance measurements and carbon fibre amperometry. When single depolarizations were used to evoke exocytosis, cells expressing Rab3AQ81L showed a 50% reduction in response amplitude. When trains of brief depolarizations (10 or 40 ms) were used to evoke exocytosis, responses rapidly declined to zero in cells expressing Rab3AQ81L. Wild-type Rab3A had effects similar to Rab3AQ81L, causing significant inhibition of exocytosis only during repetitive stimulation. Expression of Rab5A did not alter exocytosis evoked by single depolarizations or repetitive stimulation. Applying a long duration depolarization in the middle of a stimulus train revealed that exocytotic efficacy (capacitance increase per amount of calcium influx) was not decreased in Rab3AQ81L-expressing cells. Instead, the activity-dependent increase in exocytotic efficacy observed in control cells did not occur in Rab3AQ81L-expressing cells. Our results suggest that Rab3A in the GTP bound conformation prevents activity-dependent facilitation.
Collapse
Affiliation(s)
- Ramachandran Thiagarajan
- Department of Physiology, Emory University School of Medicine, 605-J Whitehead Research Building, 615 Michael Street, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
21
|
Soldo BL, Giovannucci DR, Stuenkel EL, Moises HC. Ca(2+) and frequency dependence of exocytosis in isolated somata of magnocellular supraoptic neurones of the rat hypothalamus. J Physiol 2003; 555:699-711. [PMID: 14645448 PMCID: PMC1664858 DOI: 10.1113/jphysiol.2003.051136] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In addition to action potential-evoked exocytotic release at neurohypophysial nerve terminals, the neurohormones arginine vasopressin (aVP) and oxytocin (OT) undergo Ca(2+)-dependent somatodendritic release within the supraoptic and paraventricular hypothalamic nuclei. However, the cellular and molecular mechanisms that underlie this release have not been elucidated. In the present study, the whole-cell patch-clamp technique was utilized in combination with high-time-resolved measurements of membrane capacitance (C(m)) and microfluorometric measurements of cytosolic free Ca(2+) concentration ([Ca(2+)](i)) to examine the Ca(2+) and stimulus dependence of exocytosis in the somata of magnocellular neurosecretory cells (MNCs) isolated from rat supraoptic nucleus (SON). Single depolarizing steps (> or =20 ms) that evoked high-voltage-activated (HVA) Ca(2+) currents (I(Ca)) and elevations in intracellular Ca(2+) concentration were accompanied by an increase in C(m) in a majority (40/47) of SON neurones. The C(m) responses were composed of an initial Ca(2+)-independent, transient component and a subsequent, sustained phase of increased C(m) (termed DeltaC(m)) mediated by an influx of Ca(2+), and increased with corresponding prolongation of depolarizing step durations (20-200 ms). From this relationship we estimated the rate of vesicular release to be 1533 vesicles s(-1). Delivery of neurone-derived action potential waveforms (APWs) as stimulus templates elicited I(Ca) and also induced a DeltaC(m), provided APWs were applied in trains of greater than 13 Hz. A train of APWs modelled after the bursting pattern recorded from an OT-containing neurone during the milk ejection reflex was effective in supporting an exocytotic DeltaC(m) in isolated MNCs, indicating that the somata of SON neurones respond to physiological patterns of neuronal activity with Ca(2+)-dependent exocytotic activity.
Collapse
Affiliation(s)
- Brandi L Soldo
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
22
|
Li Q, Ho CS, Marinescu V, Bhatti H, Bokoch GM, Ernst SA, Holz RW, Stuenkel EL. Facilitation of Ca(2+)-dependent exocytosis by Rac1-GTPase in bovine chromaffin cells. J Physiol 2003; 550:431-45. [PMID: 12754309 PMCID: PMC2343055 DOI: 10.1113/jphysiol.2003.039073] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Rho family GTPases are primary mediators of cytoskeletal reorganization, although they have also been reported to regulate cell secretion. Yet, the extent to which Rho family GTPases are activated by secretory stimuli in neural and neuroendocrine cells remains unknown. In bovine adrenal chromaffin cells, we found Rac1, but not Cdc42, to be rapidly and selectively activated by secretory stimuli using an assay selective for the activated GTPases. To examine effects of activated Rac1 on secretion, constitutively active mutants of Rac1 (Rac1-V12, Rac1-L61) were transiently expressed in adrenal chromaffin cells. These mutants facilitated secretory responses elicited from populations of intact and digitonin-permeabilized cells as well as from cells under whole cell patch clamp. A dominant negative Rac1 mutant (Rac1-N17) produced no effect on secretion. Expression of RhoGDI, a negative regulator of Rac1, inhibited secretory responses while overexpression of effectors of Rac1, notably, p21-activated kinase (Pak1) and actin depolymerization factor (ADF) promoted evoked secretion. In addition, expression of effector domain mutants of Rac1-V12 that exhibit reduced activation of the cytoskeletal regulators Pak1 and Partner of Rac1 (POR1) resulted in a loss of Rac1-V12-mediated enhancement of evoked secretion. These findings suggest that Rac1, in part, functions to modulate secretion through actions on the cytoskeleton. Consistent with this hypothesis, the actin modifying drugs phalloidin and jasplakinolide enhanced secretion, while latrunculin-A inhibited secretion and eliminated the secretory effects of Rac1-V12. In summary, Rac1 was activated by secretory stimuli and modulated the secretory pathway downstream of Ca2+ influx, partly through regulation of cytoskeletal organization.
Collapse
Affiliation(s)
- Quanwen Li
- Department of Physiology, University of Michigan, Ann Arbor 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Kilic G. Exocytosis in bovine chromaffin cells: studies with patch-clamp capacitance and FM1-43 fluorescence. Biophys J 2002; 83:849-57. [PMID: 12124269 PMCID: PMC1302191 DOI: 10.1016/s0006-3495(02)75213-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In response to physiological stimuli, neuroendocrine cells secrete neurotransmitters through a Ca(2+)-dependent fusion of secretory granules with the plasma membrane. We studied insertion of granules in bovine chromaffin cells using capacitance as a measure of plasma membrane area and fluorescence of a membrane marker FM1-43 as a measure of exocytosis. Intracellular dialysis with [Ca(2+)] (1.5-100 microM) evoked massive exocytosis that was sufficient to double plasma membrane area but did not swell cells. In principle, in the absence of endocytosis, the addition of granule membrane would be anticipated to produce similar increases in the capacitance and FM1-43 fluorescence responses. However, when endocytosis was minimal, the changes in capacitance were markedly larger than the corresponding changes in FM1-43 fluorescence. Moreover, the apparent differences between capacitance and FM1-43 fluorescence changes increased with larger exocytic responses, as more granules fused with the plasma membrane. In experiments in which exocytosis was suppressed, increasing membrane tension by osmotically induced cell swelling increased FM1-43 fluorescence, suggesting that FM1-43 fluorescence is sensitive to changes in the membrane tension. Thus, increasing membrane area through exocytosis does not swell chromaffin cells but may decrease membrane tension.
Collapse
Affiliation(s)
- Gordan Kilic
- Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| |
Collapse
|
24
|
Xu J, Xu Y, Ellis-Davies GCR, Augustine GJ, Tse FW. Differential regulation of exocytosis by alpha- and beta-SNAPs. J Neurosci 2002; 22:53-61. [PMID: 11756488 PMCID: PMC6757591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
We examined the role of SNAPs, soluble proteins that attach N-ethylmaleimide-sensitive factor (NSF), in regulating exocytosis in single rat adrenal chromaffin cells. Whole-cell dialysis of Ca2+-buffered solution or photolysis of caged-Ca2+ was used to manipulate cytosolic Ca2+ concentration ([Ca2+]i), whereas exocytosis was measured via carbon fiber amperometry or membrane capacitance. Buffering [Ca2+]i to approximately 170 nm produced a mean rate of exocytosis of approximately one amperometric event per minute. Including alpha-SNAP (60 or 500 nm) in the intracellular solution dramatically increased the mean rate of exocytosis. The stimulatory action of alpha-SNAP requires ATP hydrolysis mediated via NSF, because this action was blocked by intracellular dialysis of ATP-gamma-S (2 mm) and could not be mimicked by a mutant alpha-SNAP that does not stimulate the ATPase activity of NSF. This action of alpha-SNAP was significant only at [Ca2+]i between 100 and 300 nm and was not shared by beta-SNAP (500 nm), suggesting that alpha-SNAP enhanced a component of exocytosis that is regulated by a high-affinity Ca2+ sensor. In cells dialyzed with both alpha- and beta-SNAP, the rate of exocytosis was smaller than that produced by alpha-SNAP alone, suggesting that alpha- and beta-SNAP interact competitively. Although only alpha-SNAP stimulated exocytosis at [Ca2+]i between 100 and 300 nm, both alpha- and beta-SNAP isoforms equally slowed the time-dependent rundown of the exocytic response. Our results indicate that alpha- and beta-SNAP have different actions in exocytosis. Thus, the ratio of different isoforms of SNAPs can determine release probability at the levels of [Ca2+]i that are involved in regulation of exocytosis.
Collapse
Affiliation(s)
- Jianhua Xu
- Department of Pharmacology and Center for Neuroscience, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | | | | | | | | |
Collapse
|
25
|
David G, Barrett EF. Stimulation-evoked increases in cytosolic [Ca(2+)] in mouse motor nerve terminals are limited by mitochondrial uptake and are temperature-dependent. J Neurosci 2000; 20:7290-6. [PMID: 11007886 PMCID: PMC6772796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Increases in cytosolic [Ca(2+)] evoked by trains of action potentials (20-100 Hz) were recorded from mouse and lizard motor nerve terminals filled with a low-affinity fluorescent indicator, Oregon Green BAPTA 5N. In mouse terminals at near-physiological temperatures (30-38 degrees C), trains of action potentials at 25-100 Hz elicited increases in cytosolic [Ca(2+)] that stabilized at plateau levels that increased with stimulation frequency. Depolarization of mitochondria with carbonylcyanide m-chlorophenylhydrazone (CCCP) or antimycin A1 caused cytosolic [Ca(2+)] to rise to much higher levels during stimulation. Thus, mitochondrial Ca(2+) uptake contributes importantly to limiting the rise of cytosolic [Ca(2+)] during repetitive stimulation. In mouse terminals, the stimulation-induced increase in cytosolic [Ca(2+)] was highly temperature-dependent over the range 18-38 degrees C, with greater increases at lower temperatures. At the lower temperatures, application of CCCP continued to depolarize mitochondria but produced a much smaller increase in the cytosolic [Ca(2+)] transient evoked by repetitive stimulation. This result suggests that the larger amplitude of the stimulation-induced cytosolic [Ca(2+)] transient at lower temperatures was attributable in part to reduced mitochondrial Ca(2+) uptake. In contrast, the stimulation-induced increases in cytosolic [Ca(2+)] measured in lizard motor terminals showed little or no temperature-dependence over the range 18-33 degrees C.
Collapse
Affiliation(s)
- G David
- Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, Florida 33101, USA.
| | | |
Collapse
|
26
|
Kits KS, Mansvelder HD. Regulation of exocytosis in neuroendocrine cells: spatial organization of channels and vesicles, stimulus-secretion coupling, calcium buffers and modulation. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 33:78-94. [PMID: 10967354 DOI: 10.1016/s0165-0173(00)00023-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Neuroendocrine cells display a similar calcium dependence of release as synapses but a strongly different organization of channels and vesicles. Biophysical and biochemical properties of large dense core vesicle release in neuroendocrine cells suggest that vesicles and channels are dissociated by a distance of 100-300 nm. This distinctive organization relates to the sensitivity of the release process to mobile calcium buffers, the resulting relationship between calcium influx and release and the modulatory mechanisms regulating the efficiency of excitation-release coupling. At distances of 100-300 nm, calcium buffers determine the calcium concentration close to the vesicle. Notably, the concentration and diffusion rate of mobile buffers affect the efficacy of release, but local saturation of buffers, possibly enhanced by diffusion barriers, may limit their effects. Buffer conditions may result in a linear relationship between calcium influx and exocytosis, in spite of the third or fourth power relation between intracellular calcium concentration and release. Modulation of excitation-secretion coupling not only concerns the calcium channels, but also the secretory process. Transmitter regulation mediated by cAMP and PKA, as well as use-dependent regulation involving calcium, primarily stimulates filling of the releasable pool. In addition, direct effects of cAMP on the probability of release have been reported. One mechanism to achieve increased release probability is to decrease the distance between channels and vesicles. GTP may stimulate release independently from calcium. Thus, while in most cases primary inputs triggering these pathways await identification, it is evident that large dense core vesicle release is a highly controlled and flexible process.
Collapse
Affiliation(s)
- K S Kits
- Department of Neurophysiology, Research Institute for Neurosciences, Vrije Universiteit, De Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands.
| | | |
Collapse
|
27
|
Teschemacher AG, Seward EP. Bidirectional modulation of exocytosis by angiotensin II involves multiple G-protein-regulated transduction pathways in chromaffin cells. J Neurosci 2000; 20:4776-85. [PMID: 10864935 PMCID: PMC6772261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Angiotensin II (AngII) receptors couple to a multitude of different types of G-proteins resulting in activation of numerous signaling pathways. In this study we examined the consequences of this promiscuous G-protein coupling on secretion. Chromaffin cells were voltage-clamped at -80 mV in perforated-patch configuration, and Ca(2+)-dependent exocytosis was evoked with brief voltage steps to +20 mV. Vesicle fusion was monitored by changes in membrane capacitance (DeltaC(m)), and released catecholamine was detected with single-cell amperometry. Ca(2+) signaling was studied by recording voltage-dependent Ca(2+) currents (I(Ca)) and by measuring intracellular Ca(2+) ([Ca(2+)](i)) with fura-2 AM. AngII inhibited I(Ca) (IC(50) = 0.3 nm) in a voltage-dependent, pertussis toxin (PTX)-sensitive manner consistent with G(i/o)-protein coupling to Ca(2+) channels. DeltaC(m) was modulated bi-directionally; subnanomolar AngII inhibited depolarization-evoked exocytosis, whereas higher concentrations, in spite of I(Ca) inhibition, potentiated DeltaC(m) fivefold (EC(50) = 3.4 nm). Potentiation of exocytosis by AngII involved activation of phospholipase C (PLC) and Ca(2+) mobilization from internal stores. PTX treatment did not affect AngII-dependent Ca(2+) mobilization or facilitation of exocytosis. However, protein kinase C (PKC) inhibitors decreased the facilitatory effects but not the inhibitory effects of AngII on stimulus-secretion coupling. The AngII type 1 receptor (AT1R) antagonist losartan blocked both inhibition and facilitation of secretion by AngII. The results of this study show that activation of multiple types of G-proteins and transduction pathways by a single neuromodulator acting through one receptor type can produce concentration-dependent, bi-directional regulation of exocytosis.
Collapse
Affiliation(s)
- A G Teschemacher
- Department of Pharmacology, School of Medical Sciences, University of Bristol, Bristol BS3 1TD, United Kingdom
| | | |
Collapse
|
28
|
Holz RW, Hlubek MD, Sorensen SD, Fisher SK, Balla T, Ozaki S, Prestwich GD, Stuenkel EL, Bittner MA. A pleckstrin homology domain specific for phosphatidylinositol 4, 5-bisphosphate (PtdIns-4,5-P2) and fused to green fluorescent protein identifies plasma membrane PtdIns-4,5-P2 as being important in exocytosis. J Biol Chem 2000; 275:17878-85. [PMID: 10747966 DOI: 10.1074/jbc.m000925200] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Kinetically distinct steps can be distinguished in the secretory response from neuroendocrine cells with slow ATP-dependent priming steps preceding the triggering of exocytosis by Ca(2+). One of these priming steps involves the maintenance of phosphatidylinositol 4, 5-bisphosphate (PtdIns-4,5-P(2)) through lipid kinases and is responsible for at least 70% of the ATP-dependent secretion observed in digitonin-permeabilized chromaffin cells. PtdIns-4,5-P(2) is usually thought to reside on the plasma membrane. However, because phosphatidylinositol 4-kinase is an integral chromaffin granule membrane protein, PtdIns-4,5-P(2) important in exocytosis may reside on the chromaffin granule membrane. In the present study we have investigated the localization of PtdIns-4,5-P(2) that is involved in exocytosis by transiently expressing in chromaffin cells a pleckstrin homology (PH) domain that specifically binds PtdIns-4, 5-P(2) and is fused to green fluorescent protein (GFP). The PH-GFP protein predominantly associated with the plasma membrane in chromaffin cells without any detectable association with chromaffin granules. Rhodamine-neomycin, which also binds to PtdIns-4,5-P(2), showed a similar subcellular localization. The transiently expressed PH-GFP inhibited exocytosis as measured by both biochemical and electrophysiological techniques. The results indicate that the inhibition was at a step after Ca(2+) entry and suggest that plasma membrane PtdIns-4,5-P(2) is important for exocytosis. Expression of PH-GFP also reduced calcium currents, raising the possibility that PtdIns-4,5-P(2) in some manner alters calcium channel function in chromaffin cells.
Collapse
Affiliation(s)
- R W Holz
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Powell AD, Teschemacher AG, Seward EP. P2Y purinoceptors inhibit exocytosis in adrenal chromaffin cells via modulation of voltage-operated calcium channels. J Neurosci 2000; 20:606-16. [PMID: 10632590 PMCID: PMC6772418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
We have used combined membrane capacitance measurements (C(m)) and voltage-clamp recordings to examine the mechanisms underlying modulation of stimulus-secretion coupling by a G(i/o)-coupled purinoceptor (P2Y) in adrenal chromaffin cells. P2Y purinoceptors respond to extracellular ATP and are thought to provide an important inhibitory feedback regulation of catecholamine release from central and sympathetic neurons. Inhibition of neurosecretion by other G(i/o)-protein-coupled receptors may occur by either inhibition of voltage-operated Ca(2+) channels or modulation of the exocytotic machinery itself. In this study, we show that the P2Y purinoceptor agonist 2-methylthio ATP (2-MeSATP) significantly inhibits Ca(2+) entry and changes in C(m) evoked by single 200 msec depolarizations or a train of 20 msec depolarizations (2.5 Hz). We found that P2Y modulation of secretion declines during a train such that only approximately 50% of the modulatory effect remains at the end of a train. The inhibition of both Ca(2+) entry and DeltaC(m) are also attenuated by large depolarizing prepulses and treatment with pertussis toxin. Inhibition of N-type, and to lesser extent P/Q-type, Ca(2+) channels contribute to the modulation of exocytosis by 2-MeSATP. The Ca(2+)-dependence of exocytosis triggered by either single pulses or trains of depolarizations was unaffected by 2-MeSATP. When Ca(2+) channels were bypassed and exocytosis was evoked by flash photolysis of caged Ca(2+), the inhibitory effect of 2-MeSATP was not observed. Collectively, these data suggest that inhibition of exocytosis by G(i/o)-coupled P2Y purinoceptors results from inhibition of Ca(2+) channels and the Ca(2+) signal controlling exocytosis rather than a direct effect on the secretory machinery.
Collapse
Affiliation(s)
- A D Powell
- Department of Pharmacology, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | | | | |
Collapse
|
30
|
Giovannucci DR, Hlubek MD, Stuenkel EL. Mitochondria regulate the Ca(2+)-exocytosis relationship of bovine adrenal chromaffin cells. J Neurosci 1999; 19:9261-70. [PMID: 10531430 PMCID: PMC6782892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
The present study expands the contemporary view of mitochondria as important participants in cellular Ca(2+) dynamics and provides evidence that mitochondria regulate the supply of release-competent secretory granules. Using pharmacological probes to inhibit mitochondrial Ca(2+) import, the ability of mitochondria to modulate secretory activity in single, patch-clamped bovine chromaffin cells was examined by simultaneously monitoring rapid changes in membrane surface area (DeltaC(m)) and cytosolic Ca(2+) levels ([Ca(2+)](c)). Repetitive step depolarizations or action potential waveforms were found to raise the [Ca(2+)](c) of chromaffin cells into the 1 microM to tens of micromolar range. Inhibiting mitochondria by treatment with carbonyl cyanide p-(trifuoro-methoxy)phenylhydrazone, antimycin-oligomycin, or ruthenium red revealed that mitochondria are a prominent component for the clearance of Ca(2+) that entered via voltage-activated Ca(2+) channels. Disruption of cellular Ca(2+) homeostasis by poisoning mitochondria enhanced the secretory responsiveness of chromaffin cells by increasing the amplitude of the transient rise and the time course of recovery to baseline of the evoked Delta[Ca(2+)](c). The enhancement of the secretory response was represented by significant deviation of the Ca(2+)-exocytosis relationship from a standard relationship that equates Ca(2+) influx and DeltaC(m). Thus, mitochondria would play a critical role in the control of secretory activity in chromaffin cells that undergo tonic or repetitive depolarizing activity, likely by limiting the Ca(2+)-dependent activation of specific proteins that recruit or prime secretory granules for exocytosis.
Collapse
Affiliation(s)
- D R Giovannucci
- Department of Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0622, USA.
| | | | | |
Collapse
|
31
|
Lukyanetz EA, Neher E. Different types of calcium channels and secretion from bovine chromaffin cells. Eur J Neurosci 1999; 11:2865-73. [PMID: 10457183 DOI: 10.1046/j.1460-9568.1999.00707.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bovine chromaffin cells possess several types of Ca2+ channels, and influx of Ca2+ is known to trigger secretion. However, discrepant information about the relative importance of the individual subtypes in secretion has been reported. We used whole-cell patch-clamp measurements in isolated cells in culture combined with fura-2 microfluorimetry and pharmacological manipulation to determine the dependence of secretion on different types of Ca2+ channels. We stimulated cells with relatively long depolarizing voltage-clamp pulses in a medium containing 60 mM CaCl2. We found that, within a certain range of pulse parameters, secretion as measured by membrane capacitance changes was mainly determined by the total cumulative charge of Ca2+ inflow and the basal [Ca2+] level preceding a stimulus. Blocking or reducing the contribution of specific types of Ca2+ channels using either 20 microM nifedipine plus 10 microM nimodipine or 1 microM omegaCTxGVIA (omega-conotoxin GVIA) or 2 microM omegaCTxMVIIC (omega-conotoxin MVIIC) reduced secretion in proportion to Ca2+ charge, irrespective of the toxin used. We conclude that for long-duration stimuli, which release a large fraction of the readily releasable pool of vesicles, it is not so important through which type of channels Ca2+ enters the cell. Release is determined by the total amount of Ca2+ entering and by the filling state of the readily releasable pool, which depends on basal [Ca2+] before the stimulus. This result does not preclude that other stimulation patterns may lead to responses in which subtype specificity of Ca2+ channels matters.
Collapse
|
32
|
Abstract
Calcium ions play crucial signaling roles in many forms of activity-dependent synaptic plasticity. Recent presynaptic [Ca2+]i measurements and manipulation of presynaptic exogenous buffers reveal roles for residual [Ca2+]i following conditioning stimulation in all phases of short-term synaptic enhancement. Pharmacological manipulations implicate mitochondria in post-tetanic potentiation. New evidence supports an influence of Ca2+ in replacing depleted vesicles after synaptic depression. In addition, high-resolution measurements of [Ca2+]i in dendritic spines show how Ca2+ can encode the precise relative timing of presynaptic input and postsynaptic activity and generate long-term synaptic modifications of opposite polarity.
Collapse
Affiliation(s)
- R S Zucker
- Department of Molecular and Cell Biology, University of California (Berkeley), 111 Life Sciences Addition, Berkeley, California 94720-3200, USA.
| |
Collapse
|
33
|
Engisch KL, Rich MM, Cook N, Nowycky MC. Lambert-Eaton antibodies inhibit Ca2+ currents but paradoxically increase exocytosis during stimulus trains in bovine adrenal chromaffin cells. J Neurosci 1999; 19:3384-95. [PMID: 10212298 PMCID: PMC6782246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
Lambert-Eaton myasthenic syndrome (LEMS) is an autoimmune disease that affects neurotransmitter release at peripheral synapses. LEMS antibodies inhibit Ca2+ currents in excitable cells, but it is not known whether there are additional effects on stimulus-secretion coupling. The effect of LEMS antibodies on Ca2+ currents and exocytosis was studied in bovine adrenal chromaffin cells using whole-cell voltage clamp in perforated-patch recordings. Purified LEMS IgGs from five patients inhibited N- and P/Q-type Ca2+ current components to different extents. The reduction in Ca2+ current resulted in smaller exocytotic responses to single depolarizing pulses, but the normal relationship between integrated Ca2+ entry and exocytosis (Enisch and Nowycky, 1996) was preserved. The hallmark of LEMS is a large potentiation of neuromuscular transmission after high-frequency stimulation. In chromaffin cells, stimulus trains can induce activity-dependent enhancement of the Ca2+-exocytosis relationship. Enhancement during trains occurs most frequently when pulses are brief and evoke very small amounts of Ca2+ entry (Engisch et al., 1997). LEMS antibody treatment increased the percentage of trains eliciting enhancement through two mechanisms: (1) by reducing Ca2+ entry and (2) through a Ca2+-independent effect on the process of enhancement. This leads to a paradoxical increase in the amount of exocytosis during stimulus trains, despite inhibition of Ca2+ currents.
Collapse
Affiliation(s)
- K L Engisch
- Department of Neurobiology and Anatomy, Medical College of Pennsylvania and Hahnemann University, Philadelphia, Pennsylvania 19129, USA
| | | | | | | |
Collapse
|
34
|
Engisch KL, Rich MM, Cook N, Nowycky MC. Lambert-Eaton antibodies promote activity-dependent enhancement of exocytosis in bovine adrenal chromaffin cells. Ann N Y Acad Sci 1999; 868:213-6. [PMID: 10414296 DOI: 10.1111/j.1749-6632.1999.tb11288.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- K L Engisch
- Department of Neurobiology and Anatomy, Allegheny University of the Health Sciences, Philadelphia, Pennsylvania, USA.
| | | | | | | |
Collapse
|
35
|
Charles AC, Piros ET, Evans CJ, Hales TG. L-type Ca2+ channels and K+ channels specifically modulate the frequency and amplitude of spontaneous Ca2+ oscillations and have distinct roles in prolactin release in GH3 cells. J Biol Chem 1999; 274:7508-15. [PMID: 10066818 DOI: 10.1074/jbc.274.11.7508] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GH3 cells showed spontaneous rhythmic oscillations in intracellular calcium concentration ([Ca2+]i) and spontaneous prolactin release. The L-type Ca2+ channel inhibitor nimodipine reduced the frequency of Ca2+ oscillations at lower concentrations (100nM-1 microM), whereas at higher concentrations (10 microM), it completely abolished them. Ca2+ oscillations persisted following exposure to thapsigargin, indicating that inositol 1,4,5-trisphosphate-sensitive intracellular Ca2+ stores were not required for spontaneous activity. The K+ channel inhibitors Ba2+, Cs+, and tetraethylammonium (TEA) had distinct effects on different K+ currents, as well as on Ca2+ oscillations and prolactin release. Cs+ inhibited the inward rectifier K+ current (KIR) and increased the frequency of Ca2+ oscillations. TEA inhibited outward K+ currents activated at voltages above -40 mV (grouped within the category of Ca2+ and voltage-activated currents, KCa,V) and increased the amplitude of Ca2+ oscillations. Ba2+ inhibited both KIR and KCa,V and increased both the amplitude and the frequency of Ca2+ oscillations. Prolactin release was increased by Ba2+ and Cs+ but not by TEA. These results indicate that L-type Ca2+ channels and KIR channels modulate the frequency of Ca2+ oscillations and prolactin release, whereas TEA-sensitive KCa,V channels modulate the amplitude of Ca2+ oscillations without altering prolactin release. Differential regulation of these channels can produce frequency or amplitude modulation of calcium signaling that stimulates specific pituitary cell functions.
Collapse
Affiliation(s)
- A C Charles
- Department of Neurology, UCLA School of Medicine, Los Angeles, California 90095, USA.
| | | | | | | |
Collapse
|
36
|
Smith C. A persistent activity-dependent facilitation in chromaffin cells is caused by Ca2+ activation of protein kinase C. J Neurosci 1999; 19:589-98. [PMID: 9880579 PMCID: PMC6782191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Activity-dependent facilitation was studied in bovine adrenal chromaffin cells. Stimulation with a train of depolarizations caused subsequent triggered exocytotic activity to be significantly enhanced. After the facilitating stimulus train, the readily releasable vesicle pool (RRP) size was estimated from capacitance jumps in response to paired depolarizations and found to be elevated for a period of at least 10 min. The time dependency of onset and degree of facilitation could be well fitted assuming protein kinase C (PKC)-dependent and independent Ca2+-mediated processes. Both processes increase the recruitment of vesicles from the reserve pool to the RRP, resulting in an greater number of releasable vesicles. The data suggest that cell activity can act as a trigger to increase cytosolic Ca2+ to a level sufficient to cause an increase in the number of readily releasable secretory vesicles, with the more persistent component of the evoked facilitation being mediated through activity-dependent activation of PKC.
Collapse
Affiliation(s)
- C Smith
- Department of Membrane Biophysics, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| |
Collapse
|