1
|
Wang DC, Santos-Valencia F, Song JH, Franks KM, Luo L. Embryonically active piriform cortex neurons promote intracortical recurrent connectivity during development. Neuron 2024; 112:2938-2954.e6. [PMID: 38964330 PMCID: PMC11377168 DOI: 10.1016/j.neuron.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 04/28/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024]
Abstract
Neuronal activity plays a critical role in the maturation of circuits that propagate sensory information into the brain. How widely does early activity regulate circuit maturation across the developing brain? Here, we used targeted recombination in active populations (TRAP) to perform a brain-wide survey for prenatally active neurons in mice and identified the piriform cortex as an abundantly TRAPed region. Whole-cell recordings in neonatal slices revealed preferential interconnectivity within embryonically TRAPed piriform neurons and their enhanced synaptic connectivity with other piriform neurons. In vivo Neuropixels recordings in neonates demonstrated that embryonically TRAPed piriform neurons exhibit broad functional connectivity within piriform and lead spontaneous synchronized population activity during a transient neonatal period, when recurrent connectivity is strengthening. Selectively activating or silencing these neurons in neonates enhanced or suppressed recurrent synaptic strength, respectively. Thus, embryonically TRAPed piriform neurons represent an interconnected hub-like population whose activity promotes recurrent connectivity in early development.
Collapse
Affiliation(s)
- David C Wang
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA; Stanford MSTP, Stanford, CA 94305, USA
| | | | - Jun H Song
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Kevin M Franks
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Liqun Luo
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Fulton KA, Zimmerman D, Samuel A, Vogt K, Datta SR. Common principles for odour coding across vertebrates and invertebrates. Nat Rev Neurosci 2024; 25:453-472. [PMID: 38806946 DOI: 10.1038/s41583-024-00822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
The olfactory system is an ideal and tractable system for exploring how the brain transforms sensory inputs into behaviour. The basic tasks of any olfactory system include odour detection, discrimination and categorization. The challenge for the olfactory system is to transform the high-dimensional space of olfactory stimuli into the much smaller space of perceived objects and valence that endows odours with meaning. Our current understanding of how neural circuits address this challenge has come primarily from observations of the mechanisms of the brain for processing other sensory modalities, such as vision and hearing, in which optimized deep hierarchical circuits are used to extract sensory features that vary along continuous physical dimensions. The olfactory system, by contrast, contends with an ill-defined, high-dimensional stimulus space and discrete stimuli using a circuit architecture that is shallow and parallelized. Here, we present recent observations in vertebrate and invertebrate systems that relate the statistical structure and state-dependent modulation of olfactory codes to mechanisms of perception and odour-guided behaviour.
Collapse
Affiliation(s)
- Kara A Fulton
- Department of Neuroscience, Harvard Medical School, Boston, MA, USA
| | - David Zimmerman
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Aravi Samuel
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Katrin Vogt
- Department of Physics, Harvard University, Cambridge, MA, USA.
- Department of Biology, University of Konstanz, Konstanz, Germany.
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.
| | | |
Collapse
|
3
|
Yamaguchi M. Connectivity of the olfactory tubercle: inputs, outputs, and their plasticity. Front Neural Circuits 2024; 18:1423505. [PMID: 38841557 PMCID: PMC11150588 DOI: 10.3389/fncir.2024.1423505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024] Open
Abstract
The olfactory tubercle (OT) is a unique part of the olfactory cortex of the mammal brain in that it is also a component of the ventral striatum. It is crucially involved in motivational behaviors, particularly in adaptive olfactory learning. This review introduces the basic properties of the OT, its synaptic connectivity with other brain areas, and the plasticity of the connectivity associated with learning behavior. The adaptive properties of olfactory behavior are discussed further based on the characteristics of OT neuronal circuits.
Collapse
Affiliation(s)
- Masahiro Yamaguchi
- Department of Physiology, Kochi Medical School, Kochi University, Kochi, Japan
| |
Collapse
|
4
|
Wang DC, Santos-Valencia F, Song JH, Franks KM, Luo L. Embryonically Active Piriform Cortex Neurons Promote Intracortical Recurrent Connectivity during Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593265. [PMID: 38766173 PMCID: PMC11100831 DOI: 10.1101/2024.05.08.593265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Neuronal activity plays a critical role in the maturation of circuits that propagate sensory information into the brain. How widely does early activity regulate circuit maturation across the developing brain? Here, we used Targeted Recombination in Active Populations (TRAP) to perform a brain-wide survey for prenatally active neurons in mice and identified the piriform cortex as an abundantly TRAPed region. Whole-cell recordings in neonatal slices revealed preferential interconnectivity within embryonically TRAPed piriform neurons and their enhanced synaptic connectivity with other piriform neurons. In vivo Neuropixels recordings in neonates demonstrated that embryonically TRAPed piriform neurons exhibit broad functional connectivity within piriform and lead spontaneous synchronized population activity during a transient neonatal period, when recurrent connectivity is strengthening. Selectively activating or silencing of these neurons in neonates enhanced or suppressed recurrent synaptic strength, respectively. Thus, embryonically TRAPed piriform neurons represent an interconnected hub-like population whose activity promotes recurrent connectivity in early development.
Collapse
|
5
|
Huang L, Hardyman F, Edwards M, Galliano E. Deprivation-Induced Plasticity in the Early Central Circuits of the Rodent Visual, Auditory, and Olfactory Systems. eNeuro 2024; 11:ENEURO.0435-23.2023. [PMID: 38195533 PMCID: PMC11059429 DOI: 10.1523/eneuro.0435-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024] Open
Abstract
Activity-dependent neuronal plasticity is crucial for animals to adapt to dynamic sensory environments. Traditionally, it has been investigated using deprivation approaches in animal models primarily in sensory cortices. Nevertheless, emerging evidence emphasizes its significance in sensory organs and in subcortical regions where cranial nerves relay information to the brain. Additionally, critical questions started to arise. Do different sensory modalities share common cellular mechanisms for deprivation-induced plasticity at these central entry points? Does the deprivation duration correlate with specific plasticity mechanisms? This study systematically reviews and meta-analyzes research papers that investigated visual, auditory, or olfactory deprivation in rodents of both sexes. It examines the consequences of sensory deprivation in homologous regions at the first central synapse following cranial nerve transmission (vision - lateral geniculate nucleus and superior colliculus; audition - ventral and dorsal cochlear nucleus; olfaction - olfactory bulb). The systematic search yielded 91 papers (39 vision, 22 audition, 30 olfaction), revealing substantial heterogeneity in publication trends, experimental methods, measures of plasticity, and reporting across the sensory modalities. Despite these differences, commonalities emerged when correlating plasticity mechanisms with the duration of sensory deprivation. Short-term deprivation (up to 1 d) reduced activity and increased disinhibition, medium-term deprivation (1 d to a week) involved glial changes and synaptic remodeling, and long-term deprivation (over a week) primarily led to structural alterations. These findings underscore the importance of standardizing methodologies and reporting practices. Additionally, they highlight the value of cross-modal synthesis for understanding how the nervous system, including peripheral, precortical, and cortical areas, respond to and compensate for sensory inputs loss.
Collapse
Affiliation(s)
- Li Huang
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB23EL Cambridge, United Kingdom
| | - Francesca Hardyman
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB23EL Cambridge, United Kingdom
| | - Megan Edwards
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB23EL Cambridge, United Kingdom
| | - Elisa Galliano
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB23EL Cambridge, United Kingdom
| |
Collapse
|
6
|
Chen YN, Kostka JK, Bitzenhofer SH, Hanganu-Opatz IL. Olfactory bulb activity shapes the development of entorhinal-hippocampal coupling and associated cognitive abilities. Curr Biol 2023; 33:4353-4366.e5. [PMID: 37729915 PMCID: PMC10617757 DOI: 10.1016/j.cub.2023.08.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/22/2023]
Abstract
The interplay between olfaction and higher cognitive processing has been documented in the adult brain; however, its development is poorly understood. In mice, shortly after birth, endogenous and stimulus-evoked activity in the olfactory bulb (OB) boosts the oscillatory entrainment of downstream lateral entorhinal cortex (LEC) and hippocampus (HP). However, it is unclear whether early OB activity has a long-lasting impact on entorhinal-hippocampal function and cognitive processing. Here, we chemogenetically silenced the synaptic outputs of mitral/tufted cells, the main projection neurons in the OB, during postnatal days 8-10. The transient manipulation leads to a long-lasting reduction of oscillatory coupling and weaker responsiveness to stimuli within developing entorhinal-hippocampal circuits accompanied by dendritic sparsification of LEC pyramidal neurons. Moreover, the transient silencing reduces the performance in behavioral tests involving entorhinal-hippocampal circuits later in life. Thus, neonatal OB activity is critical for the functional LEC-HP development and maturation of cognitive abilities.
Collapse
Affiliation(s)
- Yu-Nan Chen
- Institute of Developmental Neurophysiology, Center of Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Johanna K Kostka
- Institute of Developmental Neurophysiology, Center of Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Sebastian H Bitzenhofer
- Institute of Developmental Neurophysiology, Center of Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center of Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| |
Collapse
|
7
|
Mochida S. Calcium Channels and Calcium-Binding Proteins. Int J Mol Sci 2023; 24:14257. [PMID: 37762560 PMCID: PMC10532058 DOI: 10.3390/ijms241814257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Signals of nerve impulses are transmitted to excitatory cells to induce the action of organs via the activation of Ca2+ entry through voltage-gated Ca2+ channels (VGCC), which are classified based on their activation threshold into high- and low-voltage activated channels, expressed specifically for each organ [...].
Collapse
Affiliation(s)
- Sumiko Mochida
- Department of Physiology, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
8
|
Sha MFR, Koga Y, Murata Y, Taniguchi M, Yamaguchi M. Learning-dependent structural plasticity of intracortical and sensory connections to functional domains of the olfactory tubercle. Front Neurosci 2023; 17:1247375. [PMID: 37680965 PMCID: PMC10480507 DOI: 10.3389/fnins.2023.1247375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023] Open
Abstract
The olfactory tubercle (OT), which is a component of the olfactory cortex and ventral striatum, has functional domains that play a role in odor-guided motivated behaviors. Learning odor-guided attractive and aversive behavior activates the anteromedial (am) and lateral (l) domains of the OT, respectively. However, the mechanism driving learning-dependent activation of specific OT domains remains unknown. We hypothesized that the neuronal connectivity of OT domains is plastically altered through olfactory experience. To examine the plastic potential of synaptic connections to OT domains, we optogenetically stimulated intracortical inputs from the piriform cortex or sensory inputs from the olfactory bulb to the OT in mice in association with a food reward for attractive learning and electrical foot shock for aversive learning. For both intracortical and sensory connections, axon boutons that terminated in the OT domains were larger in the amOT than in the lOT for mice exhibiting attractive learning and larger in the lOT than in the amOT for mice exhibiting aversive learning. These results indicate that both intracortical and sensory connections to the OT domains have learning-dependent plastic potential, suggesting that this plasticity underlies learning-dependent activation of specific OT domains and the acquisition of appropriate motivated behaviors.
Collapse
Affiliation(s)
| | | | | | | | - Masahiro Yamaguchi
- Department of Physiology, Kochi Medical School, Kochi University, Kochi, Japan
| |
Collapse
|
9
|
Maier JX, Zhang Z. Early development of olfactory circuit function. Front Cell Neurosci 2023; 17:1225186. [PMID: 37565031 PMCID: PMC10410114 DOI: 10.3389/fncel.2023.1225186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/29/2023] [Indexed: 08/12/2023] Open
Abstract
During early development, brains undergo profound changes in structure at the molecular, synaptic, cellular and circuit level. At the same time, brains need to perform adaptive function. How do structurally immature brains process information? How do brains perform stable and reliable function despite massive changes in structure? The rodent olfactory system presents an ideal model for approaching these poorly understood questions. Rodents are born deaf and blind, and rely completely on their sense of smell to acquire resources essential for survival during the first 2 weeks of life, such as food and warmth. Here, we review decades of work mapping structural changes in olfactory circuits during early development, as well as more recent studies performing in vivo electrophysiological recordings to characterize functional activity patterns generated by these circuits. The findings demonstrate that neonatal olfactory processing relies on an interacting network of brain areas including the olfactory bulb and piriform cortex. Circuits in these brain regions exhibit varying degrees of structural maturity in neonatal animals. However, despite substantial ongoing structural maturation of circuit elements, the neonatal olfactory system produces dynamic network-level activity patterns that are highly stable over protracted periods during development. We discuss how these findings inform future work aimed at elucidating the circuit-level mechanisms underlying information processing in the neonatal olfactory system, how they support unique neonatal behaviors, and how they transition between developmental stages.
Collapse
Affiliation(s)
- Joost X. Maier
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | | |
Collapse
|
10
|
Rajani V, Yuan Q. Noradrenergic Modulation of the Piriform Cortex: A Possible Avenue for Understanding Pre-Clinical Alzheimer’s Disease Pathogenesis. Front Cell Neurosci 2022; 16:908758. [PMID: 35722616 PMCID: PMC9204642 DOI: 10.3389/fncel.2022.908758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Olfactory dysfunction is one of the biomarkers for Alzheimer’s disease (AD) diagnosis and progression. Deficits with odor identification and discrimination are common symptoms of pre-clinical AD, preceding severe memory disorder observed in advanced stages. As a result, understanding mechanisms of olfactory impairment is a major focus in both human studies and animal models of AD. Pretangle tau, a precursor to tau tangles, is first observed in the locus coeruleus (LC). In a recent animal model, LC pretangle tau leads to LC fiber degeneration in the piriform cortex (PC), a cortical area associated with olfactory dysfunction in both human AD and rodent models. Here, we review the role of LC-sourced NE in modulation of PC activity and suggest mechanisms by which pretangle tau-mediated LC dysfunction may impact olfactory processing in preclinical stage of AD. Understanding mechanisms of early olfactory impairment in AD may provide a critical window for detection and intervention of disease progression.
Collapse
|
11
|
Guo A, Lau CG. TNF-α Orchestrates Experience-Dependent Plasticity of Excitatory and Inhibitory Synapses in the Anterior Piriform Cortex. Front Neurosci 2022; 16:824454. [PMID: 35557610 PMCID: PMC9086849 DOI: 10.3389/fnins.2022.824454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Homeostatic synaptic plasticity, which induces compensatory modulation of synapses, plays a critical role in maintaining neuronal circuit function in response to changing activity patterns. Activity in the anterior piriform cortex (APC) is largely driven by ipsilateral neural activity from the olfactory bulb and is a suitable system for examining the effects of sensory experience on cortical circuits. Pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) can modulate excitatory and inhibitory synapses, but its role in APC is unexplored. Here we examined the role of TNF-α in adjusting synapses in the mouse APC after experience deprivation via unilateral naris occlusion. Immunofluorescent staining revealed that activity deprivation increased excitatory, and decreased inhibitory, synaptic density in wild-type mice, consistent with homeostatic regulation. Quantitative RT-PCR showed that naris occlusion increased the expression of Tnf mRNA in APC. Critically, occlusion-induced plasticity of excitatory and inhibitory synapses was completely blocked in the Tnf knockout mouse. Together, these results show that TNF-α is an important orchestrator of experience-dependent plasticity in the APC.
Collapse
Affiliation(s)
- Anni Guo
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
| | - Chunyue Geoffrey Lau
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
| |
Collapse
|
12
|
Age-Dependent Contributions of NMDA Receptors and L-Type Calcium Channels to Long-Term Depression in the Piriform Cortex. Int J Mol Sci 2021; 22:ijms222413551. [PMID: 34948347 PMCID: PMC8706958 DOI: 10.3390/ijms222413551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
In the hippocampus, the contributions of N-methyl-D-aspartate receptors (NMDARs) and L-type calcium channels (LTCCs) to neuronal transmission and synaptic plasticity change with aging, underlying calcium dysregulation and cognitive dysfunction. However, the relative contributions of NMDARs and LTCCs in other learning encoding structures during aging are not known. The piriform cortex (PC) plays a significant role in odor associative memories, and like the hippocampus, exhibits forms of long-term synaptic plasticity. Here, we investigated the expression and contribution of NMDARs and LTCCs in long-term depression (LTD) of the PC associational fiber pathway in three cohorts of Sprague Dawley rats: neonatal (1-2 weeks), young adult (2-3 months) and aged (20-25 months). Using a combination of slice electrophysiology, Western blotting, fluorescent immunohistochemistry and confocal imaging, we observed a shift from an NMDAR to LTCC mediation of LTD in aged rats, despite no difference in the amount of LTD expression. These changes in plasticity are related to age-dependent differential receptor expression in the PC. LTCC Cav1.2 expression relative to postsynaptic density protein 95 is increased in the associational pathway of the aged PC layer Ib. Enhanced LTCC contribution in synaptic depression in the PC may contribute to altered olfactory function and learning with aging.
Collapse
|
13
|
Kumar A, Barkai E, Schiller J. Plasticity of olfactory bulb inputs mediated by dendritic NMDA-spikes in rodent piriform cortex. eLife 2021; 10:70383. [PMID: 34698637 PMCID: PMC8575458 DOI: 10.7554/elife.70383] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/25/2021] [Indexed: 11/19/2022] Open
Abstract
The piriform cortex (PCx) is essential for learning of odor information. The current view postulates that odor learning in the PCx is mainly due to plasticity in intracortical (IC) synapses, while odor information from the olfactory bulb carried via the lateral olfactory tract (LOT) is ‘hardwired.’ Here, we revisit this notion by studying location- and pathway-dependent plasticity rules. We find that in contrast to the prevailing view, synaptic and optogenetically activated LOT synapses undergo strong and robust long-term potentiation (LTP) mediated by only a few local NMDA-spikes delivered at theta frequency, while global spike timing-dependent plasticity (STDP) protocols failed to induce LTP in these distal synapses. In contrast, IC synapses in apical and basal dendrites undergo plasticity with both NMDA-spikes and STDP protocols but to a smaller extent compared with LOT synapses. These results are consistent with a self-potentiating mechanism of odor information via NMDA-spikes that can form branch-specific memory traces of odors that can further associate with contextual IC information via STDP mechanisms to provide cognitive and emotional value to odors.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Physiology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Edi Barkai
- Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Jackie Schiller
- Department of Physiology, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
14
|
Jiang HH, Guo A, Chiu A, Li H, Lai CSW, Lau CG. Target-specific control of piriform cortical output via distinct inhibitory circuits. FASEB J 2021; 35:e21944. [PMID: 34569087 DOI: 10.1096/fj.202100757r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/26/2021] [Accepted: 09/07/2021] [Indexed: 11/11/2022]
Abstract
Information represented by principal neurons in anterior piriform cortex (APC) is regulated by local, recurrent excitation and inhibition, but the circuit mechanisms remain elusive. Two types of layer 2 (L2) principal neurons, semilunar (SL), and superficial pyramidal (SP) cells, are parallel output channels, and the control of their activity gates the output of APC. Here, we examined the hypothesis that recurrent inhibition differentially regulates SL and SP cells. Patterned optogenetic stimulation revealed that the strength of recurrent inhibition is target- and layer-specific: L1 > L3 for SL cells, but L3 > L1 for SP cells. This target- and layer-specific inhibition was largely attributable to the parvalbumin (PV), but not somatostatin, interneurons. Intriguingly, olfactory experience selectively modulated the PV to SP microcircuit while maintaining the overall target and laminar specificity of inhibition. Together, these results indicate the importance of target-specific inhibitory wiring for odor processing, implicating these mechanisms in gating the output of piriform cortex.
Collapse
Affiliation(s)
- He-Hai Jiang
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China.,Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Anni Guo
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China.,Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Arthur Chiu
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China.,Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Huanhuan Li
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China.,Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Cora Sau Wan Lai
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Chunyue Geoffrey Lau
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China.,Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| |
Collapse
|
15
|
Ryu B, Nagappan S, Santos-Valencia F, Lee P, Rodriguez E, Lackie M, Takatoh J, Franks KM. Chronic loss of inhibition in piriform cortex following brief, daily optogenetic stimulation. Cell Rep 2021; 35:109001. [PMID: 33882304 PMCID: PMC8102022 DOI: 10.1016/j.celrep.2021.109001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 12/10/2020] [Accepted: 03/24/2021] [Indexed: 12/02/2022] Open
Abstract
It is well established that seizures beget seizures, yet the cellular processes that underlie progressive epileptogenesis remain unclear. Here, we use optogenetics to briefly activate targeted populations of mouse piriform cortex (PCx) principal neurons in vivo. After just 3 or 4 days of stimulation, previously subconvulsive stimuli trigger massive, generalized seizures. Highly recurrent allocortices are especially prone to “optokindling.” Optokindling upsets the balance of recurrent excitation and feedback inhibition. To understand how this balance is disrupted, we then selectively reactivate the same neurons in vitro. Surprisingly, we find no evidence of heterosynaptic potentiation; instead, we observe a marked, pathway-specific decrease in feedback inhibition. We find no loss of inhibitory interneurons; rather, decreased GABA synthesis in feedback inhibitory neurons appears to underlie weakened inhibition. Optokindling will allow precise identification of the molecular processes by which brain activity patterns can progressively and pathologically disrupt the balance of cortical excitation and inhibition. Ryu et al. use optogenetics to briefly activate principal neurons in mouse piriform cortex. After 4 days, previously innocuous stimuli evoke massive, generalized seizures. “Optokindling” does not strengthen recurrent excitation; instead, it weakens feedback inhibition by decreasing synaptic cleft GABA concentrations and slowing vesicle refilling, consistent with decreased GABA synthesis.
Collapse
Affiliation(s)
- Brendan Ryu
- Department of Neurobiology, Duke University Medical School, Durham, NC 27705, USA
| | | | | | - Psyche Lee
- Department of Neurobiology, Duke University Medical School, Durham, NC 27705, USA
| | - Erica Rodriguez
- Department of Neurobiology, Duke University Medical School, Durham, NC 27705, USA
| | - Meredith Lackie
- Department of Neurobiology, Duke University Medical School, Durham, NC 27705, USA
| | - Jun Takatoh
- Department of Neurobiology, Duke University Medical School, Durham, NC 27705, USA
| | - Kevin M Franks
- Department of Neurobiology, Duke University Medical School, Durham, NC 27705, USA.
| |
Collapse
|
16
|
Redolfi N, Lodovichi C. Spontaneous Afferent Activity Carves Olfactory Circuits. Front Cell Neurosci 2021; 15:637536. [PMID: 33767612 PMCID: PMC7985084 DOI: 10.3389/fncel.2021.637536] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Electrical activity has a key role in shaping neuronal circuits during development. In most sensory modalities, early in development, internally generated spontaneous activity sculpts the initial layout of neuronal wiring. With the maturation of the sense organs, the system relies more on sensory-evoked electrical activity. Stimuli-driven neuronal discharge is required for the transformation of immature circuits in the specific patterns of neuronal connectivity that subserve normal brain function. The olfactory system (OS) differs from this organizational plan. Despite the important role of odorant receptors (ORs) in shaping olfactory topography, odor-evoked activity does not have a prominent role in refining neuronal wiring. On the contrary, afferent spontaneous discharge is required to achieve and maintain the specific diagram of connectivity that defines the topography of the olfactory bulb (OB). Here, we provide an overview of the development of olfactory topography, with a focus on the role of afferent spontaneous discharge in the formation and maintenance of the specific synaptic contacts that result in the topographic organization of the OB.
Collapse
Affiliation(s)
- Nelly Redolfi
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Claudia Lodovichi
- Department of Biomedical Sciences, University of Padua, Padua, Italy.,Neuroscience Institute CNR, Padua, Italy.,Veneto Institute of Molecular Medicine, Padua, Italy.,Padova Neuroscience Center, University of Padua, Padua, Italy
| |
Collapse
|
17
|
Zhang Z, Collins DC, Maier JX. Network Dynamics in the Developing Piriform Cortex of Unanesthetized Rats. Cereb Cortex 2021; 31:1334-1346. [PMID: 33063095 DOI: 10.1093/cercor/bhaa300] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 01/02/2023] Open
Abstract
The time course of changes in functional cortical activity during early development has been extensively studied in the rodent visual system. A key period in this process is the time of eye opening, which marks the onset of patterned visual input and active vision. However, vision differs from other systems in that it receives limited patterned sensory input before eye opening, and it remains unclear how findings from vision relate to other systems. Here, we focus on the development of cortical network activity in the olfactory system-which is crucial for survival at birth-by recording field potential and spiking activity from piriform cortex of unanesthetized rat pups from birth (P0) to P21. Our results demonstrate that odors evoke stable 10-15 Hz oscillations in piriform cortex from birth to P15, after which cortical responses undergo rapid changes. This transition is coincident with the emergence of gamma oscillations and fast sniffing behavior and preceded by an increase in spontaneous activity. Neonatal network oscillations and their developmental dynamics exhibit striking similarities with those previously observed in the visual, auditory, and somatosensory systems, providing insight into the network-level mechanisms underlying the development of sensory cortex in general and olfactory processing in particular.
Collapse
Affiliation(s)
- Zihao Zhang
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Donald Chad Collins
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Joost X Maier
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
18
|
Oruro EM, Pardo GVE, Lucion AB, Calcagnotto ME, Idiart MAP. The maturational characteristics of the GABA input in the anterior piriform cortex may also contribute to the rapid learning of the maternal odor during the sensitive period. ACTA ACUST UNITED AC 2020; 27:493-502. [PMID: 33199474 PMCID: PMC7670864 DOI: 10.1101/lm.052217.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/27/2020] [Indexed: 11/25/2022]
Abstract
During the first ten postnatal days (P), infant rodents can learn olfactory preferences for novel odors if they are paired with thermo-tactile stimuli that mimic components of maternal care. After P10, the thermo-tactile pairing becomes ineffective for conditioning. The current explanation for this change in associative learning is the alteration in the norepinephrine (NE) inputs from the locus coeruleus (LC) to the olfactory bulb (OB) and the anterior piriform cortex (aPC). By combining patch-clamp electrophysiology and computational simulations, we showed in a recent work that a transitory high responsiveness of the OB-aPC circuit to the maternal odor is an alternative mechanism that could also explain early olfactory preference learning and its cessation after P10. That result relied solely on the maturational properties of the aPC pyramidal cells. However, the GABAergic system undergoes important changes during the same period. To address the importance of the maturation of the GABAergic system for early olfactory learning, we incorporated data from the GABA inputs, obtained from in vitro patch-clamp experiment in the aPC of rat pups aged P5–P7 reported here, to the model proposed in our previous publication. In the younger than P10 OB-aPC circuit with GABA synaptic input, the number of responsive aPC pyramidal cells to the conditioned maternal odor was amplified in 30% compared to the circuit without GABAergic input. When compared with the circuit with other younger than P10 OB-aPC circuit with adult GABAergic input profile, this amplification was 88%. Together, our results suggest that during the olfactory preference learning in younger than P10, the GABAergic synaptic input presumably acts by depolarizing the aPC pyramidal neurons in such a way that it leads to the amplification of the pyramidal neurons response to the conditioned maternal odor. Furthermore, our results suggest that during this developmental period, the aPC pyramidal cells themselves seem to resolve the apparent lack of GABAergic synaptic inhibition by a strong firing adaptation in response to increased depolarizing inputs.
Collapse
Affiliation(s)
- Enver Miguel Oruro
- Neurocomputational and Language Processing Laboratory, Institute of Physics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91501-970, Brazil.,Neuroscience Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90050-170, Brazil.,Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90035-003, Brazil
| | - Grace V E Pardo
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90035-003, Brazil.,Department of Physiology, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90050-170, Brazil.,Centre for Interdisciplinary Science and Society Studies, Universidad de Ciencias y Humanidades, Los Olivos, Lima 15314, Peru.,Center for Biomedical Research, Universidad Andina del Cusco, San Jerónimo, Cuzco 08006, Peru
| | - Aldo Bolten Lucion
- Neuroscience Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90050-170, Brazil.,Department of Physiology, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90050-170, Brazil
| | - Maria Elisa Calcagnotto
- Neuroscience Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90050-170, Brazil.,Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90035-003, Brazil
| | - Marco A P Idiart
- Neurocomputational and Language Processing Laboratory, Institute of Physics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91501-970, Brazil.,Neuroscience Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90050-170, Brazil
| |
Collapse
|
19
|
Blazing RM, Franks KM. Odor coding in piriform cortex: mechanistic insights into distributed coding. Curr Opin Neurobiol 2020; 64:96-102. [PMID: 32422571 PMCID: PMC8782565 DOI: 10.1016/j.conb.2020.03.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 10/24/2022]
Abstract
Olfaction facilitates a large variety of animal behaviors such as feeding, mating, and communication. Recent work has begun to reveal the logic of odor transformations that occur throughout the olfactory system to form the odor percept. In this review, we describe the coding principles and mechanisms by which the piriform cortex and other olfactory areas encode three key odor features: odor identity, intensity, and valence. We argue that the piriform cortex produces a multiplexed odor code that allows non-interfering representations of distinct features of the odor stimulus to facilitate odor recognition and learning, which ultimately drives behavior.
Collapse
Affiliation(s)
- Robin M Blazing
- Department of Neurobiology, Duke University Medical School, Durham, NC, 27705, United States
| | - Kevin M Franks
- Department of Neurobiology, Duke University Medical School, Durham, NC, 27705, United States.
| |
Collapse
|
20
|
Bolding KA, Nagappan S, Han BX, Wang F, Franks KM. Recurrent circuitry is required to stabilize piriform cortex odor representations across brain states. eLife 2020; 9:e53125. [PMID: 32662420 PMCID: PMC7360366 DOI: 10.7554/elife.53125] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 06/19/2020] [Indexed: 11/13/2022] Open
Abstract
Pattern completion, or the ability to retrieve stable neural activity patterns from noisy or partial cues, is a fundamental feature of memory. Theoretical studies indicate that recurrently connected auto-associative or discrete attractor networks can perform this process. Although pattern completion and attractor dynamics have been observed in various recurrent neural circuits, the role recurrent circuitry plays in implementing these processes remains unclear. In recordings from head-fixed mice, we found that odor responses in olfactory bulb degrade under ketamine/xylazine anesthesia while responses immediately downstream, in piriform cortex, remain robust. Recurrent connections are required to stabilize cortical odor representations across states. Moreover, piriform odor representations exhibit attractor dynamics, both within and across trials, and these are also abolished when recurrent circuitry is eliminated. Here, we present converging evidence that recurrently-connected piriform populations stabilize sensory representations in response to degraded inputs, consistent with an auto-associative function for piriform cortex supported by recurrent circuitry.
Collapse
Affiliation(s)
- Kevin A Bolding
- Department of Neurobiology, Duke University Medical SchoolDurhamUnited States
| | | | - Bao-Xia Han
- Department of Neurobiology, Duke University Medical SchoolDurhamUnited States
| | - Fan Wang
- Department of Neurobiology, Duke University Medical SchoolDurhamUnited States
| | - Kevin M Franks
- Department of Neurobiology, Duke University Medical SchoolDurhamUnited States
| |
Collapse
|
21
|
Circuit-Specific Dendritic Development in the Piriform Cortex. eNeuro 2020; 7:ENEURO.0083-20.2020. [PMID: 32457067 PMCID: PMC7307633 DOI: 10.1523/eneuro.0083-20.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/09/2020] [Accepted: 04/20/2020] [Indexed: 11/21/2022] Open
Abstract
Dendritic geometry is largely determined during postnatal development and has a substantial impact on neural function. In sensory processing, postnatal development of the dendritic tree is affected by two dominant circuit motifs, ascending sensory feedforward inputs and descending and local recurrent connections. In the three-layered anterior piriform cortex (aPCx), neurons in the sublayers 2a and 2b display vertical segregation of these two circuit motifs. Here, we combined electrophysiology, detailed morphometry, and Ca2+ imaging in acute mouse brain slices and modeling to study circuit-specific aspects of dendritic development. We observed that determination of branching complexity, dendritic length increases, and pruning occurred in distinct developmental phases. Layer 2a and layer 2b neurons displayed developmental phase-specific differences between their apical and basal dendritic trees related to differences in circuit incorporation. We further identified functional candidate mechanisms for circuit-specific differences in postnatal dendritic growth in sublayers 2a and 2b at the mesoscale and microscale levels. Already in the first postnatal week, functional connectivity of layer 2a and layer 2b neurons during early spontaneous network activity scales with differences in basal dendritic growth. During the early critical period of sensory plasticity in the piriform cortex, our data are consistent with a model that proposes a role for dendritic NMDA-spikes in selecting branches for survival during developmental pruning in apical dendrites. The different stages of the morphologic and functional developmental pattern differences between layer 2a and layer 2b neurons demonstrate the complex interplay between dendritic development and circuit specificity.
Collapse
|
22
|
Oruro EM, Pardo GVE, Lucion AB, Calcagnotto ME, Idiart MAP. Maturation of pyramidal cells in anterior piriform cortex may be sufficient to explain the end of early olfactory learning in rats. ACTA ACUST UNITED AC 2019; 27:20-32. [PMID: 31843979 PMCID: PMC6919191 DOI: 10.1101/lm.050724.119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/12/2019] [Indexed: 01/09/2023]
Abstract
Studies have shown that neonate rodents exhibit high ability to learn a preference for novel odors associated with thermo-tactile stimuli that mimics maternal care. Artificial odors paired with vigorous strokes in rat pups younger than 10 postnatal days (P), but not older, rapidly induce an orientation-approximation behavior toward the conditioned odor in a two-choice preference test. The olfactory bulb (OB) and the anterior olfactory cortex (aPC), both modulated by norepinephrine (NE), have been identified as part of a neural circuit supporting this transitory olfactory learning. One possible explanation at the neuronal level for why the odor-stroke pairing induces consistent orientation-approximation behavior in <P10 pups, but not in >P10, is the coincident activation of prior existent neurons in the aPC mediating this behavior. Specifically, odor-stroke conditioning in <P10 pups may activate more mother/nest odor's responsive aPC neurons than in >P10 pups, promoting orientation-approximation behavior in the former but not in the latter. In order to test this hypothesis, we performed in vitro patch-clamp recordings of the aPC pyramidal neurons from rat pups from two age groups (P5–P8 and P14–P17) and built computational models for the OB-aPC neural circuit based on this physiological data. We conditioned the P5–P8 OB-aPC artificial circuit to an odor associated with NE activation (representing the process of maternal odor learning during mother–infant interactions inside the nest) and then evaluated the response of the OB-aPC circuit to the presentation of the conditioned odor. The results show that the number of responsive aPC neurons to the presentation of the conditioned odor in the P14–P17 OB-aPC circuit was lower than in the P5–P8 circuit, suggesting that at P14–P17, the reduced number of responsive neurons to the conditioned (maternal) odor might not be coincident with the responsive neurons for a second conditioned odor.
Collapse
Affiliation(s)
- Enver Miguel Oruro
- Neurocomputational and Language Processing Laboratory, Institute of Physics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970 Brazil.,Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90035-003 Brazil.,Neuroscience Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90050-170 Brazil
| | - Grace V E Pardo
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90035-003 Brazil.,Department of Physiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90050-170 Brazil.,Centre for Interdisciplinary Science and Society Studies, Universidad de Ciencias y Humanidades, Los Olivos, Lima, 15314 Peru
| | - Aldo B Lucion
- Department of Physiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90050-170 Brazil
| | - Maria Elisa Calcagnotto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90035-003 Brazil.,Neuroscience Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90050-170 Brazil
| | - Marco A P Idiart
- Neurocomputational and Language Processing Laboratory, Institute of Physics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970 Brazil.,Neuroscience Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90050-170 Brazil
| |
Collapse
|
23
|
Strauch C, Manahan-Vaughan D. In the Piriform Cortex, the Primary Impetus for Information Encoding through Synaptic Plasticity Is Provided by Descending Rather than Ascending Olfactory Inputs. Cereb Cortex 2019; 28:764-776. [PMID: 29186359 DOI: 10.1093/cercor/bhx315] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Indexed: 12/27/2022] Open
Abstract
Information encoding by means of persistent changes in synaptic strength supports long-term information storage and memory in structures such as the hippocampus. In the piriform cortex (PC), that engages in the processing of associative memory, only short-term synaptic plasticity has been described to date, both in vitro and in anesthetized rodents in vivo. Whether the PC maintains changes in synaptic strength for longer periods of time is unknown: Such a property would indicate that it can serve as a repository for long-term memories. Here, we report that in freely behaving animals, frequency-dependent synaptic plasticity does not occur in the anterior PC (aPC) following patterned stimulation of the olfactory bulb (OB). Naris closure changed action potential properties of aPC neurons and enabled expression of long-term potentiation (LTP) by OB stimulation, indicating that an intrinsic ability to express synaptic plasticity is present. Odor discrimination and categorization in the aPC is supported by descending inputs from the orbitofrontal cortex (OFC). Here, OFC stimulation resulted in LTP (>4 h), suggesting that this structure plays an important role in promoting information encoding through synaptic plasticity in the aPC. These persistent changes in synaptic strength are likely to comprise a means through which long-term memories are encoded and/or retained in the PC.
Collapse
Affiliation(s)
- Christina Strauch
- Department of Neurophysiology, Medical Faculty.,International Graduate School for Neuroscience, Ruhr University Bochum, Universitaetsstr. 150, 44780 Bochum, Germany
| | - Denise Manahan-Vaughan
- Department of Neurophysiology, Medical Faculty.,International Graduate School for Neuroscience, Ruhr University Bochum, Universitaetsstr. 150, 44780 Bochum, Germany
| |
Collapse
|
24
|
Coppola DM, White LE. Forever young: Neoteny, neurogenesis and a critique of critical periods in olfaction. J Bioenerg Biomembr 2018; 51:53-63. [PMID: 30421031 DOI: 10.1007/s10863-018-9778-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022]
Abstract
The critical period concept has been one of the most transcendent in science, education, and society forming the basis of our fixation on 'quality' of childhood experiences. The neural basis of this process has been revealed in developmental studies of visual, auditory and somatosensory maps and their enduring modification through manipulations of experience early in life. Olfaction, too, possesses a number of phenomena that share key characteristics with classical critical periods like sensitive temporal windows and experience dependence. In this review, we analyze the candidate critical period-like phenomena in olfaction and find them disanalogous to classical critical periods in other sensory systems in several important ways. This leads us to speculate as to why olfaction may be alone among exteroceptive systems in lacking classical critical periods and how life-long neurogenesis of olfactory sensory neurons and bulbar interneurons-a neotenic vestige-- relates to the structure and function of the mammalian olfactory system.
Collapse
Affiliation(s)
- David M Coppola
- Department of Biology, Randolph Macon College, Ashland, VA, 23005, USA.
| | - Leonard E White
- Department of Neurology, Duke Institute for Brain Sciences, Duke University School of Medicine, Durham, NC, 27708, USA
| |
Collapse
|
25
|
Islam S, Ueda M, Nishida E, Wang MX, Osawa M, Lee D, Itoh M, Nakagawa K, Tana, Nakagawa T. Odor preference and olfactory memory are impaired in Olfaxin-deficient mice. Brain Res 2018; 1688:81-90. [PMID: 29571668 DOI: 10.1016/j.brainres.2018.03.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/19/2018] [Accepted: 03/19/2018] [Indexed: 12/12/2022]
Abstract
Olfaxin, which is a BNIP2 and Cdc42GAP homology (BCH) domain-containing protein, is predominantly expressed in mitral and tufted (M/T) cells in the olfactory bulb (OB). Olfaxin and Caytaxin, which share 56.3% amino acid identity, are similar in their glutamatergic terminal localization, kidney-type glutaminase (KGA) interaction, and caspase-3 substrate. Although the deletion of Caytaxin protein causes human Cayman ataxia and ataxia in the mutant mouse, the function of Olfaxin is largely unknown. In this study, we generated Prune2 gene mutant mice (Prune2Ex16-/-; knock out [KO] mice) using the CRISPR/Cas9 system, during which the exon 16 containing start codon of Olfaxin mRNA was deleted. Exon 16 has 80 nucleotides and is contained in four of five Prune2 isoforms, including PRUNE2, BMCC1, BNIPXL, and Olfaxin/BMCC1s. The levels of Olfaxin mRNA and Olfaxin protein in the OB and piriform cortex of KO mice significantly decreased. Although Prune2 mRNA also significantly decreased in the spinal cord, the gross anatomy of the spinal cord and dorsal root ganglion (DRG) was intact. Further, disturbance of the sensory and motor system was not observed in KO mice. Therefore, in the current study, we examined the role of Olfaxin in the olfactory system where PRUNE2, BMCC1, and BNIPXL are scarcely expressed. Odor preference was impaired in KO mice using opposite-sex urinary scents as well as a non-social odor stimulus (almond). Results of the odor-aversion test demonstrated that odor-associative learning was disrupted in KO mice. Moreover, the NMDAR2A/NMDAR2B subunits switch in the piriform cortex was not observed in KO mice. These results indicated that Olfaxin may play a critical role in odor preference and olfactory memory.
Collapse
Affiliation(s)
- Saiful Islam
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masashi Ueda
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, Japan; Department of Embryology, Institute for Developmental Research, Aichi Human Service Center, Aichi, Japan
| | - Emika Nishida
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Miao-Xing Wang
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masatake Osawa
- Department of Molecular Design and Synthesis, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Dongsoo Lee
- Department of Molecular Design and Synthesis, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masanori Itoh
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kiyomi Nakagawa
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tana
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Toshiyuki Nakagawa
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, Japan.
| |
Collapse
|
26
|
Jacobson GA, Rupprecht P, Friedrich RW. Experience-Dependent Plasticity of Odor Representations in the Telencephalon of Zebrafish. Curr Biol 2018; 28:1-14.e3. [DOI: 10.1016/j.cub.2017.11.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/16/2017] [Accepted: 11/01/2017] [Indexed: 11/26/2022]
|
27
|
Abstract
Cortical circuits are known to be plastic and adaptable, as shown by an impressive body of evidence demonstrating the ability of cortical circuits to adapt to changes in environmental stimuli, development, learning, and insults. In this review, we will discuss some of the features of cortical circuits that are thought to facilitate cortical circuit versatility and flexibility. Throughout life, cortical circuits can be extensively shaped and refined by experience while preserving their overall organization, suggesting that mechanisms are in place to favor change but also to stabilize some aspects of the circuit. First, we will describe the basic organization and some of the common features of cortical circuits. We will then discuss how this underlying cortical structure provides a substrate for the experience- and learning-dependent processes that contribute to cortical flexibility.
Collapse
Affiliation(s)
- Melissa S. Haley
- Department of Neurobiology and Behavior, SUNY–Stony Brook, Stony Brook, NY, USA
| | - Arianna Maffei
- Department of Neurobiology and Behavior, SUNY–Stony Brook, Stony Brook, NY, USA
| |
Collapse
|
28
|
Yamaguchi M. The role of sleep in the plasticity of the olfactory system. Neurosci Res 2017; 118:21-29. [PMID: 28501498 DOI: 10.1016/j.neures.2017.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/28/2017] [Accepted: 03/07/2017] [Indexed: 11/24/2022]
Abstract
The central olfactory system mediates a variety of odor-guided behaviors crucial for maintenance of animal life. The olfactory neural circuit must be highly plastic to ensure that it responds appropriately to changing odor circumstances. Recent studies have revealed that the processing of odor information changes drastically during waking and sleep and that neural activity during sleep plays pivotal roles in the structural reorganization and functional plasticity of the olfactory system. While olfactory information from the external world is efficiently transferred to the olfactory cortex (OC) via the olfactory bulb (OB) during waking, this information flow is attenuated during slow-wave sleep: during slow-wave sleep, the OC neurons exhibit synchronous discharges without odor input under the entrainment of sharp waves in the local field potential recording. Top-down transfer of sharp-wave activity to the OB during slow-wave sleep promotes structural reorganization of the OB neural circuit. Further, the activity of the OC during sleep is affected by the olfactory experience during prior waking period, and perturbation of the sleep activity disrupts proper olfactory memory. Thus, as is seen also in the hippocampus and neocortex, the neural activities of the olfactory system during sleep likely play essential roles in circuit reorganization and memory consolidation.
Collapse
Affiliation(s)
- Masahiro Yamaguchi
- Department of Physiology, Kochi Medical School, Kochi University, Kohasu, Okocho, Nankoku, Kochi, 783-8505, Japan.
| |
Collapse
|
29
|
Peng KY, Mathews PM, Levy E, Wilson DA. Apolipoprotein E4 causes early olfactory network abnormalities and short-term olfactory memory impairments. Neuroscience 2016; 343:364-371. [PMID: 28003161 DOI: 10.1016/j.neuroscience.2016.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/30/2016] [Accepted: 12/02/2016] [Indexed: 02/08/2023]
Abstract
While apolipoprotein (Apo) E4 is linked to increased incidence of Alzheimer's disease (AD), there is growing evidence that it plays a role in functional brain irregularities that are independent of AD pathology. However, ApoE4-driven functional differences within olfactory processing regions have yet to be examined. Utilizing knock-in mice humanized to ApoE4 versus the more common ApoE3, we examined a simple olfactory perceptual memory that relies on the transfer of information from the olfactory bulb (OB) to the piriform cortex (PCX), the primary cortical region involved in higher order olfaction. In addition, we have recorded in vivo resting and odor-evoked local field potentials (LPF) from both brain regions and measured corresponding odor response magnitudes in anesthetized young (6-month-old) and middle-aged (12-month-old) ApoE mice. Young ApoE4 compared to ApoE3 mice exhibited a behavioral olfactory deficit coinciding with hyperactive odor-evoked response magnitudes within the OB that were not observed in older ApoE4 mice. Meanwhile, middle-aged ApoE4 compared to ApoE3 mice exhibited heightened response magnitudes in the PCX without a corresponding olfactory deficit, suggesting a shift with aging in ApoE4-driven effects from OB to PCX. Interestingly, the increased ApoE4-specific response in the PCX at middle-age was primarily due to a dampening of baseline spontaneous activity rather than an increase in evoked response power. Our findings indicate that early ApoE4-driven olfactory memory impairments and OB network abnormalities may be a precursor to later network dysfunction in the PCX, a region that not only is targeted early in AD, but may be selectively vulnerable to ApoE4 genotype.
Collapse
Affiliation(s)
- Katherine Y Peng
- Department of Neuroscience & Physiology, New York University Langone Medical Center, 560 1st Avenue, 10016 New York, NY, USA; Department of Biochemistry & Molecular Pharmacology, New York University Langone Medical Center, 560 1st Avenue, 10016 New York, NY, USA.
| | - Paul M Mathews
- Department of Psychiatry, New York University Langone Medical Center, 560 1st Avenue, 10016 New York, NY, USA; Center for Dementia Research, Nathan S. Kline Institute, 140 Old Orangeburg Road, Orangeburg, 10962 New York, USA.
| | - Efrat Levy
- Department of Biochemistry & Molecular Pharmacology, New York University Langone Medical Center, 560 1st Avenue, 10016 New York, NY, USA; Department of Psychiatry, New York University Langone Medical Center, 560 1st Avenue, 10016 New York, NY, USA; Center for Dementia Research, Nathan S. Kline Institute, 140 Old Orangeburg Road, Orangeburg, 10962 New York, USA.
| | - Donald A Wilson
- Department of Neuroscience & Physiology, New York University Langone Medical Center, 560 1st Avenue, 10016 New York, NY, USA; Department of Child & Adolescent Psychiatry, New York University Langone Medical Center, 560 1st Avenue, 10016 New York, NY, USA; Emotional Brain Institute, Nathan S. Kline Institute, 140 Old Orangeburg Road, Orangeburg, 10962 New York, USA.
| |
Collapse
|
30
|
Ghosh A, Purchase NC, Chen X, Yuan Q. Norepinephrine Modulates Pyramidal Cell Synaptic Properties in the Anterior Piriform Cortex of Mice: Age-Dependent Effects of β-adrenoceptors. Front Cell Neurosci 2015; 9:450. [PMID: 26635530 PMCID: PMC4652601 DOI: 10.3389/fncel.2015.00450] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/02/2015] [Indexed: 12/31/2022] Open
Abstract
Early odor preference learning in rodents occurs within a sensitive period [≤postnatal day (P)10–12], during which pups show a heightened ability to form an odor preference when a novel odor is paired with a tactile stimulation (e.g., stroking). Norepinephrine (NE) release from the locus coeruleus during stroking mediates this learning. However, in older pups, stroking loses its ability to induce learning. The cellular and circuitry mechanisms underpinning the sensitive period for odor preference learning is not well understood. We first established the sensitive period learning model in mice – odor paired with stroking induced odor preference in P8 but not P14 mice. This learning was dependent on NE-β-adrenoceptors as it was prevented by propranolol injection prior to training. We then tested whether there are developmental changes in pyramidal cell excitability and NE responsiveness in the anterior piriform cortex (aPC) in mouse pups. Although significant differences of pyramidal cell intrinsic properties were found in two age groups (P8–11 and P14+), NE at two concentrations (0.1 and 10 μM) did not alter intrinsic properties in either group. In contrast, in P8–11 pups, NE at 0.1 μM presynaptically decreased miniature IPSC and increased miniature EPSC frequencies. These effects were reversed with a higher dose of NE (10 μM), suggesting involvement of different adrenoceptor subtypes. In P14+ pups, NE at higher doses (1 and 10 μM) acted both pre- and postsynaptically to promote inhibition. These results suggest that enhanced synaptic excitation and reduced inhibition by NE in the aPC network may underlie the sensitive period.
Collapse
Affiliation(s)
- Abhinaba Ghosh
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's NL, Canada
| | - Nicole C Purchase
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's NL, Canada
| | - Xihua Chen
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's NL, Canada
| | - Qi Yuan
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's NL, Canada
| |
Collapse
|
31
|
Abstract
How sensory information is processed within olfactory cortices is unclear. Here, we examined long-range circuit wiring between different olfactory cortical regions of acute mouse brain slices using a channelrhodopsin-2 (ChR2)-based neuronal targeting approach. Our results provide detailed information regarding the synaptic properties of the reciprocal long-range monosynaptic glutamatergic projections (LRMGP) between and within anterior piriform cortex (aPC), posterior piriform cortex (pPC), and lateral entorhinal cortex (LEC), thereby creating a long-range inter- and intracortical circuit diagrams at the level of synapses and single cortical neurons. Our results reveal the following information regarding hierarchical intra- and intercortical organizations: (i) there is massive bottom-up (i.e., rostral-caudal) excitation within the LRMGP accompanied with strong feedforward (FF) inhibition; (ii) there are convergent FF connections onto LEC from both aPC and pPC; (iii) feedback (FB) intercortical connections are weak with a significant fraction of presumptive silent synapses; and (iv) intra and intercortical long-range connections lack layer specificity and their innervation of interneurons are stronger than neighboring pyramidal neurons. The elucidation of the distinct hierarchical organization of long-range olfactory cortical circuits paves the way for further understanding of higher order cortical processing within the olfactory system.
Collapse
Affiliation(s)
- Weiguo Yang
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY Graduate Neuroscience Program, University of Wyoming, Laramie, WY
| | - Qian-Quan Sun
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY
| |
Collapse
|
32
|
Barber CN, Coppola DM. Compensatory plasticity in the olfactory epithelium: age, timing, and reversibility. J Neurophysiol 2015; 114:2023-32. [PMID: 26269548 DOI: 10.1152/jn.00076.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 08/02/2015] [Indexed: 11/22/2022] Open
Abstract
Like other biological systems, olfaction responds "homeostatically" to enduring change in the stimulus environment. This adaptive mechanism, referred to as compensatory plasticity, has been studied almost exclusively in developing animals. Thus it is unknown if this phenomenon is limited to ontogenesis and irreversible, characteristics common to some other forms of plasticity. Here we explore the effects of odor deprivation on the adult mouse olfactory epithelium (OE) using nasal plugs to eliminate nasal airflow unilaterally. Plugs were in place for 2-6 wk after which electroolfactograms (EOGs) were recorded from the occluded and open sides of the nasal cavity. Mean EOG amplitudes were significantly greater on the occluded than on the open side. The duration of plugging did not affect the results, suggesting that maximal compensation occurs within 2 wk or less. The magnitude of the EOG difference between the open and occluded side in plugged mice was comparable to adults that had undergone surgical naris occlusion as neonates. When plugs were removed after 4 wk followed by 2 wk of recovery, mean EOG amplitudes were not significantly different between the always-open and previously plugged sides of the nasal cavity suggesting that this form of plasticity is reversible. Taken together, these results suggest that compensatory plasticity is a constitutive mechanism of olfactory receptor neurons that allows these cells to recalibrate their stimulus-response relationship to fit the statistics of their current odor environment.
Collapse
Affiliation(s)
- Casey N Barber
- Department of Biology, Randolph-Macon College, Ashland, Virginia
| | - David M Coppola
- Department of Biology, Randolph-Macon College, Ashland, Virginia
| |
Collapse
|
33
|
Priebe NJ, McGee AW. Mouse vision as a gateway for understanding how experience shapes neural circuits. Front Neural Circuits 2014; 8:123. [PMID: 25324730 PMCID: PMC4183107 DOI: 10.3389/fncir.2014.00123] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/18/2014] [Indexed: 01/28/2023] Open
Abstract
Genetic programs controlling ontogeny drive many of the essential connectivity patterns within the brain. Yet it is activity, derived from the experience of interacting with the world, that sculpts the precise circuitry of the central nervous system. Such experience-dependent plasticity has been observed throughout the brain but has been most extensively studied in the neocortex. A prime example of this refinement of neural circuitry is found in primary visual cortex (V1), where functional connectivity changes have been observed both during development and in adulthood. The mouse visual system has become a predominant model for investigating the principles that underlie experience-dependent plasticity, given the general conservation of visual neural circuitry across mammals as well as the powerful tools and techniques recently developed for use in rodent. The genetic tractability of mice has permitted the identification of signaling pathways that translate experience-driven activity patterns into changes in circuitry. Further, the accessibility of visual cortex has allowed neural activity to be manipulated with optogenetics and observed with genetically-encoded calcium sensors. Consequently, mouse visual cortex has become one of the dominant platforms to study experience-dependent plasticity.
Collapse
Affiliation(s)
- Nicholas J Priebe
- Section of Neurobiology, School of Biological Sciences, University of Texas at Austin Austin, TX, USA
| | - Aaron W McGee
- Developmental Neuroscience Program, Saban Research Institute, Children's Hospital of Los Angeles, Department of Pediatrics, Keck School of Medicine, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
34
|
Jamon M. The development of vestibular system and related functions in mammals: impact of gravity. Front Integr Neurosci 2014; 8:11. [PMID: 24570658 PMCID: PMC3916785 DOI: 10.3389/fnint.2014.00011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 01/20/2014] [Indexed: 12/12/2022] Open
Abstract
This chapter reviews the knowledge about the adaptation to Earth gravity during the development of mammals. The impact of early exposure to altered gravity is evaluated at the level of the functions related to the vestibular system, including postural control, homeostatic regulation, and spatial memory. The hypothesis of critical periods in the adaptation to gravity is discussed. Demonstrating a critical period requires removing the gravity stimulus during delimited time windows, what is impossible to do on Earth surface. The surgical destruction of the vestibular apparatus, and the use of mice strains with defective graviceptors have provided useful information on the consequences of missing gravity perception, and the possible compensatory mechanisms, but transitory suppression of the stimulus can only be operated during spatial flight. The rare studies on rat pups housed on board of space shuttle significantly contributed to this problem, but the use of hypergravity environment, produced by means of chronic centrifugation, is the only available tool when repeated experiments must be carried out on Earth. Even though hypergravity is sometimes considered as a mirror situation to microgravity, the two situations cannot be confused because a gravitational force is still present. The theoretical considerations that validate the paradigm of hypergravity to evaluate critical periods are discussed. The question of adaption of graviceptor is questioned from an evolutionary point of view. It is possible that graviception is hardwired, because life on Earth has evolved under the constant pressure of gravity. The rapid acquisition of motor programming by precocial mammals in minutes after birth is consistent with this hypothesis, but the slow development of motor skills in altricial species and the plasticity of vestibular perception in adults suggest that gravity experience is required for the tuning of graviceptors. The possible reasons for this dichotomy are discussed.
Collapse
Affiliation(s)
- Marc Jamon
- Faculté de Médecine de la Timone, Institut National de la Santé et de la Recherche Médicale U 1106, Aix-Marseille University Marseille, France
| |
Collapse
|
35
|
Yuan Q, Shakhawat AMD, Harley CW. Mechanisms underlying early odor preference learning in rats. PROGRESS IN BRAIN RESEARCH 2014; 208:115-56. [PMID: 24767481 DOI: 10.1016/b978-0-444-63350-7.00005-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Early odor preference training in rat pups produces behavioral preferences that last from hours to lifetimes. Here, we discuss the molecular and circuitry changes we have observed in the olfactory bulb (OB) and in the anterior piriform cortex (aPC) following odor training. For normal preference learning, both structures are necessary, but learned behavior can be initiated by initiating local circuit change in either structure. Our evidence relates dynamic molecular and circuit changes to memory duration and storage localization. Results using this developmental model are consistent with biological memory theories implicating N-methyl-D-aspartate (NMDA) receptors and β-adrenoceptors, and their associated cascades, in memory induction and consolidation. Finally, our examination of the odor preference model reveals a primary role for increases in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor synaptic strength, and in network strength, in the creation and maintenance of preference memory in both olfactory structures.
Collapse
Affiliation(s)
- Qi Yuan
- Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.
| | - Amin M D Shakhawat
- Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Carolyn W Harley
- Department of Psychology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.
| |
Collapse
|
36
|
Yamaguchi M, Manabe H, Murata K, Mori K. Reorganization of neuronal circuits of the central olfactory system during postprandial sleep. Front Neural Circuits 2013; 7:132. [PMID: 23966911 PMCID: PMC3743305 DOI: 10.3389/fncir.2013.00132] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 07/26/2013] [Indexed: 11/30/2022] Open
Abstract
Plastic changes in neuronal circuits often occur in association with specific behavioral states. In this review, we focus on an emerging view that neuronal circuits in the olfactory system are reorganized along the wake-sleep cycle. Olfaction is crucial to sustaining the animals' life, and odor-guided behaviors have to be newly acquired or updated to successfully cope with a changing odor world. It is therefore likely that neuronal circuits in the olfactory system are highly plastic and undergo repeated reorganization in daily life. A remarkably plastic feature of the olfactory system is that newly generated neurons are continually integrated into neuronal circuits of the olfactory bulb (OB) throughout life. New neurons in the OB undergo an extensive selection process, during which many are eliminated by apoptosis for the fine tuning of neuronal circuits. The life and death decision of new neurons occurs extensively during a short time window of sleep after food consumption (postprandial sleep), a typical daily olfactory behavior. We review recent studies that explain how olfactory information is transferred between the OB and the olfactory cortex (OC) along the course of the wake-sleep cycle. Olfactory sensory input is effectively transferred from the OB to the OC during waking, while synchronized top-down inputs from the OC to the OB are promoted during the slow-wave sleep. We discuss possible neuronal circuit mechanisms for the selection of new neurons in the OB, which involves the encoding of olfactory sensory inputs and memory trace formation during waking and internally generated activities in the OC and OB during subsequent sleep. The plastic changes in the OB and OC are well coordinated along the course of olfactory behavior during wakefulness and postbehavioral rest and sleep. We therefore propose that the olfactory system provides an excellent model in which to understand behavioral state-dependent plastic mechanisms of the neuronal circuits in the brain.
Collapse
Affiliation(s)
- Masahiro Yamaguchi
- Department of Physiology, Graduate School of Medicine, The University of Tokyo Tokyo, Japan ; Japan Science and Technology Agency, CREST Tokyo, Japan
| | | | | | | |
Collapse
|
37
|
Neurons and circuits for odor processing in the piriform cortex. Trends Neurosci 2013; 36:429-38. [PMID: 23648377 DOI: 10.1016/j.tins.2013.04.005] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/04/2013] [Accepted: 04/04/2013] [Indexed: 01/13/2023]
Abstract
Increased understanding of the early stages of olfaction has lead to a renewed interest in the higher brain regions responsible for forming unified 'odor images' from the chemical components detected by the nose. The piriform cortex, which is one of the first cortical destinations of olfactory information in mammals, is a primitive paleocortex that is critical for the synthetic perception of odors. Here we review recent work that examines the cellular neurophysiology of the piriform cortex. Exciting new findings have revealed how the neurons and circuits of the piriform cortex process odor information, demonstrating that, despite its superficial simplicity, the piriform cortex is a remarkably subtle and intricate neural circuit.
Collapse
|
38
|
Morrison GL, Fontaine CJ, Harley CW, Yuan Q. A role for the anterior piriform cortex in early odor preference learning: evidence for multiple olfactory learning structures in the rat pup. J Neurophysiol 2013; 110:141-52. [PMID: 23576704 DOI: 10.1152/jn.00072.2013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
cFos activation in the anterior piriform cortex (aPC) occurs in early odor preference learning in rat pups (Roth and Sullivan 2005). Here we provide evidence that the pairing of odor as a conditioned stimulus and β-adrenergic activation in the aPC as an unconditioned stimulus generates early odor preference learning. β-Adrenergic blockade in the aPC prevents normal preference learning. Enhancement of aPC cAMP response element-binding protein (CREB) phosphorylation in trained hemispheres is consistent with a role for this cascade in early odor preference learning in the aPC. In vitro experiments suggested theta-burst-mediated long-term potentiation (LTP) at the lateral olfactory tract (LOT) to aPC synapse depends on N-methyl-D-aspartate (NMDA) receptors and can be significantly enhanced by β-adrenoceptor activation, which causes increased glutamate release from LOT synapses during LTP induction. NMDA receptors in aPC are also shown to be critical for the acquisition, but not expression, of odor preference learning, as would be predicted if they mediate initial β-adrenoceptor-promoted aPC plasticity. Ex vivo experiments 3 and 24 h after odor preference training reveal an enhanced LOT-aPC field excitatory postsynaptic potential (EPSP). At 3 h both presynaptic and postsynaptic potentiations support EPSP enhancement while at 24 h only postsynaptic potentiation is seen. LOT-LTP in aPC is excluded by odor preference training. Taken together with earlier work on the role of the olfactory bulb in early odor preference learning, these outcomes suggest early odor preference learning is normally supported by and requires multiple plastic changes at least at two levels of olfactory circuitry.
Collapse
Affiliation(s)
- Gillian L Morrison
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | | | | | | |
Collapse
|
39
|
Pandipati S, Schoppa NE. Age-dependent adrenergic actions in the main olfactory bulb that could underlie an olfactory-sensitive period. J Neurophysiol 2012; 108:1999-2007. [PMID: 22815401 DOI: 10.1152/jn.00322.2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many sensory systems are endowed with mechanisms of neural plasticity that are restricted to a sensitive period in the young developing animal. In this study, we performed experiments in slices of the main olfactory bulb (OB) from rats to examine possible age-dependent cellular mechanisms of plasticity in the olfactory system. We focused on the neurotransmitter norepinephrine (NE), shown to be important in different forms of olfactory learning, examining whether two specific cellular effects of NE previously observed in rats less than P14 extended to older animals. These included an acute reduction in GABAergic synaptic transmission from granule cells (GCs) onto output mitral cells (MCs) and an enhancement in gamma frequency (30-70 Hz) oscillations that persists long after removal of NE. We found that NE failed to reduce GC-to-MC transmission or enhance gamma oscillations in older rats at P18-23. The loss of NE actions on both phenomena appeared to reflect an age-dependent loss of function of α(2)-adrenergic receptors. In addition, we found that NE induced an age-dependent enhancement of transient excitation in MCs, providing a mechanism to link the acute decrease in GC-to-MC inhibition to the long-term increase in gamma oscillations through increases in intracellular calcium. The age-dependent cellular mechanisms that we describe could underlie an olfactory-sensitive period in newborn rodents.
Collapse
Affiliation(s)
- Sruthi Pandipati
- Neuroscience Program, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | | |
Collapse
|
40
|
Hagiwara A, Pal SK, Sato TF, Wienisch M, Murthy VN. Optophysiological analysis of associational circuits in the olfactory cortex. Front Neural Circuits 2012; 6:18. [PMID: 22529781 PMCID: PMC3329886 DOI: 10.3389/fncir.2012.00018] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/26/2012] [Indexed: 02/04/2023] Open
Abstract
Primary olfactory cortical areas receive direct input from the olfactory bulb, but also have extensive associational connections that have been mainly studied with classical anatomical methods. Here, we shed light on the functional properties of associational connections in the anterior and posterior piriform cortices (aPC and pPC) using optophysiological methods. We found that the aPC receives dense functional connections from the anterior olfactory nucleus (AON), a major hub in olfactory cortical circuits. The local recurrent connectivity within the aPC, long invoked in cortical autoassociative models, is sparse and weak. By contrast, the pPC receives negligible input from the AON, but has dense connections from the aPC as well as more local recurrent connections than the aPC. Finally, there are negligible functional connections from the pPC to aPC. Our study provides a circuit basis for a more sensory role for the aPC in odor processing and an associative role for the pPC.
Collapse
Affiliation(s)
- Akari Hagiwara
- Akari Hagiwara, Faculty of Medicine, Department of Biochemistry, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan. e-mail:
| | | | | | | | - Venkatesh N. Murthy
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, CambridgeMA, USA
| |
Collapse
|
41
|
Poo C, Isaacson JS. A major role for intracortical circuits in the strength and tuning of odor-evoked excitation in olfactory cortex. Neuron 2011; 72:41-8. [PMID: 21982367 DOI: 10.1016/j.neuron.2011.08.015] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2011] [Indexed: 11/18/2022]
Abstract
In primary sensory cortices, there are two main sources of excitation: afferent sensory input relayed from the periphery and recurrent intracortical input. Untangling the functional roles of these two excitatory pathways is fundamental for understanding how cortical neurons process sensory stimuli. Odor representations in the primary olfactory (piriform) cortex depend on excitatory sensory afferents from the olfactory bulb. However, piriform cortex pyramidal cells also receive dense intracortical excitatory connections, and the relative contribution of these two pathways to odor responses is unclear. Using a combination of in vivo whole-cell voltage-clamp recording and selective synaptic silencing, we show that the recruitment of intracortical input, rather than olfactory bulb input, largely determines the strength of odor-evoked excitatory synaptic transmission in rat piriform cortical neurons. Furthermore, we find that intracortical synapses dominate odor-evoked excitatory transmission in broadly tuned neurons, whereas bulbar synapses dominate excitatory synaptic responses in more narrowly tuned neurons.
Collapse
Affiliation(s)
- Cindy Poo
- Center for Neural Circuits and Behavior, Department of Neuroscience, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | |
Collapse
|
42
|
Abstract
Natural odors, generally composed of many monomolecular components, are analyzed by peripheral receptors into component features and translated into spatiotemporal patterns of neural activity in the olfactory bulb. Here, we will discuss the role of the olfactory cortex in the recognition, separation and completion of those odor-evoked patterns, and how these processes contribute to odor perception. Recent findings regarding the neural architecture, physiology, and plasticity of the olfactory cortex, principally the piriform cortex, will be described in the context of how this paleocortical structure creates odor objects.
Collapse
Affiliation(s)
- Donald A Wilson
- Emotional Brain Institute, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.
| | | |
Collapse
|
43
|
Shepherd GM. The microcircuit concept applied to cortical evolution: from three-layer to six-layer cortex. Front Neuroanat 2011; 5:30. [PMID: 21647397 PMCID: PMC3102215 DOI: 10.3389/fnana.2011.00030] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 05/02/2011] [Indexed: 11/13/2022] Open
Abstract
Understanding the principles of organization of the cerebral cortex requires insight into its evolutionary history. This has traditionally been the province of anatomists, but evidence regarding the microcircuit organization of different cortical areas is providing new approaches to this problem. Here we use the microcircuit concept to focus first on the principles of microcircuit organization of three-layer cortex in the olfactory cortex, hippocampus, and turtle general cortex, and compare it with six-layer neocortex. From this perspective it is possible to identify basic circuit elements for recurrent excitation and lateral inhibition that are common across all the cortical regions. Special properties of the apical dendrites of pyramidal cells are reviewed that reflect the specific adaptations that characterize the functional operations in the different regions. These principles of microcircuit function provide a new approach to understanding the expanded functional capabilities elaborated by the evolution of the neocortex.
Collapse
Affiliation(s)
- Gordon M. Shepherd
- Department of Neurobiology, Yale University School of MedicineNew Haven, CT, USA
| |
Collapse
|
44
|
Abstract
The primary olfactory (or piriform) cortex is a trilaminar paleocortex that is thought to construct unified "odor images" from the odor components identified by the olfactory bulb. How the piriform cortex (PC) accomplishes this sophisticated synthetic task, despite its relatively simple architecture, is unknown. Here we used in vitro patch-clamp recordings from acute slices of the anterior PC of mice to identify microcircuits involved in excitatory synaptic processing. Cluster analysis confirmed the presence of two prominent classes of glutamatergic principal cells in the main input layer (layer II) of the PC: semilunar (SL) cells and superficial pyramidal (SP) cells. SL cells received stronger afferent excitatory input from the olfactory bulb, on average, than did SP cells. This was due to the larger mean strength of single-fiber afferents onto SL cells. In contrast, SP cells received stronger associational (intracortical) excitatory inputs, most likely due to their more extensive dendritic trees within the associational layers. Tissue-cut experiments and dual recordings from SL and SP cells in disinhibited slices were consistent with the distinctive patterns of connectivity of these two cell classes. Our findings suggest that the anterior PC employs at least two layers of excitatory synaptic processing: one involving strong afferent inputs onto SL cells, and another involving strong intracortical inputs onto SP cells. This architecture may allow the PC to sequentially process olfactory information within segregated subcircuits.
Collapse
|
45
|
Stokes CCA, Isaacson JS. From dendrite to soma: dynamic routing of inhibition by complementary interneuron microcircuits in olfactory cortex. Neuron 2010; 67:452-65. [PMID: 20696382 PMCID: PMC2922014 DOI: 10.1016/j.neuron.2010.06.029] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2010] [Indexed: 10/19/2022]
Abstract
Diverse inhibitory pathways shape cortical information processing; however, the relevant interneurons recruited by sensory stimuli and how they impact principal cells are unclear. Here we show that two major interneuron circuits govern dynamic inhibition in space and time within the olfactory cortex. Dendritic-targeting layer 1 interneurons receive strong input from the olfactory bulb and govern early-onset feedforward inhibition. However, this circuit is only transiently engaged during bursts of olfactory bulb input. In contrast, somatic-targeting layer 3 interneurons, recruited exclusively by recurrent excitation from pyramidal cells, produce late-onset feedback inhibition. Our results reveal two complementary interneuron circuits enforcing widespread inhibition, which shifts from the apical dendrites to somata of pyramidal cells during bursts of sensory input.
Collapse
Affiliation(s)
- Caleb C A Stokes
- Center for Neural Circuits and Behavior, Department of Neuroscience, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | | |
Collapse
|
46
|
Dendritic compartment and neuronal output mode determine pathway-specific long-term potentiation in the piriform cortex. J Neurosci 2009; 29:13649-61. [PMID: 19864577 DOI: 10.1523/jneurosci.2672-09.2009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The apical dendrite of layer 2/3 pyramidal cells in the piriform cortex receives two spatially distinct inputs: one projecting onto the distal apical dendrite in sensory layer 1a, the other targeting the proximal apical dendrite in layer 1b. We observe an expression gradient of A-type K(+) channels that weakens the backpropagating action potential-mediated depolarization in layer 1a compared with layer 1b. We find that the pairing of presynaptic and postsynaptic firing leads to significantly smaller Ca(2+) signals in the distal dendritic spines in layer 1a compared with the proximal spines in layer 1b. The consequence is a selective failure to induce long-term potentiation (LTP) in layer 1a, which can be rescued by pharmacological enhancement of action potential backpropagation. In contrast, LTP induction by pairing presynaptic and postsynaptic firing is possible in layer 1b but requires bursting of the postsynaptic cell. This output mode strongly depends on the balance of excitation and inhibition in the piriform cortex. We show, on the single-spine level, how the plasticity of functionally distinct synapses is gated by the intrinsic electrical properties of piriform cortex layer 2 pyramidal cell dendrites and the cellular output mode.
Collapse
|
47
|
Bathellier B, Margrie TW, Larkum ME. Properties of piriform cortex pyramidal cell dendrites: implications for olfactory circuit design. J Neurosci 2009; 29:12641-52. [PMID: 19812339 PMCID: PMC6665100 DOI: 10.1523/jneurosci.1124-09.2009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 08/05/2009] [Accepted: 08/09/2009] [Indexed: 11/21/2022] Open
Abstract
Unlike the neocortex, sensory input to the piriform cortex is anatomically segregated in layer 1, making it ideal for studying the dendritic integration of synaptic inputs pivotal for sensory information processing. Here we investigated dendritic integration of olfactory bulb inputs in pyramidal cells using dual patch-clamp recordings along the soma-apical dendritic axis. We found that these dendrites are relatively compact with 50% maximal somatic current loss for synaptic inputs arriving at distal dendritic regions. Distal dendrites could generate small and fast local spikes, but they had little impact on the soma, indicating that they are only weakly active. In contrast to the neocortex, we found no evidence for dendritic Ca(2+) or NMDA spikes though these dendrites actively supported action potential backpropagation with concomitant entry of Ca(2+) ions. Based on experiments and simulations we suggest that regardless of dendritic location, olfactory bulb inputs have nearly uniform potency and are distributed diffusely over the distal apical tree (layer Ia), thereby minimizing sublinear summation effects. This indicates that any stimulus feature extraction performed by these cells will occur at the soma and is based on the nearly linear sum of olfactory bulb inputs, rather than on explicitly designed clusters of functionally related synapses in the dendritic tree.
Collapse
Affiliation(s)
- Brice Bathellier
- Department of Physiology, University of Bern, CH-3012 Bern, Switzerland, and
| | - Troy W. Margrie
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Matthew E. Larkum
- Department of Physiology, University of Bern, CH-3012 Bern, Switzerland, and
| |
Collapse
|
48
|
Differential potentiation of early and late components evoked in olfactory cortex by stimulation of cortical association fibers. Brain Res 2008; 1246:70-9. [PMID: 18955033 DOI: 10.1016/j.brainres.2008.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 09/29/2008] [Accepted: 10/01/2008] [Indexed: 11/23/2022]
Abstract
The present study examined in detail the development and decay of potentiation induced in vivo by repeated high-frequency stimulation of cortical association fibers (AF) in piriform cortex (PC). Male Long-Evans rats with chronically-implanted stimulating and recording electrodes were administered potentiating AF stimulation (thirty 10-pulse 100-Hz trains) on 8 consecutive days, followed by a ninth administration after an 8-day layoff. The time course of potentiation was monitored by local field potentials evoked in the PC and olfactory bulb (OB) by 0.1 Hz single-pulse AF test stimulation before, during, and following each potentiating treatment. AF test stimulation evoked two distinct components in the PC, an early component (EC) and a late component (LC). High-frequency AF stimulation produced potentiation of each component, but with very different characteristics. EC potentiation consisted of a brief augmentation during each bout of potentiating stimulation that persisted <2 min after the last high-frequency train and showed no cumulative effects following repeated induction across days. In contrast, LC potentiation developed gradually, requiring several daily potentiation treatments to reach maximum amplitude, and decayed more slowly each time it was induced. Furthermore, LC potentiation persisted in latent form for at least 8 days following its apparent decay and could be reinstated by repeated test stimulation that was without effect at the beginning of the experiment. Potentiation in the OB resembled LC potentiation in its characteristics, but with less latent potentiation. These results indicate that the potentiation reported here is distinctly different from the long-term potentiation previously demonstrated in vitro in the PC, and suggest that this potentiation represents an increase in excitability within the cortical association fiber system that can be stored in latent form and retrieved at a later time. These characteristics make this potentiation a suitable candidate for participation in long-term functional changes within olfactory cortex.
Collapse
|
49
|
Intrabulbar projecting external tufted cells mediate a timing-based mechanism that dynamically gates olfactory bulb output. J Neurosci 2008; 28:9920-8. [PMID: 18829950 DOI: 10.1523/jneurosci.3082-08.2008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the mammalian olfactory system, intrabulbar projections (IBPs) mediated by a class of external tufted cells (ET cells) specifically link isofunctional odor columns within the same olfactory bulb. To study the function of these ET cells within the glomerular network, we developed a "hemibulb" preparation that maintains IBPs intact enabling the select activation of ET cells associated with specific glomeruli. Using P2-GFP mice, a line in which the P2 glomeruli are labeled with green fluorescent protein, we recorded from P2 mitral cells (MT cells) while selectively stimulating P2 ET cells. Here, we show that ET-cell activity evokes a slow modulatory (SM) potential within MT cells, which is mediated by the glomerular network and consists of both excitatory and inhibitory components. Interestingly, the timing of the SM potential with respect to olfactory nerve (ON) stimulation can produce converse effects on MT-cell output. When ET-cell activity precedes ON stimulation, the MT-cell response is potentiated; however, when ET-cell activity follows ON stimulation, the MT-cell response is inhibited. Thus, intrabulbar projecting ET cells can shape olfactory bulb output through intraglomerular modulation of MT cells.
Collapse
|
50
|
Corner MA. Spontaneous neuronal burst discharges as dependent and independent variables in the maturation of cerebral cortex tissue cultured in vitro: a review of activity-dependent studies in live 'model' systems for the development of intrinsically generated bioelectric slow-wave sleep patterns. ACTA ACUST UNITED AC 2008; 59:221-44. [PMID: 18722470 DOI: 10.1016/j.brainresrev.2008.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 08/01/2008] [Accepted: 08/05/2008] [Indexed: 10/21/2022]
Abstract
A survey is presented of recent experiments which utilize spontaneous neuronal spike trains as dependent and/or independent variables in developing cerebral cortex cultures when synaptic transmission is interfered with for varying periods of time. Special attention is given to current difficulties in selecting suitable preparations for carrying out biologically relevant developmental studies, and in applying spike-train analysis methods with sufficient resolution to detect activity-dependent age and treatment effects. A hierarchy of synchronized nested burst discharges which approximate early slow-wave sleep patterns in the intact organism is established as a stable basis for isolated cortex function. The complexity of reported long- and short-term homeostatic responses to experimental interference with synaptic transmission is reviewed, and the crucial role played by intrinsically generated bioelectric activity in the maturation of cortical networks is emphasized.
Collapse
Affiliation(s)
- Michael A Corner
- Netherlands Institute for Brain Research, Amsterdam, The Netherlands.
| |
Collapse
|