1
|
Kuhlmann N, Wagner Valladolid M, Quesada-Ramírez L, Farrer MJ, Milnerwood AJ. Chronic and Acute Manipulation of Cortical Glutamate Transmission Induces Structural and Synaptic Changes in Co-cultured Striatal Neurons. Front Cell Neurosci 2021; 15:569031. [PMID: 33679324 PMCID: PMC7930618 DOI: 10.3389/fncel.2021.569031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
In contrast to the prenatal topographic development of sensory cortices, striatal circuit organization is slow and requires the functional maturation of cortical and thalamic excitatory inputs throughout the first postnatal month. While mechanisms regulating synapse development and plasticity are quite well described at excitatory synapses of glutamatergic neurons in the neocortex, comparatively little is known of how this translates to glutamate synapses onto GABAergic neurons in the striatum. Here we investigate excitatory striatal synapse plasticity in an in vitro system, where glutamate can be studied in isolation from dopamine and other neuromodulators. We examined pre-and post-synaptic structural and functional plasticity in GABAergic striatal spiny projection neurons (SPNs), co-cultured with glutamatergic cortical neurons. After synapse formation, medium-term (24 h) TTX silencing increased the density of filopodia, and modestly decreased dendritic spine density, when assayed at 21 days in vitro (DIV). Spine reductions appeared to require residual spontaneous activation of ionotropic glutamate receptors. Conversely, chronic (14 days) TTX silencing markedly reduced spine density without any observed increase in filopodia density. Time-dependent, biphasic changes to the presynaptic marker Synapsin-1 were also observed, independent of residual spontaneous activity. Acute silencing (3 h) did not affect presynaptic markers or postsynaptic structures. To induce rapid, activity-dependent plasticity in striatal neurons, a chemical NMDA receptor-dependent “long-term potentiation (LTP)” paradigm was employed. Within 30 min, this increased spine and GluA1 cluster densities, and the percentage of spines containing GluA1 clusters, without altering the presynaptic signal. The results demonstrate that the growth and pruning of dendritic protrusions is an active process, requiring glutamate receptor activity in striatal projection neurons. Furthermore, NMDA receptor activation is sufficient to drive glutamatergic structural plasticity in SPNs, in the absence of dopamine or other neuromodulators.
Collapse
Affiliation(s)
- Naila Kuhlmann
- Centre for Applied Neurogenetics (CAN), University of British Columbia, Vancouver, BC, Canada.,Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | | | - Lucía Quesada-Ramírez
- Centre for Applied Neurogenetics (CAN), University of British Columbia, Vancouver, BC, Canada
| | - Matthew J Farrer
- Centre for Applied Neurogenetics (CAN), University of British Columbia, Vancouver, BC, Canada.,McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Austen J Milnerwood
- Centre for Applied Neurogenetics (CAN), University of British Columbia, Vancouver, BC, Canada.,Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
2
|
Hiester BG, Becker MI, Bowen AB, Schwartz SL, Kennedy MJ. Mechanisms and Role of Dendritic Membrane Trafficking for Long-Term Potentiation. Front Cell Neurosci 2018; 12:391. [PMID: 30425622 PMCID: PMC6218485 DOI: 10.3389/fncel.2018.00391] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/11/2018] [Indexed: 01/19/2023] Open
Abstract
Long-term potentiation (LTP) of excitatory synapses is a major form of plasticity for learning and memory in the central nervous system. While the molecular mechanisms of LTP have been debated for decades, there is consensus that LTP induction activates membrane trafficking pathways within dendrites that are essential for synapse growth and strengthening. Current models suggest that key molecules for synaptic potentiation are sequestered within intracellular organelles, which are mobilized by synaptic activity to fuse with the plasma membrane following LTP induction. While the identity of the factors mobilized to the plasma membrane during LTP remain obscure, the field has narrowly focused on AMPA-type glutamate receptors. Here, we review recent literature and present new experimental data from our lab investigating whether AMPA receptors trafficked from intracellular organelles directly contribute to synaptic strengthening during LTP. We propose a modified model where membrane trafficking delivers distinct factors that are required to maintain synapse growth and AMPA receptor incorporation following LTP. Finally, we pose several fundamental questions that may guide further inquiry into the role of membrane trafficking for synaptic plasticity.
Collapse
Affiliation(s)
- Brian G Hiester
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Matthew I Becker
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Aaron B Bowen
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Samantha L Schwartz
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Matthew J Kennedy
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
3
|
Kunde SA, Rademacher N, Zieger H, Shoichet SA. Protein kinase C regulates AMPA receptor auxiliary protein Shisa9/CKAMP44 through interactions with neuronal scaffold PICK1. FEBS Open Bio 2017; 7:1234-1245. [PMID: 28904854 PMCID: PMC5586339 DOI: 10.1002/2211-5463.12261] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/19/2017] [Accepted: 06/08/2017] [Indexed: 12/22/2022] Open
Abstract
Synaptic α‐amino‐3‐hydroxyl‐5‐methyl‐4‐isoxazole‐propionate (AMPA) receptors are essential mediators of neurotransmission in the central nervous system. Shisa9/cysteine‐knot AMPAR modulating protein 44 (CKAMP44) is a transmembrane protein recently found to be present in AMPA receptor‐associated protein complexes. Here, we show that the cytosolic tail of Shisa9/CKAMP44 interacts with multiple scaffold proteins that are important for regulating synaptic plasticity in central neurons. We focussed on the interaction with the scaffold protein PICK1, which facilitates the formation of a tripartite complex with the protein kinase C (PKC) and thereby regulates phosphorylation of Shisa9/CKAMP44 C‐terminal residues. This work has implications for our understanding of how PICK1 modulates AMPAR‐mediated transmission and plasticity and also highlights a novel function of PKC.
Collapse
Affiliation(s)
- Stella-Amrei Kunde
- Neuroscience Research Center/Institute of Biochemistry Charité - Universitätsmedizin Berlin Germany
| | - Nils Rademacher
- Neuroscience Research Center/Institute of Biochemistry Charité - Universitätsmedizin Berlin Germany
| | - Hanna Zieger
- Neuroscience Research Center/Institute of Biochemistry Charité - Universitätsmedizin Berlin Germany
| | - Sarah A Shoichet
- Neuroscience Research Center/Institute of Biochemistry Charité - Universitätsmedizin Berlin Germany
| |
Collapse
|
4
|
Ludwig M, Stern J. Multiple signalling modalities mediated by dendritic exocytosis of oxytocin and vasopressin. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0182. [PMID: 26009761 DOI: 10.1098/rstb.2014.0182] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The mammalian hypothalamic magnocellular neurons of the supraoptic and paraventricular nuclei are among the best understood of all peptidergic neurons. Through their anatomical features, vasopressin- and oxytocin-containing neurons have revealed many important aspects of dendritic functions. Here, we review our understanding of the mechanisms of somato-dendritic peptide release, and the effects of autocrine, paracrine and hormone-like signalling on neuronal networks and behaviour.
Collapse
Affiliation(s)
- Mike Ludwig
- Centre for Integrative Physiology, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK
| | - Javier Stern
- Department of Physiology, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| |
Collapse
|
5
|
Jurado S. The dendritic SNARE fusion machinery involved in AMPARs insertion during long-term potentiation. Front Cell Neurosci 2014; 8:407. [PMID: 25565955 PMCID: PMC4273633 DOI: 10.3389/fncel.2014.00407] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/11/2014] [Indexed: 12/14/2022] Open
Abstract
Sorting endosomes carry α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs) from their maturation sites to their final destination at the dendritic plasma membrane through both constitutive and regulated exocytosis. Insertion of functional AMPARs into the postsynaptic membrane is essential for maintaining fast excitatory synaptic transmission and plasticity. Despite this crucial role in neuronal function, the machinery mediating the fusion of AMPAR-containing endosomes in dendrites has been largely understudied in comparison to presynaptic vesicle exocytosis. Increasing evidence suggests that similarly to neurotransmitter release, AMPARs insertion relies on the formation of a SNARE complex (soluble NSF-attachment protein receptor), whose composition in dendrites has just begun to be elucidated. This review analyzes recent findings of the fusion machinery involved in regulated AMPARs insertion and discusses how dendritic exocytosis and AMPARs lateral diffusion may work together to support synaptic plasticity.
Collapse
Affiliation(s)
- Sandra Jurado
- Department of Pharmacology, University of Maryland School of MedicineBaltimore, MD, USA
| |
Collapse
|
6
|
Roman-Vendrell C, Chevalier M, Acevedo-Canabal AM, Delgado-Peraza F, Flores-Otero J, Yudowski GA. Imaging of kiss-and-run exocytosis of surface receptors in neuronal cultures. Front Cell Neurosci 2014; 8:363. [PMID: 25404895 PMCID: PMC4217495 DOI: 10.3389/fncel.2014.00363] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 10/14/2014] [Indexed: 02/01/2023] Open
Abstract
Transmembrane proteins are continuously shuttled from the endosomal compartment to the neuronal plasma membrane by highly regulated and complex trafficking steps. These events are involved in many homeostatic and physiological processes such as neuronal growth, signaling, learning and memory among others. We have previously shown that endosomal exocytosis of the B2 adrenergic receptor (B2AR) and the GluR1-containing AMPA receptor to the neuronal plasma membrane is mediated by two different types of vesicular fusion. A rapid type of exocytosis in which receptors are delivered to the plasma membrane in a single kinetic step, and a persistent mode in which receptors remain clustered at the insertion site for a variable period of time before delivery to the cell surface. Here, by comparing the exocytosis of multiple receptors in dissociated hippocampal and striatal cultures, we show that persistent events are a general mechanism of vesicular delivery. Persistent events were only observed after 10 days in vitro, and their frequency increased with use of the calcium ionophore A23187 and with depolarization induced by KCl. Finally, we determined that vesicles producing persistent events remain at the plasma membrane, closing and reopening their fusion pore for a consecutive release of cargo in a mechanism reminiscent of synaptic kiss-and-run. These results indicate that the delivery of transmembrane receptors to the cell surface can be dynamically regulated by kiss-and-run exocytosis.
Collapse
Affiliation(s)
- Cristina Roman-Vendrell
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus San Juan, PR, USA ; Department of Physiology, School of Medicine, University of Puerto Rico San Juan, PR, USA
| | - Michael Chevalier
- Department of Biochemistry and Biophysics, California Institute for Quantitative Biosciences, University of California San Francisco San Francisco, CA, USA
| | - Agnes M Acevedo-Canabal
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus San Juan, PR, USA ; Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico San Juan, PR, USA
| | - Francheska Delgado-Peraza
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus San Juan, PR, USA ; Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico San Juan, PR, USA
| | - Jacqueline Flores-Otero
- Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico San Juan, PR, USA
| | - Guillermo A Yudowski
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus San Juan, PR, USA ; Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico San Juan, PR, USA
| |
Collapse
|
7
|
Abstract
Among the largest cells in the body, neurons possess an immense surface area and intricate geometry that poses many unique cell biological challenges. This morphological complexity is critical for neural circuit formation and enables neurons to compartmentalize cell-cell communication and local intracellular signalling to a degree that surpasses other cell types. The adaptive plastic properties of neurons, synapses and circuits have been classically studied by measurement of electrophysiological properties, ionic conductances and excitability. Over the last 15 years, the field of synaptic and neural electrophysiology has collided with neuronal cell biology to produce a more integrated understanding of how these remarkable highly differentiated cells utilize common eukaryotic cellular machinery to decode, integrate and propagate signals in the nervous system. The present article gives a very brief and personal overview of the organelles and trafficking machinery of neuronal dendrites and their role in dendritic and synaptic plasticity.
Collapse
Affiliation(s)
- Michael D Ehlers
- *Neuroscience Research Unit, Pfizer Worldwide Research and Development, 700 Main Street, Cambridge, MA 02139, U.S.A
| |
Collapse
|
8
|
Heimer-McGinn V, Murphy ACH, Kim JC, Dymecki SM, Young PW. Decreased dendritic spine density as a consequence of tetanus toxin light chain expression in single neurons in vivo. Neurosci Lett 2013; 555:36-41. [PMID: 24035894 DOI: 10.1016/j.neulet.2013.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/19/2013] [Accepted: 09/04/2013] [Indexed: 10/26/2022]
Abstract
Tetanus toxin light chain has been used for some time as a genetically-encoded tool to inhibit neurotransmission and thereby dissect mechanisms underlying neural circuit formation and function. In addition to cleaving v-SNARE proteins involved in axonal neurotransmitter release, tetanus toxin light chain can also block activity-dependent dendritic exocytosis. The application of tetanus toxin light chain as a research tool in mammalian models, however, has been limited to a small number of cell types. Here we have induced expression of tetanus toxin light chain in a very small number of fluorescently labeled neurons in many regions of the adult mouse brain. This was achieved by crossing SLICK (single-neuron labeling with inducible cre-mediated knockout) transgenic lines with RC::Ptox mice that have Cre recombinase-controlled expression of the tetanus toxin light chain. Using this system we have examined the cell-autonomous effects of tetanus toxin light chain expression on dendritic spines in vivo. We find that dendritic spine density is reduced by 15% in tetanus toxin expressing hippocampal CA1 pyramidal cells, while spine morphology is unaltered. This effect is likely to be a consequence of inhibition of activity-dependent dendritic exocytosis and suggests that on-going plasticity-associated exocytosis is required for long-term dendritic spine maintenance in vivo.
Collapse
Affiliation(s)
- Victoria Heimer-McGinn
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland; Department of Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, RI 02912, USA.
| | | | | | | | | |
Collapse
|
9
|
González-González IM, Henley JM. Postsynaptic kainate receptor recycling and surface expression are regulated by metabotropic autoreceptor signalling. Traffic 2013; 14:810-22. [PMID: 23556457 PMCID: PMC3744763 DOI: 10.1111/tra.12071] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 04/02/2013] [Accepted: 04/04/2013] [Indexed: 01/01/2023]
Abstract
Kainate receptors (KARs) play fundamentally important roles in controlling synaptic function and regulating neuronal excitability. Postsynaptic KARs contribute to excitatory neurotransmission but the molecular mechanisms underlying their activity-dependent surface expression are not well understood. Strong activation of KARs in cultured hippocampal neurons leads to the downregulation of postsynaptic KARs via endocytosis and degradation. In contrast, low-level activation augments postsynaptic KAR surface expression. Here, we show that this increase in KARs is due to enhanced recycling via the recruitment of Rab11-dependent, transferrin-positive endosomes into spines. Dominant-negative Rab11 or the recycling inhibitor primaquine prevents the kainate-evoked increase in surface KARs. Moreover, we show that the increase in surface expression is mediated via a metabotropic KAR signalling pathway, which is blocked by the protein kinase C inhibitor chelerythrine, the calcium chelator BAPTA and the G-protein inhibitor pertussis toxin. Thus, we report a previously uncharacterized positive feedback system that increases postsynaptic KARs in response to low- or moderate-level agonist activation and can provide additional flexibility to synaptic regulation.
Collapse
Affiliation(s)
| | - Jeremy M Henley
- School of Biochemistry, University of Bristol, Medical Sciences Building, University WalkBristol, BS8 1TD, UK
| |
Collapse
|
10
|
Abstract
Dendritic exocytosis underpins a broad range of integrative and homeostatic synaptic functions. Emerging data highlight the essential role of SNAREs in trafficking and fusion of secretory organelles with release of peptides and neurotransmitters from dendrites. This Perspective analyzes recent evidence inferring axo-dendritic polarization of vesicular release machinery and pinpoints progress made with existing challenges in this rapidly progressing field of dendritic research. Interpreting the relation of new molecular data to physiological results on secretion from dendrites would greatly advance our understanding of this facet of neuronal mechanisms.
Collapse
Affiliation(s)
- Saak V. Ovsepian
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - J. Oliver Dolly
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
11
|
Niesmann K, Breuer D, Brockhaus J, Born G, Wolff I, Reissner C, Kilimann MW, Rohlmann A, Missler M. Dendritic spine formation and synaptic function require neurobeachin. Nat Commun 2011; 2:557. [PMID: 22109531 PMCID: PMC3482631 DOI: 10.1038/ncomms1565] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 10/26/2011] [Indexed: 01/11/2023] Open
Abstract
A challenge in neuroscience is to understand the mechanisms underlying synapse
formation. Most excitatory synapses in the brain are built on spines, which are
actin-rich protrusions from dendrites. Spines are a major substrate of brain
plasticity, and spine pathologies are observed in various mental illnesses. Here we
investigate the role of neurobeachin (Nbea), a multidomain protein previously linked
to cases of autism, in synaptogenesis. We show that deletion of Nbea leads to
reduced numbers of spinous synapses in cultured neurons from complete knockouts and
in cortical tissue from heterozygous mice, accompanied by altered miniature
postsynaptic currents. In addition, excitatory synapses terminate mostly at
dendritic shafts instead of spine heads in Nbea mutants, and actin becomes less
enriched synaptically. As actin and synaptopodin, a spine-associated protein with
actin-bundling activity, accumulate ectopically near the Golgi apparatus of mutant
neurons, a role emerges for Nbea in trafficking important cargo to pre- and
postsynaptic compartments. Most excitatory synapses in the brain are found on dendritic
spines, but the mechanisms underlying synapse formation are poorly understood. Niesmann
et al. investigate the role of neurobeachin in synaptogenesis, and find that
its deletion leads to fewer spinous synapses and altered postsynaptic
currents.
Collapse
Affiliation(s)
- Katharina Niesmann
- Department of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Münster 48149, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Fuenzalida LC, Keen KL, Terasawa E. Colocalization of FM1-43, Bassoon, and GnRH-1: GnRH-1 release from cell bodies and their neuroprocesses. Endocrinology 2011; 152:4310-21. [PMID: 21896672 PMCID: PMC3199012 DOI: 10.1210/en.2011-1416] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pulsatile release of GnRH-1 is critical for reproductive function. However, the cellular mechanism of GnRH-1 neurosecretion is still elusive. In this study, we examined the neurosecretory process of GnRH-1 neurons using time-lapse image acquisition followed by immunocytochemistry with confocal microscopy. To monitor exocytotic processes, cultured GnRH-1 neurons derived from monkey embryos were labeled with the lipophilic dye, FM1-43, or its fixable form FM1-43Fx, in the presence or absence of depolarization signals, and changes in vesicles labeled with FM1-43 were analyzed. The results show FM1-43 was taken up into the cell and labeled puncta in the soma and neuroprocesses in the absence of depolarization signals, indicating that GnRH-1 neurons were spontaneously active. Depolarization of GnRH-1 neurons with high K+ or veratridine challenge increased the intensity and size of puncta in both soma and neuroprocesses, and the veratridine-induced changes in puncta were blocked by tetrodotoxin, indicating that changes in the puncta intensity and size reflect neurosecretory activity. Subsequent double immunocytochemistry for GnRH-1 and the synaptic vesicle marker, vesicle-associated membrane protein, demonstrated that the FM1-43Fx-labeled puncta were synaptic vesicles with the GnRH-1 peptide. Additional double immunocytochemistry for GnRH-1 and the marker of the neurosecretory active zone, Bassoon, indicated that the FM1-43Fx-labeled puncta were located at the sites of neurosecretory active zones in GnRH-1 neurons. These results suggest that GnRH-1 neurons have the capacity to release the peptide from the soma and dendrites. Collectively, we hypothesize that soma-dendritic release of the peptide may be a mechanism of synchronized activity among GnRH-1 neurons.
Collapse
Affiliation(s)
- Lidia C Fuenzalida
- Department of Pediatrics and Wisconsin National Primate Research Center, 1223 Capitol Court, Madison, Wisconsin 53715-1299, USA
| | | | | |
Collapse
|
13
|
Molnár E. Long-term potentiation in cultured hippocampal neurons. Semin Cell Dev Biol 2011; 22:506-13. [PMID: 21807105 DOI: 10.1016/j.semcdb.2011.07.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 06/23/2011] [Accepted: 07/01/2011] [Indexed: 10/18/2022]
Abstract
Studies performed on low-density primary neuronal cultures have enabled dissection of molecular and cellular changes during N-methyl-D-aspartate (NMDA) receptor-dependent long-term potentiation (LTP). Various electrophysiological and chemical induction protocols were developed for the persistent enhancement of excitatory synaptic transmission in hippocampal neuronal cultures. The characterisation of these plasticity models confirmed that they share many key properties with the LTP of CA1 neurons, extensively studied in hippocampal slices using electrophysiological techniques. For example, LTP in dissociated hippocampal neuronal cultures is also dependent on Ca(2+) influx through post-synaptic NMDA receptors, subsequent activation and autophosphorylation of the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and an increase in alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor insertion at the post-synaptic membrane. The availability of models of LTP in cultured hippocampal neurons significantly facilitated the monitoring of changes in endogenous postsynaptic receptor proteins and the investigation of the associated signalling mechanisms that underlie LTP. A central feature of LTP of excitatory synapses is the recruitment of AMPA receptors at the postsynaptic site. Results from the use of cell culture-based models started to establish the mechanism by which synaptic input controls a neuron's ability to modify its synapses in LTP. This review focuses on key features of various LTP induction protocols in dissociated hippocampal neuronal cultures and the applications of these plasticity models for the investigation of activity-induced changes in native AMPA receptors.
Collapse
Affiliation(s)
- Elek Molnár
- MRC Centre for Synaptic Plasticity, School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol, UK.
| |
Collapse
|
14
|
Modla S, Czymmek KJ. Correlative microscopy: a powerful tool for exploring neurological cells and tissues. Micron 2011; 42:773-92. [PMID: 21782457 DOI: 10.1016/j.micron.2011.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 06/30/2011] [Accepted: 07/01/2011] [Indexed: 11/24/2022]
Abstract
Imaging tools for exploring the neurological samples have seen a rapid transformation over the last decade. Approaches that allow clear and specific delineation of targeted tissues, individual neurons, and their cell-cell connections as well as subcellular constituents have been especially valuable. Considering the significant complexity and extent to which the nervous system interacts with every organ system in the body, one non-trivial challenge has been how to identify and target specific structures and pathologies by microscopy. To this end, correlative methods enable one to view the same exact structure of interest utilizing the capabilities of typically separate, but powerful, microscopy platforms. As such, correlative microscopy is well-positioned to address the three critical problems of identification, scale, and resolution inherent to neurological systems. Furthermore, the application of multiple imaging platforms to the study of singular biological events enables more detailed investigations of structure-function relationships to be conducted, greatly facilitating our understanding of relevant phenomenon. This comprehensive review provides an overview of methods for correlative microscopy, including histochemistry, transgenic markers, immunocytochemistry, photo-oxidation as well as various probes and tracers. An emphasis is placed on correlative light and electron microscopic strategies used to facilitate relocation of neurological structures. Correlative microscopy is an invaluable tool for neurological research, and we fully anticipate developments in automation of the process, and the increasing availability of genomic and transgenic tools will facilitate the adoption of correlative microscopy as the method of choice for many imaging experiments.
Collapse
Affiliation(s)
- Shannon Modla
- Delaware Biotechnology Institute, Bio-Imaging Center, 15 Innovation Way, Suite 117, Newark, DE 19711, USA.
| | | |
Collapse
|
15
|
Schubert V, Bouvier D, Volterra A. SNARE protein expression in synaptic terminals and astrocytes in the adult hippocampus: a comparative analysis. Glia 2011; 59:1472-88. [PMID: 21656854 DOI: 10.1002/glia.21190] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 04/27/2011] [Indexed: 01/02/2023]
Abstract
Several evidences suggest that astrocytes release small transmitter molecules, peptides, and protein factors via regulated exocytosis, implying that they function as specialized neurosecretory cells. However, very little is known about the molecular and functional properties of regulated secretion in astrocytes in the adult brain. Establishing these properties is central to the understanding of the communication mode(s) of these cells and their role(s) in the control of synaptic functions and of cerebral blood flow. In this study, we have set-up a high-resolution confocal microscopy approach to distinguish protein expression in astrocytic structures and neighboring synaptic terminals in adult brain tissue. This approach was applied to investigate the expression pattern of core SNARE proteins for vesicle fusion in the dentate gyrus and CA1 regions of the mouse hippocampus. Our comparative analysis shows that astrocytes abundantly express, in their cell body and main processes, all three protein partners necessary to form an operational SNARE complex but not in the same isoforms expressed in neighbouring synaptic terminals. Thus, SNAP25 and VAMP2 are absent from astrocytic processes and typically concentrated in terminals, while SNAP23 and VAMP3 have the opposite expression pattern. Syntaxin 1 is present in both synaptic terminals and astrocytes. These data support the view that astrocytes in the adult hippocampus can communicate via regulated exocytosis and also indicates that astrocytic exocytosis may differ in its properties from action potential-dependent exocytosis at neuronal synapses, as it relies on a distinctive set of SNARE proteins.
Collapse
Affiliation(s)
- Vanessa Schubert
- Department of Cell Biology and Morphology, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
16
|
Kennedy MJ, Ehlers MD. Mechanisms and function of dendritic exocytosis. Neuron 2011; 69:856-75. [PMID: 21382547 DOI: 10.1016/j.neuron.2011.02.032] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2011] [Indexed: 12/30/2022]
Abstract
Dendritic exocytosis is required for a broad array of neuronal functions including retrograde signaling, neurotransmitter release, synaptic plasticity, and establishment of neuronal morphology. While the details of synaptic vesicle exocytosis from presynaptic terminals have been intensely studied for decades, the mechanisms of dendritic exocytosis are only now emerging. Here we review the molecules and mechanisms of dendritic exocytosis and discuss how exocytosis from dendrites influences neuronal function and circuit plasticity.
Collapse
Affiliation(s)
- Matthew J Kennedy
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
17
|
Michmizos D, Koutsouraki E, Asprodini E, Baloyannis S. Synaptic Plasticity: A Unifying Model to Address Some Persisting Questions. Int J Neurosci 2011; 121:289-304. [DOI: 10.3109/00207454.2011.556283] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Puchkov D, Leshchyns'ka I, Nikonenko AG, Schachner M, Sytnyk V. NCAM/spectrin complex disassembly results in PSD perforation and postsynaptic endocytic zone formation. ACTA ACUST UNITED AC 2011; 21:2217-32. [PMID: 21339376 DOI: 10.1093/cercor/bhq283] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Mechanisms inducing perforation of the postsynaptic density (PSD) are poorly understood. We show that neural cell adhesion molecule- deficient (NCAM-/-) hippocampal neurons have an abnormally high percentage of synapses with perforated PSDs. The percentage of synapses with perforated PSDs is also increased in wild-type (NCAM+/+) neurons after the disruption of the NCAM/spectrin complex indicating that the NCAM-assembled spectrin cytoskeleton maintains the structural integrity of PSDs. We demonstrate that PSD perforations contain endocytic zones involved in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) internalization. Induction of long-term potentiation in NCAM+/+ neurons accompanied by insertion of AMPAR into the neuronal cell surface is subsequently followed by formation of perforated synapses and AMPAR endocytosis suggesting that perforation of PSDs is important for membrane homeostasis in activated synapses. In NCAM-/- or NCAM+/+ neurons with dissociated spectrin meshwork, AMPAR endocytosis is enhanced under conditions of basal activity. An abnormally high rate of postsynaptic membrane endocytosis may thus contribute to brain pathologies associated with mutations in NCAM or spectrin.
Collapse
Affiliation(s)
- Dmytro Puchkov
- Zentrum für Molekulare Neurobiologie, Universitätskrankenhaus Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | | | | | | |
Collapse
|
19
|
Mohanasundaram P, Shanmugam MM. Role of syntaxin 4 in activity-dependent exocytosis and synaptic plasticity in hippocampal neurons. Sci Signal 2010; 3:jc7. [PMID: 20959521 DOI: 10.1126/scisignal.3144jc7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Activity-dependent exocytosis of recycling endosomes that contain AMPA receptors in postsynaptic regions of hippocampal neurons occurs at microdomains enriched in the target SNARE [soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor] syntaxin 4 (Stx4). These Stx4-enriched domains are located near the postsynaptic density, and disrupting SNARE interactions involving Stx4 prevents the fusion of recycling endosomes that contain AMPA receptors in dendritic spines. AMPA receptor trafficking is important for long-term potentiation; thus, Stx4 is an essential postsynaptic component for synaptic plasticity in hippocampal neurons.
Collapse
Affiliation(s)
- Ponnuswamy Mohanasundaram
- Department of Biomedical Sciences, School of Basic Medical Sciences, Bharathidasan University, Tiruchirappalli, India
| | | |
Collapse
|
20
|
Malinow R, Hayashi Y, Maletic-Savatic M, Zaman SH, Poncer JC, Shi SH, Esteban JA, Osten P, Seidenman K. Introduction of green fluorescent protein (GFP) into hippocampal neurons through viral infection. Cold Spring Harb Protoc 2010; 2010:pdb.prot5406. [PMID: 20360360 DOI: 10.1101/pdb.prot5406] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Expression of green fluorescent protein (GFP), its more fluorescent mutant forms (e.g., EGFP [enhanced GFP]), or their fusion protein derivatives, affords a number of informative possibilities in cellular neuroscience. EGFP is a soluble protein and appears to be homogeneously distributed within the cytosol of neurons when expressed. Thus, it reveals the structure of the neuron, including the cell body, and axonal and dendritic arbors. It is also sufficiently bright to reveal detailed structures such as axonal boutons and dendritic spines. When expressed as a fusion protein, EGFP can provide information about the distribution characteristics of the proteins within neurons. Furthermore, during single-cell electrophysiological studies, such expression can direct the investigator to record from a cell carrying a foreign gene. In this protocol, we describe the use of the Sindbis pseudovirus expression system to deliver GFP to neurons. Sindbis is a member of the alphaviruses, which are plus-stranded RNA viruses. This protocol uses the DH(26S) strain, which preferentially infects neurons over glia (50:1). Two infection methods are given: one for dissociated hippocampal cultured neurons and one for organotypic hippocampal slices.
Collapse
|
21
|
Kennedy MJ, Davison IG, Robinson CG, Ehlers MD. Syntaxin-4 defines a domain for activity-dependent exocytosis in dendritic spines. Cell 2010; 141:524-35. [PMID: 20434989 DOI: 10.1016/j.cell.2010.02.042] [Citation(s) in RCA: 216] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 12/10/2009] [Accepted: 02/22/2010] [Indexed: 11/16/2022]
Abstract
Changes in postsynaptic membrane composition underlie many forms of learning-related synaptic plasticity in the brain. At excitatory glutamatergic synapses, fusion of intracellular vesicles at or near the postsynaptic plasma membrane is critical for dendritic spine morphology, retrograde synaptic signaling, and long-term synaptic plasticity. Whereas the molecular machinery for exocytosis in presynaptic terminals has been defined in detail, little is known about the location, kinetics, regulation, or molecules involved in postsynaptic exocytosis. Here, we show that an exocytic domain adjacent to the postsynaptic density (PSD) enables fusion of large, AMPA receptor-containing recycling compartments during elevated synaptic activity. Exocytosis occurs at microdomains enriched in the plasma membrane t-SNARE syntaxin 4 (Stx4), and disruption of Stx4 impairs both spine exocytosis and long-term potentiation (LTP) at hippocampal synapses. Thus, Stx4 defines an exocytic zone that directs membrane fusion for postsynaptic plasticity, revealing a novel specialization for local membrane traffic in dendritic spines.
Collapse
Affiliation(s)
- Matthew J Kennedy
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
22
|
Schmidt M, Dubin AE, Petrus MJ, Earley TJ, Patapoutian A. Nociceptive signals induce trafficking of TRPA1 to the plasma membrane. Neuron 2009; 64:498-509. [PMID: 19945392 DOI: 10.1016/j.neuron.2009.09.030] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2009] [Indexed: 11/18/2022]
Abstract
Transient receptor potential A1 (TRPA1) ion channel senses a variety of noxious stimuli and is involved in nociception. Many TRPA1 agonists covalently modify the channel, which can lead to desensitization. The fate of modified TRPA1 and the mechanism of preserving its response to subsequent stimuli are not understood. Moreover, inflammatory signals sensitize TRPA1 by involving protein kinase A (PKA) and phospholipase C (PLC) through unknown means. We show that TRPA1-mediated nocifensive behavior can be sensitized in vivo via PKA/PLC signaling and by activating TRPA1 with the ligand mustard oil (MO). Interestingly, both stimuli increased TRPA1 membrane levels in vitro. Tetanus toxin attenuated the response to the second of two pulses of MO in neurons, suggesting that vesicle fusion increases functional surface TRPA1. Capacitance recordings suggest that MO can induce exocytosis. We propose that TRPA1 translocation to the membrane might represent one of the mechanisms controlling TRPA1 functionality upon acute activation or inflammatory signals.
Collapse
Affiliation(s)
- Manuela Schmidt
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
23
|
Barber CF, Jorquera RA, Melom JE, Littleton JT. Postsynaptic regulation of synaptic plasticity by synaptotagmin 4 requires both C2 domains. ACTA ACUST UNITED AC 2009; 187:295-310. [PMID: 19822673 PMCID: PMC2768828 DOI: 10.1083/jcb.200903098] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Analogous to synaptotagmin 1, a calcium-sensitive regulator of presynaptic vesicle fusion, synaptotagmin 4 needs both of its calcium-binding sites to regulate synaptic plasticity via postsynaptic retrograde signaling. Ca2+ influx into synaptic compartments during activity is a key mediator of neuronal plasticity. Although the role of presynaptic Ca2+ in triggering vesicle fusion though the Ca2+ sensor synaptotagmin 1 (Syt 1) is established, molecular mechanisms that underlie responses to postsynaptic Ca2+ influx remain unclear. In this study, we demonstrate that fusion-competent Syt 4 vesicles localize postsynaptically at both neuromuscular junctions (NMJs) and central nervous system synapses in Drosophila melanogaster. Syt 4 messenger RNA and protein expression are strongly regulated by neuronal activity, whereas altered levels of postsynaptic Syt 4 modify synaptic growth and presynaptic release properties. Syt 4 is required for known forms of activity-dependent structural plasticity at NMJs. Synaptic proliferation and retrograde signaling mediated by Syt 4 requires functional C2A and C2B Ca2+–binding sites, as well as serine 284, an evolutionarily conserved substitution for a key Ca2+-binding aspartic acid found in other synaptotagmins. These data suggest that Syt 4 regulates activity-dependent release of postsynaptic retrograde signals that promote synaptic plasticity, similar to the role of Syt 1 as a Ca2+ sensor for presynaptic vesicle fusion.
Collapse
Affiliation(s)
- Cynthia F Barber
- Department of Biology, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
24
|
Zhang H, Li S, Wang M, Vukusic B, Pristupa ZB, Liu F. Regulation of dopamine transporter activity by carboxypeptidase E. Mol Brain 2009; 2:10. [PMID: 19419578 PMCID: PMC2687442 DOI: 10.1186/1756-6606-2-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 05/06/2009] [Indexed: 12/16/2022] Open
Abstract
Background The dopamine transporter (DAT) plays a critical role in terminating the action of dopamine by rapid reuptake into the presynaptic neuron. Previous studies have revealed that the DAT carboxyl terminus (DAT-CT) can directly interact with other cellular proteins and regulate DAT function and trafficking. Results Here, we have identified that carboxypeptidase E (CPE), a prohormone processing exopeptidase and sorting receptor for the regulated secretory pathway, interacts with the DAT-CT and affects DAT function. Mammalian cell lines coexpressing CPE and DAT exhibited increased DAT-mediated dopamine uptake activity compared to cells expressing DAT alone. Moreover, coexpression of an interfering DAT-CT minigene inhibited the effects of CPE on DAT. Functional changes caused by CPE could be attributed to enhanced DAT expression and subsequent increase in DAT cell surface localization, due to decreased DAT degradation. In addition, CPE association could reduce the phosphorylation state of DAT on serine residues, potentially leading to reduced internalization, thus stabilizing plasmalemmal DAT localization. Conclusion Taken together, our results reveal a novel role for CPE in the regulation of DAT trafficking and DAT-mediated DA uptake, which may provide a novel target in the treatment of dopamine-governed diseases such as drug addiction and obesity.
Collapse
Affiliation(s)
- Heping Zhang
- Department of Neuroscience, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
25
|
Convergence among non-sister dendritic branches: an activity-controlled mean to strengthen network connectivity. PLoS One 2008; 3:e3782. [PMID: 19023423 PMCID: PMC2582457 DOI: 10.1371/journal.pone.0003782] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2008] [Accepted: 10/11/2008] [Indexed: 12/03/2022] Open
Abstract
The manner by which axons distribute synaptic connections along dendrites remains a fundamental unresolved issue in neuronal development and physiology. We found in vitro and in vivo indications that dendrites determine the density, location and strength of their synaptic inputs by controlling the distance of their branches from those of their neighbors. Such control occurs through collective branch convergence, a behavior promoted by AMPA and NMDA glutamate receptor activity. At hubs of convergence sites, the incidence of axo-dendritic contacts as well as clustering levels, pre- and post-synaptic protein content and secretion capacity of synaptic connections are higher than found elsewhere. This coupling between synaptic distribution and the pattern of dendritic overlapping results in ‘Economical Small World Network’, a network configuration that enables single axons to innervate multiple and remote dendrites using short wiring lengths. Thus, activity-mediated regulation of the proximity among dendritic branches serves to pattern and strengthen neuronal connectivity.
Collapse
|
26
|
Dendritic spine plasticity—Current understanding from in vivo studies. ACTA ACUST UNITED AC 2008; 58:282-9. [DOI: 10.1016/j.brainresrev.2008.01.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 01/23/2008] [Accepted: 01/24/2008] [Indexed: 11/17/2022]
|
27
|
Hanus C, Ehlers MD. Secretory outposts for the local processing of membrane cargo in neuronal dendrites. Traffic 2008; 9:1437-45. [PMID: 18532987 DOI: 10.1111/j.1600-0854.2008.00775.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The large size and geometric complexity of neuronal dendrites necessitate specialized mechanisms to both deliver postsynaptic cargo over extended distances and regulate dendritic composition on a submicron scale. Despite the fundamental importance of membrane trafficking in dendrite growth, synapse formation and plasticity, the organelles and cellular rules governing postsynaptic trafficking are only now emerging. Here we review what is currently known about dendritic secretory organelles and their role in the development, maintenance and plasticity of postsynaptic compartments.
Collapse
Affiliation(s)
- Cyril Hanus
- Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
28
|
Abstract
Information flow through neurones was historically considered to be linear, with dendrites receiving information from incoming synaptic terminals, the soma processing the information and the axon carrying it to the terminal that synapses upon another cell or end organ. However, recent studies have shown that dendrites can release transmitters themselves, and thereby communicate with neighbouring structures, whether these are adjacent neurones or incoming synapses. Due to their anatomical features, the magnocellular vasopressin and oxytocin containing neurones of the hypothalamic supraoptic and paraventricular nuclei and the dopamine neurones of the substantia nigra have revealed important aspects of dendritic function including mechanisms of dendritic transmitter release.
Collapse
Affiliation(s)
- F Bergquist
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
29
|
Lasiecka ZM, Yap CC, Vakulenko M, Winckler B. Chapter 7 Compartmentalizing the Neuronal Plasma Membrane. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 272:303-89. [DOI: 10.1016/s1937-6448(08)01607-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
30
|
Lee FJS, Pei L, Moszczynska A, Vukusic B, Fletcher PJ, Liu F. Dopamine transporter cell surface localization facilitated by a direct interaction with the dopamine D2 receptor. EMBO J 2007; 26:2127-36. [PMID: 17380124 PMCID: PMC1852782 DOI: 10.1038/sj.emboj.7601656] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Accepted: 02/27/2007] [Indexed: 11/09/2022] Open
Abstract
Altered synaptic dopamine levels have been implicated in several neurological/neuropsychiatric disorders, including drug addiction and schizophrenia. However, it is unclear what precipitates these changes in synaptic dopamine levels. One of the key presynaptic components involved in regulating dopaminergic tone is the dopamine transporter (DAT). Here, we report that the DAT is also regulated by the dopamine D2 receptor through a direct protein-protein interaction involving the DAT amino-terminus and the third intracellular loop of the D2 receptor. This physical coupling facilitates the recruitment of intracellular DAT to the plasma membrane and leads to enhanced dopamine reuptake. Moreover, mice injected with peptides that disrupt D2-DAT interaction exhibit decreased synaptosomal dopamine uptake and significantly increased locomotor activity, reminiscent of DAT knockout mice. Our data highlight a novel mechanism through which neurotransmitter receptors can functionally modulate neurotransmitter transporters, an interaction that can affect the synaptic neurotransmitter levels in the brain.
Collapse
Affiliation(s)
- Frank J S Lee
- Department of Neuroscience, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Lin Pei
- Department of Neuroscience, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Anna Moszczynska
- Department of Neuroscience, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Brian Vukusic
- Department of Neuroscience, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Paul J Fletcher
- Department of Neuroscience, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Fang Liu
- Department of Neuroscience, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Neuroscience, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8. Tel.: +1 416 979 4659; Fax: +1 416 979 4663; E-mail:
| |
Collapse
|
31
|
Park M, Salgado JM, Ostroff L, Helton TD, Robinson CG, Harris KM, Ehlers MD. Plasticity-induced growth of dendritic spines by exocytic trafficking from recycling endosomes. Neuron 2007; 52:817-30. [PMID: 17145503 PMCID: PMC1899130 DOI: 10.1016/j.neuron.2006.09.040] [Citation(s) in RCA: 377] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 09/14/2006] [Accepted: 09/27/2006] [Indexed: 11/30/2022]
Abstract
Dendritic spines are micron-sized membrane protrusions receiving most excitatory synaptic inputs in the mammalian brain. Spines form and grow during long-term potentiation (LTP) of synaptic strength. However, the source of membrane for spine formation and enlargement is unknown. Here we report that membrane trafficking from recycling endosomes is required for the growth and maintenance of spines. Using live-cell imaging and serial section electron microscopy, we demonstrate that LTP-inducing stimuli promote the mobilization of recycling endosomes and vesicles into spines. Preventing recycling endosomal transport abolishes LTP-induced spine formation. Using a pH-sensitive recycling cargo, we show that exocytosis from recycling endosomes occurs locally in spines, is triggered by activation of synaptic NMDA receptors, and occurs concurrently with spine enlargement. Thus, recycling endosomes provide membrane for activity-dependent spine growth and remodeling, defining a novel membrane trafficking mechanism for spine morphological plasticity and providing a mechanistic link between structural and functional plasticity during LTP.
Collapse
Affiliation(s)
- Mikyoung Park
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Neurons are among the largest and most complex cells in the body. Their immense size and intricate geometry pose many unique cell-biological problems. How is dendritic architecture established and maintained? How do neurons traffic newly synthesized integral membrane proteins over such long distances to synapses? Functionally, protein trafficking to and from the postsynaptic membrane has emerged as a key mechanism underlying various forms of synaptic plasticity. Which organelles are involved in postsynaptic trafficking, and how do they integrate and respond to activity at individual synapses? Here we review what is currently known about long-range trafficking of newly synthesized postsynaptic proteins as well as the local rules that govern postsynaptic trafficking at individual synapses.
Collapse
Affiliation(s)
- Matthew J Kennedy
- Howard Hughes Medical Institute, Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
33
|
Horton AC, Rácz B, Monson EE, Lin AL, Weinberg RJ, Ehlers MD. Polarized secretory trafficking directs cargo for asymmetric dendrite growth and morphogenesis. Neuron 2006; 48:757-71. [PMID: 16337914 DOI: 10.1016/j.neuron.2005.11.005] [Citation(s) in RCA: 321] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Revised: 08/08/2005] [Accepted: 11/04/2005] [Indexed: 12/27/2022]
Abstract
Proper growth of dendrites is critical to the formation of neuronal circuits, but the cellular machinery that directs the addition of membrane components to generate dendritic architecture remains obscure. Here, we demonstrate that post-Golgi membrane trafficking is polarized toward longer dendrites of hippocampal pyramidal neurons in vitro and toward apical dendrites in vivo. Small Golgi outposts partition selectively into longer dendrites and are excluded from axons. In dendrites, Golgi outposts concentrate at branchpoints where they engage in post-Golgi trafficking. Within the cell body, the Golgi apparatus orients toward the longest dendrite, and this Golgi polarity precedes asymmetric dendrite growth. Manipulations that selectively block post-Golgi trafficking halt dendrite growth in developing neurons and cause a shrinkage of dendrites in mature pyramidal neurons. Further, disruption of Golgi polarity produces neurons with symmetric dendritic arbors lacking a single longest principal dendrite. These results define a novel polarized organization of neuronal secretory trafficking and demonstrate a mechanistic link between directed membrane trafficking and asymmetric dendrite growth.
Collapse
Affiliation(s)
- April C Horton
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
34
|
Hirano AA, Brandstätter JH, Brecha NC. Cellular distribution and subcellular localization of molecular components of vesicular transmitter release in horizontal cells of rabbit retina. J Comp Neurol 2005; 488:70-81. [PMID: 15912504 PMCID: PMC2820412 DOI: 10.1002/cne.20577] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mechanism underlying transmitter release from retinal horizontal cells is poorly understood. We investigated the possibility of vesicular transmitter release from mammalian horizontal cells by examining the expression of synaptic proteins that participate in vesicular transmitter release at chemical synapses. Using immunocytochemistry, we evaluated the cellular and subcellular distribution of complexin I/II, syntaxin-1, and synapsin I in rabbit retina. Strong labeling for complexin I/II, proteins that regulate a late step in vesicular transmitter release, was found in both synaptic layers of the retina, and in somata of A- and B-type horizontal cells, of gamma-aminobutyric acid (GABA)- and glycinergic amacrine cells, and of ganglion cells. Immunoelectron microscopy demonstrated the presence of complexin I/II in horizontal cell processes postsynaptic to rod and cone ribbon synapses. Syntaxin-1, a core protein of the soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) complex known to bind to complexin, and synapsin I, a synaptic vesicle-associated protein involved in the Ca(2+)-dependent recruitment of synaptic vesicles for transmitter release, were also present in the horizontal cells and their processes at photoreceptor synapses. Photoreceptors and bipolar cells did not express any of these proteins at their axon terminals. The presence of complexin I/II, syntaxin-1, and synapsin I in rabbit horizontal cell processes and tips suggests that a vesicular mechanism may underlie transmitter release from mammalian horizontal cells.
Collapse
Affiliation(s)
- Arlene A Hirano
- Department of Neurobiology & Medicine, Geffen School of Medicine at University of California at Los Angeles, 90095, USA.
| | | | | |
Collapse
|
35
|
Agnati LF, Fuxe K, Torvinen M, Genedani S, Franco R, Watson S, Nussdorfer GG, Leo G, Guidolin D. New methods to evaluate colocalization of fluorophores in immunocytochemical preparations as exemplified by a study on A2A and D2 receptors in Chinese hamster ovary cells. J Histochem Cytochem 2005; 53:941-53. [PMID: 16055748 DOI: 10.1369/jhc.4a6355.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An important aspect of the image analysis of immunocytochemical preparations is the evaluation of colocalization of different molecules. The aim of the present study is to introduce image analysis methods to identify double-labeled locations exhibiting the highest association of two fluorophores and to characterize their pattern of distribution. These methods will be applied to the analysis of the cotrafficking of adenosine A2A and dopamine D2 receptors belonging to the G protein-coupled receptor family and visualized by means of fluorescence immunocytochemistry in Chinese hamster ovary cells after agonist treatment. The present procedures for colocalization have the great advantage that they are, to a large extent, insensitive to the need for a balanced staining with the two fluorophores. Thus, these procedures involve image processing, visualization, and analysis of colocalized events, using a covariance method and a multiply method and the evaluation of the identified colocalization patterns. Moreover, the covariance method offers the possibility of detecting and quantitatively characterizing anticorrelated patterns of intensities, whereas the immediate detection of colocalized clusters with a high concentration of labeling is a possibility offered by the multiply method. The present methods offer a new and sensitive approach to detecting and quantitatively characterizing strongly associated fluorescence events, such as those generated by receptor-receptor interaction, and their distribution patterns in dual-color confocal laser microscopy.
Collapse
Affiliation(s)
- Luigi F Agnati
- Department of Biomedical Sciences, Section of Physiology, University of Modena, Modena, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Adolfsen B, Saraswati S, Yoshihara M, Littleton JT. Synaptotagmins are trafficked to distinct subcellular domains including the postsynaptic compartment. ACTA ACUST UNITED AC 2004; 166:249-60. [PMID: 15263020 PMCID: PMC2172321 DOI: 10.1083/jcb.200312054] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The synaptotagmin family has been implicated in calcium-dependent neurotransmitter release, although Synaptotagmin 1 is the only isoform demonstrated to control synaptic vesicle fusion. Here, we report the characterization of the six remaining synaptotagmin isoforms encoded in the Drosophila genome, including homologues of mammalian Synaptotagmins 4, 7, 12, and 14. Like Synaptotagmin 1, Synaptotagmin 4 is ubiquitously present at synapses, but localizes to the postsynaptic compartment. The remaining isoforms were not found at synapses (Synaptotagmin 7), expressed at very low levels (Synaptotagmins 12 and 14), or in subsets of putative neurosecretory cells (Synaptotagmins α and β). Consistent with their distinct localizations, overexpression of Synaptotagmin 4 or 7 cannot functionally substitute for the loss of Synaptotagmin 1 in synaptic transmission. Our results indicate that synaptotagmins are differentially distributed to unique subcellular compartments. In addition, the identification of a postsynaptic synaptotagmin suggests calcium-dependent membrane-trafficking functions on both sides of the synapse.
Collapse
Affiliation(s)
- Bill Adolfsen
- The Picower Center for Learning and Memory, Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | | | |
Collapse
|
37
|
Abstract
The neuronal secretory pathway represents the intracellular route for proteins involved in synaptic transmission and plasticity, as well as lipids required for outgrowth and remodelling of dendrites and axons. Although neurons use the same secretory compartments as other eukaryotic cells, the enormous distances involved, as well as the unique morphology of the neuron and its signalling requirements, challenge canonical models of secretory pathway organization. Here, we review evidence for a distributed secretory pathway in neurons, suggest mechanisms that may regulate secretory compartment distribution, and discuss the implications of a distributed secretory pathway for neuronal morphogenesis and neural-circuit plasticity.
Collapse
Affiliation(s)
- April C Horton
- Department of Neurobiology, Duke University Medical Center, Box 3209 Durham, NC 27710, USA
| | | |
Collapse
|
38
|
Küppers-Munther B, Letzkus JJ, Lüer K, Technau G, Schmidt H, Prokop A. A new culturing strategy optimises Drosophila primary cell cultures for structural and functional analyses. Dev Biol 2004; 269:459-78. [PMID: 15110713 DOI: 10.1016/j.ydbio.2004.01.038] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2003] [Revised: 12/08/2003] [Accepted: 01/28/2004] [Indexed: 11/24/2022]
Abstract
Neurons in primary cell cultures provide important experimental possibilities complementing or substituting those in the nervous system. However, Drosophila primary cell cultures have unfortunate limitations: they lack either a range of naturally occurring cell types, or of mature physiological properties. Here, we demonstrate a strategy which supports both aspects integrated in one culture: Initial culturing in conventional serum-supplemented Schneider's medium (SM(20K)) guarantees acquisition of all properties known from 30 years of work on cell type-specific differentiation in this medium. Through subsequent shift to newly developed active Schneider's medium (SM(active)), neurons adopt additional mature properties like the ability to carry out plastic morphological changes, neurotransmitter expression and electrical activity. We introduce long-term FM-dye measurements as a tool for Drosophila primary cell cultures demonstrating the presence of increased, action potential-dependent synaptic activity in SM(active). This is confirmed by patch-clamp recordings, which in addition show that SM(active)-cultured neurons display different spiking patterns. Furthermore, we demonstrate that transmission can be evoked in SM(active) cultures, revealing the existence of synaptic plasticity. Thus, these culture conditions support developmental, structural and physiological properties known or expected from the nervous system, enhancing possibilities for future experiments complementing or substituting those in nervous systems of Drosophila.
Collapse
|
39
|
González-Forero D, Pastor AM, Delgado-García JM, de la Cruz RR, Alvarez FJ. Synaptic structural modification following changes in activity induced by tetanus neurotoxin in cat abducens neurons. J Comp Neurol 2004; 471:201-18. [PMID: 14986313 DOI: 10.1002/cne.20039] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A low or a high dose of tetanus neurotoxin (TeNT) injected in the lateral rectus muscle of the cat causes respectively, functional block of inhibitory synapses only or of both inhibitory and excitatory synapses simultaneously in abducens neurons (González-Forero et al. [2003] J. Neurophysiol. 89:1878-1890). As a consequence, neuronal firing activity increases (at low dose) or decreases (at high dose). We investigated possible structural modifications of inhibitory synapses in response to these activity alterations induced by TeNT. We used immunofluorescence against postsynaptic (gephyrin) and presynaptic (vesicular gamma-aminobutyric acid [GABA] transporter [VGAT]) markers of inhibitory synapses in combination with cell type markers for abducens motoneurons (calcitonin gene-related peptide or choline acetyltransferase) or internuclear neurons (calretinin). Seven days after high-dose treatment, the number of gephyrin-immunoreactive (IR) clusters per 100 microm of membrane perimeter was reduced on the soma of abducens motoneurons by 55.3% and by 60.1% on internuclear neurons. Proximal dendritic gephyrin-IR clusters were also significantly altered but to a lesser degree. Partial synaptic re-establishment was observed 15 days post injection, and complete recovery occurred after 42 days. Coverage by VGAT-IR terminals was reduced in parallel. In contrast, a low dose of TeNT caused no structural alterations. With electron microscopy we estimated that overall synaptic coverage was reduced by 40% in both types of neurons after a high dose of TeNT. However, F-type terminals with postsynaptic gephyrin were preferentially lost. Thus, the ratio between F and S terminals diminished from 1.28 to 0.39 on motoneurons and from 1.26 to 0.47 on internuclear neurons. These results suggest that the maintenance of proximal inhibitory synaptic organization on central neurons is best related to neuronal activity and not to the level of inhibitory synaptic function, which was equally blocked by the high or low dose of TeNT.
Collapse
|
40
|
Fux CM, Krug M, Dityatev A, Schuster T, Schachner M. NCAM180 and glutamate receptor subtypes in potentiated spine synapses: an immunogold electron microscopic study. Mol Cell Neurosci 2003; 24:939-50. [PMID: 14697660 DOI: 10.1016/j.mcn.2003.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Activity-dependent changes in expression and localization of the largest major isoform of the neural cell adhesion molecule NCAM180 and three subtypes of glutamate receptors predominantly expressed in the outer part of the molecular layer of the dentate gyrus of adult rats-the NMDA receptor NR2A, the AMPA receptor GluR2/3, and the metabotropic glutamate receptor mGluR1 - were investigated using postembedding immunogold labeling, and electron microscopy. In synaptic membranes of nonstimulated spine synapses, NCAM180 and NR2A accumulated in the center of the postsynaptic density, whereas GluR2/3 and mGluR1 were distributed evenly. Twenty-four hours following induction of long-term potentiation in vivo, NCAM180 and NR2A accumulated at the edges of postsynaptic densities, whereas GluR2/3 was localized more centrally. Also, the distribution of gold particles per synapse significantly changed for NCAM180, NR2A, and mGluR1. Thus, changes in synaptic strength are associated with concomitant changes in the expression and distribution of NCAM180 and glutamate receptors, particularly of the NR2A subtype.
Collapse
MESH Headings
- Animals
- Dentate Gyrus/chemistry
- Dentate Gyrus/physiology
- Dentate Gyrus/ultrastructure
- Immunohistochemistry
- Long-Term Potentiation/physiology
- Male
- Microscopy, Immunoelectron/methods
- Neural Cell Adhesion Molecules/analysis
- Neural Cell Adhesion Molecules/physiology
- Neural Cell Adhesion Molecules/ultrastructure
- Protein Isoforms/analysis
- Protein Isoforms/physiology
- Protein Isoforms/ultrastructure
- Rats
- Rats, Wistar
- Receptors, AMPA/analysis
- Receptors, AMPA/physiology
- Receptors, AMPA/ultrastructure
- Receptors, Glutamate/analysis
- Receptors, Glutamate/physiology
- Receptors, Glutamate/ultrastructure
- Receptors, Metabotropic Glutamate/analysis
- Receptors, Metabotropic Glutamate/physiology
- Receptors, Metabotropic Glutamate/ultrastructure
- Receptors, N-Methyl-D-Aspartate
- Synapses/chemistry
- Synapses/physiology
- Synapses/ultrastructure
Collapse
Affiliation(s)
- C M Fux
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, D-20246 Hamburg, Germany
| | | | | | | | | |
Collapse
|
41
|
Togo T, Steinhardt RA. Nonmuscle myosin IIA and IIB have distinct functions in the exocytosis-dependent process of cell membrane repair. Mol Biol Cell 2003; 15:688-95. [PMID: 14617807 PMCID: PMC329289 DOI: 10.1091/mbc.e03-06-0430] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Vesicle generation, recruitment, and exocytosis are essential for repairing disruptions of cell membranes. The functions of nonmuscle myosin IIA and IIB in this exocytotic process of membrane repair were studied by the antisense technique. Knockdown of myosin IIB suppressed wound-induced exocytosis and the membrane resealing process. Knockdown of myosin IIA did not suppress exocytosis at an initial wound and had no inhibitory effect on the resealing at initial wounds but did inhibit the facilitated rate of resealing normally found at repeated wounds made at the same site. COS-7 cells, which lack myosin IIA, did not show the facilitated response of membrane resealing to a repeated wound. S91 melanoma cells, a mutant cell line lacking myosin Va, showed normal membrane resealing and normal facilitated responses. We concluded that myosin IIB was required for exocytosis and therefore cell membrane repair itself and that myosin IIA was required in facilitation of cell membrane repair at repeated wounds. Myosin IIB was primarily at the subplasmalemma cortex and myosin IIA was concentrated at the trans-Golgi network consistent with their distinct roles in vesicle trafficking in cell membrane repair.
Collapse
Affiliation(s)
- Tatsuru Togo
- Misaki Marine Biological Station, University of Tokyo, Misaki, Miura, Kanagawa 238-0225, Japan
| | | |
Collapse
|
42
|
Ali MK, Bergson C. Elevated intracellular calcium triggers recruitment of the receptor cross-talk accessory protein calcyon to the plasma membrane. J Biol Chem 2003; 278:51654-63. [PMID: 14534309 DOI: 10.1074/jbc.m305803200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calcyon is called a "cross-talk accessory protein" because the mechanism by which it enables the typically Gs-linked D1 dopamine receptor to stimulate intracellular calcium release depends on a priming step involving heterologous Gq-linked G-protein-coupled receptor activation. The details of how priming facilitates the D1R calcium response have yet to be precisely elucidated. The present work shows that calcyon is constitutively localized both in vesicular and plasma membrane compartments within HEK293 cells. In addition, surface biotinylation and luminescence assays revealed that priming stimulates a 2-fold increase in the levels of calcyon expressed on the cell surface and that subsequent D1R activation produces further accumulation of the protein in the plasma membrane. The effects of priming and D1R agonists were blocked by nocodazole implicating microtubules in the delivery of calcyon-containing vesicles to the cell surface. Accumulation of calcyon in the plasma membrane correlated well with increased intracellular calcium levels as thapsigargin mimicked, and 2-aminoethoxydiphenylborane abrogated, the effects of priming. KN-62, an inhibitor of calcium/calmodulin-dependent protein kinase II (CaMKII) also blocked the effects of priming and D1R agonists. Furthermore, expression of constitutively active forms of the kinase bypassed the requirement for priming indicating that CaMKII is a key effector in the Ca2+ and microtubule-dependent delivery of calcyon to the cell surface.
Collapse
Affiliation(s)
- Mohammad Kutub Ali
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | |
Collapse
|
43
|
Abstract
Among the most morphologically complex cells, neurons are masters of membrane specialization. Nowhere is this more striking than in the division of cellular labor between the axon and the dendrites. In morphology, signaling properties, cytoskeletal organization, and physiological function, axons and dendrites (or more properly, the somatodendritic compartment) are radically different. Such polarization of neurons into domains specialized for either receiving (dendrites) or transmitting (axons) cellular signals provides the underpinning for all neural circuitry. The initial specification of axonal and dendritic identity occurs early in neuronal life, persists for decades, and is manifested by the presence of very different sets of cell surface proteins. Yet, how neuronal polarity is established, how distinct axonal and somatodendritic domains are maintained, and how integral membrane proteins are directed to dendrites or accumulate in axons remain enduring and formidable questions in neuronal cell biology.
Collapse
Affiliation(s)
- April C Horton
- Department of Neurobiology, Duke University Medical Center, Box 3209, Durham, NC 27710, USA
| | | |
Collapse
|
44
|
Horton AC, Ehlers MD. Dual modes of endoplasmic reticulum-to-Golgi transport in dendrites revealed by live-cell imaging. J Neurosci 2003; 23:6188-99. [PMID: 12867502 PMCID: PMC6740539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Organelles of the neuronal secretory pathway are critical for the addition of membrane that accompanies neuronal development, as well as for the proper localization of plasma membrane proteins necessary for polarity, synaptic transmission, and plasticity. Here, we demonstrate that two organizations of the secretory pathway exist in neurons: one requiring processing of membrane and lipids in the Golgi complex of the cell body and one in which endoplasmic reticulum (ER)-to-Golgi trafficking is localized to dendrites. Using time-lapse imaging of green fluorescent protein-tagged cargo proteins and compartment markers, we show that organelles of the secretory pathway, including ER, ER exit sites, and Golgi, are present and engage in trafficking in neuronal dendrites. We find that ER-to-Golgi trafficking involves highly mobile vesicular carriers that traffic in both the anterograde and retrograde directions throughout the dendritic arbor. Dendritic Golgi outposts, which appear developmentally during the phase of process outgrowth, are involved in the trafficking of both integral membrane proteins and the secreted neuronal growth factor BDNF. This distributed dendritic Golgi represents an organization of the secretory pathway unique among mammalian cells.
Collapse
Affiliation(s)
- April C Horton
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
45
|
Abstract
Classical transmitters and neuropeptides can be released from the dendrites of many neuronal populations, to act as retrograde signals that modulate synaptic transmission, electrical activity and, in some cases, morphology of the cell of origin. For the hypothalamic neuroendocrine cells that release vasopressin and oxytocin, the stimuli, mechanisms and physiological functions of dendritic release have been revealed in detail that is not yet available for other neurons. The regulation of dendritic transmitter release is complex and at least partially independent from axon terminal release. Here, we provide an overview of recent findings on the mechanisms and physiological consequences of dendritic neuropeptide release and place this in the context of discoveries of dendritic neurotransmitter release in other brain regions.
Collapse
Affiliation(s)
- Mike Ludwig
- Division of Biomedical Sciences, University of Edinburgh Medical School, George Square, Edinburgh EH8 9XD, UK.
| | | |
Collapse
|
46
|
Abstract
The proteins of the mammalian neurotrophin family (nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and neurotrophin-4/5 (NT-4/5)) were originally identified as neuronal survival factors. During the last decade, evidence has accumulated implicating them (especially BDNF) in addition in the regulation of synaptic transmission and synaptogenesis in the CNS. However, a detailed understanding of the secretion of neurotrophins from neurons is required to delineate their role in regulating synaptic function. Some crucial questions that need to be addressed include the sites of neurotrophin secretion (i.e. axonal versus dendritic; synaptic versus extrasynaptic) and the neuronal and synaptic activity patterns that trigger the release of neurotrophins. In this article, we review the current knowledge in the field of neurotrophin secretion, focussing on activity-dependent synaptic release of BDNF. The modality and the site of neurotrophin secretion are dependent on the processing and subsequent targeting of the neurotrophin precursor molecules. Therefore, the available data regarding formation and trafficking of neurotrophins in the secreting neurons are critically reviewed. In addition, we discuss existing evidence that the characteristics of neurotrophin secretion are similar (but not identical) to those of other neuropeptides. Finally, since BDNF has been proposed to play a critical role as an intercellular synaptic messenger in long-term potentiation (LTP) in the hippocampus, we try to reconcile this possible role of BDNF in LTP with the recently described features of synaptic BDNF secretion.
Collapse
Affiliation(s)
- Volkmar Lessmann
- Department of Physiology and Pathophysiology, Johannes Gutenberg-University Mainz, Duesbergweg 6, Mainz 55128, Germany.
| | | | | |
Collapse
|
47
|
Togo T, Alderton JM, Steinhardt RA. Long-term potentiation of exocytosis and cell membrane repair in fibroblasts. Mol Biol Cell 2003; 14:93-106. [PMID: 12529429 PMCID: PMC140230 DOI: 10.1091/mbc.e02-01-0056] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We previously found that a microdisruption of the plasma membrane evokes Ca(2+)-regulated exocytosis near the wound site, which is essential for membrane resealing. We demonstrate herein that repeated membrane disruption reveals long-term potentiation of Ca(2+)-regulated exocytosis in 3T3 fibroblasts, which is closely correlated with faster membrane resealing rates. This potentiation of exocytosis is cAMP-dependent protein kinase A dependent in the early stages (minutes), in the intermediate term (hours) requires protein synthesis, and for long term (24 h) depends on the activation of cAMP response element-binding protein (CREB). We were able to demonstrate that wounding cells activated CREB within 3.5 h. In all three phases, the increase in the amount of exocytosis was correlated with an increase in the rate of membrane resealing. However, a brief treatment with forskolin, which is effective for short-term potentiation and which could also activate CREB, was not sufficient to induce long-term potentiation of resealing. These results imply that long-term potentiation by CREB required activation by another, cAMP-independent pathway.
Collapse
Affiliation(s)
- Tatsuru Togo
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200, USA
| | | | | |
Collapse
|
48
|
Sytnyk V, Leshchyns'ka I, Delling M, Dityateva G, Dityatev A, Schachner M. Neural cell adhesion molecule promotes accumulation of TGN organelles at sites of neuron-to-neuron contacts. J Cell Biol 2002; 159:649-61. [PMID: 12438412 PMCID: PMC2173095 DOI: 10.1083/jcb.200205098] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Transformation of a contact between axon and dendrite into a synapse is accompanied by accumulation of the synaptic machinery at this site, being delivered in intracellular organelles mainly of TGN origin. Here, we report that in cultured hippocampal neurons, TGN organelles are linked via spectrin to clusters of the neural cell adhesion molecule (NCAM) in the plasma membrane. These complexes are translocated along neurites and trapped at sites of initial neurite-to-neurite contacts within several minutes after initial contact formation. The accumulation of TGN organelles at contacts with NCAM-deficient neurons is reduced when compared with wild-type cells, suggesting that NCAM mediates the anchoring of intracellular organelles in nascent synapses.
Collapse
Affiliation(s)
- Vladimir Sytnyk
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, D-20246 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
This review covers recent developments in the cellular neurophysiology of retrograde signaling in the mammalian central nervous system. Normally at a chemical synapse a neurotransmitter is released from the presynaptic element and diffuses to the postsynaptic element, where it binds to and activates receptors. In retrograde signaling a diffusible messenger is liberated from the postsynaptic element, and travels "backwards" across the synaptic cleft, where it activates receptors on the presynaptic cell. Receptors for retrograde messengers are usually located on or near the presynaptic nerve terminals, and their activation causes an alteration in synaptic transmitter release. Although often considered in the context of long-term synaptic plasticity, retrograde messengers have numerous roles on the short-term regulation of synaptic transmission. The focus of this review will be on a group of molecules from different chemical classes that appear to act as retrograde messengers. The evidence supporting their candidacy as retrograde messengers is considered and evaluated. Endocannabinoids have recently emerged as one of the most thoroughly investigated, and widely accepted, classes of retrograde messenger in the brain. The study of the endocannabinoids can therefore serve as a model for the investigation of other putative messengers, and most attention is devoted to a discussion of systems that use these new messenger molecules.
Collapse
Affiliation(s)
- Bradley E Alger
- Department of Physiology and Program in Neuroscience, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA.
| |
Collapse
|
50
|
Cooney JR, Hurlburt JL, Selig DK, Harris KM, Fiala JC. Endosomal compartments serve multiple hippocampal dendritic spines from a widespread rather than a local store of recycling membrane. J Neurosci 2002; 22:2215-24. [PMID: 11896161 PMCID: PMC6758269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2001] [Revised: 12/05/2001] [Accepted: 12/28/2001] [Indexed: 02/24/2023] Open
Abstract
Endosomes are essential to dendritic and synaptic function in sorting membrane proteins for degradation or recycling, yet little is known about their locations near synapses. Here, serial electron microscopy was used to ascertain the morphology and distribution of all membranous intracellular compartments in distal dendrites of hippocampal CA1 pyramidal neurons in juvenile and adult rats. First, the continuous network of smooth endoplasmic reticulum (SER) was traced throughout dendritic segments and their spines. SER occupied the cortex of the dendritic shaft and extended into 14% of spines. Several types of non-SER compartments were then identified, including clathrin-coated vesicles and pits, large uncoated vesicles, tubular compartments, multivesicular bodies (MVBs), and MVB-tubule complexes. The uptake of extracellular gold particles indicated that these compartments were endosomal in origin. Small, round vesicles and pits that did not contain gold were also identified. The tubular compartments exhibited clathrin-coated tips consistent with the genesis of these small, presumably exosomal vesicles. Approximately 70% of the non-SER compartments were located within or at the base of dendritic spines. Overall, only 29% of dendritic spines had endosomal compartments, whereas 20% contained small vesicles. Small vesicles did not colocalize in spines with endosomes or SER. Three-dimensional reconstructions revealed that up to 20 spines shared a recycling pool of plasmalemmal proteins rather than maintaining independent stores at each spine.
Collapse
Affiliation(s)
- James R Cooney
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|