1
|
Webster-Wood VA, Gill JP, Thomas PJ, Chiel HJ. Control for multifunctionality: bioinspired control based on feeding in Aplysia californica. BIOLOGICAL CYBERNETICS 2020; 114:557-588. [PMID: 33301053 PMCID: PMC8543386 DOI: 10.1007/s00422-020-00851-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Animals exhibit remarkable feats of behavioral flexibility and multifunctional control that remain challenging for robotic systems. The neural and morphological basis of multifunctionality in animals can provide a source of bioinspiration for robotic controllers. However, many existing approaches to modeling biological neural networks rely on computationally expensive models and tend to focus solely on the nervous system, often neglecting the biomechanics of the periphery. As a consequence, while these models are excellent tools for neuroscience, they fail to predict functional behavior in real time, which is a critical capability for robotic control. To meet the need for real-time multifunctional control, we have developed a hybrid Boolean model framework capable of modeling neural bursting activity and simple biomechanics at speeds faster than real time. Using this approach, we present a multifunctional model of Aplysia californica feeding that qualitatively reproduces three key feeding behaviors (biting, swallowing, and rejection), demonstrates behavioral switching in response to external sensory cues, and incorporates both known neural connectivity and a simple bioinspired mechanical model of the feeding apparatus. We demonstrate that the model can be used for formulating testable hypotheses and discuss the implications of this approach for robotic control and neuroscience.
Collapse
Affiliation(s)
- Victoria A Webster-Wood
- Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, 15213, USA.
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, 15213, USA.
- McGowan Institute for Regenerative Medicine, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, 15213, USA.
| | - Jeffrey P Gill
- Department of Biology, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH, 44106-7080, USA
| | - Peter J Thomas
- Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106-4901, USA
- Department of Biology, Department of Cognitive Science, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106-4901, USA
- Department of Electrical Computer and Systems Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106-4901, USA
| | - Hillel J Chiel
- Department of Biology, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH, 44106-7080, USA
- Department of Neurosciences, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH, 44106-7080, USA
- Department of Biomedical Engineering, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH, 44106-7080, USA
| |
Collapse
|
2
|
Costa RM, Baxter DA, Byrne JH. Computational model of the distributed representation of operant reward memory: combinatoric engagement of intrinsic and synaptic plasticity mechanisms. ACTA ACUST UNITED AC 2020; 27:236-249. [PMID: 32414941 PMCID: PMC7233148 DOI: 10.1101/lm.051367.120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 02/13/2020] [Indexed: 01/15/2023]
Abstract
Operant reward learning of feeding behavior in Aplysia increases the frequency and regularity of biting, as well as biases buccal motor patterns (BMPs) toward ingestion-like BMPs (iBMPs). The engram underlying this memory comprises cells that are part of a central pattern generating (CPG) circuit and includes increases in the intrinsic excitability of identified cells B30, B51, B63, and B65, and increases in B63-B30 and B63-B65 electrical synaptic coupling. To examine the ways in which sites of plasticity (individually and in combination) contribute to memory expression, a model of the CPG was developed. The model included conductance-based descriptions of cells CBI-2, B4, B8, B20, B30, B31, B34, B40, B51, B52, B63, B64, and B65, and their synaptic connections. The model generated patterned activity that resembled physiological BMPs, and implementation of the engram reproduced increases in frequency, regularity, and bias. Combined enhancement of B30, B63, and B65 excitabilities increased BMP frequency and regularity, but not bias toward iBMPs. Individually, B30 increased regularity and bias, B51 increased bias, B63 increased frequency, and B65 decreased all three BMP features. Combined synaptic plasticity contributed primarily to regularity, but also to frequency and bias. B63-B30 coupling contributed to regularity and bias, and B63-B65 coupling contributed to all BMP features. Each site of plasticity altered multiple BMP features simultaneously. Moreover, plasticity loci exhibited mutual dependence and synergism. These results indicate that the memory for operant reward learning emerged from the combinatoric engagement of multiple sites of plasticity.
Collapse
Affiliation(s)
- Renan M Costa
- Keck Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Anatomy, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA.,MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030, USA
| | - Douglas A Baxter
- Keck Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Anatomy, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA.,Engineering in Medicine (EnMed), Texas A&M Health Science Center-Houston, Houston, Texas 77030, USA
| | - John H Byrne
- Keck Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Anatomy, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA.,MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030, USA
| |
Collapse
|
3
|
Bezares-Calderón LA, Berger J, Jékely G. Diversity of cilia-based mechanosensory systems and their functions in marine animal behaviour. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190376. [PMID: 31884914 PMCID: PMC7017336 DOI: 10.1098/rstb.2019.0376] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2019] [Indexed: 12/12/2022] Open
Abstract
Sensory cells that detect mechanical forces usually have one or more specialized cilia. These mechanosensory cells underlie hearing, proprioception or gravity sensation. To date, it is unclear how cilia contribute to detecting mechanical forces and what is the relationship between mechanosensory ciliated cells in different animal groups and sensory systems. Here, we review examples of ciliated sensory cells with a focus on marine invertebrate animals. We discuss how various ciliated cells mediate mechanosensory responses during feeding, tactic responses or predator-prey interactions. We also highlight some of these systems as interesting and accessible models for future in-depth behavioural, functional and molecular studies. We envisage that embracing a broader diversity of organisms could lead to a more complete view of cilia-based mechanosensation. This article is part of the Theo Murphy meeting issue 'Unity and diversity of cilia in locomotion and transport'.
Collapse
Affiliation(s)
| | - Jürgen Berger
- Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
4
|
Cropper EC, Jing J, Perkins MH, Weiss KR. Use of the Aplysia feeding network to study repetition priming of an episodic behavior. J Neurophysiol 2017; 118:1861-1870. [PMID: 28679841 DOI: 10.1152/jn.00373.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/21/2017] [Accepted: 06/21/2017] [Indexed: 02/06/2023] Open
Abstract
Many central pattern generator (CPG)-mediated behaviors are episodic, meaning that they are not continuously ongoing; instead, there are pauses between bouts of activity. This raises an interesting possibility, that the neural networks that mediate these behaviors are not operating under "steady-state" conditions; i.e., there could be dynamic changes in motor activity as it stops and starts. Research in the feeding system of the mollusk Aplysia californica has demonstrated that this can be the case. After a pause, initial food grasping responses are relatively weak. With repetition, however, responses strengthen. In this review we describe experiments that have characterized cellular/molecular mechanisms that produce these changes in motor activity. In particular, we focus on cumulative effects of modulatory neuropeptides. Furthermore, we relate Aplysia research to work in other systems and species, and develop a hypothesis that postulates that changes in response magnitude are a reflection of an efficient feeding strategy.
Collapse
Affiliation(s)
- Elizabeth C Cropper
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; and
| | - Jian Jing
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; and.,State Key Laboratory of Pharmaceutical Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Matthew H Perkins
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; and
| | - Klaudiusz R Weiss
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; and
| |
Collapse
|
5
|
Siniscalchi MJ, Cropper EC, Jing J, Weiss KR. Repetition priming of motor activity mediated by a central pattern generator: the importance of extrinsic vs. intrinsic program initiators. J Neurophysiol 2016; 116:1821-1830. [PMID: 27466134 DOI: 10.1152/jn.00365.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/23/2016] [Indexed: 12/28/2022] Open
Abstract
Repetition priming is characterized by increased performance as a behavior is repeated. Although this phenomenon is ubiquitous, mediating mechanisms are poorly understood. We address this issue in a model system, the feeding network of Aplysia This network generates both ingestive and egestive motor programs. Previous data suggest a chemical coding model: ingestive and egestive inputs to the feeding central pattern generator (CPG) release different modulators, which act via different second messengers to prime motor activity in different ways. The ingestive input to the CPG (neuron CBI-2) releases the peptides feeding circuit activating peptide and cerebral peptide 2, which produce an ingestive pattern of activity. The egestive input to the CPG (the esophageal nerve) releases the peptide small cardioactive peptide. This model is based on research that focused on a single aspect of motor control (radula opening). Here we ask whether repetition priming is observed if activity is triggered with a neuron within the core CPG itself and demonstrate that it is not. Moreover, previous studies demonstrated that effects of modulatory neurotransmitters that induce repetition priming persist. This suggests that it should be possible to "prime" motor programs triggered from within the CPG by first stimulating extrinsic modulatory inputs. We demonstrate that programs triggered after ingestive input activation are ingestive and programs triggered after egestive input activation are egestive. We ask where this priming occurs and demonstrate modifications within the CPG itself. This arrangement is likely to have important consequences for "task" switching, i.e., the cessation of one type of motor activity and the initiation of another.
Collapse
Affiliation(s)
- Michael J Siniscalchi
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Elizabeth C Cropper
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jian Jing
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Klaudiusz R Weiss
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
6
|
Cullins MJ, Shaw KM, Gill JP, Chiel HJ. Motor neuronal activity varies least among individuals when it matters most for behavior. J Neurophysiol 2014; 113:981-1000. [PMID: 25411463 DOI: 10.1152/jn.00729.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
How does motor neuronal variability affect behavior? To explore this question, we quantified activity of multiple individual identified motor neurons mediating biting and swallowing in intact, behaving Aplysia californica by recording from the protractor muscle and the three nerves containing the majority of motor neurons controlling the feeding musculature. We measured multiple motor components: duration of the activity of identified motor neurons as well as their relative timing. At the same time, we measured behavioral efficacy: amplitude of grasping movement during biting and amplitude of net inward food movement during swallowing. We observed that the total duration of the behaviors varied: Within animals, biting duration shortened from the first to the second and third bites; between animals, biting and swallowing durations varied. To study other sources of variation, motor components were divided by behavior duration (i.e., normalized). Even after normalization, distributions of motor component durations could distinguish animals as unique individuals. However, the degree to which a motor component varied among individuals depended on the role of that motor component in a behavior. Motor neuronal activity that was essential for the expression of biting or swallowing was similar among animals, whereas motor neuronal activity that was not essential for that behavior varied more from individual to individual. These results suggest that motor neuronal activity that matters most for the expression of a particular behavior may vary least from individual to individual. Shaping individual variability to ensure behavioral efficacy may be a general principle for the operation of motor systems.
Collapse
Affiliation(s)
- Miranda J Cullins
- Departments of Biology, Neurosciences, and Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Kendrick M Shaw
- Departments of Biology, Neurosciences, and Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Jeffrey P Gill
- Departments of Biology, Neurosciences, and Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Hillel J Chiel
- Departments of Biology, Neurosciences, and Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
7
|
The significance of dynamical architecture for adaptive responses to mechanical loads during rhythmic behavior. J Comput Neurosci 2014; 38:25-51. [PMID: 25182251 PMCID: PMC4544651 DOI: 10.1007/s10827-014-0519-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 06/25/2014] [Accepted: 07/22/2014] [Indexed: 11/21/2022]
Abstract
Many behaviors require reliably generating sequences of motor activity while adapting the activity to incoming sensory information. This process has often been conceptually explained as either fully dependent on sensory input (a chain reflex) or fully independent of sensory input (an idealized central pattern generator, or CPG), although the consensus of the field is that most neural pattern generators lie somewhere between these two extremes. Many mathematical models of neural pattern generators use limit cycles to generate the sequence of behaviors, but other models, such as a heteroclinic channel (an attracting chain of saddle points), have been suggested. To explore the range of intermediate behaviors between CPGs and chain reflexes, in this paper we describe a nominal model of swallowing in Aplysia californica. Depending upon the value of a single parameter, the model can transition from a generic limit cycle regime to a heteroclinic regime (where the trajectory slows as it passes near saddle points). We then study the behavior of the system in these two regimes and compare the behavior of the models with behavior recorded in the animal in vivo and in vitro. We show that while both pattern generators can generate similar behavior, the stable heteroclinic channel can better respond to changes in sensory input induced by load, and that the response matches the changes seen when a load is added in vivo. We then show that the underlying stable heteroclinic channel architecture exhibits dramatic slowing of activity when sensory and endogenous input is reduced, and show that similar slowing with removal of proprioception is seen in vitro. Finally, we show that the distributions of burst lengths seen in vivo are better matched by the distribution expected from a system operating in the heteroclinic regime than that expected from a generic limit cycle. These observations suggest that generic limit cycle models may fail to capture key aspects of Aplysia feeding behavior, and that alternative architectures such as heteroclinic channels may provide better descriptions.
Collapse
|
8
|
Sanders J, Nagy S, Fetterman G, Wright C, Treinin M, Biron D. The Caenorhabditis elegans interneuron ALA is (also) a high-threshold mechanosensor. BMC Neurosci 2013; 14:156. [PMID: 24341457 PMCID: PMC3878553 DOI: 10.1186/1471-2202-14-156] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 12/06/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To survive dynamic environments, it is essential for all animals to appropriately modulate their behavior in response to various stimulus intensities. For instance, the nematode Caenorhabditis elegans suppresses the rate of egg-laying in response to intense mechanical stimuli, in a manner dependent on the mechanosensory neurons FLP and PVD. We have found that the unilaterally placed single interneuron ALA acted as a high-threshold mechanosensor, and that it was required for this protective behavioral response. RESULTS ALA was required for the inhibition of egg-laying in response to a strong (picking-like) mechanical stimulus, characteristic of routine handling of the animals. Moreover, ALA did not respond physiologically to less intense touch stimuli, but exhibited distinct physiological responses to anterior and posterior picking-like touch, suggesting that it could distinguish between spatially separated stimuli. These responses required neither neurotransmitter nor neuropeptide release from potential upstream neurons. In contrast, the long, bilaterally symmetric processes of ALA itself were required for producing its physiological responses; when they were severed, responses to stimuli administered between the cut and the cell body were unaffected, while responses to stimuli administered posterior to the cut were abolished. CONCLUSION C. elegans neurons are typically classified into three major groups: sensory neurons with specialized sensory dendrites, interneurons, and motoneurons with neuromuscular junctions. Our findings suggest that ALA can autonomously sense intense touch and is thus a dual-function neuron, i.e., an interneuron as well as a novel high-threshold mechanosensor.
Collapse
Affiliation(s)
| | | | | | | | | | - David Biron
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
9
|
Levitan D, Saada-Madar R, Teplinsky A, Susswein AJ. Localization of molecular correlates of memory consolidation to buccal ganglia mechanoafferent neurons after learning that food is inedible in Aplysia. Learn Mem 2012; 19:503-12. [DOI: 10.1101/lm.026393.112] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Yang Z, Cameron K, Lewinger W, Webb B, Murray A. Neuromorphic control of stepping pattern generation: a dynamic model with analog circuit implementation. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2012; 23:373-384. [PMID: 24808545 DOI: 10.1109/tnnls.2011.2177859] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Animals such as stick insects can adaptively walk on complex terrains by dynamically adjusting their stepping motion patterns. Inspired by the coupled Matsuoka and resonate-and-fire neuron models, we present a nonlinear oscillation model as the neuromorphic central pattern generator (CPG) for rhythmic stepping pattern generation. This dynamic model can also be used to actuate the motoneurons on a leg joint with adjustable driving frequencies and duty cycles by changing a few of the model parameters while operating such that different stepping patterns can be generated. A novel mixed-signal integrated circuit design of this dynamic model is subsequently implemented, which, although simplified, shares the equivalent output performance in terms of the adjustable frequency and duty cycle. Three identical CPG models being used to drive three joints can make an arthropod leg of three degrees of freedom. With appropriate initial circuit parameter settings, and thus suitable phase lags among joints, the leg is expected to walk on a complex terrain with adaptive steps. The adaptation is associated with the circuit parameters mediated both by the higher level nervous system and the lower level sensory signals. The model is realized using a 0.3- complementary metal-oxide-semiconductor process and the results are reported.
Collapse
|
11
|
Cheu EY, Quek C, Ng SK. ARPOP: an appetitive reward-based pseudo-outer-product neural fuzzy inference system inspired from the operant conditioning of feeding behavior in Aplysia. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2012; 23:317-329. [PMID: 24808510 DOI: 10.1109/tnnls.2011.2178529] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Appetitive operant conditioning in Aplysia for feeding behavior via the electrical stimulation of the esophageal nerve contingently reinforces each spontaneous bite during the feeding process. This results in the acquisition of operant memory by the contingently reinforced animals. Analysis of the cellular and molecular mechanisms of the feeding motor circuitry revealed that activity-dependent neuronal modulation occurs at the interneurons that mediate feeding behaviors. This provides evidence that interneurons are possible loci of plasticity and constitute another mechanism for memory storage in addition to memory storage attributed to activity-dependent synaptic plasticity. In this paper, an associative ambiguity correction-based neuro-fuzzy network, called appetitive reward-based pseudo-outer-product-compositional rule of inference [ARPOP-CRI(S)], is trained based on an appetitive reward-based learning algorithm which is biologically inspired by the appetitive operant conditioning of the feeding behavior in Aplysia. A variant of the Hebbian learning rule called Hebbian concomitant learning is proposed as the building block in the neuro-fuzzy network learning algorithm. The proposed algorithm possesses the distinguishing features of the sequential learning algorithm. In addition, the proposed ARPOP-CRI(S) neuro-fuzzy system encodes fuzzy knowledge in the form of linguistic rules that satisfies the semantic criteria for low-level fuzzy model interpretability. ARPOP-CRI(S) is evaluated and compared against other modeling techniques using benchmark time-series datasets. Experimental results are encouraging and show that ARPOP-CRI(S) is a viable modeling technique for time-variant problem domains.
Collapse
|
12
|
Friedman AK, Zhurov Y, Ludwar BC, Weiss KR. Motor outputs in a multitasking network: relative contributions of inputs and experience-dependent network states. J Neurophysiol 2009; 102:3711-27. [PMID: 19846618 DOI: 10.1152/jn.00844.2009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Network outputs elicited by a specific stimulus may differ radically depending on the momentary network state. One class of networks states-experience-dependent states-is known to operate in numerous networks, yet the fundamental question concerning the relative role that inputs and states play in determining the network outputs remains to be investigated in a behaviorally relevant manner. Because previous work indicated that in the isolated nervous system the motor outputs of the Aplysia feeding network are affected by experience-dependent states, we sought to establish the behavioral relevance of these outputs. We analyzed the phasing of firing of radula opening motoneurons (B44 and B48) relative to other previously characterized motoneurons. We found that the overall pattern of motoneuronal firing corresponds to the phasing of movements during feeding behavior, thus indicating a behavioral relevance of network outputs. Previous studies suggested that network inputs act to trigger a response rather than to shape its characteristics, with the latter function being fulfilled by network states. We show this is an oversimplification. In a rested state, different inputs elicited distinct responses, indicating that inputs not only trigger but also shape the responses. However, depending on the combination of inputs and states, responses were either dramatically altered by the network state or were indistinguishable from those observed in the rested state. We suggest that the relative contributions of inputs and states are dynamically regulated and, rather than being fixed, depend on the specifics of states and inputs.
Collapse
Affiliation(s)
- Allyson K Friedman
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
13
|
Martínez-Rubio C, Serrano GE, Miller MW. Localization of biogenic amines in the foregut of Aplysia californica: catecholaminergic and serotonergic innervation. J Comp Neurol 2009; 514:329-42. [PMID: 19330814 PMCID: PMC4023389 DOI: 10.1002/cne.21991] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study examined the catecholaminergic and serotonergic innervation of the foregut of Aplysia californica, a model system in which the control of feeding behaviors can be investigated at the cellular level. Similar numbers (15-25) of serotonin-like-immunoreactive (5HTli) and tyrosine hydroxylase-like-immunoreactive (THli) fibers were present in each (bilateral) esophageal nerve (En), the major source of pregastric neural innervation in this system. The majority of En 5HTli and THli fibers originated from the anterior branch (En(2)), which innervates the pharynx and the anterior esophagus. Fewer fibers were present in the posterior branch (En(1)), which innervates the majority of the esophagus and the crop. Backfills of the two En branches toward the central nervous system (CNS) labeled a single, centrifugally projecting serotonergic fiber, originating from the metacerebral cell (MCC). The MCC fiber projected only to En(2). No central THli neurons were found to project to the En. Surveys of the pharynx and esophagus revealed major differences between their patterns of catecholaminergic (CA) and serotonergic innervation. Whereas THli fibers and cell bodies were distributed throughout the foregut, 5HTli fibers were present in restricted plexi, and no 5HTli somata were detected. Double-labeling experiments in the periphery revealed THli neurons projecting toward the buccal ganglion via En(2). Other afferents received dense perisomatic serotonergic innervation. Finally, qualitative and quantitative differences were observed between the buccal motor programs (BMPs) produced by stimulation of the two En branches. These observations increase our understanding of aminergic contributions to the pregastric regulation of Aplysia feeding behaviors.
Collapse
Affiliation(s)
- Clarissa Martínez-Rubio
- Institute of Neurobiology and Department of Anatomy and Neurobiology,
University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
00901
| | - Geidy E. Serrano
- Institute of Neurobiology and Department of Anatomy and Neurobiology,
University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
00901
| | - Mark W. Miller
- Institute of Neurobiology and Department of Anatomy and Neurobiology,
University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
00901
| |
Collapse
|
14
|
Levitan D, Lyons LC, Perelman A, Green CL, Motro B, Eskin A, Susswein AJ. Training with inedible food in Aplysia causes expression of C/EBP in the buccal but not cerebral ganglion. Learn Mem 2008; 15:412-6. [PMID: 18509115 DOI: 10.1101/lm.970408] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Training with inedible food in Aplysia increased expression of the transcription factor C/EBP in the buccal ganglia, which primarily have a motor function, but not in the cerebral or pleural ganglia. C/EBP mRNA increased immediately after training, as well as 1-2 h later. The increased expression of C/EBP protein lagged the increase in mRNA. Stimulating the lips and inducing feeding responses do not lead to long-term memory and did not cause increased C/EBP expression. Blocking polyADP-ribosylation, a process necessary for long-term memory after training, did not affect the increased C/EBP mRNA expression in the buccal ganglia.
Collapse
Affiliation(s)
- David Levitan
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 52900, Israel
| | | | | | | | | | | | | |
Collapse
|
15
|
Sasaki K, Due MR, Jing J, Weiss KR. Feeding CPG in Aplysia directly controls two distinct outputs of a compartmentalized interneuron that functions as a CPG element. J Neurophysiol 2007; 98:3796-801. [PMID: 17913984 DOI: 10.1152/jn.00965.2007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the context of motor program generation in Aplysia, we characterize several functional aspects of intraneuronal compartmentalization in an interganglionic interneuron, CBI-5/6. CBI-5/6 was shown previously to have a cerebral compartment (CC) that includes a soma that does not generate full-size action potentials and a buccal compartment (BC) that does. We find that the synaptic connections made by the BC of CBI-5/6 in the buccal ganglion counter the activity of protraction-phase neurons and reinforce the activity of retraction-phase neurons. In buccal motor programs, the BC of CBI-5/6 fires phasically, and its premature activation can phase advance protraction termination and retraction initiation. Thus the BC of CBI-5/6 can act as an element of the central pattern generator (CPG). During protraction, the CC of CBI-5/6 receives direct excitatory inputs from the CPG elements, B34 and B63, and during retraction, it receives antidromically propagating action potentials that originate in the BC of CBI-5/6. Consequently, in its CC, CBI-5/6 receives depolarizing inputs during both protraction and retraction, and these depolarizations can be transmitted via electrical coupling to other neurons. In contrast, in its BC, CBI-5/6 uses spike-dependent synaptic transmission. Thus the CPG directly and differentially controls the program phases in which the two compartments of CBI-5/6 may transmit information to its targets.
Collapse
Affiliation(s)
- Kosei Sasaki
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
16
|
Serrano GE, Martínez-Rubio C, Miller MW. Endogenous motor neuron properties contribute to a program-specific phase of activity in the multifunctional feeding central pattern generator of Aplysia. J Neurophysiol 2007; 98:29-42. [PMID: 17392419 DOI: 10.1152/jn.01062.2006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Multifunctional central pattern generators (CPGs) are circuits of neurons that can generate manifold actions from a single effector system. This study examined a bilateral pair of pharyngeal motor neurons, designated B67, that participate in the multifunctional feeding network of Aplysia californica. Fictive buccal motor programs (BMPs) were elicited with four distinct stimulus paradigms to assess the activity of B67 during ingestive versus egestive patterns. In both classes of programs, B67 fired during the phase of radula protraction and received a potent inhibitory postsynaptic potential (IPSP) during fictive radula retraction. When programs were ingestive, the retraction phase IPSP exhibited a depolarizing sag and was followed by a postinhibitory rebound (PIR) that could generate a postretraction phase of impulse activity. When programs were egestive, the depolarizing sag potential and PIR were both diminished or were not present. Examination of the membrane properties of B67 disclosed a cesium-sensitive depolarizing sag, a corresponding I(h)-like current, and PIR in its responses to hyperpolarizing pulses. Direct IPSPs originating from the influential CPG retraction phase interneuron B64 were also found to activate the sag potential and PIR of B67. Dopamine, a modulator that can promote ingestive behavior in this system, enhanced the sag potential, I(h)-like current, and PIR of B67. Finally, a pharyngeal muscle contraction followed the radula retraction phase of ingestive, but not egestive motor patterns. It is proposed that regulation of the intrinsic properties of this motor neuron can contribute to generating a program-specific phase of motor activity.
Collapse
Affiliation(s)
- Geidy E Serrano
- Institute of Neurobiology and Department of Anatomy & Neurobiology, University of Puerto Rico, San Juan, Puerto Rico.
| | | | | |
Collapse
|
17
|
Neustadter DM, Herman RL, Drushel RF, Chestek DW, Chiel HJ. The kinematics of multifunctionality: comparisons of biting and swallowing in Aplysia californica. ACTA ACUST UNITED AC 2007; 210:238-60. [PMID: 17210961 DOI: 10.1242/jeb.02654] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
What are the mechanisms of multifunctionality, i.e. the use of the same peripheral structures for multiple behaviors? We studied this question using the multifunctional feeding apparatus of the marine mollusk Aplysia californica, in which the same muscles mediate biting (an attempt to grasp food) and swallowing (ingestion of food). Biting and swallowing responses were compared using magnetic resonance imaging of intact, behaving animals and a three-dimensional kinematic model. Biting is associated with larger amplitude protractions of the grasper (radula/odontophore) than swallowing, and smaller retractions. Larger biting protractions than in swallowing appear to be due to a more anterior position of the grasper as the behavior begins, a larger amplitude contraction of protractor muscle I2, and contraction of the posterior portion of the I1/I3/jaw complex. The posterior I1/I3/jaw complex may be context-dependent, i.e. its mechanical context changes the direction of the force it exerts. Thus, the posterior of I1/I3 may aid protraction near the peak of biting, whereas the entire I1/I3/jaw complex acts as a retractor during swallowing. In addition, larger amplitude closure of the grasper during swallowing allows an animal to exert more force as it ingests food. These results demonstrate that differential deployment of the periphery can mediate multifunctionality.
Collapse
Affiliation(s)
- David M Neustadter
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
18
|
Kemenes I, Straub VA, Nikitin ES, Staras K, O'Shea M, Kemenes G, Benjamin PR. Role of delayed nonsynaptic neuronal plasticity in long-term associative memory. Curr Biol 2006; 16:1269-79. [PMID: 16824916 DOI: 10.1016/j.cub.2006.05.049] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 05/17/2006] [Accepted: 05/18/2006] [Indexed: 02/05/2023]
Abstract
BACKGROUND It is now well established that persistent nonsynaptic neuronal plasticity occurs after learning and, like synaptic plasticity, it can be the substrate for long-term memory. What still remains unclear, though, is how nonsynaptic plasticity contributes to the altered neural network properties on which memory depends. Understanding how nonsynaptic plasticity is translated into modified network and behavioral output therefore represents an important objective of current learning and memory research. RESULTS By using behavioral single-trial classical conditioning together with electrophysiological analysis and calcium imaging, we have explored the cellular mechanisms by which experience-induced nonsynaptic electrical changes in a neuronal soma remote from the synaptic region are translated into synaptic and circuit level effects. We show that after single-trial food-reward conditioning in the snail Lymnaea stagnalis, identified modulatory neurons that are extrinsic to the feeding network become persistently depolarized between 16 and 24 hr after training. This is delayed with respect to early memory formation but concomitant with the establishment and duration of long-term memory. The persistent nonsynaptic change is extrinsic to and maintained independently of synaptic effects occurring within the network directly responsible for the generation of feeding. Artificial membrane potential manipulation and calcium-imaging experiments suggest a novel mechanism whereby the somal depolarization of an extrinsic neuron recruits command-like intrinsic neurons of the circuit underlying the learned behavior. CONCLUSIONS We show that nonsynaptic plasticity in an extrinsic modulatory neuron encodes information that enables the expression of long-term associative memory, and we describe how this information can be translated into modified network and behavioral output.
Collapse
Affiliation(s)
- Ildikó Kemenes
- Sussex Centre for Neuroscience, Department of Biological and Environmental Sciences, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
19
|
Novakovic VA, Sutton GP, Neustadter DM, Beer RD, Chiel HJ. Mechanical reconfiguration mediates swallowing and rejection in Aplysia californica. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2006; 192:857-70. [PMID: 16586084 DOI: 10.1007/s00359-006-0124-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Revised: 03/08/2006] [Accepted: 03/11/2006] [Indexed: 10/24/2022]
Abstract
Muscular hydrostats, such as tongues, trunks or tentacles, have fewer constraints on their degrees of freedom than musculoskeletal systems, so changes in a structure's shape may alter the positions and lengths of other components (i.e., induce mechanical reconfiguration). We studied mechanical reconfiguration during rejection and swallowing in the marine mollusk Aplysia californica. During rejection, inedible material is pushed out of an animal's buccal cavity. The grasper (radula/odontophore) closes on inedible material, and then a posterior muscle, I2, pushes the grasper toward the jaws (protracts it). After the material is released, an anterior muscle complex (the I1/I3/jaw complex) pushes the grasper toward the esophagus (retracts it). During swallowing, the grasper is protracted open, and then retracts closed, pulling in food. Grasper closure changes its shape. Magnetic resonance images show that grasper closure lengthens I2. A kinetic model quantified the changes in the ability of I2 and I1/I3 to exert force as grasper shape changed. Grasper closure increases I2's ability to protract during rejection, and increases I1/I3's ability to retract during swallowing. Motor neurons controlling radular closure may therefore affect the behavioral outputs of I2's and I1/I3's motor neurons. Thus, motor neurons may modulate the outputs of other motor neurons through mechanical reconfiguration.
Collapse
Affiliation(s)
- Valerie A Novakovic
- Department of Biology, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
20
|
Narusuye K, Kinugawa A, Nagahama T. Responses of cerebral GABA-containing CBM neuron to taste stimulation with seaweed extracts in Aplysia kurodai. ACTA ACUST UNITED AC 2006; 65:146-56. [PMID: 16114014 DOI: 10.1002/neu.20182] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Aplysia kurodai distributed along Japan feeds well on Ulva pertusa but rejects Gelidium amansii with distinctive patterned movements of the jaws and radula. On the ventral side of the cerebral M cluster, four cell bodies of higher order neurons that send axons to the buccal ganglia are distributed (CBM neurons). We have previously shown that the dopaminergic CBM1 modulates basic feeding circuits in the buccal ganglia for rejection by firing at higher frequency after application of the aversive taste of seaweed such as Gelidium amansii. In the present experiments immunohistochemical techniques showed that the CBM3 exhibited gamma-aminobutyric acid (GABA)-like immunoreactivity. The CBM3 may be equivalent to the CBI-3 involved in changing the motor programs from rejection to ingestion in Aplysia californica. The responses of the CBM3 to taste stimulation of the lips with seaweed extracts were investigated by the use of calcium imaging. The calcium-sensitive dye, Calcium Green-1, was iontophoretically introduced into a cell body of the CBM3 using a microelectrode. Application of Ulva pertusa or Gelidium amansii extract induced different changes in fluorescence in the CBM3 cell body, indicating that taste of Ulva pertusa initially induced longer-lasting continuous spike responses at slightly higher frequency compared with that of Gelidium amansii. Considering a role of the CBM3 in the pattern selection, these results suggest that elongation of the initial firing response may be a major factor for the CBM3 to switch the buccal motor programs from rejection to ingestion after application of different tastes of seaweeds in Aplysia kurodai.
Collapse
Affiliation(s)
- Kenji Narusuye
- Department of Life Science, Graduate School of Science & Technology, Kobe University, Kobe 657-8501, Japan
| | | | | |
Collapse
|
21
|
Cropper EC, Evans CG, Jing J, Klein A, Proekt A, Romero A, Rosen SC. Regulation of afferent transmission in the feeding circuitry of Aplysia. ACTA BIOLOGICA HUNGARICA 2005; 55:211-20. [PMID: 15270237 DOI: 10.1556/abiol.55.2004.1-4.26] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although feeding in Aplysia is mediated by a central pattern generator (CPG), the activity of this CPG is modified by afferent input. To determine how afferent activity produces the widespread changes in motor programs that are necessary if behavior is to be modified, we have studied two classes of feeding sensory neurons. We have shown that afferent-induced changes in activity are widespread because sensory neurons make a number of synaptic connections. For example, sensory neurons make monosynaptic excitatory connections with feeding motor neurons. Sensori-motor transmission is, however, regulated so that changes in the periphery do not disrupt ongoing activity. This results from the fact that sensory neurons are also electrically coupled to feeding interneurons. During motor programs sensory neurons are, therefore, rhythmically depolarized via central input. These changes in membrane potential profoundly affect sensori-motor transmission. For example, changes in membrane potential alter spike propagation in sensory neurons so that spikes are only actively transmitted to particular output regions when it is behaviorally appropriate. To summarize, afferent activity alters motor output because sensory neurons make direct contact with motor neurons. Sensori-motor transmission is, however, centrally regulated so that changes in the periphery alter motor programs in a phase-dependent manner.
Collapse
Affiliation(s)
- Elizabeth C Cropper
- Department of Physiology and Biophysics, Mt. Sinai School of Medicine, One Gustave Levy Place, New York, NY 10029, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Sutton GP, Mangan EV, Neustadter DM, Beer RD, Crago PE, Chiel HJ. Neural control exploits changing mechanical advantage and context dependence to generate different feeding responses in Aplysia. BIOLOGICAL CYBERNETICS 2004; 91:333-345. [PMID: 15517341 DOI: 10.1007/s00422-004-0517-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Accepted: 08/05/2004] [Indexed: 05/24/2023]
Abstract
How does neural control reflect changes in mechanical advantage and muscle function? In the Aplysia feeding system a protractor muscle's mechanical advantage decreases as it moves the structure that grasps food (the radula/odontophore) in an anterior direction. In contrast, as the radula/odontophore is moved forward, the jaw musculature's mechanical advantage shifts so that it may act to assist forward movement of the radula/odontophore instead of pushing it posteriorly. To test whether the jaw musculature's context-dependent function can compensate for the falling mechanical advantage of the protractor muscle, we created a kinetic model of Aplysia's feeding apparatus. During biting, the model predicts that the reduction of the force in the protractor muscle I2 will prevent it from overcoming passive forces that resist the large anterior radula/odontophore displacements observed during biting. To produce protractions of the magnitude observed during biting behaviors, the nervous system could increase I2's contractile strength by neuromodulating I2, or it could recruit the I1/I3 jaw muscle complex. Driving the kinetic model with in vivo EMG and ENG predicts that, during biting, early activation of the context-dependent jaw muscle I1/I3 may assist in moving the radula/odontophore anteriorly during the final phase of protraction. In contrast, during swallowing, later activation of I1/I3 causes it to act purely as a retractor. Shifting the timing of onset of I1/I3 activation allows the nervous system to use a mechanical equilibrium point that allows I1/I3 to act as a protractor rather than an equilibrium point that allows I1/I3 to act as a retractor. This use of equilibrium points may be similar to that proposed for vertebrate control of movement.
Collapse
Affiliation(s)
- Gregory P Sutton
- Case Western Reserve University, Department of Mechanical and Aerospace Engineering, Cleveland, OH, USA
| | | | | | | | | | | |
Collapse
|
23
|
Brezina V, Horn CC, Weiss KR. Modeling neuromuscular modulation in Aplysia. III. Interaction of central motor commands and peripheral modulatory state for optimal behavior. J Neurophysiol 2004; 93:1523-56. [PMID: 15469963 DOI: 10.1152/jn.00475.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent work in computational neuroethology has emphasized that "the brain has a body": successful adaptive behavior is not simply commanded by the nervous system, but emerges from interactions of nervous system, body, and environment. Here we continue our study of these issues in the accessory radula closer (ARC) neuromuscular system of Aplysia. The ARC muscle participates in the animal's feeding behaviors, a set of cyclical, rhythmic behaviors driven by a central pattern generator (CPG). Patterned firing of the ARC muscle's two motor neurons, B15 and B16, releases not only ACh to elicit the muscle's contractions but also peptide neuromodulators that then shape the contractions through a complex network of actions on the muscle. These actions are dynamically complex: some are fast, but some are slow, so that they are temporally uncoupled from the motor neuron firing pattern in the current cycle. Under these circumstances, how can the nervous system, through just the narrow channel of the firing patterns of the motor neurons, control the contractions, movements, and behavior in the periphery? In two earlier papers, we developed a realistic mathematical model of the B15/B16-ARC neuromuscular system and its modulation. Here we use this model to study the functional performance of the system in a realistic behavioral task. We run the model with two kinds of inputs: a simple set of regular motor neuron firing patterns that allows us to examine the entire space of patterns, and the real firing patterns of B15 and B16 previously recorded in a 2 1/2-h-long meal of 749 cycles in an intact feeding animal. These real patterns are extremely irregular. Our main conclusions are the following. 1) The modulation in the periphery is necessary for superior functional performance. 2) The components of the modulatory network interact in nonlinear, context- and task-dependent combinations for best performance overall, although not necessarily in any particular cycle. 3) Both the fast and the slow dynamics of the modulatory state make important contributions. 4) The nervous system controls different components of the periphery to different degrees. To some extent the periphery operates semiautonomously. However, the structure of the peripheral modulatory network ensures robust performance under all circumstances, even with the irregular motor neuron firing patterns and even when the parameters of the functional task are randomly varied from cycle to cycle to simulate a variable feeding environment. In the variable environment, regular firing patterns, which are fine-tuned to one particular task, fail to provide robust performance. We propose that the CPG generates the irregular firing patterns, which nevertheless are guaranteed to give robust performance overall through the actions of the peripheral modulatory network, as part of a trial-and-error feeding strategy in a variable, uncertain environment.
Collapse
Affiliation(s)
- Vladimir Brezina
- Department of Physiology and Biophysics and Fishberg Research Center for Neurobiology, Mount Sinai School of Medicine, Box 1218, 1 Gustave L. Levy Place, New York, NY 10029, USA.
| | | | | |
Collapse
|
24
|
Shetreat-Klein AN, Cropper EC. Afferent-induced changes in rhythmic motor programs in the feeding circuitry of aplysia. J Neurophysiol 2004; 92:2312-22. [PMID: 15175374 DOI: 10.1152/jn.00137.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A manipulation often used to determine whether a neuron plays a role in the generation of a motor program involves injecting current into the cell during rhythmic activity to determine whether activity is modified. We perform this type of manipulation to study the impact of afferent activity on feeding-like motor programs in Aplysia. We trigger biting-like programs and manipulate sensory neurons that have been implicated in producing the changes in activity that occur when food is ingested, i.e., when bites are converted to bite-swallows. Sensory neurons that are manipulated are the radula mechanoafferent B21 and the retraction proprioceptor B51. Data suggest that both cells are peripherally activated during radula closing/retraction when food is ingested. We found that phasic subthreshold depolarization of a single sensory neuron can significantly prolong radula closing/retraction, as determined by recording both from interneurons (e.g., B64), and motor neurons (e.g., B15 and B8). Additionally, afferent activity produces a delay in the onset of the subsequent radula opening/protraction, and increases the firing frequency of motor neurons. These are the changes in activity that are seen when food is ingested. These results add to the growing data that implicate B21 and B51 in bite to bite-swallow conversions and indicate that afferent activity is important during feeding in Aplysia.
Collapse
Affiliation(s)
- Avniel N Shetreat-Klein
- Dept. Physiology/Biophysics, Box 1218, Mt. Sinai Medical School, One Gustave L. Levy Place, New York, NY 10029, USA
| | | |
Collapse
|
25
|
Beenhakker MP, Blitz DM, Nusbaum MP. Long-lasting activation of rhythmic neuronal activity by a novel mechanosensory system in the crustacean stomatogastric nervous system. J Neurophysiol 2003; 91:78-91. [PMID: 14523066 PMCID: PMC6494456 DOI: 10.1152/jn.00741.2003] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sensory neurons enable neural circuits to generate behaviors appropriate for the current environmental situation. Here, we characterize the actions of a population (about 60) of bilaterally symmetric bipolar neurons identified within the inner wall of the cardiac gutter, a foregut structure in the crab Cancer borealis. These neurons, called the ventral cardiac neurons (VCNs), project their axons through the crab stomatogastric nervous system to influence neural circuits associated with feeding. Brief pressure application to the cardiac gutter transiently modulated the filtering motor pattern (pyloric rhythm) generated by the pyloric circuit within the stomatogastric ganglion (STG). This modulation included an increased speed of the pyloric rhythm and a concomitant decrease in the activity of the lateral pyloric neuron. Furthermore, 2 min of rhythmic pressure application to the cardiac gutter elicited a chewing motor pattern (gastric mill rhythm) generated by the gastric mill circuit in the STG that persisted for < or =30 min. These sensory actions on the pyloric and gastric mill circuits were mimicked by either ventral cardiac nerve or dorsal posterior esophageal nerve stimulation. VCN actions on the STG circuits required the activation of projection neurons in the commissural ganglia. A subset of the VCN actions on these projection neurons appeared to be direct and cholinergic. We propose that the VCN neurons are mechanoreceptors that are activated when food stored in the foregut applies an outward force, leading to the long-lasting activation of projection neurons required to initiate chewing and modify the filtering of chewed food.
Collapse
Affiliation(s)
- Mark P Beenhakker
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
26
|
Dembrow NC, Jing J, Proekt A, Romero A, Vilim FS, Cropper EC, Weiss KR. A newly identified buccal interneuron initiates and modulates feeding motor programs in aplysia. J Neurophysiol 2003; 90:2190-204. [PMID: 12801904 DOI: 10.1152/jn.00173.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Despite considerable progress in characterizing the feeding central pattern generator (CPG) in Aplysia, the full complement of neurons that generate feeding motor programs has not yet been identified. The distribution of neuropeptide-containing neurons in the buccal and cerebral ganglia can be used as a tool to identify additional elements of the feeding circuitry by providing distinctions between otherwise morphologically indistinct neurons. For example, our recent study revealed a unique and potentially interesting unpaired PRQFVamide (PRQFVa)-containing neuron in the buccal ganglion. In this study, we describe the morphological and electrophysiological characterization of this novel neuron, which we designate as B50. We found that activation of B50 is capable of producing organized rhythmic output of the feeding CPG. The motor programs elicited by B50 exhibit some similarities as well as differences to motor programs elicited by the command-like cerebral-to-buccal interneuron CBI-2. In addition to activating the feeding CPG, B50 may act as a program modulator.
Collapse
Affiliation(s)
- N C Dembrow
- Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Yoshida R, Nagahama T. Search for cerebral G cluster neurons responding to taste stimulation with seaweed in Aplysia kurodai by the use of calcium imaging. JOURNAL OF NEUROBIOLOGY 2003; 55:299-314. [PMID: 12717700 DOI: 10.1002/neu.10207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The calcium imaging method can detect the spike activities of many neurons simultaneously. In the present experiments, this method was used to search for unique neurons contributing to feeding behavior in the cerebral ganglia of Aplysia kurodai. We mainly explored the neurons whose cell bodies were located in the G cluster and the neuropile region posterior to this cluster on the ventral surface of the cerebral ganglia. When the extract of the food seaweed Ulva was applied to the tentacle-lip region, many neurons stained with a calcium-sensitive dye, Calcium Green-1, showed changes in fluorescence. Some neurons showed rhythmic responses and others showed transient responses, suggesting that these neurons may be partly involved in the feeding circuits. We also identified three motor neurons among these neurons that showed rhythmic fluorescence responses to the taste stimulation. One of them was a motor neuron shortening the anterior tentacle (ATS), and the other two were motor neurons producing lip opening-like (LO(G)) and closing-like (LC(G)) movements, respectively. Application of the Ulva extract to the tentacle-lip region induced phase-locked rhythmic firing activity in these motor neurons, suggesting that these neurons may contribute to the rhythmic patterned movements of the anterior tentacles and lips during the ingestion of seaweed.
Collapse
Affiliation(s)
- Ryusuke Yoshida
- Department of Biology, Faculty of Science, Kobe University, Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | | |
Collapse
|
28
|
Evans CG, Jing J, Rosen SC, Cropper EC. Regulation of spike initiation and propagation in an Aplysia sensory neuron: gating-in via central depolarization. J Neurosci 2003; 23:2920-31. [PMID: 12684479 PMCID: PMC6742086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Afferent transmission can be regulated (or gated) so that responses to peripheral stimuli are adjusted to make them appropriate for the ongoing phase of a motor program. Here, we characterize a gating mechanism that involves regulation of spike propagation in Aplysia mechanoafferent B21. B21 is striking in that afferent transmission to the motor neuron B8 does not occur when B21 is at resting membrane potential. Our data suggest that this results from the fact that spikes are not actively propagated to the lateral process of B21 (the primary contact with B8). When B21 is peripherally activated at its resting potential, electrotonic potentials in the lateral process are on average 11 mV. In contrast, mechanoafferent activity is transmitted to B8 when B21 is centrally depolarized via current injection. Our data suggest that central depolarization relieves propagation failure. Full-size spikes are recorded in the lateral process when B21 is depolarized and then peripherally activated. Moreover, changes in membrane potential in the lateral process affect spike amplitude, even when the somatic membrane potential is virtually unchanged. During motor programs, both the lateral process and the soma of B21 are phasically depolarized via synaptic input. These depolarizations are sufficient to convert subthreshold potentials to full-size spikes in the lateral process. Thus, our data strongly suggest that afferent transmission from B21 to B8 is, at least in part, regulated via synaptic control of spike initiation in the lateral process. Consequences of this control for compartmentalization in B21 are discussed, as are specific consequences for feeding behavior.
Collapse
Affiliation(s)
- Colin G Evans
- Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|
29
|
Neustadter DM, Drushel RF, Crago PE, Adams BW, Chiel HJ. A kinematic model of swallowing inAplysia californicabased on radula/odontophore kinematics andin vivomagnetic resonance images. J Exp Biol 2002; 205:3177-206. [PMID: 12235197 DOI: 10.1242/jeb.205.20.3177] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYA kinematic model of the buccal mass of Aplysia californica during swallowing has been developed that incorporates the kinematics of the odontophore, the muscular structure that underlies the pincer-like grasping structure, the radula. The model is based on real-time magnetic resonance images (MRIs) of the mid-sagittal cross section of the buccal mass during swallowing. Using kinematic relationships derived from isolated odontophores induced to perform feeding-like movements, the model generates predictions about movement of the buccal mass in the medio-lateral dimension during the feeding cycle that are well-matched to corresponding coronal MRIs of the buccal mass during swallowing. The model successfully reproduces changes in the lengths of the intrinsic (I) buccal muscles I2 and I3 measured experimentally. The model predicts changes in the length of the radular opener muscle I7 throughout the swallowing cycle, generates hypotheses about the muscular basis of radular opening prior to the onset of forward rotation during swallowing and suggests possible context-dependent functions for the I7 muscle, the radular stalk and the I5 (ARC) muscle during radular opening and closing.
Collapse
Affiliation(s)
- David M Neustadter
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106-7080, USA
| | | | | | | | | |
Collapse
|
30
|
Horn CC, Kupfermann I. Egestive feeding responses in Aplysia persist after sectioning of the cerebral-buccal connectives: evidence for multiple sites of control of motor programs. Neurosci Lett 2002; 323:175-8. [PMID: 11959413 DOI: 10.1016/s0304-3940(02)00155-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ingestive and egestive behaviors in Aplysia are generated by motor neurons and interneurons chiefly located in the buccal ganglion, but cerebral ganglion neurons appear to contribute to both ingestive and egestive motor programs. We investigated if the cerebral ganglion input to the buccal ganglion is necessary for the generation of buccal ingestive and egestive behaviors in free-moving animals. We confirmed a prior study that showed that animals with lesions of the cerebro-buccal connectives (CBCs) do not exhibit rhythmic biting following seaweed stimulation of the lips, but do show swallowing of seaweed inserted into the buccal cavity. We found that CBC-lesioned animals also exhibited rejection of a tube inserted into the buccal cavity and esophagus. The programs for swallowing and rejection behaviors were similar to those observed before lesioning the CBCs, although the rate of swallowing was slower. These results suggest that the cerebral input to the buccal ganglion is necessary for generating biting responses, but is not required for producing swallowing or rejection responses.
Collapse
Affiliation(s)
- Charles C Horn
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
31
|
Susswein AJ, Hurwitz I, Thorne R, Byrne JH, Baxter DA. Mechanisms underlying fictive feeding in aplysia: coupling between a large neuron with plateau potentials activity and a spiking neuron. J Neurophysiol 2002; 87:2307-23. [PMID: 11976370 DOI: 10.1152/jn.2002.87.5.2307] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The buccal ganglia of Aplysia contain a central pattern generator (CPG) that organizes the rhythmic movements of the radula and buccal mass during feeding. Many of the cellular and synaptic elements of this CPG have been identified and characterized. However, the roles that specific cellular and synaptic properties play in generating patterns of activity are not well understood. To examine these issues, the present study developed computational models of a portion of this CPG and used simulations to investigate processes underlying the initiation of patterned activity. Simulations were done with the SNNAP software package. The simulated network contained two neurons, B31/B32 and B63. The development of the model was guided and constrained by the available current-clamp data that describe the properties of these two protraction-phase interneurons B31/B32 and B63, which are coupled via electrical and chemical synapses. Several configurations of the model were examined. In one configuration, a fast excitatory postsynaptic potential (EPSP) from B63 to B31/B32 was implemented in combination with an endogenous plateau-like potential in B31/B32. In a second configuration, the excitatory synaptic connection from B63 to B31/B32 produced both fast and slow EPSPs in B31/B32 and the plateau-like potential was removed from B31/B32. Simulations indicated that the former configuration (i.e., electrical and fast chemical coupling in combination with a plateau-like potential) gave rise to a circuit that was robust to changes in parameter values and stochastic fluctuations, that closely mimicked empirical observations, and that was extremely sensitive to inputs controlling the onset of a burst. The coupling between the two simulated neurons served to amplify exogenous depolarizations via a positive feedback loop and the subthreshold activation of the plateau-like potential. Once a burst was initiated, the circuit produced the program in an all-or-none fashion. The slow kinetics of the simulated plateau-like potential played important roles in both initiating and maintaining the burst activity. Thus the present study identified cellular and network properties that contribute to the ability of the simulated network to integrate information over an extended period before a decision is made to initiate a burst of activity and suggests that similar mechanisms may operate in the buccal ganglia in initiating feeding movements.
Collapse
Affiliation(s)
- Abraham J Susswein
- Faculty of Life Sciences, Gonda (Goldschmied) Medical Diagnostic Research Center, Ramat-Gan 52900, Israel
| | | | | | | | | |
Collapse
|
32
|
Neustadter DM, Drushel RF, Chiel HJ. Kinematics of the buccal mass during swallowing based on magnetic resonance imaging in intact, behaving Aplysia californica. J Exp Biol 2002; 205:939-58. [PMID: 11916990 DOI: 10.1242/jeb.205.7.939] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SUMMARY
A novel magnetic resonance imaging interface has been developed that makes it possible to image movements in intact, freely moving subjects. We have used this interface to image the internal structures of the feeding apparatus (i.e. the buccal mass) of the marine mollusc Aplysia californica. The temporal and spatial resolution of the resulting images is sufficient to describe the kinematics of specific muscles of the buccal mass and the internal movements of the main structures responsible for grasping food, the radula and the odontophore. These observations suggest that a previously undescribed feature on the anterior margin of the odontophore, a fluid-filled structure that we term the prow, may aid in opening the jaw lumen early in protraction. Radular closing during swallowing occurs near the peak of protraction as the radular stalk is pushed rapidly out of the odontophore. Retraction of the odontophore is enhanced by the closure of the lumen of the jaws on the elongated odontophore, causing the odontophore to rotate rapidly towards the esophagus. Radular opening occurs after the peak of retraction and without the active contraction of the protractor muscle 12 and is due, in part, to the movement of the radular stalk into the odontophore. The large variability between responses also suggests that the great flexibility of swallowing responses may be due to variability in neural control and in the biomechanics of the ingested food and to the inherent flexibility of the buccal mass.
Collapse
Affiliation(s)
- David M Neustadter
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106-7080, USA
| | | | | |
Collapse
|
33
|
Jing J, Weiss KR. Neural mechanisms of motor program switching in Aplysia. J Neurosci 2001; 21:7349-62. [PMID: 11549745 PMCID: PMC6762995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023] Open
Abstract
The Aplysia multifunctional feeding central pattern generator (CPG) produces at least two types of motor programs, ingestion and egestion, that involve two sets of radula movements, protraction-retraction and opening-closing movements. In ingestion, the radula closes during retraction to pull food in, whereas in egestion, the radula closes during protraction to push inedible objects out. Thus, radula closure shifts the phase in which it occurs with respect to protraction-retraction in the two programs. To identify the central switching mechanisms, we compared activity of CPG neurons during the two types of motor programs elicited by a higher-order interneuron, cerebral-buccal interneuron-2 (CBI-2). Although CPG elements (B63, B34, and B64) that mediate the protraction-retraction sequence are active in both programs, two other CPG elements, B20 and B4/5, are preferentially active in egestive programs and play a major role in mediating CBI-2-elicited egestive programs. Both B20 and B4/5 control the phasing of radula closure motoneurons (B8 and B16) to ensure that, in egestive programs, these motoneurons fire and produce radula-closing movements only during protraction. Elsewhere, another higher-order interneuron, CBI-3, was shown to convert CBI-2-elicited egestion to ingestion. We show that CBI-3 switches the programs by suppressing the activity of B20 and B4/5. CBI-3, active only during protraction, accomplishes this through fast inhibition of B20 during protraction and slow inhibition of B4/5 during retraction. The slow inhibition is mimicked and occluded by APGWamide, a neuropeptide contained in CBI-3. Thus, fast conventional and slow peptidergic transmissions originating from the same interneuron act in concert to meet specific temporal requirements in pattern switching.
Collapse
Affiliation(s)
- J Jing
- Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York, New York 10029-6574, USA.
| | | |
Collapse
|
34
|
Rosen SC, Miller MW, Cropper EC, Kupfermann I. Outputs of radula mechanoafferent neurons in Aplysia are modulated by motor neurons, interneurons, and sensory neurons. J Neurophysiol 2000; 83:1621-36. [PMID: 10712484 DOI: 10.1152/jn.2000.83.3.1621] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The gain of sensory inputs into the nervous system can be modulated so that the nature and intensity of afferent input is variable. Sometimes the variability is a function of other sensory inputs or of the state of motor systems that generate behavior. A form of sensory modulation was investigated in the Aplysia feeding system at the level of a radula mechanoafferent neuron (B21) that provides chemical synaptic input to a group of motor neurons (B8a/b, B15) that control closure and retraction movements of the radula, a food grasping structure. B21 has been shown to receive both excitatory and inhibitory synaptic inputs from a variety of neuron types. The current study investigated the morphological basis of these heterosynaptic inputs, whether the inputs could serve to modulate the chemical synaptic outputs of B21, and whether the neurons producing the heterosynaptic inputs were periodically active during feeding motor programs that might modulate B21 outputs in a phase-specific manner. Four cell types making monosynaptic connections to B21 were found capable of heterosynaptically modulating the chemical synaptic output of B21 to motor neurons B8a and B15. These included the following: 1) other sensory neurons, e.g. , B22; 2) interneurons, e.g., B19; 3) motor neurons, e.g., B82; and 4) multifunction neurons that have sensory, motor, and interneuronal functions, e.g., B4/5. Each cell type was phasically active in one or more feeding motor programs driven by command-like interneurons, including an egestive motor program driven by CBI-1 and an ingestive motor program driven by CBI-2. Moreover, the phase of activity differed for each of the modulator cells. During the motor programs, shifts in B21 membrane potential were related to the activity patterns of some of the modulator cells. Inhibitory chemical synapses mediated the modulation produced by B4/5, whereas excitatory and/or electrical synapses were involved in the other instances. The data indicate that modulation is due to block of action potential invasion into synaptic release regions or to alterations of transmitter release as a function of the presynaptic membrane potential. The results indicate that just as the motor system of Aplysia can be modulated by intrinsic mechanisms that can enhance its efficiency, the properties of primary sensory cells can be modified by diverse inputs from mediating circuitry. Such modulation could serve to optimize sensory cells for the different roles they might play.
Collapse
Affiliation(s)
- S C Rosen
- Center for Neurobiology and Behavior, New York State Psychiatric Institute and College of Physicians and Surgeons of Columbia University, New York, New York 10032, USA
| | | | | | | |
Collapse
|
35
|
Borovikov D, Evans CG, Jing J, Rosen SC, Cropper EC. A proprioceptive role for an exteroceptive mechanoafferent neuron in Aplysia. J Neurosci 2000; 20:1990-2002. [PMID: 10684900 PMCID: PMC6772902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Afferent regulation of centrally generated activity is likely to be more complex than has been established. We show that a neuron that is an exteroceptor can also function as a proprioceptor. We study the Aplysia neuron B21. Previous data suggest that B21 functions as an exteroceptor during the radula closing/retraction phase of ingestive feeding. We show that the tissue innervated by B21, the subradula tissue (SRT), is innervated by a motor neuron (B66) and that B66-induced SRT contractions trigger centripetal spikes in B21. Thus, B21 is also a proprioceptor. To determine whether exteroceptive and proprioceptive activities occur during the same phase of ingestive feeding, we further characterize B66. We show that B66 stimulation does not close or retract the radula. Instead it opens it. Moreover, B66 is electrically coupled to other opening/protraction neurons. Finally, we elicit motor programs in semi-intact preparations and show that during radula opening/protraction we observe B66 activity, SRT contractions, and spikes in B21 that can be eliminated if B66 is indirectly hyperpolarized. B21 is, therefore, likely to act as an exteroceptor during one phase of ingestive feeding and as a proprioceptor during the antagonistic phase. Previous experiments have shown that centripetal spikes in B21 are only transmitted to one follower if they are "gated in" by depolarization. During ingestive programs B21 is centrally depolarized during closing/retraction, but it is not depolarized during opening/protraction. We sought to determine whether there are other followers that receive B21 input when it is not centrally depolarized. We found one such cell. Moreover, we found that stimulation of B21 during radula opening/protraction significantly decreases the duration of this phase of behavior. Thus, proprioceptive activity in B21 is likely to have an impact on motor programs.
Collapse
Affiliation(s)
- D Borovikov
- Department of Physiology, The Mount Sinai Medical Center, New York, New York 10029, USA
| | | | | | | | | |
Collapse
|
36
|
Brezina V, Weiss KR. The neuromuscular transform constrains the production of functional rhythmic behaviors. J Neurophysiol 2000; 83:232-59. [PMID: 10634869 DOI: 10.1152/jn.2000.83.1.232] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We continue our study of the properties and the functional role of the neuromuscular transform (NMT). The NMT is an input-output relation that formalizes the processes by which patterns of motor neuron firing are transformed to muscle contractions. Because the NMT acts as a dynamic, nonlinear, and modifiable filter, the transformation is complex. In the preceding paper we developed a framework for analysis of the NMT and identified with it principles by which the NMT transforms different firing patterns to contractions. The ultimate question is functional, however. In sending different firing patterns through the NMT, the nervous system is seeking to command different functional behaviors, with specific contraction requirements. To what extent do the contractions that emerge from the NMT actually satisfy those requirements? In this paper we extend our analysis to address this issue. We define representative behavioral tasks and corresponding measures of performance, for a single neuromuscular unit, for two antagonistic units, and, in a real illustration, for the accessory radula closer (ARC)-opener neuromuscular system of Aplysia. We focus on cyclical, rhythmic behaviors which reveal the underlying principles particularly clearly. We find that, although every pattern of motor neuron firing produces some state of muscle contraction, only a few patterns produce functional behavior, and even fewer produce efficient functional behavior. The functional requirements thus dictate certain patterns to the nervous system. But many desirable functional behaviors are not possible with any pattern. We examine, in particular, how rhythmic behaviors degrade and disintegrate as the nervous system attempts to speed up their cycle frequency. This happens because, with fixed properties, the NMT produces only a limited range of contraction shapes that are kinetically well matched to the firing pattern only on certain time scales. Thus the properties of the NMT constrain and restrict the production of functional behaviors. In the following paper, we see how the constraint may be alleviated and the range of functional behaviors expanded by appropriately tuning the properties of the NMT through neuromuscular plasticity and modulation.
Collapse
Affiliation(s)
- V Brezina
- Department of Physiology, Fishberg Research Center for Neurobiology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
37
|
Abstract
'Housekeepers' of living organisms maintain salt and water balance, monitor blood sugar and schedule their work to the season and the time of day. In order to perform their chores, they rely on information about the status quo. The traditional concept of a sensor that communicates with a central comparator authorizing an effector, which was inspired by engineers, has become blurred in the search for morphological correlates of such regulatory cascades. In many cases, neurones, which are both sensory and neurosecretory, and endocrine cells equipped with smart detectors, reliably regulate autonomous functions by using local rather than central computing. Like the well-trained staff of a smoothly run household, such 'sensing effectors' translate information into action.
Collapse
Affiliation(s)
- A Wenning
- Neurobiologia, Stazione Zoologica 'Anton Dohrn', Villa Comunale, I-80121 Napoli, Italy.
| |
Collapse
|
38
|
Nargeot R, Baxter DA, Byrne JH. In vitro analog of operant conditioning in aplysia. I. Contingent reinforcement modifies the functional dynamics of an identified neuron. J Neurosci 1999; 19:2247-60. [PMID: 10066276 PMCID: PMC6782538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/1998] [Revised: 12/01/1998] [Accepted: 12/30/1998] [Indexed: 02/11/2023] Open
Abstract
Previously, an analog of operant conditioning in Aplysia was developed using the rhythmic motor activity in the isolated buccal ganglia. This analog expressed a key feature of operant conditioning, namely a selective enhancement in the occurrence of a designated motor pattern by contingent reinforcement. Different motor patterns generated by the buccal central pattern generator were induced by monotonic stimulation of a peripheral nerve (i.e., n.2,3). Phasic stimulation of the esophageal nerve (E n.) was used as an analog of reinforcement. The present study investigated the neuronal mechanisms associated with the genesis of different motor patterns and their modifications by contingent reinforcement. The genesis of different motor patterns was related to changes in the functional states of the pre-motor neuron B51. During rhythmic activity, B51 dynamically switched between inactive and active states. Bursting activity in B51 was associated with, and predicted, characteristic features of a specific motor pattern (i.e., pattern I). Contingent reinforcement of pattern I modified the dynamical properties of B51 by decreasing its resting conductance and threshold for eliciting plateau potentials and thus increased the occurrences of pattern I-related activity in B51. These modifications were not observed in preparations that received either noncontingent reinforcement (i.e., yoke control) or no reinforcement (i.e., control). These results suggest that a contingent reinforcement paradigm can regulate the dynamics of neuronal activity that is centrally programmed by the intrinsic cellular properties of neurons.
Collapse
Affiliation(s)
- R Nargeot
- Department of Neurobiology and Anatomy and W. M. Keck Center for the Neurobiology of Learning and Memory, The University of Texas-Houston Medical School, Houston, Texas 77030, USA
| | | | | |
Collapse
|
39
|
Evans CG, Alexeeva V, Rybak J, Karhunen T, Weiss KR, Cropper EC. A pair of reciprocally inhibitory histaminergic sensory neurons are activated within the same phase of ingestive motor programs in Aplysia. J Neurosci 1999; 19:845-58. [PMID: 9880604 PMCID: PMC6782215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Previous studies have shown that each buccal ganglion in Aplysia contains two B52 neurons, one in each hemiganglion. We now show that there are two B52 neurons in a single buccal hemiganglion and four cells in an animal. We also show that the B52 neurons are histamine-immunoreactive and use reverse phase HPLC to show that the histamine-immunoreactive substance is authentic histamine. Previous studies have shown that the B52 neurons make numerous inhibitory synaptic connections with neurons active during the radula closing/retraction phase of ingestive motor programs. A computational model of the Aplysia feeding central pattern generator has, therefore, suggested that the B52 neurons play a role in terminating closing/retraction. Consistent with this idea we show that both B52 neurons fire at the beginning of radula opening/protraction. We also show that both B52 neurons are sensory neurons. They are depolarized when a flap of connective tissue adjacent to the buccal commissural arch is stretched. During ingestive feeding this is likely to occur at the peak of closing/retraction as opening/protraction begins. In the course of this study we compare the two ipsilateral B52 neurons and show that these cells are virtually indistinguishable; e.g., they use a common neurotransmitter, make the same synaptic connections, and are both sensory as well as premotor neurons. Nevertheless we show that the B52 neurons are reciprocally inhibitory. Our results, therefore, strikingly confirm theoretical predictions made by others that neurons that inhibit each other will not necessarily participate in antagonistic phases of behavior.
Collapse
Affiliation(s)
- C G Evans
- Department of Physiology and Biophysics, The Mt. Sinai Medical Center, New York, New York 10029, USA
| | | | | | | | | | | |
Collapse
|