1
|
Zhou J, Hormigo S, Sajid MS, Castro-Alamancos MA. Role of the Nucleus Accumbens in Signaled Avoidance Actions. eNeuro 2024; 11:ENEURO.0314-24.2024. [PMID: 39349060 DOI: 10.1523/eneuro.0314-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024] Open
Abstract
Animals, humans included, navigate their environments guided by sensory cues, responding adaptively to potential dangers and rewards. Avoidance behaviors serve as adaptive strategies in the face of signaled threats, but the neural mechanisms orchestrating these behaviors remain elusive. Current circuit models of avoidance behaviors indicate that the nucleus accumbens (NAc) in the ventral striatum plays a key role in signaled avoidance behaviors, but the nature of this engagement is unclear. Evolving perspectives propose the NAc as a pivotal hub for action selection, integrating cognitive and affective information to heighten the efficiency of both appetitive and aversive motivated behaviors. To unravel the engagement of the NAc during active and passive avoidance, we used calcium imaging fiber photometry to examine NAc GABAergic neuron activity in ad libitum moving mice performing avoidance behaviors. We then probed the functional significance of NAc neurons using optogenetics and genetically targeted or electrolytic lesions. We found that NAc neurons code contraversive orienting movements and avoidance actions. However, direct optogenetic inhibition or lesions of NAc neurons did not impair active or passive avoidance behaviors, challenging the notion of their purported pivotal role in adaptive avoidance. The findings emphasize that while the NAc encodes avoidance movements, it is not required for avoidance behaviors, highlighting the distinction between behavior encoding or representation and mediation or generation.
Collapse
Affiliation(s)
- Ji Zhou
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut 06001
| | - Sebastian Hormigo
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut 06001
| | - Muhammad S Sajid
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut 06001
| | - Manuel A Castro-Alamancos
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut 06001
| |
Collapse
|
2
|
Arakawa H, Tokashiki M. The posterior intralaminar thalamic nucleus promotes nose-to-nose contacts leading to prosocial reception in the sequence of mouse social interaction. Eur J Neurosci 2024; 60:5731-5749. [PMID: 39210622 DOI: 10.1111/ejn.16520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/06/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Efficient social interaction is essential for an adaptive life and consists of sequential processes of multisensory events with social counterparts. Social touch/contact is a unique component that promotes a sequence of social behaviours initiated by detection and approach to assess a social stimulus and subsequent touch/contact interaction to form prosocial relationships. We hypothesized that the thalamic sensory relay circuit from the posterior intralaminar nucleus of the thalamus (pIL) to the paraventricular nucleus of the hypothalamus (PVN) and the medial amygdala (MeA) plays a key role in the social contact-mediated sequence of events. We found that neurons in the pIL along with the PVN and MeA were activated by social encounters and that pIL activity was more abundant in a direct physical encounter, whereas MeA activity was dominant in an indirect through grid encounter. Chemogenetic inhibition of pIL neurons selectively decreased the investigatory approach and sniffing of a same-sex, but not an opposite-sex, stimulus mouse in an indirect encounter situation and decreased the facial/snout contact ratio in a direct encounter setting. Furthermore, chemogenetic pIL inhibition had no impact on anxiety-like behaviours or body coordinative motor behaviours, but it impaired whisker-related and plantar touch tactile sense. We propose that the pIL circuit can relay social tactile sensations and mediate the sequence of nonsexual prosocial interactions through an investigatory approach to tactile contact and thus plays a significant role in establishing prosocial relationships in mouse models.
Collapse
Affiliation(s)
- Hiroyuki Arakawa
- Edward F Domino Research Center, Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
- Department of Systems Physiology, University of the Ryukyus Graduate School of Medicine, Okinawa, Japan
| | - Mana Tokashiki
- Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
3
|
Diehl MM, Moscarello JM, Trask S. Behavioral outputs and overlapping circuits between conditional fear and active avoidance. Neurobiol Learn Mem 2024; 213:107943. [PMID: 38821256 DOI: 10.1016/j.nlm.2024.107943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/19/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Aversive learning can produce a wide variety of defensive behavioral responses depending on the circumstances, ranging from reactive responses like freezing to proactive avoidance responses. While most of this initial learning is behaviorally supported by an expectancy of an aversive outcome and neurally supported by activity within the basolateral amygdala, activity in other brain regions become necessary for the execution of defensive strategies that emerge in other aversive learning paradigms such as active avoidance. Here, we review the neural circuits that support both reactive and proactive defensive behaviors that are motivated by aversive learning, and identify commonalities between the neural substrates of these distinct (and often exclusive) behavioral strategies.
Collapse
Affiliation(s)
- Maria M Diehl
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, USA
| | | | - Sydney Trask
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA; Purdue Institute for Integrative Neuroscience, West Lafayette, IN, USA.
| |
Collapse
|
4
|
Dmitrieva E, Malkov A. Optogenetic stimulation of medial septal glutamatergic neurons modulates theta-gamma coupling in the hippocampus. Neurobiol Learn Mem 2024; 211:107929. [PMID: 38685526 DOI: 10.1016/j.nlm.2024.107929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/08/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Hippocampal cross-frequency theta-gamma coupling (TGC) is a basic mechanism for information processing, retrieval, and consolidation of long-term and working memory. While the role of entorhinal afferents in the modulation of hippocampal TGC is widely accepted, the influence of other main input to the hippocampus, from the medial septal area (MSA, the pacemaker of the hippocampal theta rhythm) is poorly understood. Optogenetics allows us to explore how different neuronal populations of septohippocampal circuits control neuronal oscillations in vivo. Rhythmic activation of septal glutamatergic neurons has been shown to drive hippocampal theta oscillations, but the role of these neuronal populations in information processing during theta activation has remained unclear. Here we investigated the influence of phasic activation of MSA glutamatergic neurons expressing channelrhodopsin II on theta-gamma coupling in the hippocampus. During the experiment, local field potentials of MSA and hippocampus of freely behaving mice were modulated by 470 nm light flashes with theta frequency (2-10) Hz. It was shown that both the power and the strength of modulation of gamma rhythm nested on hippocampal theta waves depend on the frequency of stimulation. The modulation of the amplitude of slow gamma rhythm (30-50 Hz) prevailed over modulation of fast gamma (55-100 Hz) during flash trains and the observed effects were specific for theta stimulation of MSA. We discuss the possibility that phasic depolarization of septal glutamatergic neurons controls theta-gamma coupling in the hippocampus and plays a role in memory retrieval and consolidation.
Collapse
Affiliation(s)
- Elena Dmitrieva
- Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences, Pushchino, Russia
| | - Anton Malkov
- Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences, Pushchino, Russia.
| |
Collapse
|
5
|
Chan DC, Kim C, Kang RY, Kuhn MK, Beidler LM, Zhang N, Proctor EA. Cytokine expression patterns predict suppression of vulnerable neural circuits in a mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.17.585383. [PMID: 38559177 PMCID: PMC10979954 DOI: 10.1101/2024.03.17.585383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Alzheimer's disease is a neurodegenerative disorder characterized by progressive amyloid plaque accumulation, tau tangle formation, neuroimmune dysregulation, synapse an neuron loss, and changes in neural circuit activation that lead to cognitive decline and dementia. Early molecular and cellular disease-instigating events occur 20 or more years prior to presentation of symptoms, making them difficult to study, and for many years amyloid-β, the aggregating peptide seeding amyloid plaques, was thought to be the toxic factor responsible for cognitive deficit. However, strategies targeting amyloid-β aggregation and deposition have largely failed to produce safe and effective therapies, and amyloid plaque levels poorly correlate with cognitive outcomes. However, a role still exists for amyloid-β in the variation in an individual's immune response to early, soluble forms of aggregates, and the downstream consequences of this immune response for aberrant cellular behaviors and creation of a detrimental tissue environment that harms neuron health and causes changes in neural circuit activation. Here, we perform functional magnetic resonance imaging of awake, unanesthetized Alzheimer's disease mice to map changes in functional connectivity over the course of disease progression, in comparison to wild-type littermates. In these same individual animals, we spatiotemporally profile the immune milieu by measuring cytokines, chemokines, and growth factors across various brain regions and over the course of disease progression from pre-pathology through established cognitive deficit. We identify specific signatures of immune activation predicting hyperactivity followed by suppression of intra- and then inter-regional functional connectivity in multiple disease-relevant brain regions, following the pattern of spread of amyloid pathology.
Collapse
Affiliation(s)
- Dennis C Chan
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA, USA
- Center for Neurotechnology in Mental Health Research, Pennsylvania State University, University Park, PA, USA
| | - ChaeMin Kim
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Rachel Y Kang
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Madison K Kuhn
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA, USA
| | - Lynne M Beidler
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Nanyin Zhang
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA, USA
- Center for Neurotechnology in Mental Health Research, Pennsylvania State University, University Park, PA, USA
| | - Elizabeth A Proctor
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA, USA
- Department of Engineering Science & Mechanics, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
6
|
Ritter A, Habusha S, Givon L, Edut S, Klavir O. Prefrontal control of superior colliculus modulates innate escape behavior following adversity. Nat Commun 2024; 15:2158. [PMID: 38461293 PMCID: PMC10925020 DOI: 10.1038/s41467-024-46460-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/28/2024] [Indexed: 03/11/2024] Open
Abstract
Innate defensive responses, though primarily instinctive, must also be highly adaptive to changes in risk assessment. However, adaptive changes can become maladaptive, following severe stress, as seen in posttraumatic stress disorder (PTSD). In a series of experiments, we observed long-term changes in innate escape behavior of male mice towards a previously non-threatening stimulus following an adverse shock experience manifested as a shift in the threshold of threat response. By recording neural activity in the superior colliculus (SC) while phototagging specific responses to afferents, we established the crucial influence of input arriving at the SC from the medial prefrontal cortex (mPFC), both directly and indirectly, on escape-related activity after adverse shock experience. Inactivating these specific projections during the shock effectively abolished the observed changes. Conversely, optogenetically activating them during encounters controlled escape responses. This establishes the necessity and sufficiency of those specific mPFC inputs into the SC for adverse experience related changes in innate escape behavior.
Collapse
Affiliation(s)
- Ami Ritter
- School of Psychological Sciences, The University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Shlomi Habusha
- School of Psychological Sciences, The University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Lior Givon
- School of Psychological Sciences, The University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Shahaf Edut
- School of Psychological Sciences, The University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Oded Klavir
- School of Psychological Sciences, The University of Haifa, Haifa, Israel.
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel.
| |
Collapse
|
7
|
Soghomonian JJ. The cortico-striatal circuitry in autism-spectrum disorders: a balancing act. Front Cell Neurosci 2024; 17:1329095. [PMID: 38273975 PMCID: PMC10808402 DOI: 10.3389/fncel.2023.1329095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
The basal ganglia are major targets of cortical inputs and, in turn, modulate cortical function via their projections to the motor and prefrontal cortices. The role of the basal ganglia in motor control and reward is well documented and there is also extensive evidence that they play a key role in social and repetitive behaviors. The basal ganglia influence the activity of the cerebral cortex via two major projections from the striatum to the output nuclei, the globus pallidus internus and the substantia nigra, pars reticulata. This modulation involves a direct projection known as the direct pathway and an indirect projection via the globus pallidus externus and the subthalamic nucleus, known as the indirect pathway. This review discusses the respective contribution of the direct and indirect pathways to social and repetitive behaviors in neurotypical conditions and in autism spectrum disorders.
Collapse
|
8
|
Carvalheiro J, Philiastides MG. Distinct spatiotemporal brainstem pathways of outcome valence during reward- and punishment-based learning. Cell Rep 2023; 42:113589. [PMID: 38100353 DOI: 10.1016/j.celrep.2023.113589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/05/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Learning to seek rewards and avoid punishments, based on positive and negative choice outcomes, is essential for human survival. Yet, the neural underpinnings of outcome valence in the human brainstem and the extent to which they differ in reward and punishment learning contexts remain largely elusive. Here, using simultaneously acquired electroencephalography and functional magnetic resonance imaging data, we show that during reward learning the substantia nigra (SN)/ventral tegmental area (VTA) and locus coeruleus are initially activated following negative outcomes, while the VTA subsequently re-engages exhibiting greater responses for positive than negative outcomes, consistent with an early arousal/avoidance response and a later value-updating process, respectively. During punishment learning, we show that distinct raphe nucleus and SN subregions are activated only by negative outcomes with a sustained post-outcome activity across time, supporting the involvement of these brainstem subregions in avoidance behavior. Finally, we demonstrate that the coupling of these brainstem structures with other subcortical and cortical areas helps to shape participants' serial choice behavior in each context.
Collapse
Affiliation(s)
- Joana Carvalheiro
- School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QB, UK; Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow G12 8QB, UK.
| | - Marios G Philiastides
- School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QB, UK; Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow G12 8QB, UK.
| |
Collapse
|
9
|
Hormigo S, Zhou J, Chabbert D, Sajid S, Busel N, Castro-Alamancos M. Zona incerta distributes a broad movement signal that modulates behavior. eLife 2023; 12:RP89366. [PMID: 38048270 PMCID: PMC10695563 DOI: 10.7554/elife.89366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023] Open
Abstract
The zona incerta is a subthalamic nucleus made up mostly of GABAergic neurons. It has wide-ranging inputs and outputs and is believed to have many integrative functions that link sensory stimuli with motor responses to guide behavior. However, its role is not well established perhaps because few studies have measured the activity of zona incerta neurons in behaving animals under different conditions. To record the activity of zona incerta neurons during exploratory and cue-driven goal-directed behaviors, we used electrophysiology in head-fixed mice moving on a spherical treadmill and fiber photometry in freely moving mice. We found two groups of neurons based on their sensitivity to movement, with a minority of neurons responding to whisker stimuli. Furthermore, zona incerta GABAergic neurons robustly code the occurrence of exploratory and goal-directed movements, but not their direction. To understand the function of these activations, we performed genetically targeted lesions and optogenetic manipulations of zona incerta GABAergic neurons during exploratory and goal-directed behaviors. The results showed that the zona incerta has a role in modulating the movement associated with these behaviors, but this has little impact on overall performance. Zona incerta neurons distribute a broad corollary signal of movement occurrence to their diverse projection sites, which regulates behavior.
Collapse
Affiliation(s)
- Sebastian Hormigo
- Department of Neuroscience, University of Connecticut School of MedicineFarmingtonUnited States
| | - Ji Zhou
- Department of Neuroscience, University of Connecticut School of MedicineFarmingtonUnited States
| | - Dorian Chabbert
- Department of Neuroscience, University of Connecticut School of MedicineFarmingtonUnited States
| | - Sarmad Sajid
- Department of Neuroscience, University of Connecticut School of MedicineFarmingtonUnited States
| | - Natan Busel
- Department of Neuroscience, University of Connecticut School of MedicineFarmingtonUnited States
| | - Manuel Castro-Alamancos
- Department of Neuroscience, University of Connecticut School of MedicineFarmingtonUnited States
| |
Collapse
|
10
|
Ho PC, Hsiao FY, Chiu SH, Lee SR, Yau HJ. A nigroincertal projection mediates aversion and enhances coping responses to potential threat. FASEB J 2023; 37:e23322. [PMID: 37983662 DOI: 10.1096/fj.202201989rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023]
Abstract
Recent studies have shown that the non-DA neurons in the ventral tegmental area (VTA) and substantia nigra (SN) not only modulate motivational behaviors but also regulate defensive behaviors. While zona incerta (ZI) is a threat-responsive substrate and receives innervations from the ventral midbrain, the function of the ventral midbrain-to-ZI connection remains poorly defined. Here, we demonstrate that the ZI receives heterogenous innervations from the ventral midbrain. By utilizing a retrograde AAV preferentially labeling non-DA neurons in the ventral midbrain, we found that ZI-projecting non-DA cells in the ventral midbrain are activated by restraint stress. We focused on the SN and found that SN-to-ZI GABAergic input is engaged by a predatory odor. Sustained pan-neuronal SN-to-ZI activation results in aversion and enhances defensive behaviors, likely through a disinhibition mechanism to recruit downstream brain regions that regulate defensive behaviors. Collectively, our results reveal a novel role of nigroincertal projection in mediating negative valence and regulating defensive behaviors.
Collapse
Affiliation(s)
- Ping-Chen Ho
- The Laboratory for Neural Circuits and Behaviors, Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan
| | - Fu-Yun Hsiao
- The Laboratory for Neural Circuits and Behaviors, Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan
| | - Shi-Hong Chiu
- School of Medicine, National Taiwan University, Taipei, Taiwan
| | - Syun-Ruei Lee
- The Laboratory for Neural Circuits and Behaviors, Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan
| | - Hau-Jie Yau
- The Laboratory for Neural Circuits and Behaviors, Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Taiwan University and Academia Sinica, Taipei, Taiwan
- Ph.D. Program in Translational Medicine, National Taiwan University and Academia Sinica, Taipei, Taiwan
| |
Collapse
|
11
|
Braine A, Georges F. Emotion in action: When emotions meet motor circuits. Neurosci Biobehav Rev 2023; 155:105475. [PMID: 37996047 DOI: 10.1016/j.neubiorev.2023.105475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
The brain is a remarkably complex organ responsible for a wide range of functions, including the modulation of emotional states and movement. Neuronal circuits are believed to play a crucial role in integrating sensory, cognitive, and emotional information to ultimately guide motor behavior. Over the years, numerous studies employing diverse techniques such as electrophysiology, imaging, and optogenetics have revealed a complex network of neural circuits involved in the regulation of emotional or motor processes. Emotions can exert a substantial influence on motor performance, encompassing both everyday activities and pathological conditions. The aim of this review is to explore how emotional states can shape movements by connecting the neural circuits for emotional processing to motor neural circuits. We first provide a comprehensive overview of the impact of different emotional states on motor control in humans and rodents. In line with behavioral studies, we set out to identify emotion-related structures capable of modulating motor output, behaviorally and anatomically. Neuronal circuits involved in emotional processing are extensively connected to the motor system. These circuits can drive emotional behavior, essential for survival, but can also continuously shape ongoing movement. In summary, the investigation of the intricate relationship between emotion and movement offers valuable insights into human behavior, including opportunities to enhance performance, and holds promise for improving mental and physical health. This review integrates findings from multiple scientific approaches, including anatomical tracing, circuit-based dissection, and behavioral studies, conducted in both animal and human subjects. By incorporating these different methodologies, we aim to present a comprehensive overview of the current understanding of the emotional modulation of movement in both physiological and pathological conditions.
Collapse
Affiliation(s)
- Anaelle Braine
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | | |
Collapse
|
12
|
Hu Y, Ma TC, Alberico SL, Ding Y, Jin L, Kang UJ. Substantia Nigra Pars Reticulata Projections to the Pedunculopontine Nucleus Modulate Dyskinesia. Mov Disord 2023; 38:1850-1860. [PMID: 37461292 PMCID: PMC10932617 DOI: 10.1002/mds.29558] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/02/2023] [Accepted: 06/29/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Long-term use of levodopa for Parkinson's disease (PD) treatment is often hindered by development of motor complications, including levodopa-induced dyskinesia (LID). The substantia nigra pars reticulata (SNr) and globus pallidus internal segment (GPi) are the output nuclei of the basal ganglia. Dysregulation of SNr and GPi activity contributes to PD pathophysiology and LID. OBJECTIVE The objective of this study was to determine whether direct modulation of SNr GABAergic neurons and SNr projections to the pedunculopontine nucleus (PPN) regulates PD symptoms and LID in a mouse model. METHODS We expressed Cre-recombinase activated channelrhodopsin-2 (ChR2) or halorhodopsin adeno-associated virus-2 (AAV2) vectors selectively in SNr GABAergic neurons of Vgat-IRES-Cre mice in a 6-hydroxydopamine model of PD to investigate whether direct optogenetic modulation of SNr neurons or their projections to the PPN regulates PD symptoms and LID expression. The forepaw stepping task, mouse LID rating scale, and open-field locomotion were used to assess akinesia and LID to test the effect of SNr modulation. RESULTS Akinesia was improved by suppressing SNr neuron activity with halorhodopsin. LID was significantly reduced by increasing SNr neuronal activity with ChR2, which did not interfere with the antiakinetic effect of levodopa. Optical stimulation of ChR2 in SNr projections to the PPN recapitulated direct SNr stimulation. CONCLUSIONS Modulation of SNr GABAergic neurons alters akinesia and LID expression in a manner consistent with the rate model of basal ganglia circuitry. Moreover, the projections from SNr to PPN likely mediate the antidyskinetic effect of increasing SNr neuronal activity, identifying a potential novel role for the PPN in LID. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Yong Hu
- Department of Neurology, NYU Langone Health, New York, NY 10016, USA
| | - Thong C. Ma
- Department of Neurology, NYU Langone Health, New York, NY 10016, USA
| | | | - Yunmin Ding
- Department of Neurology, NYU Langone Health, New York, NY 10016, USA
| | - Lingjing Jin
- Department of Neurology and Neurological Rehabilitation, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 200092, China
| | - Un Jung Kang
- Department of Neurology, NYU Langone Health, New York, NY 10016, USA
| |
Collapse
|
13
|
Li C, Kühn NK, Alkislar I, Sans-Dublanc A, Zemmouri F, Paesmans S, Calzoni A, Ooms F, Reinhard K, Farrow K. Pathway-specific inputs to the superior colliculus support flexible responses to visual threat. SCIENCE ADVANCES 2023; 9:eade3874. [PMID: 37647395 PMCID: PMC10468139 DOI: 10.1126/sciadv.ade3874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
Behavioral flexibility requires directing feedforward sensory information to appropriate targets. In the superior colliculus, divergent outputs orchestrate different responses to visual threats, but the circuit organization enabling the flexible routing of sensory information remains unknown. To determine this structure, we focused on inhibitory projection (Gad2) neurons. Trans-synaptic tracing and neuronal recordings revealed that Gad2 neurons projecting to the lateral geniculate nucleus (LGN) and the parabigeminal nucleus (PBG) form two separate populations, each receiving a different set of non-retinal inputs. Inhibiting the LGN- or PBG-projecting Gad2 neurons resulted in opposing effects on behavior; increasing freezing or escape probability to visual looming, respectively. Optogenetic activation of selected inputs to the LGN- and PBG-projecting Gad2 cells predictably regulated responses to visual threat. These data suggest that projection-specific sampling of brain-wide inputs provides a circuit design principle that enables visual inputs to be selectively routed to produce context-specific behavior.
Collapse
Affiliation(s)
- Chen Li
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Norma K. Kühn
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Ilayda Alkislar
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Northeastern University, Boston, MA, USA
| | - Arnau Sans-Dublanc
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Firdaouss Zemmouri
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Faculty of Pharmaceutical, Biomedical, and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Soraya Paesmans
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Alex Calzoni
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Frédérique Ooms
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Imec, Leuven, Belgium
| | - Katja Reinhard
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Karl Farrow
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
- Imec, Leuven, Belgium
| |
Collapse
|
14
|
Mercaldo V, Vidimova B, Gastaldo D, Fernández E, Lo AC, Cencelli G, Pedini G, De Rubeis S, Longo F, Klann E, Smit AB, Grant SGN, Achsel T, Bagni C. Altered striatal actin dynamics drives behavioral inflexibility in a mouse model of fragile X syndrome. Neuron 2023; 111:1760-1775.e8. [PMID: 36996810 DOI: 10.1016/j.neuron.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 12/21/2022] [Accepted: 03/06/2023] [Indexed: 03/31/2023]
Abstract
The proteome of glutamatergic synapses is diverse across the mammalian brain and involved in neurodevelopmental disorders (NDDs). Among those is fragile X syndrome (FXS), an NDD caused by the absence of the functional RNA-binding protein FMRP. Here, we demonstrate how the brain region-specific composition of postsynaptic density (PSD) contributes to FXS. In the striatum, the FXS mouse model shows an altered association of the PSD with the actin cytoskeleton, reflecting immature dendritic spine morphology and reduced synaptic actin dynamics. Enhancing actin turnover with constitutively active RAC1 ameliorates these deficits. At the behavioral level, the FXS model displays striatal-driven inflexibility, a typical feature of FXS individuals, which is rescued by exogenous RAC1. Striatal ablation of Fmr1 is sufficient to recapitulate behavioral impairments observed in the FXS model. These results indicate that dysregulation of synaptic actin dynamics in the striatum, a region largely unexplored in FXS, contributes to the manifestation of FXS behavioral phenotypes.
Collapse
Affiliation(s)
- Valentina Mercaldo
- Department of Fundamental Neurosciences, Université de Lausanne, 1005 Lausanne, Switzerland
| | - Barbora Vidimova
- Department of Fundamental Neurosciences, Université de Lausanne, 1005 Lausanne, Switzerland
| | - Denise Gastaldo
- Department of Fundamental Neurosciences, Université de Lausanne, 1005 Lausanne, Switzerland
| | - Esperanza Fernández
- VIB & UGent Center for Medical Biotechnology, Universiteit Gent, 9052 Ghent, Belgium
| | - Adrian C Lo
- Department of Fundamental Neurosciences, Université de Lausanne, 1005 Lausanne, Switzerland
| | - Giulia Cencelli
- Department of Biomedicine and Prevention, Università degli Studi di Roma "Tor Vergata", 00133 Rome, Italy; Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giorgia Pedini
- Department of Biomedicine and Prevention, Università degli Studi di Roma "Tor Vergata", 00133 Rome, Italy
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Department of Psychiatry, Friedman Brain Institute, Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Francesco Longo
- Center for Neural Science, New York University, New York, NY 10029, USA
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY 10029, USA
| | - August B Smit
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Seth G N Grant
- Center for the Clinical Brain Sciences and Simons Initiatives for the Developing Brain, The University of Edinburgh, Edinburgh EH16 4SB, Scotland
| | - Tilmann Achsel
- Department of Fundamental Neurosciences, Université de Lausanne, 1005 Lausanne, Switzerland.
| | - Claudia Bagni
- Department of Fundamental Neurosciences, Université de Lausanne, 1005 Lausanne, Switzerland; Department of Biomedicine and Prevention, Università degli Studi di Roma "Tor Vergata", 00133 Rome, Italy.
| |
Collapse
|
15
|
Zhou J, Hormigo S, Busel N, Castro-Alamancos MA. The Orienting Reflex Reveals Behavioral States Set by Demanding Contexts: Role of the Superior Colliculus. J Neurosci 2023; 43:1778-1796. [PMID: 36750370 PMCID: PMC10010463 DOI: 10.1523/jneurosci.1643-22.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Sensory stimuli can trigger an orienting reflex (response) by which animals move the head to position their sensors (e.g., eyes, pinna, whiskers). Orienting responses may be important to evaluate stimuli that call for action (e.g., approach, escape, ignore), but little is known about the dynamics of orienting responses in the context of goal-directed actions. Using mice of either sex, we found that, during a signaled avoidance action, the orienting response evoked by the conditioned stimulus (CS) consisted of a fast head movement containing rotational and translational components that varied substantially as a function of the behavioral and underlying brain states of the animal set by different task contingencies. Larger CS-evoked orienting responses were associated with high-intensity auditory stimuli, failures to produce the appropriate signaled action, and behavioral states resulting from uncertain or demanding situations and the animal's ability to cope with them. As a prototypical orienting neural circuit, we confirmed that the superior colliculus controls and codes the direction of spontaneous exploratory orienting movements. In addition, superior colliculus activity correlated with CS-evoked orienting responses, and either its optogenetic inhibition or excitation potentiated CS-evoked orienting responses, which are likely generated downstream in the medulla. CS-evoked orienting responses may be a useful probe to assess behavioral and related brain states, and state-dependent modulation of orienting responses may involve the superior colliculus.SIGNIFICANCE STATEMENT Humans and other animals produce an orienting reflex (also known as orienting response) by which they rapidly orient their head and sensors to evaluate novel or salient stimuli. Spontaneous orienting movements also occur during exploration of the environment in the absence of explicit, salient stimuli. We monitored stimulus-evoked orienting responses in mice performing signaled avoidance behaviors and found that these responses reflect the behavioral state of the animal set by contextual demands and the animal's ability to cope with them. Various experiments involving the superior colliculus revealed a well-established role in spontaneous orienting but only an influencing effect over orienting responses. Stimulus-evoked orienting responses may be a useful probe of behavioral and related brain states.
Collapse
Affiliation(s)
- Ji Zhou
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut 06001
| | - Sebastian Hormigo
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut 06001
| | - Natan Busel
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut 06001
| | - Manuel A Castro-Alamancos
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut 06001
| |
Collapse
|
16
|
West AM, Holleran KM, Jones SR. Kappa Opioid Receptors Reduce Serotonin Uptake and Escitalopram Efficacy in the Mouse Substantia Nigra Pars Reticulata. Int J Mol Sci 2023; 24:2080. [PMID: 36768403 PMCID: PMC9916942 DOI: 10.3390/ijms24032080] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
The serotonin and kappa opioid receptor (KOR) systems are strongly implicated in disorders of negative affect, such as anxiety and depression. KORs expressed on axon terminals inhibit the release of neurotransmitters, including serotonin. The substantia nigra pars reticulata (SNr) is involved in regulating affective behaviors. It receives the densest serotonergic innervation in the brain and has high KOR expression; however, the influence of KORs on serotonin transmission in this region is yet to be explored. Here, we used ex vivo fast-scan cyclic voltammetry (FSCV) to investigate the effects of a KOR agonist, U50, 488 (U50), and a selective serotonin reuptake inhibitor, escitalopram, on serotonin release and reuptake in the SNr. U50 alone reduced serotonin release and uptake, and escitalopram alone augmented serotonin release and slowed reuptake, while pretreatment with U50 blunted both the release and uptake effects of escitalopram. Here, we show that the KOR influences serotonin signaling in the SNr in multiple ways and short-term activation of the KOR alters serotonin responses to escitalopram. These interactions between KORs and serotonin may contribute to the complexity in the responses to treatments for disorders of negative affect. Ultimately, the KOR system may prove to be a promising pharmacological target, alongside traditional antidepressant treatments.
Collapse
Affiliation(s)
| | | | - Sara R. Jones
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Blvd, Winston Salem, NC 27157, USA
| |
Collapse
|
17
|
Rivero F, Marrero RJ, Olivares T, Peñate W, Álvarez-Pérez Y, Bethencourt JM, Fumero A. A Voxel-Based Morphometric Study of Gray Matter in Specific Phobia. Life (Basel) 2022; 13:119. [PMID: 36676068 PMCID: PMC9864817 DOI: 10.3390/life13010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
The objective of this study was to analyze the neurostructural abnormalities of brain areas responsible for the acquisition and maintenance of fear in small animal phobia by comparing gray matter volume (GMV) in individuals with phobia and non-fearful controls. Structural magnetic resonance imaging was obtained from 62 adults (79% female) assigned to one of two groups: 31 were diagnosed with small animal phobia and 31 were non-fearful controls. To investigate structural alterations, a whole-brain voxel-based morphometry analysis was conducted to compare the GMV of the brain areas involved in fear between both groups. The results indicated that individuals with a small animal specific phobia showed smaller GMV in cortical regions, such as the orbitofrontal (OFC) and medial frontal cortex, and greater GMV in the putamen than non-fearful controls. These brain areas are responsible for avoidant behavior (putamen) and emotional regulation processes or inhibitory control (prefrontal cortex (PFC)), which might suggest a greater vulnerability of phobic individuals to acquiring non-adaptive conditioned responses and emotional dysregulation. The findings provide preliminary support for the involvement of structural deficits in OFC and medial frontal cortex in phobia, contributing to clarify the neurobiological substrates for phobias.
Collapse
Affiliation(s)
- Francisco Rivero
- Departamento de Psicología Clínica, Psicobiología y Metodología, Facultad de Psicología, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain
- Departamento de Psicología, Facultad de Ciencias de la Salud, Universidad Europea de Canarias, 38300 La Orotava, Tenerife, Spain
| | - Rosario J Marrero
- Departamento de Psicología Clínica, Psicobiología y Metodología, Facultad de Psicología, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain
- Instituto Universitario de Neurociencia (IUNE), Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain
| | - Teresa Olivares
- Departamento de Psicología Clínica, Psicobiología y Metodología, Facultad de Psicología, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain
| | - Wenceslao Peñate
- Departamento de Psicología Clínica, Psicobiología y Metodología, Facultad de Psicología, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain
- Instituto Universitario de Neurociencia (IUNE), Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain
| | - Yolanda Álvarez-Pérez
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), 38109 El Rosario, Tenerife, Spain
| | - Juan Manuel Bethencourt
- Departamento de Psicología Clínica, Psicobiología y Metodología, Facultad de Psicología, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain
| | - Ascensión Fumero
- Departamento de Psicología Clínica, Psicobiología y Metodología, Facultad de Psicología, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain
- Instituto Universitario de Neurociencia (IUNE), Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain
| |
Collapse
|
18
|
Chang S, Fermani F, Lao CL, Huang L, Jakovcevski M, Di Giaimo R, Gagliardi M, Menegaz D, Hennrich AA, Ziller M, Eder M, Klein R, Cai N, Deussing JM. Tripartite extended amygdala-basal ganglia CRH circuit drives locomotor activation and avoidance behavior. SCIENCE ADVANCES 2022; 8:eabo1023. [PMID: 36383658 PMCID: PMC9668302 DOI: 10.1126/sciadv.abo1023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
An adaptive stress response involves various mediators and circuits orchestrating a complex interplay of physiological, emotional, and behavioral adjustments. We identified a population of corticotropin-releasing hormone (CRH) neurons in the lateral part of the interstitial nucleus of the anterior commissure (IPACL), a subdivision of the extended amygdala, which exclusively innervate the substantia nigra (SN). Specific stimulation of this circuit elicits hyperactivation of the hypothalamic-pituitary-adrenal axis, locomotor activation, and avoidance behavior contingent on CRH receptor type 1 (CRHR1) located at axon terminals in the SN, which originate from external globus pallidus (GPe) neurons. The neuronal activity prompting the observed behavior is shaped by IPACLCRH and GPeCRHR1 neurons coalescing in the SN. These results delineate a previously unidentified tripartite CRH circuit functionally connecting extended amygdala and basal ganglia nuclei to drive locomotor activation and avoidance behavior.
Collapse
Affiliation(s)
- Simon Chang
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Federica Fermani
- Molecules-Signaling-Development, Max Planck Institute for Biological Intelligence (in foundation), Martinsried, Germany
| | - Chu-Lan Lao
- Collaborative Research Centre/Sonderforschungsbereich (SFB) 870, Viral Vector Facility, Munich, Germany
| | - Lianyun Huang
- Translational Genetics, Helmholtz Pioneer Campus, Helmholtz Zentrum München, Munich, Germany
| | - Mira Jakovcevski
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Rossella Di Giaimo
- Developmental Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Biology, University of Naples Federico II, Naples Italy
| | - Miriam Gagliardi
- Genomics of Complex Diseases, Max Planck Institute of Psychiatry, Munich, Germany
| | - Danusa Menegaz
- Scientific Core Unit Electrophysiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Alexandru Adrian Hennrich
- Max von Pettenkofer-Institute Virology, Medical Faculty, and Gene Center, Ludwig Maximilians University Munich, Munich, Germany
| | - Michael Ziller
- Scientific Core Unit Electrophysiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Matthias Eder
- Scientific Core Unit Electrophysiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Rüdiger Klein
- Molecules-Signaling-Development, Max Planck Institute for Biological Intelligence (in foundation), Martinsried, Germany
| | - Na Cai
- Translational Genetics, Helmholtz Pioneer Campus, Helmholtz Zentrum München, Munich, Germany
| | - Jan M. Deussing
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
19
|
Almada RC, Falconi-Sobrinho LL, da Silva JA, Wotjak CT, Coimbra NC. Augmented anandamide signalling in the substantia nigra pars reticulata mediates panicolytic-like effects in mice confronted by Crotalus durissus terrificus pit vipers. Psychopharmacology (Berl) 2022; 239:2753-2769. [PMID: 35650304 DOI: 10.1007/s00213-022-06127-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 03/26/2022] [Indexed: 12/30/2022]
Abstract
RATIONALE The endocannabinoid modulation of fear and anxiety due to the on-demand synthesis and degradation is supported by a large body of research. Although it has been proposed that anandamide (AEA) in the substantia nigra pars reticulata (SNpr) seems to be important for the organisation of innate fear-related behaviours, a role for endogenous AEA has yet to be clarified. METHODS Mice were treated with the fatty acid amide hydrolase (FAAH) selective inhibitor URB597 at different concentrations (0.01, 0.1, 1 nmol/0.1 µL) in the SNpr and confronted by rattlesnakes (Crotalus durissus terrificus). The most effective dose of URB597 (1 nmol) was also preceded by microinjections of the CB1 receptor antagonist AM251 (0.1 nmol) into the SNpr, and mice were then confronted by the venomous snake. RESULTS URB597 (0.1 and 1 nmol) in the SNpr decreased the expression of defensive behaviours such as defensive attention, escape, and time spent inside the burrow of mice confronted by rattlesnakes. Moreover, pretreatment of SNpr with AM251 suppressed these antiaversive effects of URB597 in this midbrain structure. CONCLUSION Overall, these data clearly indicate that the panicolytic consequences of endogenous AEA enhancement in the SNpr are mediated by CB1 receptor signalling.
Collapse
Affiliation(s)
- Rafael C Almada
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.,Department of Biological Sciences, School of Science, Humanities and Languages, São Paulo State University (UNESP), Assis, São Paulo, Brazil
| | - Luiz Luciano Falconi-Sobrinho
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.,Behavioural Neurosciences Institute (INeC), São Paulo, Ribeirão Preto, Brazil.,Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Juliana A da Silva
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.,Behavioural Neurosciences Institute (INeC), São Paulo, Ribeirão Preto, Brazil
| | - Carsten T Wotjak
- Laboratory of Neuronal Plasticity, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.,Central Nervous System Diseases Research, Boehringer Ingelheim Pharmaceuticals Gesellschaft Mit Beschränkter Haftung & Compagnie Kommanditgesellschaft, Biberach an der Riß, Germany
| | - Norberto C Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil. .,Behavioural Neurosciences Institute (INeC), São Paulo, Ribeirão Preto, Brazil. .,Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil. .,NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
20
|
Zhou J, Hormigo S, Sajid MS, Castro-Alamancos MA. Caution Influences Avoidance and Approach Behaviors Differently. J Neurosci 2022; 42:5899-5915. [PMID: 35705490 PMCID: PMC9337599 DOI: 10.1523/jneurosci.1892-21.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 01/29/2023] Open
Abstract
While conflict between incompatible goals has well-known effects on actions, in many situations the same action may produce harmful or beneficial consequences during different periods in a nonconflicting manner, e.g., crossing the street during a red or green light. To avoid harm, subjects must be cautious to inhibit the action specifically when it is punished, as in passive avoidance, but act when it is beneficial, as in active avoidance or active approach. In mice of both sexes performing a signaled action to avoid harm or obtain reward, we found that addition of a new rule that punishes the action when it occurs unsignaled delays the timing of the signaled action in an apparent sign of increased caution. Caution depended on task signaling, contingency, and reinforcement type. Interestingly, caution became persistent when the signaled action was avoidance motivated by danger but was only transient when it was approach motivated by reward. Although caution is represented by the activity of neurons in the midbrain, it developed independent of frontal cortex or basal ganglia output circuits. These results indicate that caution disrupts actions in different ways depending on the motivational state and may develop from unforeseen brain circuits.SIGNIFICANCE STATEMENT Actions, such as crossing the street at a light, can have benefits during one light signal (getting somewhere) but can be harmful during a different signal (being run over). Humans must be cautious to cross the street during the period marked by the appropriate signal. In mice performing a signaled action to avoid harm or obtain reward, we found that addition of a new rule that punishes the action when it occurs unsignaled, delays the timing of the signaled action in an apparent sign of increased caution. Caution became persistent when the signaled action was motivated by danger, but not when it was motivated by reward. Moreover, the development of caution did not depend on prototypical frontal cortex circuits.
Collapse
Affiliation(s)
- Ji Zhou
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut 06001
| | - Sebastian Hormigo
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut 06001
| | - Muhammad S Sajid
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut 06001
| | - Manuel A Castro-Alamancos
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut 06001
| |
Collapse
|
21
|
Mitochondrial dysfunction and oxidative stress contribute to cognitive and motor impairment in FOXP1 syndrome. Proc Natl Acad Sci U S A 2022; 119:2112852119. [PMID: 35165191 PMCID: PMC8872729 DOI: 10.1073/pnas.2112852119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2021] [Indexed: 12/22/2022] Open
Abstract
FOXP1 haploinsufficiency underlies cognitive and motor impairments in individuals with FOXP1 syndrome. Here, we show that mice lacking one Foxp1 copy exhibit similar behavioral deficits, which may be caused by striatal dysfunction. Indeed, Foxp1+/− striatal medium spiny neurons display reduced neurite branching, and we show altered mitochondrial biogenesis and dynamics; increased mitophagy; reduced mitochondrial membrane potential, structure, and motility; and elevated oxygen species in the striatum of these animals. As FOXP1 is highly conserved, our data strongly suggest that mitochondrial dysfunction and excessive oxidative stress contribute to the motor and cognitive impairments seen in individuals with FOXP1 syndrome. Thus, mitochondrial homeostasis is critical for normal development and can explain deficits in neurodevelopmental disorders. FOXP1 syndrome caused by haploinsufficiency of the forkhead box protein P1 (FOXP1) gene is a neurodevelopmental disorder that manifests motor dysfunction, intellectual disability, autism, and language impairment. In this study, we used a Foxp1+/− mouse model to address whether cognitive and motor deficits in FOXP1 syndrome are associated with mitochondrial dysfunction and oxidative stress. Here, we show that genes with a role in mitochondrial biogenesis and dynamics (e.g., Foxo1, Pgc-1α, Tfam, Opa1, and Drp1) were dysregulated in the striatum of Foxp1+/− mice at different postnatal stages. Furthermore, these animals exhibit a reduced mitochondrial membrane potential and complex I activity, as well as decreased expression of the antioxidants superoxide dismutase 2 (Sod2) and glutathione (GSH), resulting in increased oxidative stress and lipid peroxidation. These features can explain the reduced neurite branching, learning and memory, endurance, and motor coordination that we observed in these animals. Taken together, we provide strong evidence of mitochondrial dysfunction in Foxp1+/− mice, suggesting that insufficient energy supply and excessive oxidative stress underlie the cognitive and motor impairment in FOXP1 deficiency.
Collapse
|
22
|
Bidirectional Control of Orienting Behavior by the Substantia Nigra Pars Reticulata: Distinct Significance of Head and Whisker Movements. eNeuro 2021; 8:ENEURO.0165-21.2021. [PMID: 34544763 PMCID: PMC8532345 DOI: 10.1523/eneuro.0165-21.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/13/2021] [Accepted: 09/07/2021] [Indexed: 12/30/2022] Open
Abstract
Detection of an unexpected, novel, or salient stimulus typically leads to an orienting response by which animals move the head, in concert with the sensors (e.g., eyes, pinna, whiskers), to evaluate the stimulus. The basal ganglia are known to control orienting movements through tonically active GABAergic neurons in the substantia nigra pars reticulata (SNr) that project to the superior colliculus. Using optogenetics, we explored the ability of GABAergic SNr neurons on one side of the brain to generate orienting movements. In a strain of mice that express channelrhodopsin (ChR2) in both SNr GABAergic neurons and afferent fibers, we found that continuous blue light produced a robust sustained excitation of SNr neurons which generated ipsiversive orienting. Conversely, in the same animal, trains of blue light excited afferent fibers more effectively than continuous blue light, producing a robust sustained inhibition of SNr neurons which generated contraversive orienting. When ChR2 expression was restricted to either GABAergic SNr neurons or GABAergic afferent fibers from the striatum, blue light patterns in SNr produced only ipsiversive or contraversive orienting movements, respectively. Interestingly, whisker positioning and the reaction to an air-puff on the whiskers were incongruent between SNr-evoked ipsiversive and contraversive head movements, indicating that orienting driven by exciting or inhibiting SNr neurons have different behavioral significance. In conclusion, unilateral SNr neuron excitation and inhibition produce orienting movements in opposite directions and, apparently, with distinct behavioral significance.
Collapse
|
23
|
A Signaled Locomotor Avoidance Action Is Fully Represented in the Neural Activity of the Midbrain Tegmentum. J Neurosci 2021; 41:4262-4275. [PMID: 33789917 DOI: 10.1523/jneurosci.0027-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 11/21/2022] Open
Abstract
Animals, including humans, readily learn to avoid harmful and threatening situations by moving in response to cues that predict the threat (e.g., fire alarm, traffic light). During a negatively reinforced sensory-guided locomotor action, known as signaled active avoidance, animals learn to avoid a harmful unconditioned stimulus (US) by moving away when signaled by a harmless conditioned stimulus (CS) that predicts the threat. CaMKII-expressing neurons in the pedunculopontine tegmentum area (PPT) of the midbrain locomotor region have been shown to play a critical role in the expression of this learned behavior, but the activity of these neurons during learned behavior is unknown. Using calcium imaging fiber photometry in freely behaving mice, we show that PPT neurons sharply activate during presentation of the auditory CS that predicts the threat before onset of avoidance movement. PPT neurons activate further during the succeeding CS-driven avoidance movement, or during the faster US-driven escape movement. PPT neuron activation was weak during slow spontaneous movements but correlated sharply with movement speed and, therefore, with the urgency of the behavior. Moreover, using optogenetics, we found that these neurons must discharge during the signaled avoidance interval for naive mice to effectively learn the active avoidance behavior. As an essential hub for signaled active avoidance, neurons in the midbrain tegmentum process the conditioned cue that predicts the threat and discharge sharply relative to the speed or apparent urgency of the avoidance (learned) and escape (innate) responses.SIGNIFICANCE STATEMENT During signaled active avoidance behavior, subjects move away to avoid a threat when directed by an innocuous sensory stimulus. Using imaging methods in freely behaving mice, we found that the activity of neurons in a part of the midbrain, known as the pedunculopontime tegmentum, increases during the presentation of the innocuous sensory stimulus that predicts the threat and also during the expression of the learned behavior as mice move away to avoid the threat. In addition, inhibiting these neurons abolishes the ability of mice to learn the behavior. Thus, neurons in this part of the midbrain code and are essential for signaled active avoidance behavior.
Collapse
|
24
|
Stanley AT, Lippiello P, Sulzer D, Miniaci MC. Roles for the Dorsal Striatum in Aversive Behavior. Front Cell Neurosci 2021; 15:634493. [PMID: 33664651 PMCID: PMC7920955 DOI: 10.3389/fncel.2021.634493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/25/2021] [Indexed: 11/23/2022] Open
Abstract
The ability to identify and avoid environmental stimuli that signal danger is essential to survival. Our understanding of how the brain encodes aversive behaviors has been primarily focused on roles for the amygdala, hippocampus (HIPP), prefrontal cortex, ventral midbrain, and ventral striatum. Relatively little attention has been paid to contributions from the dorsal striatum (DS) to aversive learning, despite its well-established role in stimulus-response learning. Here, we review studies exploring the role of DS in aversive learning, including different roles for the dorsomedial and dorsolateral striatum in Pavlovian fear conditioning as well as innate and inhibitory avoidance (IA) behaviors. We outline how future investigation might determine specific contributions from DS subregions, cell types, and connections that contribute to aversive behavior.
Collapse
Affiliation(s)
- Adrien T Stanley
- Departments of Biology and Psychiatry, Columbia University, New York, NY, United States
| | - Pellegrino Lippiello
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - David Sulzer
- Departments of Psychiatry, Neurology, and Pharmacology, Columbia University Medical Center, New York, NY, United States.,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
| | - Maria Concetta Miniaci
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| |
Collapse
|
25
|
Fontanesi C, DeSouza JFX. Beauty That Moves: Dance for Parkinson's Effects on Affect, Self-Efficacy, Gait Symmetry, and Dual Task Performance. Front Psychol 2021; 11:600440. [PMID: 33613357 PMCID: PMC7892443 DOI: 10.3389/fpsyg.2020.600440] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/15/2020] [Indexed: 12/29/2022] Open
Abstract
Background: Previous studies have investigated the effects of dance interventions on Parkinson’s motor and non-motor symptoms in an effort to develop an integrated view of dance as a therapeutic intervention. This within-subject study questions whether dance can be simply considered a form of exercise by comparing a Dance for Parkinson’s class with a matched-intensity exercise session lacking dance elements like music, metaphorical language, and social reality of art-partaking. Methods: In this repeated-measure design, 7 adults with Parkinson’s were tested four times; (i) before and (ii) after a Dance for Parkinson’s class, as well as (iii) before and (iv) after a matched-intensity exercise session. Physiological measures included heart rate and electrodermal activity. Self-reported affect and body self-efficacy were collected. Gait symmetry and dual task cost were analyzed using the 6 min walking test (6MWT) and Timed-Up-and-Go test (TUG), respectively. Results: Average heart rate was the same for both conditions, while electrodermal activity was higher during Dance for Parkinson’s. Significant differences were found in body self-efficacy, beauty subscale, symmetry of gait, and dual task performance. Conclusion: Dance, compared to an exercise intervention of matched intensity, yields different outcomes through the means of intrinsic artistic elements, which may influence affective responses, the experience of beauty, self-efficacy, and gait performance.
Collapse
Affiliation(s)
- Cecilia Fontanesi
- Neuroscience Subprogram, Biology Department, CUNY The Graduate Center, The City College of New York, New York, NY, United States
| | - Joseph F X DeSouza
- Neuroscience Graduate Diploma Program, Departments of Psychology and Biology, Interdisciplinary Graduate Studies, Centre for Vision Research, Vision: Science to Applications (VISTA), York University, Canadian Action and Perception Network (CAPnet), Toronto, ON, Canada
| |
Collapse
|
26
|
Basal Ganglia Output Has a Permissive Non-Driving Role in a Signaled Locomotor Action Mediated by the Midbrain. J Neurosci 2020; 41:1529-1552. [PMID: 33328292 DOI: 10.1523/jneurosci.1067-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 11/25/2020] [Accepted: 12/02/2020] [Indexed: 01/11/2023] Open
Abstract
The basal ganglia are important for movement and reinforcement learning. Using mice of either sex, we found that the main basal ganglia GABAergic output in the midbrain, the substantia nigra pars reticulata (SNr), shows movement-related neural activity during the expression of a negatively reinforced signaled locomotor action known as signaled active avoidance; this action involves mice moving away during a warning signal to avoid a threat. In particular, many SNr neurons deactivate during active avoidance responses. However, whether SNr deactivation has an essential role driving or regulating active avoidance responses is unknown. We found that optogenetic excitation of SNr or striatal GABAergic fibers that project to an area in the pedunculopontine tegmentum (PPT) within the midbrain locomotor region abolishes signaled active avoidance responses, while optogenetic inhibition of SNr cells (mimicking the SNr deactivation observed during an active avoidance behavior) serves as an effective conditioned stimulus signal to drive avoidance responses by disinhibiting PPT neurons. However, preclusion of SNr deactivation, or direct inhibition of SNr fibers in the PPT, does not impair the expression of signaled active avoidance, indicating that SNr output does not drive the expression of a signaled locomotor action mediated by the midbrain. Consistent with a permissive regulatory role, SNr output provides information about the state of the ongoing action to downstream structures that mediate the action.SIGNIFICANCE STATEMENT During signaled active avoidance behavior, subjects move away to avoid a threat when directed by an innocuous sensory stimulus. Excitation of GABAergic cells in the substantia nigra pars reticulata (SNr), the main output of the basal ganglia, blocks signaled active avoidance, while inhibition of SNr cells is an effective stimulus to drive active avoidance. Interestingly, many SNr cells inhibit their firing during active avoidance responses, suggesting that SNr inhibition could be driving avoidance responses by disinhibiting downstream areas. However, interfering with the modulation of SNr cells does not impair the behavior. Thus, SNr may regulate the active avoidance movement in downstream areas that mediate the behavior, but does not drive it.
Collapse
|
27
|
Almada RC, Dos Anjos-Garcia T, da Silva JA, Pigatto GR, Wotjak CT, Coimbra NC. The modulation of striatonigral and nigrotectal pathways by CB1 signalling in the substantia nigra pars reticulata regulates panic elicited in mice by urutu-cruzeiro lancehead pit vipers. Behav Brain Res 2020; 401:112996. [PMID: 33171147 DOI: 10.1016/j.bbr.2020.112996] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 01/08/2023]
Abstract
Cannabinoid receptor type 1 (CB1R) is widely distributed in the substantia nigra pars reticulata (SNpr). However, the role of CB1R at the SNpr level in threatening situations is poorly understood. We investigated the role of CB1R in the SNpr on the expression of fear responses in mice confronted with urutu-cruzeiro pit vipers. First, a bidirectional neurotracer was injected into the SNpr; then, immunostaining of the vesicular GABA transporter was conducted at the levels of the striatum (CPu) and deep layers of the superior colliculus (dlSC). In addition, CB1R immunostaining and GABA labelling were performed in the SNpr. Using a prey-versus-snake paradigm, mice were pretreated with the CB1R antagonist AM251 (100 pmol) and treated with the endocannabinoid anandamide (AEA, 5 pmol) in the SNpr, followed by bicuculline (40 ng) in the dlSC, and were then confronted with a snake. Bidirectional neural tract tracers associated with immunofluorescence showed the GABAergic striatonigral disinhibitory and nigrotectal inhibitory pathways. Furthermore, we showed that CB1R labelling was restricted to axonal fibres surrounding SNpr GABAergic cells. We also demonstrated a decrease in the defensive behaviours of mice treated with AEA in the SNpr, but this effect was blocked by pre-treatment with AM251 in this structure. Taken together, our results show that the panicolytic consequences of the AEA enhancement in the SNpr are signalled by CB1R, suggesting that CB1R localised in axon terminals of CPu GABAergic neurons in the SNpr modulates the activity of the nigrotectal GABAergic pathway during the expression of defensive behaviours in threatening situations.
Collapse
Affiliation(s)
- Rafael Carvalho Almada
- School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Department of Pharmacology, Laboratory of Neuroanatomy and Neuropsychobiology, Ribeirão Preto, 14049-900, São Paulo, Brazil; Max Planck Institute of Psychiatry, Department of Stress Neurobiology and Neurogenetics, Laboratory of Neuronal Plasticity, Kraepelinstrasse 2-10, 80804, Munich, Germany; Behavioural Neuroscience Institute (INeC), Av. do Café, 2450, Ribeirão Preto, 14050-220, São Paulo, Brazil; Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil
| | - Tayllon Dos Anjos-Garcia
- School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Department of Pharmacology, Laboratory of Neuroanatomy and Neuropsychobiology, Ribeirão Preto, 14049-900, São Paulo, Brazil; Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil
| | - Juliana Almeida da Silva
- School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Department of Pharmacology, Laboratory of Neuroanatomy and Neuropsychobiology, Ribeirão Preto, 14049-900, São Paulo, Brazil; Behavioural Neuroscience Institute (INeC), Av. do Café, 2450, Ribeirão Preto, 14050-220, São Paulo, Brazil
| | - Glauce Regina Pigatto
- School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Department of Pharmacology, Laboratory of Neuroanatomy and Neuropsychobiology, Ribeirão Preto, 14049-900, São Paulo, Brazil
| | - Carsten T Wotjak
- Max Planck Institute of Psychiatry, Department of Stress Neurobiology and Neurogenetics, Laboratory of Neuronal Plasticity, Kraepelinstrasse 2-10, 80804, Munich, Germany
| | - Norberto Cysne Coimbra
- School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Department of Pharmacology, Laboratory of Neuroanatomy and Neuropsychobiology, Ribeirão Preto, 14049-900, São Paulo, Brazil; Behavioural Neuroscience Institute (INeC), Av. do Café, 2450, Ribeirão Preto, 14050-220, São Paulo, Brazil; NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), School of Medicine of Ribeirão Preto of the University of São Paulo, Ribeirão Preto, 14049-900, São Paulo, Brazil; Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil.
| |
Collapse
|
28
|
Rizzi G, Tan KR. Synergistic Nigral Output Pathways Shape Movement. Cell Rep 2020; 27:2184-2198.e4. [PMID: 31091455 DOI: 10.1016/j.celrep.2019.04.068] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 03/15/2019] [Accepted: 04/15/2019] [Indexed: 01/26/2023] Open
Abstract
Locomotion relies on the activity of basal ganglia networks, where, as the output, the substantia nigra pars reticulata (SNr) integrates incoming signals and relays them to downstream areas. The cellular and circuit substrates of such a complex function remain unclear. We hypothesized that the SNr controls different aspects of locomotion through coordinated cell-type-specific sub-circuits. Using anatomical mapping, single-cell qPCR, and electrophysiological techniques, we identified two SNr sub-populations: the centromedial-thalamo projectors (CMps) and the SN compacta projectors (SNcps), which are genetically targeted based on vesicular transporter for gamma-aminobutyric acid (VGAT) or parvalbumin (PV) expression, respectively. Optogenetic manipulation of these two sub-types across a series of motor tests provided evidence that they govern different aspects of motor behavior. While CMp activity supports the continuity of motor patterns, SNcp modulates the immediate motor drive behind them. Collectively, our data suggest that at least two different sub-circuits arise from the SNr, engage different behavioral motor components, and collaborate to produce correct locomotion.
Collapse
Affiliation(s)
- Giorgio Rizzi
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Kelly R Tan
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.
| |
Collapse
|
29
|
Dopamine modulates individual differences in avoidance behavior: A pharmacological, immunohistochemical, neurochemical and volumetric investigation. Neurobiol Stress 2020; 12:100219. [PMID: 32435668 PMCID: PMC7231994 DOI: 10.1016/j.ynstr.2020.100219] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 12/22/2022] Open
Abstract
Avoidance behavior is a hallmark in pathological anxiety disorders and results in impairment of daily activities. Individual differences in avoidance responses are critical in determining vulnerability or resistance to anxiety disorders. Dopaminergic activation is implicated in the processing of avoidance responses; however, the mechanisms underlying these responses are unknown. In this sense, we used a preclinical model of avoidance behavior to investigate the possibility of an intrinsic differential dopaminergic pattern between good and poor performers. The specific goal was to assess the participation of dopamine (DA) through pharmacological manipulation, and we further evaluated the effects of systemic injections of the dopaminergic receptor type 1 (D1 antagonist - SCH23390) and dopaminergic receptor type 2 (D2 antagonist - sulpiride) antagonists in the good performers. Additionally, we evaluated the effects of intra-amygdala microinjection of a D1 antagonist (SCH23390) and a D2 antagonist (sulpiride) in good performers as well as intra-amygdala microinjection of a D1 agonist (SKF38393) and D2 agonist (quinpirole) in poor performers. Furthermore, we quantified the contents of dopamine and metabolites (3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA)) in the amygdala, evaluated the basal levels of tyrosine hydroxylase expression (catecholamine synthesis enzyme) and measured the volume of the substantia nigra, ventral tegmental area and locus coeruleus. Our results showed that it could be possible to convert animals from good to poor performers, and vice versa, by intra-amygdala (basolateral and central nucleus) injections of D1 receptor antagonists in good performers or D2 receptor agonists in poor performers. Additionally, the good performers had lower levels of DOPAC and HVA in the amygdala, an increase in the total volume of the amygdala (AMG), substantia nigra (SN), ventral tegmental area (VTA) and locus coeruleus (LC), and an increase in the number of tyrosine hydroxylase-positive cells in SN, VTA and LC, which positively correlates with the avoidance behavior. Taken together, our data show evidence for a dopaminergic signature of avoidance performers, emphasizing the role of distinct dopaminergic receptors in individual differences in avoidance behavior based on pharmacological, immunohistochemical, neurochemical and volumetric analyses. Our findings provide a better understanding of the role of the dopaminergic system in the execution of avoidance behavior. The role of dopamine in individual differences in avoidance behavior. Dopamine modulates avoidance behavior. Dopaminergic evidence of individual difference in avoidance behavior. Good and poor avoiders distinction based on dopaminergic signature. Dopaminergic signature of avoidance performers: poor versus good avoiders.
Collapse
|
30
|
The influence of subcortical shortcuts on disordered sensory and cognitive processing. Nat Rev Neurosci 2020; 21:264-276. [PMID: 32269315 DOI: 10.1038/s41583-020-0287-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2020] [Indexed: 12/14/2022]
Abstract
The very earliest stages of sensory processing have the potential to alter how we perceive and respond to our environment. These initial processing circuits can incorporate subcortical regions, such as the thalamus and brainstem nuclei, which mediate complex interactions with the brain's cortical processing hierarchy. These subcortical pathways, many of which we share with other animals, are not merely vestigial but appear to function as 'shortcuts' that ensure processing efficiency and preservation of vital life-preserving functions, such as harm avoidance, adaptive social interactions and efficient decision-making. Here, we propose that functional interactions between these higher-order and lower-order brain areas contribute to atypical sensory and cognitive processing that characterizes numerous neuropsychiatric disorders.
Collapse
|
31
|
Zona Incerta GABAergic Output Controls a Signaled Locomotor Action in the Midbrain Tegmentum. eNeuro 2020; 7:ENEURO.0390-19.2020. [PMID: 32041743 PMCID: PMC7053170 DOI: 10.1523/eneuro.0390-19.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 11/30/2022] Open
Abstract
The zona incerta is a subthalamic nucleus proposed to link sensory stimuli with motor responses to guide behavior, but its functional role is not well established. Using mice of either sex, we studied the effect of manipulating zona incerta GABAergic cells on the expression of a signaled locomotor action, known as signaled active avoidance. We found that modulation of GABAergic zona incerta cells, but not of cells in the adjacent thalamic reticular nucleus (NRT), fully controls the expression of signaled active avoidance responses. Inhibition of zona incerta GABAergic cells drives active avoidance responses, while excitation of these cells blocks signaled active avoidance mainly by inhibiting cells in the midbrain pedunculopontine tegmental nucleus (PPT). The zona incerta regulates signaled locomotion in the midbrain.
Collapse
|
32
|
Diehl MM, Bravo-Rivera C, Quirk GJ. The study of active avoidance: A platform for discussion. Neurosci Biobehav Rev 2019; 107:229-237. [PMID: 31509767 PMCID: PMC6936221 DOI: 10.1016/j.neubiorev.2019.09.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/19/2019] [Accepted: 09/06/2019] [Indexed: 11/27/2022]
Abstract
Traditional active avoidance tasks have advanced the field of aversive learning and memory for decades and are useful for studying simple avoidance responses in isolation; however, these tasks have limited clinical relevance because they do not model several key features of clinical avoidance. In contrast, platform-mediated avoidance (PMA) more closely resembles clinical avoidance because the response i) is associated with an unambiguous safe location, ii) is not associated with an artificial termination of the warning signal, and iii) is associated with a decision-based appetitive cost. Recent findings on the neuronal circuits of PMA have confirmed that amygdala-striatal circuits are essential for avoidance. In PMA, however, the prelimbic cortex facilitates the avoidance response early during the warning signal, perhaps through disinhibition of the striatum. Future studies on avoidance should account for additional factors such as sex differences and social interactions that will advance our understanding of maladaptive avoidance contributing to neuropsychiatric disorders.
Collapse
Affiliation(s)
- Maria M Diehl
- Departments of Psychiatry and Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, PR, 00936, Puerto Rico; Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506 United States
| | | | - Gregory J Quirk
- Departments of Psychiatry and Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, PR, 00936, Puerto Rico.
| |
Collapse
|
33
|
Γ-Aminobutyric acid in adult brain: an update. Behav Brain Res 2019; 376:112224. [DOI: 10.1016/j.bbr.2019.112224] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 01/21/2023]
|
34
|
Abstract
This article proposes that biologically plausible theories of behavior can be constructed by following a method of "phylogenetic refinement," whereby they are progressively elaborated from simple to complex according to phylogenetic data on the sequence of changes that occurred over the course of evolution. It is argued that sufficient data exist to make this approach possible, and that the result can more effectively delineate the true biological categories of neurophysiological mechanisms than do approaches based on definitions of putative functions inherited from psychological traditions. As an example, the approach is used to sketch a theoretical framework of how basic feedback control of interaction with the world was elaborated during vertebrate evolution, to give rise to the functional architecture of the mammalian brain. The results provide a conceptual taxonomy of mechanisms that naturally map to neurophysiological and neuroanatomical data and that offer a context for defining putative functions that, it is argued, are better grounded in biology than are some of the traditional concepts of cognitive science.
Collapse
Affiliation(s)
- Paul Cisek
- Department of Neuroscience, University of Montréal, Montréal, Québec, Canada.
| |
Collapse
|
35
|
Hormigo S, Rodriguez-Lorenzana A, Castro-Salazar E, Millian-Morell L, López DE. Subchronic use of rivastigmine increases procognitive flexibility across multimodal behavioral tasks in healthy male rats. Behav Brain Res 2019; 376:112077. [PMID: 31499090 DOI: 10.1016/j.bbr.2019.112077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/07/2019] [Accepted: 07/07/2019] [Indexed: 01/09/2023]
Abstract
Rivastigmine (RVT) is a reversible inhibitor of cholinesterase approved worldwide for the treatment of cognitive dysfunctions, especially in Alzheimer's disease. Most previous pre-clinical studies have examined the effects of RVT treatment in a wide variety of pathological research models. Nonetheless, the effects of this drug on sensorimotor gating, memory, and learning tasks in healthy subjects remains unclear. In this study, we investigate the procognitive effects of RVT treatment in healthy rats through sensorimotor gating evaluations (measured as prepulse inhibition of the acoustic startle reflex), active avoidance learning, and spatial memory learning in a radial maze. There is an increase in the amplitude of the startle reflex in RVT-treated rats compared to the control groups, whereas the latency remained constant. Sensorimotor gating values were also incremented compared to those values from controls. In active avoidance, rats treated with RVT learned faster to successfully perform the task compared to controls, but afterwards all groups exhibited virtually identical results. During the sessions in the radial maze, RVT-treated rats committed fewer errors in both the working and reference memory compared to controls. All in all, our results support the hypothesis that RVT treatment may entail procognitive effects in healthy subjects.
Collapse
Affiliation(s)
- Sebastian Hormigo
- Institute for Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain.
| | - Alberto Rodriguez-Lorenzana
- Institute for Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain; Escuela de Psicologia, Universidad de Las Americas; Quito, Ecuador
| | - E Castro-Salazar
- Institute for Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
| | - Lymarie Millian-Morell
- Institute for Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Dolores E López
- Institute for Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain; Department of Cell Biology and Pathology, University of Salamanca, Salamanca, Spain.
| |
Collapse
|
36
|
González-Rueda A, Tripodi M. Éloge de la Fuite: Neural Circuits for Avoiding Dangerous Situations. Trends Neurosci 2019; 42:657-659. [PMID: 31399288 DOI: 10.1016/j.tins.2019.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 07/19/2019] [Indexed: 11/15/2022]
Abstract
When facing threats, animals not only innately freeze or flee, but can also learn to avoid harmful situations, a behaviour known as 'active avoidance'. A recent study by Hormigo et al. (J. Neurosci., 2019) provides new insights into the neural circuit responsible for this behaviour, placing the pedunculopontine tegmental nucleus (PPT) at its centre.
Collapse
Affiliation(s)
- Ana González-Rueda
- Neurobiology Division, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Marco Tripodi
- Neurobiology Division, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK.
| |
Collapse
|
37
|
Circuits That Mediate Expression of Signaled Active Avoidance Converge in the Pedunculopontine Tegmentum. J Neurosci 2019; 39:4576-4594. [PMID: 30936242 DOI: 10.1523/jneurosci.0049-19.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/16/2019] [Accepted: 03/26/2019] [Indexed: 02/08/2023] Open
Abstract
An innocuous sensory stimulus that reliably signals an upcoming aversive event can be conditioned to elicit locomotion to a safe location before the aversive outcome ensues. The neural circuits that mediate the expression of this signaled locomotor action, known as signaled active avoidance, have not been identified. While exploring sensorimotor midbrain circuits in mice of either sex, we found that excitation of GABAergic cells in the substantia nigra pars reticulata blocks signaled active avoidance by inhibiting cells in the pedunculopontine tegmental nucleus (PPT), not by inhibiting cells in the superior colliculus or thalamus. Direct inhibition of putative-glutamatergic PPT cells, excitation of GABAergic PPT cells, or excitation of GABAergic afferents in PPT, abolish signaled active avoidance. Conversely, excitation of putative-glutamatergic PPT cells, or inhibition of GABAergic PPT cells, can be tuned to drive avoidance responses. The PPT is an essential junction for the expression of signaled active avoidance gated by nigral and other synaptic afferents.SIGNIFICANCE STATEMENT When a harmful situation is signaled by a sensory stimulus (e.g., street light), subjects typically learn to respond with active or passive avoidance responses that circumvent the threat. During signaled active avoidance behavior, subjects move away to avoid a threat signaled by a preceding innocuous stimulus. We identified a part of the midbrain essential to process the signal and avoid the threat. Inhibition of neurons in this area eliminates avoidance responses to the signal but preserves escape responses caused by presentation of the threat. The results highlight an essential part of the neural circuits that mediate signaled active avoidance behavior.
Collapse
|
38
|
Blockade of synaptic activity in the neostriatum and activation of striatal efferent pathways produce opposite effects on panic attack-like defensive behaviours evoked by GABAergic disinhibition in the deep layers of the superior colliculus. Physiol Behav 2018; 196:104-111. [DOI: 10.1016/j.physbeh.2018.07.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/19/2018] [Accepted: 07/24/2018] [Indexed: 12/15/2022]
|
39
|
Lalive AL, Lien AD, Roseberry TK, Donahue CH, Kreitzer AC. Motor thalamus supports striatum-driven reinforcement. eLife 2018; 7:34032. [PMID: 30295606 PMCID: PMC6181560 DOI: 10.7554/elife.34032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 09/25/2018] [Indexed: 01/06/2023] Open
Abstract
Reinforcement has long been thought to require striatal synaptic plasticity. Indeed, direct striatal manipulations such as self-stimulation of direct-pathway projection neurons (dMSNs) are sufficient to induce reinforcement within minutes. However, it’s unclear what role, if any, is played by downstream circuitry. Here, we used dMSN self-stimulation in mice as a model for striatum-driven reinforcement and mapped the underlying circuitry across multiple basal ganglia nuclei and output targets. We found that mimicking the effects of dMSN activation on downstream circuitry, through optogenetic suppression of basal ganglia output nucleus substantia nigra reticulata (SNr) or activation of SNr targets in the brainstem or thalamus, was also sufficient to drive rapid reinforcement. Remarkably, silencing motor thalamus—but not other selected targets of SNr—was the only manipulation that reduced dMSN-driven reinforcement. Together, these results point to an unexpected role for basal ganglia output to motor thalamus in striatum-driven reinforcement.
Collapse
Affiliation(s)
| | | | - Thomas K Roseberry
- The Gladstone Institutes, San Francisco, United States.,Neuroscience Graduate Program, University of California, San Francisco, United States
| | | | - Anatol C Kreitzer
- The Gladstone Institutes, San Francisco, United States.,Neuroscience Graduate Program, University of California, San Francisco, United States.,Departments of Physiology and Neurology, University of California, San Francisco, United States
| |
Collapse
|
40
|
Huo J, Cui Q, Yang W, Guo W. LPS induces dopamine depletion and iron accumulation in substantia nigra in rat models of Parkinson's disease. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:4942-4949. [PMID: 31949570 PMCID: PMC6962913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/07/2018] [Indexed: 06/10/2023]
Abstract
OBJECTIVE Intrapallidal inflammation may lead to the pathogenesis of Parkinson's disease. Pathological changes caused by lipopolysaccharide (LPS)-induced inflammation in Parkinson's disease rat models were largely unknown. METHODS Male Sprague-Dawley rat models were intra-globuspallidus injected with saline and lipopolysaccharide and divided into two groups, the control group and the LPS-stimulation group. The locomotor activity of the rat models was recorded for 4 consecutive weeks by trajectory analysis software for animal behavior. For the evaluation of pathological profiles, the expression levels of tyrosine hydroxylase and OX-42 in the substantia nigra tissues were detected by immunohistochemical staining. Also, the concentrations of dopamine at specific sites were detected through high-performance liquid chromatography. Perl's iron staining was used to evaluate iron accumulation in substantia nigra tissues. RESULTS LPS-stimulation reduced the locomotor capacity of the rat models compared with the control group. The density of tyrosine hydroxylase-positive cells was reduced and the secretion of striatal dopamine in the substantia nigra pars compacts was lower in the LPS group than it was in the control group. OX-42 positive microglia and ferritin levels were enhanced in the LPS group. CONCLUSION Intrapallidal inflammation by LPS induced dopamine depletion and iron accumulation in the substantia nigra of Parkinson's disease rat models. The management of cerebral inflammation might be pivotal for PD pathogenesis and prognosis.
Collapse
Affiliation(s)
- Jie Huo
- Department of Emergency, Beijing Tiantan Hospital, Capital Medical UniversityBeijing, China
| | - Qu Cui
- Department of Emergency, Beijing Tiantan Hospital, Capital Medical UniversityBeijing, China
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical UniversityBeijing, China
- Department of Immunology, School of Basic Medicine, Norman Bethune Health Science Center, Jilin UniversityJilin, China
| | - Wei Yang
- Department of Immunology, School of Basic Medicine, Norman Bethune Health Science Center, Jilin UniversityJilin, China
| | - Wei Guo
- Department of Emergency, Beijing Tiantan Hospital, Capital Medical UniversityBeijing, China
| |
Collapse
|
41
|
Abstract
Active avoidance is the prototypical paradigm for studying aversively-motivated instrumental behavior. However, avoidance research stalled amid heated theoretical debates and the hypothesis that active avoidance is essentially Pavlovian flight. Here I reconsider key "avoidance problems" and review neurobehavioral data collected with modern tools. Although the picture remains incomplete, these studies strongly suggest that avoidance has an instrumental component and is mediated by brain circuits that resemble appetitive instrumental actions more than Pavlovian fear reactions. Rapid progress may be possible if investigators consider important factors like safety signals, response-competition, goal-directed vs. habitual control and threat imminence in avoidance study design. Since avoidance responses likely contribute to active coping, this research has important implications for understanding human resilience and disorders of control.
Collapse
Affiliation(s)
- Christopher K Cain
- NYU School of Medicine, Dept. of Child & Adolescent Psychiatry, 1 Park Avenue, 8 Floor, New York, NY 10016.,Nathan S. Kline Institute for Psychiatric Research, Emotional Brain Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962
| |
Collapse
|
42
|
Bai Y, Bai Y, Wang S, Wu F, Wang DH, Chen J, Huang J, Li H, Li Y, Wu S, Wang Y, Yang Y. Targeted upregulation of uncoupling protein 2 within the basal ganglia output structure ameliorates dyskinesia after severe liver failure. Free Radic Biol Med 2018; 124:40-50. [PMID: 29857139 DOI: 10.1016/j.freeradbiomed.2018.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/04/2018] [Accepted: 05/06/2018] [Indexed: 02/06/2023]
Abstract
Impaired motor function, due to the dysfunction of the basal ganglia, is the most common syndrome of hepatic encephalopathy (HE), and its etiology remains poorly understood. Neural oxidative stress is shown to be the major cellular defects contributing to HE pathogenesis. Mitochondrial uncoupling protein 2 (UCP2) has been implicated in neuroprotection in several neurological disorders. We explored the neuroprotective role of UCP2 within the substantia nigra pars reticulate (SNr), the output structure of the basal ganglia, in HE. The toxin thioacetamide (TAA) induced HE mice showed hypolocomotion, which was associated with decreased ATP levels and loss of antioxidant substances SOD and GSH within the SNr. Stable overexpression of UCP2 via AAV-UCP2 under the control of the UCP2 promoter in bilateral SNr preserved local ATP level, increased antioxidant substances, and ameliorated locomotion defects after severe liver failure. Contrary to UCP2 overexpression, targeted knockdown of UCP2 within bilateral SNr via AAV-UCP2 shRNA exacerbated the impaired mitochondrial dysfunction and hypokinesia in HE mice. The modulatory effects of UCP2 was due to mediation of K+-Cl- cotransporter-2 (KCC2) expression on GABAergic neurons of SNr. Taken together, our results demonstrate that UCP2 exerts a neural protective role at the subcortical level by increasing the resistance of neurons to oxidative stress, which may offer a novel therapeutic target for the treatment of motor dysfunction diseases.
Collapse
Affiliation(s)
- Yunhu Bai
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Yang Bai
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an 710032, China; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200000, China
| | - Shengming Wang
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an 710032, China; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200000, China
| | - Feifei Wu
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an 710032, China; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200000, China
| | - Dong Hui Wang
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an 710032, China; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200000, China
| | - Jing Chen
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an 710032, China; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200000, China
| | - Jing Huang
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an 710032, China; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200000, China
| | - Hui Li
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an 710032, China; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200000, China
| | - Yunqing Li
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an 710032, China; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200000, China
| | - Shengxi Wu
- Department of Neurobiology, The Fourth Military Medical University, Xi'an 710032, China; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200000, China
| | - Yayun Wang
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an 710032, China; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200000, China.
| | - Yanling Yang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
43
|
Diehl MM, Bravo-Rivera C, Rodriguez-Romaguera J, Pagan-Rivera PA, Burgos-Robles A, Roman-Ortiz C, Quirk GJ. Active avoidance requires inhibitory signaling in the rodent prelimbic prefrontal cortex. eLife 2018; 7:34657. [PMID: 29851381 PMCID: PMC5980229 DOI: 10.7554/elife.34657] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 05/06/2018] [Indexed: 12/27/2022] Open
Abstract
Much is known about the neural circuits of conditioned fear and its relevance to understanding anxiety disorders, but less is known about other anxiety-related behaviors such as active avoidance. Using a tone-signaled, platform-mediated avoidance task, we observed that pharmacological inactivation of the prelimbic prefrontal cortex (PL) delayed avoidance. Surprisingly, optogenetic silencing of PL glutamatergic neurons did not delay avoidance. Consistent with this, inhibitory but not excitatory responses of rostral PL neurons were associated with avoidance training. To test the importance of these inhibitory responses, we optogenetically stimulated PL neurons to counteract the tone-elicited reduction in firing rate. Photoactivation of rostral (but not caudal) PL neurons at 4 Hz impaired avoidance. These findings suggest that inhibitory responses of rostral PL neurons signal the avoidability of a potential threat and underscore the importance of designing behavioral optogenetic studies based on neuronal firing responses.
Collapse
Affiliation(s)
- Maria M Diehl
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico.,Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Christian Bravo-Rivera
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico.,Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Jose Rodriguez-Romaguera
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico.,Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Pablo A Pagan-Rivera
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico.,Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Anthony Burgos-Robles
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Ciorana Roman-Ortiz
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico.,Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Gregory J Quirk
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico.,Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| |
Collapse
|
44
|
Almada RC, Genewsky AJ, Heinz DE, Kaplick PM, Coimbra NC, Wotjak CT. Stimulation of the Nigrotectal Pathway at the Level of the Superior Colliculus Reduces Threat Recognition and Causes a Shift From Avoidance to Approach Behavior. Front Neural Circuits 2018; 12:36. [PMID: 29867370 PMCID: PMC5949341 DOI: 10.3389/fncir.2018.00036] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/17/2018] [Indexed: 01/14/2023] Open
Abstract
Defensive behavioral responses are essential for survival in threating situations. The superior colliculus (SC) has been implicated in the generation of defensive behaviors elicited by visual, tactile and auditory stimuli. Furthermore, substantia nigra pars reticulata (SNr) neurons are known to exert a modulatory effect on midbrain tectum neural substrates. However, the functional role of this nigrotectal pathway in threating situations is still poorly understood. Using optogenetics in freely behaving mice, we activated SNr projections at the level of the SC, and assessed consequences on behavioral performance in an open field test (OFT) and the beetle mania task (BMT). The latter confronts a mouse with an erratic moving robo-beetle and allows to measure active and passive defensive responses upon frequent encounter of the threatening object. Channelrhodopsin-2 (ChR2)-mediated activation of the inhibitory nigrotectal pathway did not affect anxiety-like and exploratory behavior in the OFT, but increased the number of contacts between robo-beetle and test mouse in the BMT. Depending on the size of the arena, active avoidance responses were reduced, whereas tolerance and close following of the robo-beetle were significantly increased. We conclude from the data that the nigrotectal pathway plays holds the potential to modulate innate fear by attenuating threat recognition and causing a shift from defensive to approach behavior.
Collapse
Affiliation(s)
- Rafael C Almada
- Department of Stress Neurobiology and Neurogenetics, Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany.,Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School (FMRP), University of São Paulo (USP), São Paulo, Brazil.,Behavioral Neurosciences Institute (INeC), São Paulo, Brazil
| | - Andreas J Genewsky
- Department of Stress Neurobiology and Neurogenetics, Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
| | - Daniel E Heinz
- Department of Stress Neurobiology and Neurogenetics, Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany.,Neuroscience Master's Program, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - Paul M Kaplick
- Department of Stress Neurobiology and Neurogenetics, Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
| | - Norberto C Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School (FMRP), University of São Paulo (USP), São Paulo, Brazil.,Behavioral Neurosciences Institute (INeC), São Paulo, Brazil.,NAP-USP-Neurobiology of Emotions Research Center (NuPNE), Ribeirão Preto Medical School (FMRP), University of São Paulo (USP), São Paulo, Brazil
| | - Carsten T Wotjak
- Department of Stress Neurobiology and Neurogenetics, Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
45
|
Direct and indirect nigrofugal projections to the nucleus reticularis pontis caudalis mediate in the motor execution of the acoustic startle reflex. Brain Struct Funct 2018; 223:2733-2751. [DOI: 10.1007/s00429-018-1654-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 03/17/2018] [Indexed: 11/25/2022]
|
46
|
Modulating anosognosia for hemiplegia: The role of dangerous actions in emergent awareness. Cortex 2017; 92:187-203. [DOI: 10.1016/j.cortex.2017.04.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/14/2017] [Accepted: 04/12/2017] [Indexed: 11/22/2022]
|
47
|
Abstract
The superior colliculus is one of the most well-studied structures in the brain, and with each new report, its proposed role in behavior seems to increase in complexity. Forty years of evidence show that the colliculus is critical for reorienting an organism toward objects of interest. In monkeys, this involves saccadic eye movements. Recent work in the monkey colliculus and in the homologous optic tectum of the bird extends our understanding of the role of the colliculus in higher mental functions, such as attention and decision making. In this review, we highlight some of these recent results, as well as those capitalizing on circuit-based methodologies using transgenic mice models, to understand the contribution of the colliculus to attention and decision making. The wealth of information we have about the colliculus, together with new tools, provides a unique opportunity to obtain a detailed accounting of the neurons, circuits, and computations that underlie complex behavior.
Collapse
Affiliation(s)
- Michele A Basso
- Fuster Laboratory of Cognitive Neuroscience, Department of Psychiatry and Biobehavioral Sciences and Neurobiology, Semel Institute for Neuroscience and Human Behavior, Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, California 90095;
| | - Paul J May
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi 39216
| |
Collapse
|
48
|
Tactile Defensiveness and Impaired Adaptation of Neuronal Activity in the Fmr1 Knock-Out Mouse Model of Autism. J Neurosci 2017; 37:6475-6487. [PMID: 28607173 DOI: 10.1523/jneurosci.0651-17.2017] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/17/2017] [Accepted: 05/24/2017] [Indexed: 11/21/2022] Open
Abstract
Sensory hypersensitivity is a common symptom in autism spectrum disorders (ASDs), including fragile X syndrome (FXS), and frequently leads to tactile defensiveness. In mouse models of ASDs, there is mounting evidence of neuronal and circuit hyperexcitability in several brain regions, which could contribute to sensory hypersensitivity. However, it is not yet known whether or how sensory stimulation might trigger abnormal sensory processing at the circuit level or abnormal behavioral responses in ASD mouse models, especially during an early developmental time when experience-dependent plasticity shapes such circuits. Using a novel assay, we discovered exaggerated motor responses to whisker stimulation in young Fmr1 knock-out (KO) mice (postnatal days 14-16), a model of FXS. Adult Fmr1 KO mice actively avoided a stimulus that was innocuous to wild-type controls, a sign of tactile defensiveness. Using in vivo two-photon calcium imaging of layer 2/3 barrel cortex neurons expressing GCaMP6s, we found no differences between wild-type and Fmr1 KO mice in overall whisker-evoked activity, though 45% fewer neurons in young Fmr1 KO mice responded in a time-locked manner. Notably, we identified a pronounced deficit in neuronal adaptation to repetitive whisker stimulation in both young and adult Fmr1 KO mice. Thus, impaired adaptation in cortical sensory circuits is a potential cause of tactile defensiveness in autism.SIGNIFICANCE STATEMENT We use a novel paradigm of repetitive whisker stimulation and in vivo calcium imaging to assess tactile defensiveness and barrel cortex activity in young and adult Fmr1 knock-out mice, the mouse model of fragile X syndrome (FXS). We describe evidence of tactile defensiveness, as well as a lack of L2/3 neuronal adaptation in barrel cortex, during whisker stimulation. We propose that a defect in sensory adaptation within local neuronal networks, beginning at a young age and continuing into adulthood, likely contributes to sensory overreactivity in FXS and perhaps other ASDs.
Collapse
|
49
|
Schaich Borg J, Srivastava S, Lin L, Heffner J, Dunson D, Dzirasa K, de Lecea L. Rat intersubjective decisions are encoded by frequency-specific oscillatory contexts. Brain Behav 2017; 7:e00710. [PMID: 28638715 PMCID: PMC5474713 DOI: 10.1002/brb3.710] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION It is unknown how the brain coordinates decisions to withstand personal costs in order to prevent other individuals' distress. Here we test whether local field potential (LFP) oscillations between brain regions create "neural contexts" that select specific brain functions and encode the outcomes of these types of intersubjective decisions. METHODS Rats participated in an "Intersubjective Avoidance Test" (IAT) that tested rats' willingness to enter an innately aversive chamber to prevent another rat from getting shocked. c-Fos immunoreactivity was used to screen for brain regions involved in IAT performance. Multi-site local field potential (LFP) recordings were collected simultaneously and bilaterally from five brain regions implicated in the c-Fos studies while rats made decisions in the IAT. Local field potential recordings were analyzed using an elastic net penalized regression framework. RESULTS Rats voluntarily entered an innately aversive chamber to prevent another rat from getting shocked, and c-Fos immunoreactivity in brain regions known to be involved in human empathy-including the anterior cingulate, insula, orbital frontal cortex, and amygdala-correlated with the magnitude of "intersubjective avoidance" each rat displayed. Local field potential recordings revealed that optimal accounts of rats' performance in the task require specific frequencies of LFP oscillations between brain regions in addition to specific frequencies of LFP oscillations within brain regions. Alpha and low gamma coherence between spatially distributed brain regions predicts more intersubjective avoidance, while theta and high gamma coherence between a separate subset of brain regions predicts less intersubjective avoidance. Phase relationship analyses indicated that choice-relevant coherence in the alpha range reflects information passed from the amygdala to cortical structures, while coherence in the theta range reflects information passed in the reverse direction. CONCLUSION These results indicate that the frequency-specific "neural context" surrounding brain regions involved in social cognition encodes outcomes of decisions that affect others, above and beyond signals from any set of brain regions in isolation.
Collapse
Affiliation(s)
- Jana Schaich Borg
- Social Science Research Institute Duke University Durham NC USA.,Duke Institute for Brain Sciences Duke University Durham NC USA.,Department of Psychiatry and Behavioral Sciences Stanford University Stanford CA USA
| | - Sanvesh Srivastava
- Department of Statistics and Actuarial Science University of Iowa Iowa City IA USA
| | - Lizhen Lin
- Department of Applied and Computational Mathematics and Statistics University of Notre Dame Notre Dame IN USA
| | - Joseph Heffner
- Department of Psychology, Cognitive Linguistic and Psychological Sciences Brown University Providence RI USA
| | - David Dunson
- Department of Statistical Science Duke University Durham NC USA
| | - Kafui Dzirasa
- Duke Institute for Brain Sciences Duke University Durham NC USA.,Department of Psychiatry and Behavioral Sciences Duke University Medical Center Durham NC USA.,Department of Neurobiology Duke University Medical Center Durham NC USA.,Department of Neurosurgery Duke University Medical Center Durham NC USA.,Department of Biomedical Engineering Duke University Durham NC USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences Stanford University Stanford CA USA
| |
Collapse
|