1
|
A Monoclonal Anti-HMGB1 Antibody Attenuates Neurodegeneration in an Experimental Animal Model of Glaucoma. Int J Mol Sci 2022; 23:ijms23084107. [PMID: 35456925 PMCID: PMC9028318 DOI: 10.3390/ijms23084107] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023] Open
Abstract
Neuroinflammation is a crucial process for the loss of retinal ganglion cells (RGC), a major characteristic of glaucoma. High expression of high-mobility group box protein 1 (HMGB1) plays a detrimental role in inflammatory processes and is elevated in the retinas of glaucoma patients. Therefore, this study aimed to investigate the effects of the intravitreal injection of an anti-HMGB1 monoclonal antibody (anti-HMGB1 Ab) in an experimental animal model of glaucoma. Two groups of Spraque Dawley rats received episcleral vein occlusion to chronically elevate intraocular pressure (IOP): (1) the IgG group, intravitreal injection of an unspecific IgG as a control, n = 5, and (2) the HMGB1 group, intravitreal injection of an anti-HMGB1 Ab, n = 6. IOP, retinal nerve fiber layer thickness (RNFLT), and the retinal flash response were monitored longitudinally. Post-mortem examinations included immunohistochemistry, microarray, and mass spectrometric analysis. RNFLT was significantly increased in the HMGB1 group compared with the IgG group (p < 0.001). RGC density showed improved neuronal cell survival in the retina in HMGB1 compared with the IgG group (p < 0.01). Mass spectrometric proteomic analysis of retinal tissue showed an increased abundance of RNA metabolism-associated heterogeneous nuclear ribonucleoproteins (hnRNPs), such as hnRNP U, D, and H2, in animals injected with the anti-HMGB1 Ab, indicating that the application of the antibody may cause increased gene expression. Microarray analysis showed a significantly decreased expression of C-X-C motif chemokine ligand 8 (CXCL8, p < 0.05) and connective tissue growth factor (CTGF, p < 0.01) in the HMGB1 group. Thus, these data suggest that intravitreal injection of anti-HMGB1 Ab reduced HMGB1-dependent inflammatory signaling and mediated RGC neuroprotection.
Collapse
|
2
|
Zhang Q, Li Y, Zhuo Y. Synaptic or Non-synaptic? Different Intercellular Interactions with Retinal Ganglion Cells in Optic Nerve Regeneration. Mol Neurobiol 2022; 59:3052-3072. [PMID: 35266115 PMCID: PMC9016027 DOI: 10.1007/s12035-022-02781-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 02/24/2022] [Indexed: 12/31/2022]
Abstract
Axons of adult neurons in the mammalian central nervous system generally fail to regenerate by themselves, and few if any therapeutic options exist to reverse this situation. Due to a weak intrinsic potential for axon growth and the presence of strong extrinsic inhibitors, retinal ganglion cells (RGCs) cannot regenerate their axons spontaneously after optic nerve injury and eventually undergo apoptosis, resulting in permanent visual dysfunction. Regarding the extracellular environment, research to date has generally focused on glial cells and inflammatory cells, while few studies have discussed the potentially significant role of interneurons that make direct connections with RGCs as part of the complex retinal circuitry. In this study, we provide a novel angle to summarize these extracellular influences following optic nerve injury as "intercellular interactions" with RGCs and classify these interactions as synaptic and non-synaptic. By discussing current knowledge of non-synaptic (glial cells and inflammatory cells) and synaptic (mostly amacrine cells and bipolar cells) interactions, we hope to accentuate the previously neglected but significant effects of pre-synaptic interneurons and bring unique insights into future pursuit of optic nerve regeneration and visual function recovery.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Yiqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060, China.
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060, China.
| |
Collapse
|
3
|
Minta K, Portelius E, Janelidze S, Hansson O, Zetterberg H, Blennow K, Andreasson U. Cerebrospinal Fluid Concentrations of Extracellular Matrix Proteins in Alzheimer's Disease. J Alzheimers Dis 2020; 69:1213-1220. [PMID: 31156172 DOI: 10.3233/jad-190187] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Brevican, neurocan, tenascin-C, and tenascin-R are extracellular matrix (ECM) proteins that are mainly expressed in the brain. They play important roles in proliferation and migration of neurons and other cell types in the brain. These ECM proteins may also be involved in various pathologies, including reactive gliosis. OBJECTIVE The aim of the study was to investigate if ECM protein concentrations in cerebrospinal fluid (CSF) are linked to the neurodegenerative process in Alzheimer's disease (AD). METHODS Lumbar CSF samples from a non-AD control group (n = 50) and a clinically diagnosed AD group (n = 42), matched for age and gender, were analyzed using commercially available ELISAs detecting ECM proteins. Mann-Whitney U test was used to examine group differences, while Spearman's rho test was used for correlations. RESULTS Brevican, neurocan, tenascin-R, and tenascin-C concentrations in AD patients did not differ compared to healthy controls or when the groups were dichotomized based on the Aβ42/40 cut-off. CSF tenascin-C and tenascin-R concentrations were significantly higher in women than in men in the AD group (p = 0.02). CONCLUSION ECM proteins do not reflect AD-pathology in CSF. CSF tenascin-C and tenascin-R upregulation in women possibly reveal sexual dimorphism in the central nervous system immunity during AD.
Collapse
Affiliation(s)
- Karolina Minta
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Erik Portelius
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Shorena Janelidze
- Department of Clinical Sciences, Clinical Memory Research Unit, Lund University, Sweden
| | - Oskar Hansson
- Department of Clinical Sciences, Clinical Memory Research Unit, Lund University, Sweden.,Memory Clinic, Skåne University Hospital, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Ulf Andreasson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
4
|
Abstract
The extracellular matrix (ECM) has central roles in tissue integrity and remodeling throughout the life span of animals. While collagens are the most abundant structural components of ECM in most tissues, tissue-specific molecular complexity is contributed by ECM glycoproteins. The matricellular glycoproteins are categorized primarily according to functional criteria and represented predominantly by the thrombospondin, tenascin, SPARC/osteonectin, and CCN families. These proteins do not self-assemble into ECM fibrils; nevertheless, they shape ECM properties through interactions with structural ECM proteins, growth factors, and cells. Matricellular proteins also promote cell migration or morphological changes through adhesion-modulating or counter-adhesive actions on cell-ECM adhesions, intracellular signaling, and the actin cytoskeleton. Typically, matricellular proteins are most highly expressed during embryonic development. In adult tissues, expression is more limited unless activated by cues for dynamic tissue remodeling and cell motility, such as occur during inflammatory response and wound repair. Many insights in the complex roles of matricellular proteins have been obtained from studies of gene knockout mice. However, with the exception of chordate-specific tenascins, these are highly conserved proteins that are encoded in many animal phyla. This review will consider the increasing body of research on matricellular proteins in nonmammalian animal models. These models provide better access to the very earliest stages of embryonic development and opportunities to study biological processes such as limb and organ regeneration. In aggregate, this research is expanding concepts of the functions and mechanisms of action of matricellular proteins.
Collapse
Affiliation(s)
- Josephine C Adams
- School of Biochemistry, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
5
|
Reinhard J, Roll L, Faissner A. Tenascins in Retinal and Optic Nerve Neurodegeneration. Front Integr Neurosci 2017; 11:30. [PMID: 29109681 PMCID: PMC5660115 DOI: 10.3389/fnint.2017.00030] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/03/2017] [Indexed: 02/04/2023] Open
Abstract
Tenascins represent key constituents of the extracellular matrix (ECM) with major impact on central nervous system (CNS) development. In this regard, several studies indicate that they play a crucial role in axonal growth and guidance, synaptogenesis and boundary formation. These functions are not only important during development, but also for regeneration under several pathological conditions. Additionally, tenascin-C (Tnc) represents a key modulator of the immune system and inflammatory processes. In the present review article, we focus on the function of Tnc and tenascin-R (Tnr) in the diseased CNS, specifically after retinal and optic nerve damage and degeneration. We summarize the current view on both tenascins in diseases such as glaucoma, retinal ischemia, age-related macular degeneration (AMD) or diabetic retinopathy. In this context, we discuss their expression profile, possible functional relevance, remodeling of the interacting matrisome and tenascin receptors, especially under pathological conditions.
Collapse
Affiliation(s)
- Jacqueline Reinhard
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Lars Roll
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
6
|
Ischemic injury leads to extracellular matrix alterations in retina and optic nerve. Sci Rep 2017; 7:43470. [PMID: 28262779 PMCID: PMC5338032 DOI: 10.1038/srep43470] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/25/2017] [Indexed: 01/10/2023] Open
Abstract
Retinal ischemia occurs in a variety of eye diseases. Restrained blood flow induces retinal damage, which leads to progressive optic nerve degeneration and vision loss. Previous studies indicate that extracellular matrix (ECM) constituents play an important role in complex tissues, such as retina and optic nerve. They have great impact on de- and regeneration processes and represent major candidates of central nervous system glial scar formation. Nevertheless, the importance of the ECM during ischemic retina and optic nerve neurodegeneration is not fully understood yet. In this study, we analyzed remodeling of the extracellular glycoproteins fibronectin, laminin, tenascin-C and tenascin-R and the chondroitin sulfate proteoglycans (CSPGs) aggrecan, brevican and phosphacan/RPTPβ/ζ in retinae and optic nerves of an ischemia/reperfusion rat model via quantitative real-time PCR, immunohistochemistry and Western blot. A variety of ECM constituents were dysregulated in the retina and optic nerve after ischemia. Regarding fibronectin, significantly elevated mRNA and protein levels were observed in the retina following ischemia, while laminin and tenascin-C showed enhanced immunoreactivity in the optic nerve after ischemia. Interestingly, CSPGs displayed significantly increased expression levels in the optic nerve. Our study demonstrates a dynamic expression of ECM molecules following retinal ischemia, which strengthens their regulatory role during neurodegeneration.
Collapse
|
7
|
Lang DM, Romero-Alemán MDM, Dobson B, Santos E, Monzón-Mayor M. Nogo-A does not inhibit retinal axon regeneration in the lizardGallotia galloti. J Comp Neurol 2016; 525:936-954. [DOI: 10.1002/cne.24112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 06/19/2016] [Accepted: 07/08/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Dirk M. Lang
- Division of Physiological Sciences, Department of Human Biology; University of Cape Town; Observatory 7925 South Africa
| | - Maria del Mar Romero-Alemán
- Research Institute of Biomedical and Health Sciences; University of Las Palmas de Gran Canaria; 35016 Las Palmas Canary Islands Spain
| | - Bryony Dobson
- Division of Physiological Sciences, Department of Human Biology; University of Cape Town; Observatory 7925 South Africa
| | - Elena Santos
- Research Institute of Biomedical and Health Sciences; University of Las Palmas de Gran Canaria; 35016 Las Palmas Canary Islands Spain
| | - Maximina Monzón-Mayor
- Research Institute of Biomedical and Health Sciences; University of Las Palmas de Gran Canaria; 35016 Las Palmas Canary Islands Spain
| |
Collapse
|
8
|
Reinhard J, Joachim SC, Faissner A. Extracellular matrix remodeling during retinal development. Exp Eye Res 2015; 133:132-40. [DOI: 10.1016/j.exer.2014.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 10/25/2022]
|
9
|
Distribution of extracellular matrix macromolecules in the vestibular nuclei and cerebellum of the frog, Rana esculenta. Neuroscience 2014; 258:162-73. [DOI: 10.1016/j.neuroscience.2013.10.080] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 10/31/2013] [Accepted: 10/31/2013] [Indexed: 12/31/2022]
|
10
|
Variable functional recovery and minor cell loss in the ganglion cell layer of the lizard Gallotia galloti after optic nerve axotomy. Exp Eye Res 2013; 118:89-99. [PMID: 24184031 DOI: 10.1016/j.exer.2013.09.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 09/12/2013] [Accepted: 09/26/2013] [Indexed: 12/23/2022]
Abstract
The lizard Gallotia galloti shows spontaneous and slow axon regrowth through a permissive glial scar after optic nerve axotomy. Although much of the expression pattern of glial, neuronal and extracellular matrix markers have been analyzed by our group, an estimation of the cell loss in the ganglion cell layer (GCL) and the degree of visual function recovery remained unresolved. Thus, we performed a series of tests indicative of effective visual function (pupillary light reflex, accommodation, visually elicited behavior) in 18 lizards at 3, 6, 9 and 12 months post-axotomy which were then processed for immunohistochemistry for the neuronal markers SMI-31 (neurofilaments), Tuj1 (beta-III tubulin) and SV2 (synaptic vesicles) at the last timepoint. Separately, cell loss in the GCL was estimated by comparative quantitation of DAPI(+) nuclei in control and 12 months experimental lizards. Additionally, 15 lizards were processed for electron microscopy to monitor relevant ultrastructural changes in the GCL, optic nerve and optic tract throughout regeneration. Hypertrophy of RGCs was persistent, morphology of the regenerated nerves varied from narrow to neuroma-like features and larger regenerated axons underwent remyelination by 9 months. The estimated cell loss in the GCL was 27% and two-third of the animals recovered the pupillary light reflex which involves the pretectum. Strikingly, visually elicited behavior involving the tectum was only restored in two specimens, presumably due to the higher complexity of this pathway. These preliminary results indicate that limited functional regeneration occurs spontaneously in the severely injured visual system of the lacertid G. galloti.
Collapse
|
11
|
Romero-Alemán MDM, Monzón-Mayor M, Santos E, Yanes CM. Regrowth of transected retinal ganglion cell axons despite persistent astrogliosis in the lizard (Gallotia galloti). J Anat 2013; 223:22-37. [PMID: 23656528 DOI: 10.1111/joa.12053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2013] [Indexed: 12/14/2022] Open
Abstract
We analysed the astroglia response that is concurrent with spontaneous axonal regrowth after optic nerve (ON) transection in the lizard Gallotia galloti. At different post-lesional time points (0.5, 1, 3, 6, 9 and 12 months) we used conventional electron microscopy and specific markers for astrocytes [glial fibrillary acidic protein (GFAP), vimentin (Vim), sex-determining region Y-box-9 (Sox9), paired box-2 (Pax2)¸ cluster differentiation-44 (CD44)] and for proliferating cells (PCNA). The experimental retina showed a limited glial response since the increase of gliofilaments was not significant when compared with controls, and proliferating cells were undetectable. Conversely, PCNA(+) cells populated the regenerating ON, optic tract (OTr) and ventricular wall of both the hypothalamus and optic tectum (OT). Subpopulations of these PCNA(+) cells were identified as GFAP(+) and Vim(+) reactive astrocytes and radial glia. Reactive astrocytes up-regulated Vim at 1 month post-lesion, and both Vim and GFAP at 12 months post-lesion in the ON-OTr, indicating long-term astrogliosis. They also expressed Pax2, Sox9 and CD44 in the ON, and Sox9 in the OTr. Concomitantly, persistent tissue cavities and disorganised regrowing fibre bundles reaching the OT were observed. Our ultrastructural data confirm abundant gliofilaments in reactive astrocytes joined by desmosomes. Remarkably, they also accumulated myelin debris and lipid droplets until late stages, indicating their participation in myelin removal. These data suggest that persistent mammalian-like astrogliosis in the adult lizard ON contributes to a permissive structural scaffold for long-term axonal regeneration and provides a useful model to study the molecular mechanisms involved in these beneficial neuron-glia interactions.
Collapse
Affiliation(s)
- María del Mar Romero-Alemán
- Departamento de Morfología (Biología Celular), Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain.
| | | | | | | |
Collapse
|
12
|
Zukor KA, Kent DT, Odelberg SJ. Meningeal cells and glia establish a permissive environment for axon regeneration after spinal cord injury in newts. Neural Dev 2011; 6:1. [PMID: 21205291 PMCID: PMC3025934 DOI: 10.1186/1749-8104-6-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 01/04/2011] [Indexed: 11/10/2022] Open
Abstract
Background Newts have the remarkable ability to regenerate their spinal cords as adults. Their spinal cords regenerate with the regenerating tail after tail amputation, as well as after a gap-inducing spinal cord injury (SCI), such as a complete transection. While most studies on newt spinal cord regeneration have focused on events occurring after tail amputation, less attention has been given to events occurring after an SCI, a context that is more relevant to human SCI. Our goal was to use modern labeling and imaging techniques to observe axons regenerating across a complete transection injury and determine how cells and the extracellular matrix in the injury site might contribute to the regenerative process. Results We identify stages of axon regeneration following a spinal cord transection and find that axon regrowth across the lesion appears to be enabled, in part, because meningeal cells and glia form a permissive environment for axon regeneration. Meningeal and endothelial cells regenerate into the lesion first and are associated with a loose extracellular matrix that allows axon growth cone migration. This matrix, paradoxically, consists of both permissive and inhibitory proteins. Axons grow into the injury site next and are closely associated with meningeal cells and glial processes extending from cell bodies surrounding the central canal. Later, ependymal tubes lined with glia extend into the lesion as well. Finally, the meningeal cells, axons, and glia move as a unit to close the gap in the spinal cord. After crossing the injury site, axons travel through white matter to reach synaptic targets, and though ascending axons regenerate, sensory axons do not appear to be among them. This entire regenerative process occurs even in the presence of an inflammatory response. Conclusions These data reveal, in detail, the cellular and extracellular events that occur during newt spinal cord regeneration after a transection injury and uncover an important role for meningeal and glial cells in facilitating axon regeneration. Given that these cell types interact to form inhibitory barriers in mammals, identifying the mechanisms underlying their permissive behaviors in the newt will provide new insights for improving spinal cord regeneration in mammals.
Collapse
Affiliation(s)
- Katherine A Zukor
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
13
|
The glia-derived extracellular matrix glycoprotein tenascin-C promotes embryonic and postnatal retina axon outgrowth via the alternatively spliced fibronectin type III domain TNfnD. ACTA ACUST UNITED AC 2009; 4:271-83. [DOI: 10.1017/s1740925x09990020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tenascin-C (Tnc) is an astrocytic multifunctional extracellular matrix (ECM) glycoprotein that potentially promotes or inhibits neurite outgrowth. To investigate its possible functions for retinal development, explants from embryonic day 18 (E18) rat retinas were cultivated on culture substrates composed of poly-d-lysine (PDL), or PDL additionally coated with Tnc or laminin (LN)-1, which significantly increased fiber length. When combined with LN, Tnc induced axon fasciculation that reduced the apparent number of outgrowing fibers. In order to circumscribe the stimulatory region, Tnc-derived fibronectin type III (TNfn) domains fused to the human Ig-Fc-fragment TNfnD6-Fc, TNfnBD-Fc, TNFnA1A2-Fc and TNfnA1D-Fc were studied. The fusion proteins TNfnBD-Fc and to a lesser degree TNfnA1D-Fc were stimulatory when compared with the Ig-Fc-fragment protein without insert. In contrast, the combination TNfnA1A2-Fc reduced fiber outgrowth beneath the values obtained for the Ig-Fc domain, indicating potential inhibitory properties. The monoclonal J1/tn2 antibody (clone 578) that is specific for domain TNfnD blocked the stimulatory properties of the TNfn-Fc fusions. When postnatal day 7 retinal ganglion cells were used rather that explants, Tnc and Tnc-derived proteins proved permissive for neurite outgrowth. The present study highlights a strong retinal axon growth-promoting activity of the Tnc domain TNfnD, which is modulated by neighboring domains.
Collapse
|
14
|
Gervasi NM, Kwok JC, Fawcett JW. Role of extracellular factors in axon regeneration in the CNS: implications for therapy. Regen Med 2009; 3:907-23. [PMID: 18947312 DOI: 10.2217/17460751.3.6.907] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The glial scar that forms after an injury to the CNS contains molecules that are inhibitory to axon growth. Understanding of the mechanisms of inhibition has allowed the development of therapeutic strategies aimed at promoting axon regeneration. Promising results have been obtained in animal models, and some therapies are undergoing clinical trials. This offers great hope for achievement of functional recovery after CNS injury.
Collapse
Affiliation(s)
- Noreen M Gervasi
- Cambridge University Centre for Brain Repair, ED Adrian Building, Forvie Site, Robinson Way, Cambridge CB22PY, UK.
| | | | | |
Collapse
|
15
|
Willerth SM, Sakiyama-Elbert SE. Cell therapy for spinal cord regeneration. Adv Drug Deliv Rev 2008; 60:263-76. [PMID: 18029050 DOI: 10.1016/j.addr.2007.08.028] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 08/22/2007] [Indexed: 01/09/2023]
Abstract
This review presents a summary of the various types of cellular therapy used to treat spinal cord injury. The inhibitory environment and loss of axonal connections after spinal cord injury pose many obstacles to regenerating the lost tissue. Cellular therapy provides a means of restoring the cells lost to the injury and could potentially promote functional recovery after such injuries. A wide range of cell types have been investigated for such uses and the advantages and disadvantages of each cell type are discussed along with the research studying each cell type. Additionally, methods of delivering cells to the injury site are evaluated. Based on the current research, suggestions are given for future investigation of cellular therapies for spinal cord regeneration.
Collapse
|
16
|
Lang DM, Monzon-Mayor M, del Mar Romero-Aleman M, Yanes C, Santos E, Pesheva P. Tenascin-R and axon growth-promoting molecules are up-regulated in the regenerating visual pathway of the lizard (Gallotia galloti). Dev Neurobiol 2008; 68:899-916. [DOI: 10.1002/dneu.20624] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
17
|
Pesheva P, Probstmeier R, Lang DM, McBride R, Hsu NJ, Gennarini G, Spiess E, Peshev Z. Early coevolution of adhesive but not antiadhesive tenascin-R ligand-receptor pairs in vertebrates: A phylogenetic study. Mol Cell Neurosci 2006; 32:366-86. [PMID: 16831557 DOI: 10.1016/j.mcn.2006.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 05/23/2006] [Accepted: 05/25/2006] [Indexed: 01/25/2023] Open
Abstract
Axon growth inhibitory CNS matrix proteins, such as tenascin-R (TN-R), have been supposed to contribute to the poor regenerative capacity of adult mammalian CNS. With regard to TN-R function in low vertebrates capable of CNS regeneration, questions of particular interest concern the (co)evolution of ligand-receptor pairs and cellular response mechanisms associated with axon growth inhibition and oligodendrocyte differentiation. We address here these questions in a series of comparative in vivo and in vitro analyses using TN-R proteins purified from different vertebrates (from fish to human). Our studies provide strong evidence that unlike TN-R of higher vertebrates, fish TN-R proteins are not repellent for fish and less repellent for mammalian neurons and do not interfere with F3/contactin- and fibronectin-mediated mammalian cell adhesion and axon growth. However, axonal repulsion is induced in fish neurons by mammalian TN-R proteins, suggesting that the intracellular inhibitory machinery induced by TN-R-F3 interactions is already present during early vertebrate evolution. In contrast to TN-R-F3, TN-R-sulfatide interactions, mediating oligodendrocyte adhesion and differentiation, are highly conserved during vertebrate evolution. Our findings thus indicate the necessity of being cautious about extrapolations of the function of ligand-receptor pairs beyond a species border and, therefore, about the phylogenetic conservation of a molecular function at the cellular/tissue level.
Collapse
Affiliation(s)
- Penka Pesheva
- Neuro- and Tumor Cell Biology Group, Department of Nuclear Medicine, University of Bonn, Sigmund Freud Str. 25, 53105 Bonn, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Matesz C, Modis L, Halasi G, Szigeti ZM, Felszeghy S, Bacskai T, Szekely G. Extracellular matrix molecules and their possible roles in the regeneration of frog nervous system. Brain Res Bull 2006; 66:526-31. [PMID: 16144643 DOI: 10.1016/j.brainresbull.2005.06.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 05/31/2005] [Accepted: 06/01/2005] [Indexed: 11/17/2022]
Abstract
Recent biochemical and histochemical analyses explored different components of the extracellular matrix (ECM) in the nervous system, and either permissive or non-permissive roles in neuronal development and regeneration were suggested. The aim of this study was to detect the distribution pattern of a few of these molecules in the nervous system of intact frogs and during nerve regeneration. The hyaluronan (HA) and tenascin C reactions were negative in the peripheral nerves, but appeared in their entry zones. In the CNS, different populations of neurons were surrounded with HA and tenascin C-positive material, forming a perineuronal net (PN). The phosphacan reaction was weakly positive in the PNS, and a moderate intensity was detected in the entry zone and in the PN. Laminin and fibronectin immunoreactivity was strong in the PNS, but laminin could not be detected in the CNS. In animals with cut and regenerating vestibulocochlear nerve, the distribution of the ECM molecules in the CNS and PNS characteristically changed from that of the normal pattern. Our results showed a non-homogenous distribution of ECM components in the frog nervous system that could be associated with their different roles in physiological and pathological processes.
Collapse
Affiliation(s)
- Clara Matesz
- Department of Anatomy, University of Debrecen, Medical and Health Science Center, Hungary.
| | | | | | | | | | | | | |
Collapse
|
19
|
Becker CG, Schweitzer J, Feldner J, Schachner M, Becker T. Tenascin-R as a repellent guidance molecule for newly growing and regenerating optic axons in adult zebrafish. Mol Cell Neurosci 2004; 26:376-89. [PMID: 15234343 DOI: 10.1016/j.mcn.2004.03.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Revised: 02/23/2004] [Accepted: 03/03/2004] [Indexed: 10/26/2022] Open
Abstract
In adult fish, in contrast to mammals, new optic axons are continuously added to the optic projection, and optic axons regrow after injury. Thus, pathfinding of optic axons during development, adult growth, and adult regeneration may rely on the same guidance cues. We have shown that tenascin-R, a component of the extracellular matrix, borders the optic pathway in developing zebrafish and acts as a repellent guidance molecule for optic axons. Here we analyze tenascin-R expression patterns along the unlesioned and lesioned optic pathway of adult zebrafish and test the influence of tenascin-R on growing optic axons of adult fish in vitro. Within intraretinal fascicles of optic axons and in the optic nerve, newly added optic axons grow in a tenascin-R immunonegative pathway, which is bordered by tenascin-R immunoreactivity. In the brain, tenascin-R expression domains in the ventral diencephalon, in non-retinorecipient pretectal nuclei and in some tectal layers closely border the optic pathway in unlesioned animals and during axon regrowth. We mimicked these boundary situations with a sharp substrate border of tenascin-R in vitro. Optic axons emanating from adult retinal explants were repelled by tenascin-R substrate borders. This is consistent with a function of tenascin-R as a repellent guidance molecule in boundaries for adult optic axons. Thus, tenascin-R may guide newly added and regenerating optic axons by a contact-repellent mechanism in the optic pathway of adult fish.
Collapse
Affiliation(s)
- Catherina G Becker
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, D-20246 Hamburg, Germany.
| | | | | | | | | |
Collapse
|
20
|
Abstract
Molecules that are found in the extracellular environment at a CNS lesion site, or that are associated with myelin, inhibit axon growth. In addition, neuronal changes--such as an age-dependent reduction in concentrations of cyclic AMP--render the neuron less able to respond to axotomy by a rapid, forward, actin-dependent movement. An alternative mechanism, based on the protrusive forces generated by microtubule elongation or the anterograde transport of cytoskeletal elements, may underlie a slower form of axon elongation that happens during regeneration in the mature CNS. Therapeutic approaches that restore the extracellular CNS environment or the neuron's characteristics back to a more embryonic state increase axon regeneration and improve functional recovery after injury. These advances in the understanding of regeneration in the CNS have major implications for neurorehabilitation and for the use of axonal regeneration as a therapeutic approach to disorders of the CNS such as spinal-cord injury.
Collapse
|
21
|
Chernoff EAG, Stocum DL, Nye HLD, Cameron JA. Urodele spinal cord regeneration and related processes. Dev Dyn 2003; 226:295-307. [PMID: 12557207 DOI: 10.1002/dvdy.10240] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Urodele amphibians, newts and salamanders, can regenerate lesioned spinal cord at any stage of the life cycle and are the only tetrapod vertebrates that regenerate spinal cord completely as adults. The ependymal cells play a key role in this process in both gap replacement and caudal regeneration. The ependymal response helps to produce a different response to neural injury compared with mammalian neural injury. The regenerating urodele cord produces new neurons as well as supporting axonal regrowth. It is not yet clear to what extent urodele spinal cord regeneration recapitulates embryonic anteroposterior and dorsoventral patterning gene expression to achieve functional reconstruction. The source of axial patterning signals in regeneration would be substantially different from those in developing tissue, perhaps with signals propagated from the stump tissue. Examination of the effects of fibroblast growth factor and epidermal growth factor on ependymal cells in vivo and in vitro suggest a connection with neural stem cell behavior as described in developing and mature mammalian central nervous system. This review coordinates the urodele regeneration literature with axial patterning, stem cell, and neural injury literature from other systems to describe our current understanding and assess the gaps in our knowledge about urodele spinal cord regeneration.
Collapse
Affiliation(s)
- Ellen A G Chernoff
- Indiana University-Purdue University Indianapolis, Department of Biology, and Indiana University Center for Regenerative Biology and Medicine, Indianapolis, Indiana 46202, USA.
| | | | | | | |
Collapse
|
22
|
Snow DM, Smith JD, Gurwell JA. Binding characteristics of chondroitin sulfate proteoglycans and laminin-1, and correlative neurite outgrowth behaviors in a standard tissue culture choice assay. JOURNAL OF NEUROBIOLOGY 2002; 51:285-301. [PMID: 12150504 DOI: 10.1002/neu.10060] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Neuronal growth cones are capable of sophisticated discrimination of environmental cues, on cell surfaces and in the extracellular matrix, to accomplish navigation during development (generation) and following nervous system injury (regeneration). Choices made by growth cones are commonly examined using tissue culture paradigms in which molecules of interest are purified and substratum-bound. From observations of growth cone behaviors using these paradigms, assertions are made about choices neuronal growth cones may make in vivo. However, in many cases, the binding, interactions, and conformations of these molecules have not been determined. In the present study, we investigated the binding characteristics of two commonly studied outgrowth regulatory molecules: chondroitin sulfate proteoglycans (CSPGs), which are typically inhibitory to neurite outgrowth during development and following nervous system injury, and laminin, which is typically outgrowth promoting for many neuronal types. Using a novel combination of radiolabeling and quantitative fluorescence, we determined the precise concentrations of CSPGs and laminin-1 that were bound separately and together in a variety of choice assays. For identically prepared cultures, we correlated neurite outgrowth behaviors with binding characteristics. The data support-our working hypothesis that neuronal growth cones are guided by the ratio of outgrowth-promoting to outgrowth-inhibiting influences in their environment, i.e., they summate local molecular cues. The response of growth cones to these molecular combinations is most likely mediated by integrins and subsequent activation of signal transduction cascades in growth cones.
Collapse
Affiliation(s)
- Diane M Snow
- University of Kentucky, Department of Anatomy and Neurobiology, Chandler Medical Center, Lexington 40536-0298, USA.
| | | | | |
Collapse
|
23
|
Becker CG, Becker T. Repellent guidance of regenerating optic axons by chondroitin sulfate glycosaminoglycans in zebrafish. J Neurosci 2002; 22:842-53. [PMID: 11826114 PMCID: PMC6758477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
We analyzed the role of chondroitin sulfate (CS) glycosaminoglycans, putative inhibitors of axonal regeneration in mammals, in the regenerating visual pathway of adult zebrafish. In the adult, CS immunoreactivity was not detectable before or after an optic nerve crush in the optic nerve and tract but was constitutively present in developing and adult nonretinorecipient pretectal brain nuclei, where CSs may form a boundary preventing regenerating optic fibers from growing into these inappropriate locations. Enzymatic removal of CSs by chondroitinase ABC after optic nerve crush significantly increased the number of animals showing erroneous growth of optic axons into the nonretinorecipient magnocellular superficial/posterior pretectal nucleus (83% vs 42% in controls). In vitro, a substrate border of CSs, but not heparan sulfates, strongly repelled regenerating retinal axons from adult zebrafish. We conclude that CSs contribute to repellent axon guidance during regeneration of the optic projection in zebrafish.
Collapse
Affiliation(s)
- Catherina G Becker
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, D-20246 Hamburg, Germany.
| | | |
Collapse
|
24
|
Becker T, Becker CG. Regenerating descending axons preferentially reroute to the gray matter in the presence of a general macrophage/microglial reaction caudal to a spinal transection in adult zebrafish. J Comp Neurol 2001; 433:131-47. [PMID: 11283955 DOI: 10.1002/cne.1131] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We analyzed pathway choices of regenerating, mostly supraspinal, descending axons in the spinal cord of adult zebrafish and the cellular changes in the spinal cord caudal to a lesion site after complete spinal transection. Anterograde tracing (by application of the tracer rostral to the spinal lesion site) showed that significantly more descending axons (74%) regenerated in the spinal gray matter of the caudal spinal cord than would be expected from random growth. Retrograde tracing (by application of the tracer caudal to the spinal lesion site) showed that, rostral to the lesion, most of these axons (80%) extended into the major white matter tracts. Thus, ventral descending tracts often were devoid of labeled axons caudal to a spinal lesion but contained many axons rostral to the lesion in the same animals, indicating a pathway switch of descending axons from the white matter to the gray matter. Ascending axons of spinal neurons were not observed regrowing to the rostral tracer application site; therefore, they most likely did not contribute to the axonal populations analyzed. A macrophage/microglia response within 2 days of spinal cord transection, along with phagocytosis of myelin, was observed caudal to the transection by immunohistochemistry and electron microscopy. Nevertheless, caudal to the lesion, descending tracts in the white matter were filled with myelin debris during the time of axonal regrowth, at least up to 6 weeks postlesion. We suggest that the spontaneous regeneration of axons of supraspinal origin after spinal cord transection in adult zebrafish may be due in part to the axons' ability to negotiate novel pathways in the spinal cord gray matter.
Collapse
Affiliation(s)
- T Becker
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, Martinistr. 52, D-20246 Hamburg, Germany.
| | | |
Collapse
|
25
|
Zhang Y, Tohyama K, Winterbottom JK, Haque NS, Schachner M, Lieberman AR, Anderson PN. Correlation between putative inhibitory molecules at the dorsal root entry zone and failure of dorsal root axonal regeneration. Mol Cell Neurosci 2001; 17:444-59. [PMID: 11273641 DOI: 10.1006/mcne.2000.0952] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The molecular mechanisms involved in preventing regenerating dorsal root axons from entering the spinal cord at the dorsal root entry zone (DREZ) are obscure. We used immunohistochemistry, in situ hybridization, and electron microscopy to study axonal regeneration after dorsal rhizotomy in adult rats and its relationship to cellular changes and the distribution of putative growth inhibitory molecules in this region. Astrocyte processes, ending as bulb-shaped expansions, grew up to 700 microm into the basal lamina tubes of injured roots, where regenerating axons were also present. Some of these axons approached or reached the DREZ but grew no further; others turned back toward the ganglion, suggesting the presence of repulsive cues in or near the DREZ. Tenascin-C mRNA and protein and CSPG stub immunoreactivity were strongly upregulated in the roots after rhizotomy, but were only weakly expressed in the DREZ. Tenascin-R immunoreactivity was confined to CNS tissue, and unaffected by rhizotomy. Large, rounded GFAP-negative, NG2-immunoreactive cells, a few of which were OX42 positive, were found in the DREZ following rhizotomy. Astrocyte processes projecting into the roots were tenascin-R and NG2 negative. Hence, only NG2-expressing cells and tenascin-R were appropriately situated to inhibit regeneration through the DREZ.
Collapse
Affiliation(s)
- Y Zhang
- Department of Anatomy and Developmental Biology, University College London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
26
|
Deckner M, Lindholm T, Cullheim S, Risling M. Differential expression of tenascin-C, tenascin-R, tenascin/J1, and tenascin-X in spinal cord scar tissue and in the olfactory system. Exp Neurol 2000; 166:350-62. [PMID: 11085900 DOI: 10.1006/exnr.2000.7543] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The members of the tenascin family are involved in a number of developmental processes, mainly by their ability to regulate cell adhesion. We have here studied the distribution of mRNAs for tenascin-X, -C, and -R and the closely related molecule tenascin/J1 in the olfactory system and spinal cord. The olfactory bulb and nasal mucosa were studied during late embryonic and early postnatal development as well as in the adult. The spinal cord was studied during late embryonic development and after mechanical lesions. In the normal rat, the spinal cord and olfactory bulb displayed similar patterns of tenascin expression. Tenascin-C, tenascin-R, and tenascin/J1 were all expressed in the olfactory bulb and spinal cord during development, while tenascin/J1 was the only extensively expressed tenascin molecule in the adult. In both regions tenascin/J1 was expressed in both nonneuronal and neuronal cells. After a spinal cord lesion, mRNAs for tenascin-C, -X, -R, and/J1 were all upregulated and had their own specific spatial and temporal expression patterns. Thus, even if axonal outgrowth occurs to some extent both in the adult rat primary olfactory system and in spinal cord scar tissue after lesion, the tenascin expression patterns in these two situations are totally different.
Collapse
Affiliation(s)
- M Deckner
- Department of Neuroscience, Karolinska Institutet, Nobels väg 12a, Stockholm, S-171 77, Sweden
| | | | | | | |
Collapse
|
27
|
Abstract
An important biological consequence of the initial interactions between the cell surface and its extracellular environment is the diversity of cellular responses ranging from overt repulsion or avoidance reaction to stable adhesion or final positioning. It is now evident that positive and negative guiding mechanisms are equally relevant to normal pattern formation during development and decisive for the outcome of a regenerative process. In this context, the present review summarizes the knowledge about the extracellular matrix glycoprotein tenascin-R, a member of the tenascin gene family. In contrast to all other known family members, tenascin-R is exclusively expressed in the central nervous system of vertebrates by oligodendrocytes and neuronal subsets at later developmental stages and in adulthood. We focus on the glycoprotein's structure, tissue distribution and functional implications in the molecular control of axon targeting, neural cell adhesion, migration and differentiation during nervous system morphogenesis and pathology.
Collapse
Affiliation(s)
- P Pesheva
- Department of Nuclear Medicine, University of Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany.
| | | |
Collapse
|
28
|
Camborieux L, Julia V, Pipy B, Swerts JP. Respective roles of inflammation and axonal breakdown in the regulation of peripheral nerve hemopexin: an analysis in rats and in C57BL/Wlds mice. J Neuroimmunol 2000; 107:29-41. [PMID: 10808048 DOI: 10.1016/s0165-5728(00)00246-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have previously demonstrated that one of the peripheral nerve responses to injury is the overexpression of hemopexin (HPX). Here, we demonstrate that Wallerian degeneration is required for this response, since HPX does not increase in C57BL/Wlds mice, which display a severely impaired Wallerian degeneration. We also show that HPX synthesis is dramatically increased in macrophages during their activation or after IL-6 stimulation. However, IL-6-driven HPX overexpression occurs in vivo and in vitro in the absence of substantial macrophage invasion. We conclude that, after nerve injury, HPX overexpression occurs first in Schwann cells as a result of axotomy and is subsequently regulated by inflammation. Furthermore, our results and those already described suggest that IL-6, synthesized by the various cell types producing HPX, control nerve HPX expression via paracrine and autocrine mechanisms.
Collapse
Affiliation(s)
- L Camborieux
- Centre de Biologie du Développement, UMR CNRS 5547, Université Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | | | | | | |
Collapse
|
29
|
Becker T, Anliker B, Becker CG, Taylor J, Schachner M, Meyer RL, Bartsch U. Tenascin-R inhibits regrowth of optic fibers in vitro and persists in the optic nerve of mice after injury. Glia 2000; 29:330-46. [PMID: 10652443 DOI: 10.1002/(sici)1098-1136(20000215)29:4<330::aid-glia4>3.0.co;2-l] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tenascin-R, an extracellular matrix constituent expressed by oligodendrocytes and some neuronal cell types, may contribute to the inhibition of axonal regeneration in the adult central nervous system. Here we show that outgrowth of embryonic and adult retinal ganglion cell axons from mouse retinal explants is significantly reduced on homogeneous substrates of tenascin-R or a bacterially expressed tenascin-R fragment comprising the epidermal growth factor-like repeats (EGF-L). When both molecules are presented as a sharp substrate border, regrowing adult axons do not cross into the tenascin-R or EGF-L containing territory. All in vitro experiments were done in the presence of laminin, which strongly promotes growth of embryonic and adult retinal axons, suggesting that tenascin-R and EGF-L actively inhibit axonal growth. Contrary to the disappearance of tenascin-R from the regenerating optic nerve of salamanders (Becker et al., J Neurosci 19:813-827, 1999), the molecule remains present in the lesioned optic nerve of adult mice at levels similar to those in unlesioned control nerves for at least 63 days post-lesion (the latest time point investigated), as shown by immunoblot analysis and immunohistochemistry. In situ hybridization analysis revealed an increase in the number of cells expressing tenascin-R mRNA in the lesioned nerve. We conclude that, regardless of the developmental stage, growth of retinal ganglion cell axons is inhibited by tenascin-R and we suggest that the continued expression of the protein after an optic nerve crush may contribute to the failure of adult retinal ganglion cells to regenerate their axons in vivo.
Collapse
Affiliation(s)
- T Becker
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, Germany.
| | | | | | | | | | | | | |
Collapse
|