1
|
Kobayashi M, Kanbe F, Ishii R, Tsubouchi H, Hirai K, Miyasaka Y, Ohno T, Oda H, Ikeda S, Katoh H, Ichiyanagi K, Ishikawa A, Murai A, Horio F. C3H/HeNSlc mouse with low phospholipid transfer protein expression showed dyslipidemia. Sci Rep 2023; 13:13813. [PMID: 37620514 PMCID: PMC10449841 DOI: 10.1038/s41598-023-40917-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023] Open
Abstract
High serum levels of triglycerides (TG) and low levels of high-density lipoprotein cholesterol (HDL-C) increase the risk of coronary heart disease in humans. Herein, we first reported that the C3H/HeNSlc (C3H-S) mouse, a C3H/HeN-derived substrain, is a novel model for dyslipidemia. C3H-S showed hypertriglyceridemia and low total cholesterol (TC), HDL-C, and phospholipid (PL) concentrations. To identify the gene locus causing dyslipidemia in C3H-S, we performed genetic analysis. In F2 intercrosses between C3H-S mice and strains with normal serum lipids, the locus associated with serum lipids was identified as 163-168 Mb on chromosome 2. The phospholipid transfer protein (Pltp) gene was a candidate gene within this locus. Pltp expression and serum PLTP activity were markedly lower in C3H-S mice. Pltp expression was negatively correlated with serum TG and positively correlated with serum TC and HDL-C in F2 mice. Genome sequencing analysis revealed that an endogenous retrovirus (ERV) sequence called intracisternal A particle was inserted into intron 12 of Pltp in C3H-S. These results suggest that ERV insertion within Pltp causes aberrant splicing, leading to reduced Pltp expression in C3H-S. This study demonstrated the contribution of C3H-S to our understanding of the relationship between TG, TC, and PL metabolism via PLTP.
Collapse
Affiliation(s)
- Misato Kobayashi
- Department of Nutritional Sciences, Nagoya University of Arts and Sciences, 57 Takenoyama, Iwasaki-Cho, Nisshin, Aichi, 470-0196, Japan.
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan.
| | - Fumi Kanbe
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Reika Ishii
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Hiroki Tsubouchi
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Kana Hirai
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Yuki Miyasaka
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, Aichi, Japan
| | - Tamio Ohno
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, Aichi, Japan
| | - Hiroaki Oda
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Saiko Ikeda
- Department of Nutritional Sciences, Nagoya University of Arts and Sciences, 57 Takenoyama, Iwasaki-Cho, Nisshin, Aichi, 470-0196, Japan
| | - Hirokazu Katoh
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Kenji Ichiyanagi
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Akira Ishikawa
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Atsushi Murai
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Fumihiko Horio
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
- Department of Life Studies and Environmental Science, Nagoya Women's University, Aichi, Japan
| |
Collapse
|
2
|
Miyasaka Y, Kobayashi T, Gotoh N, Kuga M, Kobayashi M, Horio F, Hashimoto K, Kawabe T, Ohno T. Neonatal lethality of mouse A/J-7 SM consomic strain is caused by an insertion mutation in the Dchs1 gene. Mamm Genome 2023; 34:32-43. [PMID: 36434174 DOI: 10.1007/s00335-022-09966-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/19/2022] [Indexed: 11/27/2022]
Abstract
Homosomic mice of the A/J-7SM consomic mouse strain that introduced the entire chromosome 7 (Chr 7) of SM/J into the A/J strain exhibited neonatal lethality. We tentatively maintained segregating inbred strains (A/J-7ASM and A/J-7DSM) in which the central portion of Chr 7 was heterozygous for the A/J and SM/J strains, and the centromeric and telomeric sides of Chr 7 were homozygous for the SM/J strain, instead of the A/J-7SM strain. Based on the chromosomal constitution of Chr 7 in A/J-7ASM and A/J-7DSM mice, the causative gene for neonatal lethality in homosomic mice was suggested to be located within an approximately 1.620 Mb region between D7Mit125 (104.879 Mb) and D7Mit355 (106.499 Mb) on Chr 7. RT-PCR analysis revealed that homosomic mice lacked dachsous cadherin-related 1 (Dchs1), which is located within the D7Mit125 to D7Mit355 region and functions in the regulation of planar cell polarity. Screening for mutations in Dchs1 indicated that homosomic mice possessed an early transposable (ETn)-like sequence in intron 1 of Dchs1. Moreover, an allelism test between Dchs1 ETn-like-insertion alleles detected in homosomic mice and CRISPR/Cas9-induced Dchs1 deletion alleles revealed that Dchs1 is a causative gene for neonatal lethality in homosomic mice. Based on these results, we concluded that in the A/J-7SM strain, ETn-like elements were inserted into intron 1 of SM/J-derived Dchs1 during strain development, which dramatically reduced Dchs1 expression, thus resulting in neonatal lethality in homosomic mice. Additionally, it was suggested that the timing of lethality in Dchs1 mutant mice is influenced by the genetic background.
Collapse
Affiliation(s)
- Yuki Miyasaka
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan.
| | - Takeshi Kobayashi
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
| | - Naoya Gotoh
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
| | - Masako Kuga
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
| | - Misato Kobayashi
- Department of Nutritional Sciences, Nagoya University of Arts and Sciences, 57 Takenoyama, Iwasaki-Cho, Nisshin, Aichi, 470-0196, Japan
| | - Fumihiko Horio
- Department of Life Studies and Environmental Science, Nagoya Women's University, 3-40 Shioji-Cho, Mizuho-Ku, Nagoya, Aichi, 467-8610, Japan
| | - Katsunori Hashimoto
- Faculty of Medical Sciences, Shubun University, 6 Nikko-Cho, Ichinomiya, Aichi, 491-0938, Japan
| | - Tsutomu Kawabe
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Dikou-Minami, Higashi-Ku, Nagoya, Aichi, 461-8673, Japan
| | - Tamio Ohno
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan.
| |
Collapse
|
3
|
Kohrman D, Borges BC, Cassinotti L, Ji L, Corfas G. Axon-glia interactions in the ascending auditory system. Dev Neurobiol 2021; 81:546-567. [PMID: 33561889 PMCID: PMC9004231 DOI: 10.1002/dneu.22813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/25/2020] [Accepted: 02/05/2021] [Indexed: 11/09/2022]
Abstract
The auditory system detects and encodes sound information with high precision to provide a high-fidelity representation of the environment and communication. In mammals, detection occurs in the peripheral sensory organ (the cochlea) containing specialized mechanosensory cells (hair cells) that initiate the conversion of sound-generated vibrations into action potentials in the auditory nerve. Neural activity in the auditory nerve encodes information regarding the intensity and frequency of sound stimuli, which is transmitted to the auditory cortex through the ascending neural pathways. Glial cells are critical for precise control of neural conduction and synaptic transmission throughout the pathway, allowing for the precise detection of the timing, frequency, and intensity of sound signals, including the sub-millisecond temporal fidelity is necessary for tasks such as sound localization, and in humans, for processing complex sounds including speech and music. In this review, we focus on glia and glia-like cells that interact with hair cells and neurons in the ascending auditory pathway and contribute to the development, maintenance, and modulation of neural circuits and transmission in the auditory system. We also discuss the molecular mechanisms of these interactions, their impact on hearing and on auditory dysfunction associated with pathologies of each cell type.
Collapse
Affiliation(s)
- David Kohrman
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Beatriz C. Borges
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Luis Cassinotti
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Lingchao Ji
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Gabriel Corfas
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Shahsavani N, Kataria H, Karimi-Abdolrezaee S. Mechanisms and repair strategies for white matter degeneration in CNS injury and diseases. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166117. [PMID: 33667627 DOI: 10.1016/j.bbadis.2021.166117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
Abstract
White matter degeneration is an important pathophysiological event of the central nervous system that is collectively characterized by demyelination, oligodendrocyte loss, axonal degeneration and parenchymal changes that can result in sensory, motor, autonomic and cognitive impairments. White matter degeneration can occur due to a variety of causes including trauma, neurotoxic exposure, insufficient blood flow, neuroinflammation, and developmental and inherited neuropathies. Regardless of the etiology, the degeneration processes share similar pathologic features. In recent years, a plethora of cellular and molecular mechanisms have been identified for axon and oligodendrocyte degeneration including oxidative damage, calcium overload, neuroinflammatory events, activation of proteases, depletion of adenosine triphosphate and energy supply. Extensive efforts have been also made to develop neuroprotective and neuroregenerative approaches for white matter repair. However, less progress has been achieved in this area mainly due to the complexity and multifactorial nature of the degeneration processes. Here, we will provide a timely review on the current understanding of the cellular and molecular mechanisms of white matter degeneration and will also discuss recent pharmacological and cellular therapeutic approaches for white matter protection as well as axonal regeneration, oligodendrogenesis and remyelination.
Collapse
Affiliation(s)
- Narjes Shahsavani
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hardeep Kataria
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
5
|
Kwiecien JM, Dąbrowski W, Yaron JR, Zhang L, Delaney KH, Lucas AR. The Role of Astrogliosis in Formation of the Syrinx in Spinal Cord Injury. Curr Neuropharmacol 2021; 19:294-303. [PMID: 32691715 PMCID: PMC8033977 DOI: 10.2174/1570159x18666200720225222] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/09/2020] [Accepted: 07/16/2020] [Indexed: 12/28/2022] Open
Abstract
A massive localized trauma to the spinal cord results in complex pathologic events driven by necrosis and vascular damage which in turn leads to hemorrhage and edema. Severe, destructive and very protracted inflammatory response is characterized by infiltration by phagocytic macrophages of a site of injury which is converted into a cavity of injury (COI) surrounded by astroglial reaction mounted by the spinal cord. The tissue response to the spinal cord injury (SCI) has been poorly understood but the final outcome appears to be a mature syrinx filled with the cerebrospinal fluid with related neural tissue loss and permanent neurologic deficits. This paper reviews known pathologic mechanisms involved in the formation of the COI after SCI and discusses the integrative role of reactive astrogliosis in mechanisms involved in the removal of edema after the injury. A large proportion of edema fluid originating from the trauma and then from vasogenic edema related to persistent severe inflammation, may be moved into the COI in an active process involving astrogliosis and specifically over-expressed aquaporins.
Collapse
Affiliation(s)
- Jacek M. Kwiecien
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Wojciech Dąbrowski
- Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, ul. Jaczewskiego 8, Lublin 20-090 Poland
| | - Jordan R Yaron
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ, U.S.A
| | - Liqiang Zhang
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ, U.S.A
| | - Kathleen H. Delaney
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Alexandra R. Lucas
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ, U.S.A
| |
Collapse
|
6
|
Kwiecien JM. The Pathogenesis of Neurotrauma Indicates Targets for Neuroprotective Therapies. Curr Neuropharmacol 2021; 19:1191-1201. [PMID: 33550977 PMCID: PMC8719295 DOI: 10.2174/1570159x19666210125153308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/06/2020] [Accepted: 01/24/2021] [Indexed: 11/22/2022] Open
Abstract
The spinal cord injury (SCI) initiates an extraordinarily protracted disease with 3 phases; acute, inflammatory, and resolution that are restricted to the cavity of injury (COI) or arachnoiditis by a unique CNS reaction against the severity of destructive inflammation. While the severity of inflammation involving the white matter is fueled by a potently immunogenic activity of damaged myelin, its sequestration in the COI and its continuity with the cerebrospinal fluid of the subdural space allow anti-inflammatory therapeutics infused subdurally to inhibit phagocytic macrophage infiltration and thus provide neuroprotection. The role of astrogliosis in containing and ultimately in eliminating severe destructive inflammation post-trauma appears obvious but is not yet sufficiently understood to use in therapeutic neuroprotective and neuroregenerative strategies. An apparent antiinflammatory activity of reactive astrocytes is paralleled by their active role in removing excess edema fluid in blood-brain barrier damaged by inflammation. Recently elucidated pathogenesis of neurotrauma, including SCI, traumatic brain injury (TBI), and stroke, calls for the following principal therapeutic steps in its treatment leading to the recovery of neurologic function: (1) inhibition and elimination of destructive inflammation from the COI with accompanying reduction of vasogenic edema, (2) insertion into the COI of a functional bridge supporting the crossing of regenerating axons, (3) enabling regeneration of axons to their original synaptic targets by temporary safe removal of myelin in targeted areas of white matter, (4) in vivo, systematic monitoring of the consecutive therapeutic steps. The focus of this paper is on therapeutic step 1.
Collapse
Affiliation(s)
- Jacek M. Kwiecien
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Room HSC 1U22D, 1280 Main Street West, Hamilton, ON, L4S 4K1, Canada
| |
Collapse
|
7
|
Szpirer C. Rat models of human diseases and related phenotypes: a systematic inventory of the causative genes. J Biomed Sci 2020; 27:84. [PMID: 32741357 PMCID: PMC7395987 DOI: 10.1186/s12929-020-00673-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
The laboratory rat has been used for a long time as the model of choice in several biomedical disciplines. Numerous inbred strains have been isolated, displaying a wide range of phenotypes and providing many models of human traits and diseases. Rat genome mapping and genomics was considerably developed in the last decades. The availability of these resources has stimulated numerous studies aimed at discovering causal disease genes by positional identification. Numerous rat genes have now been identified that underlie monogenic or complex diseases and remarkably, these results have been translated to the human in a significant proportion of cases, leading to the identification of novel human disease susceptibility genes, helping in studying the mechanisms underlying the pathological abnormalities and also suggesting new therapeutic approaches. In addition, reverse genetic tools have been developed. Several genome-editing methods were introduced to generate targeted mutations in genes the function of which could be clarified in this manner [generally these are knockout mutations]. Furthermore, even when the human gene causing a disease had been identified without resorting to a rat model, mutated rat strains (in particular KO strains) were created to analyze the gene function and the disease pathogenesis. Today, over 350 rat genes have been identified as underlying diseases or playing a key role in critical biological processes that are altered in diseases, thereby providing a rich resource of disease models. This article is an update of the progress made in this research and provides the reader with an inventory of these disease genes, a significant number of which have similar effects in rat and humans.
Collapse
Affiliation(s)
- Claude Szpirer
- Université Libre de Bruxelles, B-6041, Gosselies, Belgium.
- , Waterloo, Belgium.
| |
Collapse
|
8
|
Abstract
As the systematic work on the pathogenesis of the white matter injury in the spinal cord models progresses, it becomes obvious that a severe and extraordinarily protracted, destructive inflammation follows the initial injury. Appropriate anti-inflammatory therapies of sufficient duration should not only inhibit but also lead to the elimination of this destructive inflammation, thus resulting in neuroprotection of the spinal cord tissue and a greater preservation of the neurologic function. While dexamethasone, a powerful, anti-inflammatory steroid analog administered continuously by subdural infusion for 7 days inhibited severe macrophage infiltration in the cavity of injury, the dose used was remarkably toxic. A 2-week-long infusion of lower doses of dexamethasone resulted in dose-dependent inhibition of macrophage infiltration and was better tolerated by the rats, but it became evident that a much longer duration of subdural administration of a powerful anti-inflammatory drug is required to eliminate myelin-rich, necrotic debris from the cavity and synthetic steroids such as dexamethasone, and methylprednisolone may be too toxic for this application. Therefore, nontoxic but powerful anti-inflammatory compounds are required for neuroprotective treatment of the spinal cord injury (SCI) and also brain trauma and stroke where the massive injury to the white matter occurs. Serpins have been associated with neurological damage. The mammalian serpin neuroserpin (SERPINI1) is reported to act in a protective manner after cerebrospinal infarction. The serine protease, tissue-type plasminogen activator (tPA), and the serpin plasminogen activator inhibitor (PAI-1, SERPINE1) are both upregulated at sites of central nervous system damage. In preliminary studies, subdural infusion of the myxomaviral serpin, Serp-1, resulted in the powerful inhibition of the macrophage infiltration of the cavity of injury, comparable to the inhibition by high dose of dexamethasone that has proven to be unduly toxic. Nontoxic, yet powerful neuroprotective, anti-inflammatory effects of Serp-1 may indicate this serpin protein as a potential attractive compound to treat SCI and similar syndromes involving massive injury to the white matter such as brain trauma and stroke. Novel methods of drug delivery, chronic subdural infusion, and novel analytic methods to measure the effectiveness of the neuroprotective serpin treatments are discussed in this chapter.
Collapse
Affiliation(s)
- Jacek M Kwiecien
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.
- Department of Clinical Pathomorphology, Medical University of Lublin, Lublin, Poland.
| |
Collapse
|
9
|
Stassart RM, Möbius W, Nave KA, Edgar JM. The Axon-Myelin Unit in Development and Degenerative Disease. Front Neurosci 2018; 12:467. [PMID: 30050403 PMCID: PMC6050401 DOI: 10.3389/fnins.2018.00467] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/19/2018] [Indexed: 12/15/2022] Open
Abstract
Axons are electrically excitable, cable-like neuronal processes that relay information between neurons within the nervous system and between neurons and peripheral target tissues. In the central and peripheral nervous systems, most axons over a critical diameter are enwrapped by myelin, which reduces internodal membrane capacitance and facilitates rapid conduction of electrical impulses. The spirally wrapped myelin sheath, which is an evolutionary specialisation of vertebrates, is produced by oligodendrocytes and Schwann cells; in most mammals myelination occurs during postnatal development and after axons have established connection with their targets. Myelin covers the vast majority of the axonal surface, influencing the axon's physical shape, the localisation of molecules on its membrane and the composition of the extracellular fluid (in the periaxonal space) that immerses it. Moreover, myelinating cells play a fundamental role in axonal support, at least in part by providing metabolic substrates to the underlying axon to fuel its energy requirements. The unique architecture of the myelinated axon, which is crucial to its function as a conduit over long distances, renders it particularly susceptible to injury and confers specific survival and maintenance requirements. In this review we will describe the normal morphology, ultrastructure and function of myelinated axons, and discuss how these change following disease, injury or experimental perturbation, with a particular focus on the role the myelinating cell plays in shaping and supporting the axon.
Collapse
Affiliation(s)
- Ruth M. Stassart
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
- Department of Neuropathology, University Medical Center Leipzig, Leipzig, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | - Julia M. Edgar
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
10
|
Barron T, Saifetiarova J, Bhat MA, Kim JH. Myelination of Purkinje axons is critical for resilient synaptic transmission in the deep cerebellar nucleus. Sci Rep 2018; 8:1022. [PMID: 29348594 PMCID: PMC5773691 DOI: 10.1038/s41598-018-19314-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/29/2017] [Indexed: 11/08/2022] Open
Abstract
The roles of myelin in maintaining axonal integrity and action potential (AP) propagation are well established, but its role in synapse maintenance and neurotransmission remains largely understudied. Here, we investigated how Purkinje axon myelination regulates synaptic transmission in the Purkinje to deep cerebellar nuclei (DCN) synapses using the Long Evans Shaker (LES) rat, which lacks compact myelin and thus displays severe locomotion deficits. DCN neurons fired spontaneous action potentials (APs), whose frequencies were dependent on the extent of myelin. In the LES cerebellum with severe myelin deficiency, DCN neurons were hyper-excitable, exhibiting spontaneous AP firing at a much higher frequency compared to those from wild type (LE) and heterozygote (LEHet) rats. The hyper-excitability in LES DCN neurons resulted from reduced inhibitory GABAergic inputs from Purkinje cells to DCN neurons. Corresponding with functional alterations including failures of AP propagation, electron microscopic analysis revealed anatomically fewer active zones at the presynaptic terminals of Purkinje cells in both LEHet and LES rats. Taken together, these studies suggest that proper axonal myelination critically regulates presynaptic terminal structure and function and directly impacts synaptic transmission in the Purkinje cell-DCN cell synapse in the cerebellum.
Collapse
Affiliation(s)
- Tara Barron
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, Texas, 78229, USA
| | - Julia Saifetiarova
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, Texas, 78229, USA
| | - Manzoor A Bhat
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, Texas, 78229, USA
| | - Jun Hee Kim
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, Texas, 78229, USA.
| |
Collapse
|
11
|
Enhanced Expression of Trib3 during the Development of Myelin Breakdown in dmy Myelin Mutant Rats. PLoS One 2016; 11:e0168250. [PMID: 27977799 PMCID: PMC5158197 DOI: 10.1371/journal.pone.0168250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/28/2016] [Indexed: 12/02/2022] Open
Abstract
The demyelination (dmy) rat exhibits hind limb ataxia and severe myelin breakdown in the central nervous system. The causative gene of dmy rats is the MRS2 magnesium transporter gene. Tribbles homolog 3 (Trib3) is a pseudokinase molecule that modifies certain signal pathways, and its expression is increased in response to various stresses. Here we sought to clarify the mechanism of myelin breakdown by focusing Trib3, which is remarkably up-regulated in dmy rats. The expression of Trib3 mRNA was significantly increased at 4, 5, 6, 7 and 8 weeks of age in the dmy rats, prior to the prominent myelin breakdown between 7 and 10 weeks of age. The expression level of Trib3 was increased concurrently with the progression of the clinical and pathological conditions in the dmy rats. Double immunofluorescence demonstrated that TRIB3 was mainly expressed in neurons and oligodendrocytes and localized in the Golgi apparatus. Our findings indicate that Trib3 may be associated with the pathogenic mechanism of dmy rats.
Collapse
|
12
|
The impact of erdosteine on cisplatin-induced ototoxicity: a proteomics approach. Eur Arch Otorhinolaryngol 2016; 274:1365-1374. [DOI: 10.1007/s00405-016-4399-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 11/18/2016] [Indexed: 12/20/2022]
|
13
|
Berret E, Kim SE, Lee SY, Kushmerick C, Kim JH. Functional and structural properties of ion channels at the nerve terminal depends on compact myelin. J Physiol 2016; 594:5593-609. [PMID: 27168396 DOI: 10.1113/jp272205] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/04/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS In the present study, we document the role of compact myelin in regulating the structural and functional properties of ion channels at the nerve terminals, using electrophysiology, dynamic Na(+) imaging and immunohistochemistry. The subcellular segregation of Na(+) channel expression and intracellular Na(+) dynamics at the heminode and terminal was lost in the dysmyelinated axon from Long-Evans shaker rats, which lack compact myelin. In Long-Evans shaker rats, loss of the Nav β4 subunit specifically at the heminode reduced resurgent and persistent Na(+) currents, whereas K(+) channel expression and currents were increased. The results of the present study suggest that there is a specific role for compact myelin in dictating protein expression and function at the axon heminode and in regulating excitability of the nerve terminal. ABSTRACT Axon myelination increases the conduction velocity and precision of action potential propagation. Although the negative effects of demyelination are generally attributed to conduction failure, accumulating evidence suggests that myelination also regulates the structural properties and molecular composition of the axonal membrane. In the present study, we investigated how myelination affects ion channel expression and function, particularly at the last axon heminode before the nerve terminal, which regulates the presynaptic excitability of the nerve terminal. We compared the structure and physiology of normal axons and those of the Long-Evans shaker (LES) rat, which lacks compact myelin. The normal segregation of Na(+) channel expression and dynamics at the heminode and terminal was lost in the LES rat. Specifically, NaV -α subunits were dispersed and NaV β4 subunit was absent, whereas the density of K(+) channels was increased at the heminode. Correspondingly, resurgent and persistent Na(+) currents were reduced and K(+) current was increased. Taken together, these data suggest a specific role for compact myelin in the orchestration of ion channel expression and function at the axon heminode and in regulating excitability of the nerve terminal.
Collapse
Affiliation(s)
| | | | | | | | - Jun Hee Kim
- Department of Physiology. .,Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, USA.
| |
Collapse
|
14
|
Duncan ID, Radcliff AB. Inherited and acquired disorders of myelin: The underlying myelin pathology. Exp Neurol 2016; 283:452-75. [PMID: 27068622 PMCID: PMC5010953 DOI: 10.1016/j.expneurol.2016.04.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 01/26/2023]
Abstract
Remyelination is a major therapeutic goal in human myelin disorders, serving to restore function to demyelinated axons and providing neuroprotection. The target disorders that might be amenable to the promotion of this repair process are diverse and increasing in number. They range primarily from those of genetic, inflammatory to toxic origin. In order to apply remyelinating strategies to these disorders, it is essential to know whether the myelin damage results from a primary attack on myelin or the oligodendrocyte or both, and whether indeed these lead to myelin breakdown and demyelination. In some disorders, myelin sheath abnormalities are prominent but demyelination does not occur. This review explores the range of human and animal disorders where myelin pathology exists and focusses on defining the myelin changes in each and their cause, to help define whether they are targets for myelin repair therapy. We reviewed myelin disorders of the CNS in humans and animals. Myelin damage results from primary attack on the oligodendrocyte or myelin sheath. All major categories of disease can affect CNS myelin. Myelin vacuolation is common, yet does not always result in demyelination.
Collapse
Affiliation(s)
- Ian D Duncan
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States.
| | - Abigail B Radcliff
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
15
|
Anaby D, Duncan ID, Smith CM, Cohen Y. q-Space diffusion MRI (QSI) of the disease progression in the spinal cords of the Long Evans shaker: diffusion time and apparent anisotropy. NMR IN BIOMEDICINE 2013; 26:1879-86. [PMID: 24123305 PMCID: PMC4051321 DOI: 10.1002/nbm.3043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 09/02/2013] [Accepted: 09/04/2013] [Indexed: 05/26/2023]
Abstract
q-Space diffusion MRI (QSI) was used to study the spinal cords of Long Evans shaker (les) rats, a model of dysmyelination, and their age-matched controls at different maturation stages. Diffusion was measured parallel and perpendicular to the fibers of the spinal cords of the two groups and at different diffusion times. The results showed that QSI is able to detect the dysmyelination process that occurs in this model in the different stages of the disease. The differences in the diffusion characteristics of the spinal cords of the two groups were found to be larger when the diffusion time was increased from 22 to 100 ms. We found that the radial mean displacement is a much better parameter than the QSI fractional anisotropy (FA) to document the differences between the two groups. We observed that the degree of myelination affects the diffusion characteristics of the tissues, but has a smaller effect on FA. All of the extracted diffusion parameters that are affected by the degree of myelination are affected in a diffusion time-dependent fashion, suggesting that the terms apparent anisotropy, apparent fractional anisotropy and even apparent root-mean-square displacement (rmsD) are more appropriate.
Collapse
Affiliation(s)
- Debbie Anaby
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ian D. Duncan
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Chelsey M. Smith
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Yoram Cohen
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
16
|
Kim SE, Turkington K, Kushmerick C, Kim JH. Central dysmyelination reduces the temporal fidelity of synaptic transmission and the reliability of postsynaptic firing during high-frequency stimulation. J Neurophysiol 2013; 110:1621-30. [PMID: 23843435 DOI: 10.1152/jn.00117.2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Auditory brain stem circuits rely on fast, precise, and reliable neurotransmission to process auditory information. To determine the fundamental role of myelination in auditory brain stem function, we examined the evoked auditory brain stem response (ABR) from the Long Evans shaker (LES) rat, which lacks myelin due to a genetic deletion of myelin basic protein. In control rats, the ABR evoked by a click consisted of five well-defined waves (denoted waves I-V). In LES rats, waves I, IV, and V were present, but waves II and III were undetectable, indicating disrupted function in the earliest stages of central nervous system auditory processing. In addition, the developmental shortening of the interval between waves I and IV that normally occurs in control rats was arrested and resulted in a significant increase in the central conduction time in LES rats. In brain stem slices, action potential transmission between the calyx of Held terminals and the medial nucleus of the trapezoid body (MNTB) neurons was delayed and less reliable in LES rats, although the resting potential, threshold, input resistance, and length of the axon initial segment of the postsynaptic MNTB neurons were normal. The amplitude of glutamatergic excitatory postsynaptic currents (EPSCs) and the degree of synaptic depression during high-frequency stimulation were not different between LES rats and controls, but LES rats exhibited a marked slow component to the EPSC decay and a much higher rate of presynaptic failures. Together, these results indicate that loss of myelin disrupts brain stem auditory processing, increasing central conduction time and reducing the reliability of neurotransmission.
Collapse
Affiliation(s)
- Sei Eun Kim
- The Department of Physiology and the Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, Texas; and
| | | | | | | |
Collapse
|
17
|
Anaby D, Duncan ID, Smith CM, Cohen Y. White matter maturation in the brains of Long Evans shaker myelin mutant rats by ex-vivo QSI and DTI. Magn Reson Imaging 2013; 31:1097-104. [PMID: 23659769 DOI: 10.1016/j.mri.2013.03.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/17/2013] [Accepted: 03/17/2013] [Indexed: 11/15/2022]
Abstract
The brains of Long Evans shaker (les) rats, a model of dysmyelination, and their age- matched controls were studied by ex-vivo q-space diffusion imaging (QSI) and diffusion tensor imaging (DTI). The QSI and DTI indices were computed from the same acquisition. The les and the control brains were studied at different stages of maturation and disease progression. The mean displacement, the probability for zero displacement and kurtosis were computed from QSI data while the fractional anisotropy (FA) and the eigenvalues were computed from DTI. It was found that all QSI indices detect the les pathology, at all stages of maturation, while only some of the DTI indices could detect the les pathology. The QSI mean displacement was larger in the les group as compared with their age-matched controls while the probability for zero displacement and the kurtosis were both lower all indicating higher degree of restriction in the control brains. Since all the DTI eigenvalues were higher in the les brains as compared to controls, the less efficient DTI measure for discerning the les pathology was found to be the FA. Clearly, the most sensitive DTI parameter to the les pathology is λ3, i.e., the minimal diffusivity. Since the QSI and DTI data were obtained from the same acquisition, despite the somewhat higher SNR of the QSI data compared to the DTI data, it seems that the higher diagnostic capacity of the QSI data in this experimental model of dysmyelination, originates mainly from the higher diffusing weighting of the QSI data.
Collapse
Affiliation(s)
- Debbie Anaby
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | | | | |
Collapse
|
18
|
Duncan ID, Kondo Y, Zhang SC. The myelin mutants as models to study myelin repair in the leukodystrophies. Neurotherapeutics 2011; 8:607-24. [PMID: 21979830 PMCID: PMC3250297 DOI: 10.1007/s13311-011-0080-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The leukodystrophies are rare and serious genetic disorders of the central nervous system that primarily affect children who frequently die early in life or have significantly delayed motor and mental milestones that result in long-term disability. Although with some of these disorders, early intervention with bone marrow or cord blood transplantation has been proven useful, it has not yet been determined that such therapies promote myelin repair of the central nervous system. Research on experimental therapies aimed at myelin repair is aided by the ability to test cell replacement strategies in genetic models in which the mutations and neuropathology match the human disorder. Thus, models exist of Pelizaeus-Merzbacher disease and the lysosomal storage disorder, Krabbe disease, which reflect the clinical and pathological course of the human disorders. Collectively, animals with mutations in myelin genes are called the myelin mutants, and they include rodent models such as the shiverer mouse that have been extensively used to study myelination by exogenous cell transplantation. These studies have encompassed many permutations of the age of the recipient, type of transplanted cell, site of engraftment, and so forth, and they offer hope that the scaling up of myelin produced by transplanted cells will have clinical significance in treating patients. Here we review these models and discuss their relative importance and use in such translational approaches. We discuss how grafts are identified and functional outcomes are measured. Finally, we briefly discuss the cells that have been successfully transplanted, which may be used in future clinical trials.
Collapse
Affiliation(s)
- Ian D Duncan
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
| | | | | |
Collapse
|
19
|
Olsson B, Zetterberg H, Hampel H, Blennow K. Biomarker-based dissection of neurodegenerative diseases. Prog Neurobiol 2011; 95:520-34. [PMID: 21524681 DOI: 10.1016/j.pneurobio.2011.04.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 04/06/2011] [Accepted: 04/10/2011] [Indexed: 12/12/2022]
Abstract
The diagnosis of neurodegenerative diseases within neurology and psychiatry are hampered by the difficulty in getting biopsies and thereby validating the diagnosis by pathological findings. Biomarkers for other types of disease have been readily adopted into the clinical practice where for instance troponins are standard tests when myocardial infarction is suspected. However, the use of biomarkers for neurodegeneration has not been fully incorporated into the clinical routine. With the development of cerebrospinal fluid (CSF) biomarkers that reflect pathological events within the central nervous system (CNS), important clinical diagnostic tools are becoming available. This review summarizes the most promising biomarker candidates that may be used to monitor different types of neurodegeneration and protein inclusions, as well as different types of metabolic changes, in living patients in relation to the clinical phenotype and disease progression over time. Our aim is to provide the reader with an updated lexicon on currently available biomarker candidates, how far they have come in development and how well they reflect pathogenic processes in different neurodegenerative diseases. Biomarkers for specific pathogenetic processes would also be valuable tools both to study disease pathogenesis directly in patients and to identify and monitor the effect of novel treatment strategies.
Collapse
Affiliation(s)
- Bob Olsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, S-431 80 Mölndal, Sweden.
| | | | | | | |
Collapse
|
20
|
Kwiecien JM. Cellular compensatory mechanisms in the CNS of dysmyelinated rats. Comp Med 2010; 60:205-217. [PMID: 20579436 PMCID: PMC2890396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 01/12/2010] [Accepted: 01/31/2010] [Indexed: 05/29/2023]
Abstract
Loss or absolute lack of myelin in the CNS results in remarkable compensation at the cellular level. In this study on the natural progression of neuropathology in the CNS in 2 related but distinct long-lived dysmyelinated rats, total lack of myelin was associated with remarkable glial cell proliferation and ineffective myelinating activity throughout life in Long Evans Bouncer (LE-bo) rats; conversely, in Long Evans Shaker (LES) rats, futile myelinating activity ceased when rats were advanced in age. Progressively severe astrogliosis separates individual axons from each other and coincides with widespread, abundant axonal sprouting throughout the life in both rat strains. Severely dysmyelinated Long Evans rats can serve as excellent models to elucidate the cellular and molecular mechanisms of neuroglial compensation to lack or loss of myelin in vivo and to study axonal plasticity in the adult demyelinated CNS.
Collapse
Affiliation(s)
- Jacek M Kwiecien
- Department of Pathology and Molecular Medicine and Department of Surgery, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
21
|
Myelin proteomics: molecular anatomy of an insulating sheath. Mol Neurobiol 2009; 40:55-72. [PMID: 19452287 PMCID: PMC2758371 DOI: 10.1007/s12035-009-8071-2] [Citation(s) in RCA: 218] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 04/14/2009] [Indexed: 12/12/2022]
Abstract
Fast-transmitting vertebrate axons are electrically insulated with multiple layers of nonconductive plasma membrane of glial cell origin, termed myelin. The myelin membrane is dominated by lipids, and its protein composition has historically been viewed to be of very low complexity. In this review, we discuss an updated reference compendium of 342 proteins associated with central nervous system myelin that represents a valuable resource for analyzing myelin biogenesis and white matter homeostasis. Cataloging the myelin proteome has been made possible by technical advances in the separation and mass spectrometric detection of proteins, also referred to as proteomics. This led to the identification of a large number of novel myelin-associated proteins, many of which represent low abundant components involved in catalytic activities, the cytoskeleton, vesicular trafficking, or cell adhesion. By mass spectrometry-based quantification, proteolipid protein and myelin basic protein constitute 17% and 8% of total myelin protein, respectively, suggesting that their abundance was previously overestimated. As the biochemical profile of myelin-associated proteins is highly reproducible, differential proteome analyses can be applied to material isolated from patients or animal models of myelin-related diseases such as multiple sclerosis and leukodystrophies.
Collapse
|
22
|
White R, Gonsior C, Krämer-Albers EM, Stöhr N, Hüttelmaier S, Trotter J. Activation of oligodendroglial Fyn kinase enhances translation of mRNAs transported in hnRNP A2-dependent RNA granules. ACTA ACUST UNITED AC 2008; 181:579-86. [PMID: 18490510 PMCID: PMC2386098 DOI: 10.1083/jcb.200706164] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Central nervous system myelination requires the synthesis of large amounts of myelin basic protein (MBP) at the axon–glia contact site. MBP messenger RNA (mRNA) is transported in RNA granules to oligodendroglial processes in a translationally silenced state. This process is regulated by the trans-acting factor heterogeneous nuclear ribonucleoprotein (hnRNP) A2 binding to the cis-acting A2 response element (A2RE). Release of this repression of MBP mRNA translation is thus essential for myelination. Mice deficient in the Src family tyrosine kinase Fyn are hypomyelinated and contain reduced levels of MBP. Here, we identify hnRNP A2 as a target of activated Fyn in oligodendrocytes. We show that active Fyn phosphorylates hnRNP A2 and stimulates translation of an MBP A2RE–containing reporter construct. Neuronal adhesion molecule L1 binding to oligodendrocytes results in Fyn activation, which leads to an increase in hnRNP A2 phosphorylation. These results suggest that Fyn kinase activation results in the localized translation of MBP mRNA at sites of axon–glia contact and myelin deposition.
Collapse
Affiliation(s)
- Robin White
- Molecular Cell Biology, Department of Biology, Johannes Gutenberg University of Mainz, 55128 Mainz, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Izawa T, Takenaka S, Ihara H, Kotani T, Yamate J, Franklin RJ, Kuwamura M. Cellular responses in the spinal cord during development of hypomyelination in the mv rat. Brain Res 2008; 1195:120-9. [DOI: 10.1016/j.brainres.2007.12.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 12/10/2007] [Accepted: 12/12/2007] [Indexed: 10/22/2022]
|
24
|
McPhail LT, Borisoff JF, Tsang B, Hwi LPR, Kwiecien JM, Ramer MS. Protracted myelin clearance hinders central primary afferent regeneration following dorsal rhizotomy and delayed neurotrophin-3 treatment. Neurosci Lett 2007; 411:206-11. [PMID: 17123713 DOI: 10.1016/j.neulet.2006.09.076] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2006] [Revised: 09/08/2006] [Accepted: 09/08/2006] [Indexed: 01/05/2023]
Abstract
Regeneration within or into the CNS is thwarted by glial inhibition at the site of a spinal cord injury and at the dorsal root entry zone (DREZ), respectively. At the DREZ, injured axons and their distal targets are separated by degenerating myelin and an astrocytic glia limitans. The different glial barriers to regeneration following dorsal rhizotomy are temporally and spatially distinct. The more peripheral astrocytic barrier develops first, and is surmountable by neurotrophin-3 (NT-3) treatment; the more central myelin-derived barrier, which prevents dorsal horn re-innervation by NT-3-treated axons, becomes significant only after the onset of myelin degeneration. Here we test the hypothesis that in the presence of NT-3, axonal regeneration is hindered by myelin degeneration products. To do so, we used the Long Evans Shaker (LES) rat, in which oligodendrocytes do not make CNS myelin, but do produce myelin-derived inhibitory proteins. We show that delaying NT-3 treatment for 1 week in normal (LE) rats, while allowing axonal penetration of the glia limitans and growth within degenerating myelin, results in misdirected regeneration with axons curling around presumptive degenerating myelin ovoids within the CNS compartment of the dorsal root. In contrast, delaying NT-3 treatment in LES rats resulted in straighter, centrally-directed regenerating axons. These results indicate that regeneration may be best optimized through a combination of neurotrophin treatment plus complete clearance of myelin debris.
Collapse
Affiliation(s)
- Lowell T McPhail
- ICORD (International Collaboration on Repair Discoveries), The University of British Columbia, 6270 University Boulevard, Vancouver, BC, Canada V6T 1Z4
| | | | | | | | | | | |
Collapse
|
25
|
Vaurs-Barriere C, Bonnet-Dupeyron MN, Combes P, Gauthier-Barichard F, Reveles XT, Schiffmann R, Bertini E, Rodriguez D, Vago P, Armour JAL, Saugier-Veber P, Frebourg T, Leach RJ, Boespflug-Tanguy O. Golli-MBP copy number analysis by FISH, QMPSF and MAPH in 195 patients with hypomyelinating leukodystrophies. Ann Hum Genet 2006; 70:66-77. [PMID: 16441258 DOI: 10.1111/j.1529-8817.2005.00208.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The inherited disorders of CNS myelin formation represent a heterogeneous group of leukodystrophies. The proteolipoprotein (PLP1) gene has been implicated in two X-linked forms, Pelizaeus-Merzbacher disease (PMD) and spastic paraplegia type 2, and the gap junction protein alpha12 (GJA12) gene in a recessive form of PMD. The myelin basic protein (MBP) gene, which encodes the second most abundant CNS myelin protein after PLP1, presents rearrangements in hypomyelinating murine mutants and is always included in the minimal region deleted in 18q- patients with an abnormal hypomyelination pattern on cerebral MRI. In this study, we looked at the genomic copy number at the Golli-MBP locus in 195 patients with cerebral MRI suggesting a myelin defect, who do not have PLP1 mutation. Although preliminary results obtained by FISH suggested the duplication of Golli-MBP in 3 out of 10 patients, no abnormal gene quantification was found using Quantitative Multiplex PCR of Short Fluorescent fragments (QMPSF), Multiplex Amplifiable Probe Hybridization (MAPH), or another FISH protocol using directly-labelled probes. Pitfalls and interest in these different techniques to detect duplication events are emphasised. Finally, the study of this large cohort of patients suggests that Golli-MBP deletion or duplication is rarely involved in inherited defects of myelin formation.
Collapse
Affiliation(s)
- C Vaurs-Barriere
- INSERM U 384, Faculté de Médecine, Place Henri Dunant, 63000 Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Campagnoni AT, Skoff RP. The pathobiology of myelin mutants reveal novel biological functions of the MBP and PLP genes. Brain Pathol 2006; 11:74-91. [PMID: 11145205 PMCID: PMC8098301 DOI: 10.1111/j.1750-3639.2001.tb00383.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Substantial biological data indicate that the myelin basic protein (MBP) and myelin proteolipid protein (PLP/DM20) genes produce products with functions beyond that of serving as myelin structural proteins. Much of this evidence comes from studies on naturally-occurring and man-made mutations of these genes in mice and other species. This review focuses upon recent evidence showing the existence of other products of these genes that may account for some of these other functions, and recent studies providing evidence for alternative biological functions of PLP/DM20. The MBP and PLP/DM20 genes each encode the classic MBP and PLP isoforms, as well as a second family of proteins that are not involved in myelin structure. The biological roles of these other products of the genes are becoming clarified. The non-classic MBP gene products appear to be components of transcriptional complexes in the nucleus, and they also may be involved in signaling pathways in T-cells and in neural cells. The non-classic PLP/DM20 gene products appear to be components of intracellular transport vesicles in oligodendrocytes. There is evidence for other functions of the classic PLP/DM20 proteins, including a role in neural cell death mechanisms, autocrine and paracrine regulation of oligodendrocytes and neurons, intracellular transport and oligodendrocyte migration.
Collapse
Affiliation(s)
- A T Campagnoni
- Neuropsychiatric Institute, UCLA School of Medicine, 90024, USA.
| | | |
Collapse
|
27
|
Kuwamura M, Kanehara T, Tokuda S, Kumagai D, Yamate J, Kotani T, Nakane Y, Kuramoto T, Serikawa T. Immunohistochemical and morphometrical studies on myelin breakdown in the demyelination (dmy) mutant rat. Brain Res 2006; 1022:110-6. [PMID: 15353220 DOI: 10.1016/j.brainres.2004.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2004] [Indexed: 10/26/2022]
Abstract
The demyelination (dmy) rat is a unique mutant exhibiting severe myelin breakdown in the central nervous system (CNS). In this study, we conducted immunohistochemical and morphometrical investigations in the dmy rat. From around 6 weeks of age, the affected rats developed ataxia especially in the hindlimbs. Afterwards, ataxia worsened rapidly, resulting in complete paralysis of the hindlimbs and recumbency. Histopathology at 7 to 10 weeks of age revealed myelin destruction throughout the white matter of the CNS in the dmy rats. The most severely affected lesions were distributed in the corpus callosum, capsula interna, striatum, subcortical white matter, cerebellar peduncle, and ventral and lateral parts of the spinal cord. Immunohistochemistry demonstrated prominent astrogliosis and many ED-1 positive macrophages in the myelin-destructed areas. Until the 4th week, no significant differences in myelin thickness and fiber diameter were found between dmy and control rats. However, from 5 weeks of age, myelin thickness of residual myelinated fibers in dmy rats became significantly less than that in controls. These data indicated that the dmy phenotype shows a prolonged period of myelin destruction, suggesting that dmy mutation affects the adequate maintenance of myelin.
Collapse
Affiliation(s)
- Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Duchesne A, Eggen A. Radiation hybrid mapping of genes and newly identified microsatellites in candidate regions for bovine arthrogryposis-palatoschisis and progressive ataxia based on comparative data from man, mouse and rat. J Anim Breed Genet 2005; 122 Suppl 1:28-35. [PMID: 16130454 DOI: 10.1111/j.1439-0388.2005.00493.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A comparative pathology and mapping strategy was used to initiate a study on two bovine genetic diseases: arthrogryposis-palatoschisis and progressive ataxia, which affect mainly Charolais cattle. Bibliographic studies provided information on the pathology of these diseases, which helped to define similar diseases in other species. Animals affected by bovine arthrogryposis-palatoschisis display similar symptoms to those of muscular dysgenesis, mouse mutants and animals with progressive ataxia to those of Long Evans Shaker rat mutants. Candidate regions are respectively human chromosome 1q32 (BTA16) containing the gene CACNA1S and human chromosome 18q23 (BTA24) containing the gene myelin basic protein (MBP). Primer pairs were designed for 15 loci around each candidate gene, in a region of about 20 megabases and were used to screen a bovine Bacterial Artificial Chromosome (BAC) library. Eighteen microsatellites were found in the identified BAC clones, 11 on BTA24 and seven on BTA16. The genes and microsatellites were mapped by radiation hybrid (RH) analysis and a RH map was obtained for each region with 18 new localizations on BTA16 and 23 on BTA24. Comparative human-bovine analysis of the MBP region shows a good conservation of gene order while that of the CACNA1S region shows several breakpoints.
Collapse
Affiliation(s)
- A Duchesne
- Laboratoire de Génétique biochimique et de Cytogénétique, INRA-CRJ, Jouy-en-Josas, France
| | | |
Collapse
|
29
|
Eftekharpour E, Karimi-Abdolrezaee S, Sinha K, Velumian AA, Kwiecien JM, Fehlings MG. Structural and functional alterations of spinal cord axons in adult Long Evans Shaker (LES) dysmyelinated rats. Exp Neurol 2005; 193:334-49. [PMID: 15869936 DOI: 10.1016/j.expneurol.2005.01.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2004] [Revised: 01/07/2005] [Accepted: 01/19/2005] [Indexed: 12/20/2022]
Abstract
Abnormal formation or loss of myelin is a distinguishing feature of many neurological disorders and contributes to the pathobiology of neurotrauma. In this study we characterize the functional and molecular changes in CNS white matter in Long Evans Shaker (LES) rats. These rats have a spontaneous mutation of the gene encoding myelin basic protein which results in severe dysmyelination of the central nervous system (CNS), providing a unique model for demyelinating/dysmyelinating disorders. To date, the functional and molecular changes in CNS white matter in this model are not well understood. We have used in vivo somatosensory evoked potential (SSEP), in vitro compound action potential (CAP) recording in isolated dorsal columns, confocal immunohistochemistry, Western blotting and real-time PCR to examine the electrophysiological, molecular and cellular changes in spinal cord white matter in LES rats. We observed that dysmyelination is associated with dispersed labeling of Kv1.1 and Kv1.2 K+ channel subunits, as well as Caspr, a protein normally confined to paranodes, along the LES rat spinal cord axons. Abnormal electrophysiological properties including attenuation of CAP amplitude and conduction velocity, high frequency conduction failure and enhanced sensitivity to K+ channel blockers 4-aminopyridine and dendrotoxin-I were observed in spinal cord axons from LES rats. Our results in LES rats clarify some of the key molecular, cellular and functional consequences of dysmyelination and myelin-axon interactions. Further understanding of these issues in this model could provide critical insights for neurological disorders characterized by demyelination.
Collapse
MESH Headings
- Action Potentials/drug effects
- Action Potentials/physiology
- Action Potentials/radiation effects
- Analysis of Variance
- Animals
- Axons/metabolism
- Axons/physiology
- Blotting, Western/methods
- Cell Adhesion Molecules, Neuronal/genetics
- Cell Adhesion Molecules, Neuronal/metabolism
- Dose-Response Relationship, Radiation
- Electric Stimulation/methods
- Evoked Potentials, Somatosensory/physiology
- Immunohistochemistry/methods
- In Vitro Techniques
- Kv1.1 Potassium Channel
- Kv1.2 Potassium Channel
- Myelin Basic Protein/genetics
- Myelin Basic Protein/metabolism
- Neural Conduction/physiology
- Neural Conduction/radiation effects
- Neurofilament Proteins/metabolism
- Peptides/pharmacology
- Potassium Channel Blockers/pharmacology
- Potassium Channels, Voltage-Gated/genetics
- Potassium Channels, Voltage-Gated/metabolism
- Pyrimidines/pharmacology
- RNA, Messenger/biosynthesis
- Rats
- Rats, Long-Evans
- Rats, Mutant Strains/genetics
- Rats, Mutant Strains/physiology
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Spinal Cord/drug effects
- Spinal Cord/metabolism
- Spinal Cord/physiopathology
- Spinal Cord/radiation effects
Collapse
Affiliation(s)
- Eftekhar Eftekharpour
- Division of Cell and Molecular Biology, Toronto Western Research Institute, Krembil Neuroscience Center, McMaster University, Hamilton, Canada
| | | | | | | | | | | |
Collapse
|
30
|
McPhail LT, Stirling DP, Tetzlaff W, Kwiecien JM, Ramer MS. The contribution of activated phagocytes and myelin degeneration to axonal retraction/dieback following spinal cord injury. Eur J Neurosci 2004; 20:1984-94. [PMID: 15450077 DOI: 10.1111/j.1460-9568.2004.03662.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Myelin-derived molecules inhibit axonal regeneration in the CNS. The Long-Evans Shaker rat is a naturally occurring dysmyelinated mutant, which although able to express the components of myelin lacks functional myelin in adulthood. Given that myelin breakdown exposes axons to molecules that are inhibitory to regeneration, we sought to determine whether injured dorsal column axons in a Shaker rat would exhibit a regenerative response absent in normally myelinated Long-Evans (control) rats. Although Shaker rat axons did not regenerate beyond the lesion, they remained at the caudal end of the crush site. Control rat axons, in contrast, retracted and died back from the edge of the crush. The absence of retraction/dieback in Shaker rats was associated with a reduced phagocytic reaction to dorsal column crush around the caudal edge of the lesion. Systemic injection of minocycline, a tetracycline derivative, in control rats reduced both the macrophage response and axonal retraction/dieback following dorsal column injury. In contrast, increasing macrophage activation by spinal injection of the yeast particulate zymosan had no effect on axonal retraction/dieback in Shaker rats. Schwann cell invasion was reduced in minocycline-treated control rats compared with untreated control rats, and was almost undetectable in Shaker rats, suggesting that like axonal retraction/dieback, spinal Schwann cell infiltration is dependent upon macrophage-mediated myelin degeneration. These results indicate that following spinal cord injury the phagocyte-mediated degeneration of myelin and subsequent exposure of inhibitory molecules to the injured axons contributes to their retraction/dieback.
Collapse
Affiliation(s)
- Lowell T McPhail
- ICORD (International Collaboration on Repair Discoveries), The University of British Columbia, 6270 University Boulevard, Vancouver, BC, Canada V6T 1Z4
| | | | | | | | | |
Collapse
|
31
|
Zhang SC, Goetz BD, Duncan ID. Suppression of activated microglia promotes survival and function of transplanted oligodendroglial progenitors. Glia 2003; 41:191-8. [PMID: 12509809 DOI: 10.1002/glia.10172] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To evaluate the functional consequence of microglial activation in vivo, oligodendroglial progenitors were transplanted into the spinal cord of Long Evans shaker, a myelin mutant rat in which myelin defects are associated with progressive microglial activation. Cells grafted into neonatal rats at the initiation of gliosis successfully myelinated axons. However, cells transplanted during peak microglial activation did not lead to myelination due to death of the grafted cells within 3 days after transplantation. Pretreatment of these animals with minocycline, a tetracycline derivative, resulted in cell survival and myelination by the grafted cells. In culture, minocycline did not affect the survival, proliferation, or differentiation of oligodendroglial progenitors. Hence, minocycline likely modulates the function of reactive glia in vivo to promote the survival and myelination of transplanted oligodendroglial progenitors.
Collapse
Affiliation(s)
- Su-Chun Zhang
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
32
|
Phokeo V, Kwiecien JM, Ball AK. Characterization of the optic nerve and retinal ganglion cell layer in the dysmyelinated adult Long Evans Shaker rat: evidence for axonal sprouting. J Comp Neurol 2002; 451:213-24. [PMID: 12210134 DOI: 10.1002/cne.10330] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Myelin in the central nervous system (CNS) is hypothesized to help guide the growth of developing axons by inhibiting sprouting of aberrant neurites. Previous studies using animal models lacking CNS myelin have reported that increasing capacity for sprouting axons is negatively correlated with the degree of myelination. In the present study, we investigated the optic nerves of the recently identified Long Evans Shaker (LES) rat with prolonged dysmyelination of adult axons to determine whether the lack of myelin basic protein (MBP) in adult LES rats could manifest as increases in the population of CNS axons. We observed numerous small, unmyelinated axon profiles (<0.3 microm in diameter) clustered in bundles alongside normal caliber axons in dysmyelinated LES rats but not in normal myelinated Long Evans (LE) rats. These putative axon profiles resembled sprouting axons previously described in the CNS. Moreover, the high number of small putative axon profiles could not be accounted for by any significant increases in the number of ganglion cells and displaced amacrine cells in the ganglion cell layer when compared with normal rats as evaluated by using a variety of techniques. This finding suggests that the observed clusters of putative axon profiles were not due to developmental abnormalities in the retina but to the lack of myelin in the optic nerves of LES rats. The adult LES rat, therefore, may serve as a useful model to study the role of myelin in regulating axon development or axon regeneration after CNS injury in the adult mammalian system.
Collapse
Affiliation(s)
- Vinay Phokeo
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | | | | |
Collapse
|
33
|
Carré JL, Goetz BD, O'Connor LT, Bremer Q, Duncan ID. Mutations in the rat myelin basic protein gene are associated with specific alterations in other myelin gene expression. Neurosci Lett 2002; 330:17-20. [PMID: 12213624 DOI: 10.1016/s0304-3940(02)00709-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Long Evans shaker (les) rat is a myelin basic protein (MBP) mutant that exhibits severe central nervous system (CNS) dysmyelination. We used a combination of immunohistochemistry, immunoblot and Northern blot analyses to determine the effect of MBP deficits on the expression of other CNS myelin genes in this mutant. Immunohistochemistry revealed a marked reduction in all major myelin proteins and differences in their intracellular distribution. Immunoblots confirmed the decreased expression of these proteins and indicated that relative levels of proteolipid protein (PLP) and DM20 were altered in this mutant. Quantitation of mRNA levels indicated that decreases in PLP and DM20 were a result of changes in mRNA levels but detected no change in other myelin gene transcripts.
Collapse
Affiliation(s)
- Jean-Luc Carré
- Service de Biochimie et Biologie Moléculaire, Faculté de Médecine, 22 Avenue C. Desmoulins, 29200 Brest, France.
| | | | | | | | | |
Collapse
|
34
|
Sterner-Kock A, Thorey IS, Koli K, Wempe F, Otte J, Bangsow T, Kuhlmeier K, Kirchner T, Jin S, Keski-Oja J, von Melchner H. Disruption of the gene encoding the latent transforming growth factor-beta binding protein 4 (LTBP-4) causes abnormal lung development, cardiomyopathy, and colorectal cancer. Genes Dev 2002; 16:2264-73. [PMID: 12208849 PMCID: PMC186672 DOI: 10.1101/gad.229102] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transforming growth factor-betas (TGF-betas) are multifunctional growth factors that are secreted as inactive (latent) precursors in large protein complexes. These complexes include the latency-associated propeptide (LAP) and a latent transforming growth factor-beta binding protein (LTBP). Four isoforms of LTBPs (LTBP-1-LTBP-4) have been cloned and are believed to be structural components of connective tissue microfibrils and local regulators of TGF-beta tissue deposition and signaling. By using a gene trap strategy that selects for integrations into genes induced transiently during early mouse development, we have disrupted the mouse homolog of the human LTBP-4 gene. Mice homozygous for the disrupted allele develop severe pulmonary emphysema, cardiomyopathy, and colorectal cancer. These highly tissue-specific abnormalities are associated with profound defects in the elastic fiber structure and with a reduced deposition of TGF-beta in the extracellular space. As a consequence, epithelial cells have reduced levels of phosphorylated Smad2 proteins, overexpress c-myc, and undergo uncontrolled proliferation. This phenotype supports the predicted dual role of LTBP-4 as a structural component of the extracellular matrix and as a local regulator of TGF-beta tissue deposition and signaling.
Collapse
Affiliation(s)
- Anja Sterner-Kock
- Laboratory for Molecular Hematology, University of Frankfurt Medical School, 60596 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Bulte JWM, Douglas T, Witwer B, Zhang SC, Lewis BK, van Gelderen P, Zywicke H, Duncan ID, Frank JA. Monitoring stem cell therapy in vivo using magnetodendrimers as a new class of cellular MR contrast agents. Acad Radiol 2002; 9 Suppl 2:S332-5. [PMID: 12188266 DOI: 10.1016/s1076-6332(03)80221-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Jeff W M Bulte
- Laboratory of Diagnostic Radiology Research, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bulte JW, Douglas T, Witwer B, Zhang SC, Strable E, Lewis BK, Zywicke H, Miller B, van Gelderen P, Moskowitz BM, Duncan ID, Frank JA. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 2001; 19:1141-7. [PMID: 11731783 DOI: 10.1038/nbt1201-1141] [Citation(s) in RCA: 704] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Magnetic resonance (MR) tracking of magnetically labeled stem and progenitor cells is an emerging technology, leading to an urgent need for magnetic probes that can make cells highly magnetic during their normal expansion in culture. We have developed magnetodendrimers as a versatile class of magnetic tags that can efficiently label mammalian cells, including human neural stem cells (NSCs) and mesenchymal stem cells (MSCs), through a nonspecific membrane adsorption process with subsequent intracellular (non-nuclear) localization in endosomes. The superparamagnetic iron oxide nanocomposites have been optimized to exhibit superior magnetic properties and to induce sufficient MR cell contrast at incubated doses as low as 1 microg iron/ml culture medium. When containing between 9 and 14 pg iron/cell, labeled cells exhibit an ex vivo nuclear magnetic resonance (NMR) relaxation rate (1/T2) as high as 24-39 s-1/mM iron. Labeled cells are unaffected in their viability and proliferating capacity, and labeled human NSCs differentiate normally into neurons. Furthermore, we show here that NSC-derived (and LacZ-transfected), magnetically labeled oligodendroglial progenitors can be readily detected in vivo at least as long as six weeks after transplantation, with an excellent correlation between the obtained MR contrast and staining for beta-galactosidase expression. The availability of magnetodendrimers opens up the possibility of MR tracking of a wide variety of (stem) cell transplants.
Collapse
Affiliation(s)
- J W Bulte
- Laboratory of Diagnostic Radiology Research (CC), National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Givogri MI, Bongarzone ER, Schonmann V, Campagnoni AT. Expression and regulation of golli products of myelin basic protein gene during in vitro development of oligodendrocytes. J Neurosci Res 2001; 66:679-90. [PMID: 11746388 DOI: 10.1002/jnr.10031] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The myelin basic protein (MBP) gene produces two families of proteins, the classic MBPs, important for myelination of the CNS, and the golli proteins, whose biological role in oligodendrocytes (OLs) is still unknown. The goals of this work were to study the in vitro pattern of expression of the golli products during OL differentiation and to compare it with that of the classic MBP products of the gene. Mouse primary glial cultures were analyzed at the mRNA and protein levels with an array of techniques. We found that OLs express golli mRNA primarily during intermediate stages of differentiation, which was confirmed by immunocytochemical analysis. Golli expression was low in proliferating OL progenitors as well as in terminally mature OLs. Golli proteins were found associated with the OL cell soma and nuclei and, to a lesser extent, with the cellular processes. We also found that golli proteins are not targeted to myelin in vitro and in vivo, in contrast to the classic MBPs. Finally, we found that golli expression is regulated during OL development and can be manipulated by growth factors such as basic fibroblast growth factor, neurotrophin-3, and retinoic acid.
Collapse
Affiliation(s)
- M I Givogri
- Developmental Biology Group, Mental Retardation Research Center, School of Medicine, University of California, Los Angeles 90024, USA
| | | | | | | |
Collapse
|
38
|
Abstract
The relationship between microglial activation and dysmyelination/demyelination was analyzed in a long-lived myelin mutant, the Long Evans shaker (les) rat, which exhibits early dysmyelination and a later loss of abnormal myelin sheaths. A microglial reaction characterized by progressive morphological transformation and increasing cell density was localized exclusively to white matter during postnatal 2-4 weeks, suggesting a microglial response to dysmyelination and oligodendroglial pathology. A further microglial reaction as marked by microglial expression of MHC II and a concomitant expression in the brain and spinal cord of mRNA for interleukin-1 beta (IL-1 beta), tumor necrosis factor-alpha (TNF-alpha), and inducible nitric oxide synthase (iNOS) began around 4 weeks when the remaining myelin was lost. Ultrastructurally, activated microglia ingested numerous myelin figures, suggestive of active phagocytosis. Thus, this study indicates that microglial reaction is graded in chronic neurological disorders and suggests that MHC II expression marks a functional change of activated microglia.
Collapse
Affiliation(s)
- S C Zhang
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin 53706-1102, USA.
| | | | | | | |
Collapse
|
39
|
Baumann N, Pham-Dinh D. Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 2001; 81:871-927. [PMID: 11274346 DOI: 10.1152/physrev.2001.81.2.871] [Citation(s) in RCA: 1243] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Oligodendrocytes, the myelin-forming cells of the central nervous system (CNS), and astrocytes constitute macroglia. This review deals with the recent progress related to the origin and differentiation of the oligodendrocytes, their relationships to other neural cells, and functional neuroglial interactions under physiological conditions and in demyelinating diseases. One of the problems in studies of the CNS is to find components, i.e., markers, for the identification of the different cells, in intact tissues or cultures. In recent years, specific biochemical, immunological, and molecular markers have been identified. Many components specific to differentiating oligodendrocytes and to myelin are now available to aid their study. Transgenic mice and spontaneous mutants have led to a better understanding of the targets of specific dys- or demyelinating diseases. The best examples are the studies concerning the effects of the mutations affecting the most abundant protein in the central nervous myelin, the proteolipid protein, which lead to dysmyelinating diseases in animals and human (jimpy mutation and Pelizaeus-Merzbacher disease or spastic paraplegia, respectively). Oligodendrocytes, as astrocytes, are able to respond to changes in the cellular and extracellular environment, possibly in relation to a glial network. There is also a remarkable plasticity of the oligodendrocyte lineage, even in the adult with a certain potentiality for myelin repair after experimental demyelination or human diseases.
Collapse
Affiliation(s)
- N Baumann
- Institut National de la Santé et de la Recherche Médicale U. 495, Biology of Neuron-Glia Interactions, Salpêtrière Hospital, Paris, France.
| | | |
Collapse
|