1
|
Morales-Calva F, Leal SL. Tell me why: the missing w in episodic memory's what, where, and when. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024:10.3758/s13415-024-01234-4. [PMID: 39455523 DOI: 10.3758/s13415-024-01234-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 10/28/2024]
Abstract
Endel Tulving defined episodic memory as consisting of a spatiotemporal context. It enables us to recollect personal experiences of people, things, places, and situations. In other words, it is made up of what, where, and when components. However, this definition does not include arguably the most important aspect of episodic memory: the why. Understanding why we remember has important implications to better understand how our memory system works and as a potential target of intervention for memory impairment. The intrinsic and extrinsic factors related to why some experiences are better remembered than others have been widely investigated but largely independently studied. How these factors interact with one another to drive an event to become a lasting memory is still unknown. This review summarizes research examining the why of episodic memory, where we aim to uncover the factors that drive core features of our memory. We discuss the concept of episodic memory examining the what, where, and when, and how the why is essential to each of these key components of episodic memory. Furthermore, we discuss the neural mechanisms known to support our rich episodic memories and how a why signal may provide critical modulatory impact on neural activity and communication. Finally, we discuss the individual differences that may further drive why we remember certain experiences over others. A better understanding of these elements, and how we experience memory in daily life, can elucidate why we remember what we remember, providing important insight into the overarching goal of our memory system.
Collapse
Affiliation(s)
| | - Stephanie L Leal
- Department of Psychological Sciences, Rice University, Houston, TX, USA.
- Department of Integrative Biology & Physiology, UCLA, 621 Charles E Young Dr S, Los Angeles, CA, 90095, USA.
| |
Collapse
|
2
|
Cepero-Escribano V, Cerda-Company X, León-Cabrera P, Olivé G, Cucurell D, Gasa-Roqué A, Gabarrós A, Naval-Baudin P, Camins À, Rico I, Fernández-Coello A, Sierpowska J, Rodríguez-Fornells A. Can the knight capture the queen? The role of supramarginal gyrus in chess rule-retrieval as evidenced by a novel combined awake brain mapping and fMRI protocol. Cortex 2024; 178:235-244. [PMID: 39047332 DOI: 10.1016/j.cortex.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/22/2024] [Accepted: 05/15/2024] [Indexed: 07/27/2024]
Abstract
Brain tumours represent a burden for society, not only due to the risks they entail but also because of the possibility of losing relevant cognitive functions for the patient's life after their resection. In the present study, we report how we monitored chess performance through a multimodal Electrical Stimulation Mapping (ESM) - functional Magnetic Resonance Imaging (fMRI) combined protocol. The ESM was performed under a left parietal lobe tumour resection surgery on a patient that expressed the desire to preserve his chess playing ability post-operative. We designed an ad-hoc protocol to evaluate processes involved in chess performance that could be potentially affected by the tumour location: (i) visual search, (ii) rule-retrieval, and (iii) anticipation of checkmate. The fMRI study reported functional regions for chess performance, some of them proximal to the lesion in the left parietal lobe. The most relevant result was a positive eloquent point encountered in the vicinity of the left supramarginal gyrus while performing the rule-retrieval task in the ESM. This functional region was convergent with the activations observed in the pre-operative fMRI study for this condition. The behavioural assessment comparison revealed post-operative an increase in reaction time in some tasks but correctness in performance was maintained. Finally, the patient maintained the ability to play chess after the surgery. Our results provide a plausible protocol for future interventions and suggest a role of the left supramarginal gyrus in chess cognitive operations for the case presented.
Collapse
Affiliation(s)
- Victor Cepero-Escribano
- Department of Cognition, Development, and Educational Psychology, Faculty of Psychology, University of Barcelona, Barcelona, Spain; Cognition & Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL), Spain; Computer Vision Centre (CVC), Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Xim Cerda-Company
- Department of Cognition, Development, and Educational Psychology, Faculty of Psychology, University of Barcelona, Barcelona, Spain; Cognition & Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL), Spain; Computer Vision Centre (CVC), Universitat Autònoma de Barcelona, Bellaterra, Spain; Computer Science Department, Universitat Autonoma de Barcelona, Bellaterra, Spain.
| | - Patricia León-Cabrera
- Department of Basic Sciences, Area of Psychology, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Barcelona, Spain
| | - Guillem Olivé
- Department of Cognition, Development, and Educational Psychology, Faculty of Psychology, University of Barcelona, Barcelona, Spain; Cognition & Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL), Spain
| | - David Cucurell
- Department of Cognition, Development, and Educational Psychology, Faculty of Psychology, University of Barcelona, Barcelona, Spain; Cognition & Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL), Spain
| | - Anna Gasa-Roqué
- Cognition & Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL), Spain; Hospital Universitari de Bellvitge (HUB), Neurology Section, Campus Bellvitge, University of Barcelona e IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Institute of Neurosciences (UBNeuro), University of Barcelona, Barcelona, Spain
| | - Andreu Gabarrós
- Hospital Universitari de Bellvitge (HUB), Neurosurgery Section, Campus Bellvitge, University of Barcelona e IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Campus Bellvitge, University of Barcelona, Spain
| | - Pablo Naval-Baudin
- Institut de Diagnòstic per la Imatge, Centre Bellvitge, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain; Department of Radiology, Hospital Universitari de Bellvitge, Bellvitge, Translational Imaging Biomarkers Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain; Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Àngels Camins
- Institut de Diagnòstic per la Imatge, Centre Bellvitge, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain; Department of Radiology, Hospital Universitari de Bellvitge, Bellvitge, Translational Imaging Biomarkers Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain; Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Immaculada Rico
- Hospital Universitari de Bellvitge (HUB), Neurology Section, Campus Bellvitge, University of Barcelona e IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Alejandro Fernández-Coello
- Hospital Universitari de Bellvitge (HUB), Neurosurgery Section, Campus Bellvitge, University of Barcelona e IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Campus Bellvitge, University of Barcelona, Spain
| | - Joanna Sierpowska
- Department of Cognition, Development, and Educational Psychology, Faculty of Psychology, University of Barcelona, Barcelona, Spain; Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Institute of Neurosciences (UBNeuro), University of Barcelona, Barcelona, Spain
| | - Antoni Rodríguez-Fornells
- Department of Cognition, Development, and Educational Psychology, Faculty of Psychology, University of Barcelona, Barcelona, Spain; Cognition & Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL), Spain; Institute of Neurosciences (UBNeuro), University of Barcelona, Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
3
|
Kunčická D, Krajčovič B, Stuchlík A, Brožka H. Neuroscientist's Behavioral Toolbox for Studying Episodic-Like Memory. eNeuro 2024; 11:ENEURO.0073-24.2024. [PMID: 39214694 PMCID: PMC11366770 DOI: 10.1523/eneuro.0073-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Episodic memory, the ability to recall specific events and experiences, is a cornerstone of human cognition with profound clinical implications. While animal studies have provided valuable insights into the neuronal underpinnings of episodic memory, research has largely relied on a limited subset of tasks that model only some aspects of episodic memory. In this narrative review, we provide an overview of rodent episodic-like memory tasks that expand the methodological repertoire and diversify the approaches used in episodic-like memory research. These tasks assess various aspects of human episodic memory, such as integrated what-where-when or what-where memory, source memory, free recall, temporal binding, and threshold retrieval dynamics. We review each task's general principle and consider whether alternative non-episodic mechanisms can account for the observed behavior. While our list of tasks is not exhaustive, we hope it will guide researchers in selecting models that align with their specific research objectives, leading to novel advancements and a more comprehensive understanding of mechanisms underlying specific aspects of episodic memory.
Collapse
Affiliation(s)
- Daniela Kunčická
- Laboratory of Neurophysiology of Memory, Institute of Physiology, Czech Academy of Sciences, Prague 142 20, Czechia
| | - Branislav Krajčovič
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague 150 06, Czechia
| | - Aleš Stuchlík
- Laboratory of Neurophysiology of Memory, Institute of Physiology, Czech Academy of Sciences, Prague 142 20, Czechia
| | - Hana Brožka
- Laboratory of Neurophysiology of Memory, Institute of Physiology, Czech Academy of Sciences, Prague 142 20, Czechia
| |
Collapse
|
4
|
Sheridan CL, Panoz-Brown D, Shiffrin RM, Crystal JD. Validation of a rodent model of episodic memory replay. Learn Behav 2024:10.3758/s13420-024-00632-5. [PMID: 39020162 DOI: 10.3758/s13420-024-00632-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2024] [Indexed: 07/19/2024]
Abstract
Vivid episodic memories in humans have been described as the replay of the flow of past events in sequential order. Recently, Panoz-Brown et al. Current Biology, 28, 1628-1634, (2018) developed an olfactory memory task in which rats were presented with a list of trial-unique odors in an encoding context; next, in a distinctive memory assessment context, the rats were rewarded for choosing the second to last item from the list while avoiding other items from the list. In a different memory assessment context, the fourth to last item was rewarded. According to the episodic memory replay hypothesis, the rat remembers the list items and searches these items to find the item at the targeted locations in the list. However, events presented sequentially differ in memory trace strength, allowing a rat to use the relative familiarity of the memory traces, instead of episodic memory replay, to solve the task. Here, we directly manipulated memory trace strength by manipulating the odor intensity of target odors in both the list presentation and memory assessment. The rats relied on episodic memory replay to solve the memory assessment in conditions in which reliance on memory trace strength is ruled out. We conclude that rats are able to replay episodic memories.
Collapse
Affiliation(s)
- Cassandra L Sheridan
- Department of Psychological and Brain Sciences, Indiana University, 1101 E 10TH St., Bloomington, IN, 47405, USA
| | - Danielle Panoz-Brown
- Department of Psychological and Brain Sciences, Indiana University, 1101 E 10TH St., Bloomington, IN, 47405, USA
| | - Richard M Shiffrin
- Department of Psychological and Brain Sciences, Indiana University, 1101 E 10TH St., Bloomington, IN, 47405, USA
| | - Jonathon D Crystal
- Department of Psychological and Brain Sciences, Indiana University, 1101 E 10TH St., Bloomington, IN, 47405, USA.
| |
Collapse
|
5
|
Koslov SR, Kable JW, Foster BL. Dissociable Contributions of the Medial Parietal Cortex to Recognition Memory. J Neurosci 2024; 44:e2220232024. [PMID: 38527809 PMCID: PMC11063824 DOI: 10.1523/jneurosci.2220-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 03/27/2024] Open
Abstract
Human neuroimaging studies of episodic memory retrieval routinely observe the engagement of specific cortical regions beyond the medial temporal lobe. Of these, medial parietal cortex (MPC) is of particular interest given its distinct functional characteristics during different retrieval tasks. Specifically, while recognition and autobiographical recall tasks are both used to probe episodic retrieval, these paradigms consistently drive distinct spatial patterns of response within MPC. However, other studies have emphasized alternate MPC functional dissociations in terms of brain network connectivity profiles or stimulus category selectivity. As the unique contributions of MPC to episodic memory remain unclear, adjudicating between these different accounts can provide better consensus regarding MPC function. Therefore, we used a precision-neuroimaging dataset (7T functional magnetic resonance imaging) to examine how MPC regions are differentially engaged during recognition memory and how these task-related dissociations may also reflect distinct connectivity and stimulus category functional profiles. We observed interleaved, though spatially distinct, subregions of MPC where responses were sensitive to either recognition decisions or the semantic representation of stimuli. In addition, this dissociation was further accentuated by functional subregions displaying distinct profiles of connectivity with the hippocampus during task and rest. Finally, we show that recent observations of dissociable person and place selectivity within the MPC reflect category-specific responses from within identified semantic regions that are sensitive to mnemonic demands. Together, by examining precision functional mapping within individuals, these data suggest that previously distinct observations of functional dissociation within MPC conform to a common principle of organization throughout hippocampal-neocortical memory systems.
Collapse
Affiliation(s)
- Seth R Koslov
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Joseph W Kable
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Brett L Foster
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
6
|
Bogler C, Zangrossi A, Miller C, Sartori G, Haynes J. Have you been there before? Decoding recognition of spatial scenes from fMRI signals in precuneus. Hum Brain Mapp 2024; 45:e26690. [PMID: 38703117 PMCID: PMC11069338 DOI: 10.1002/hbm.26690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/23/2024] [Accepted: 04/08/2024] [Indexed: 05/06/2024] Open
Abstract
One potential application of forensic "brain reading" is to test whether a suspect has previously experienced a crime scene. Here, we investigated whether it is possible to decode real life autobiographic exposure to spatial locations using fMRI. In the first session, participants visited four out of eight possible rooms on a university campus. During a subsequent scanning session, subjects passively viewed pictures and videos from these eight possible rooms (four old, four novel) without giving any responses. A multivariate searchlight analysis was employed that trained a classifier to distinguish between "seen" versus "unseen" stimuli from a subset of six rooms. We found that bilateral precuneus encoded information that can be used to distinguish between previously seen and unseen rooms and that also generalized to the two stimuli left out from training. We conclude that activity in bilateral precuneus is associated with the memory of previously visited rooms, irrespective of the identity of the room, thus supporting a parietal contribution to episodic memory for spatial locations. Importantly, we could decode whether a room was visited in real life without the need of explicit judgments about the rooms. This suggests that recognition is an automatic response that can be decoded from fMRI data, thus potentially supporting forensic applications of concealed information tests for crime scene recognition.
Collapse
Affiliation(s)
- Carsten Bogler
- Bernstein Center for Computational NeuroscienceCharité‐Universitätsmedizin BerlinBerlinGermany
| | - Andrea Zangrossi
- Department of General PsychologyUniversity of PadovaPadovaItaly
- Padova Neuroscience Center (PNC)University of PadovaPadovaItaly
| | - Chantal Miller
- Berlin School of Mind and BrainHumboldt‐Universität zu BerlinBerlinGermany
| | | | - John‐Dylan Haynes
- Bernstein Center for Computational NeuroscienceCharité‐Universitätsmedizin BerlinBerlinGermany
- Berlin School of Mind and BrainHumboldt‐Universität zu BerlinBerlinGermany
- Max Planck School of CognitionLeipzigGermany
- Berlin Center for Advanced NeuroimagingCharité‐Universitätsmedizin BerlinBerlinGermany
- Clinic of NeurologyCharité‐Universitätsmedizin BerlinBerlinGermany
- Institute of PsychologyHumboldt‐Universität zu BerlinBerlinGermany
- Cluster of Excellence “Science of Intelligence”Berlin Institute of TechnologyBerlinGermany
| |
Collapse
|
7
|
Abstract
A fundamental question in the development of animal models of episodic memory concerns the role of temporal processes in episodic memory. Gallistel, (1990) developed a framework in which animals remember specific features about an event, including the time of occurrence of the event and its location in space. Gallistel proposed that timing is based on a series of biological oscillators, spanning a wide range of periods. Accordingly, a snapshot of the phases of multiple oscillators provides a representation of the time of occurrence of the event. I review research on basic timing mechanisms that may support memory for times of occurrence. These studies suggest that animals use biological oscillators to represent time. Next, I describe recently developed animal models of episodic memory that highlight the importance of temporal representations in memory. One line of research suggests that an oscillator representation of time supports episodic memory. A second line of research highlights the flow of events in time in episodic memory. Investigations that integrate time and memory may advance the development of animal models of episodic memory.
Collapse
Affiliation(s)
- Jonathon D Crystal
- Department of Psychological & Brain Science, Indiana University, 1101 E 10TH ST, Bloomington, IN, 47405, USA.
| |
Collapse
|
8
|
Kwon S, Rugg MD, Wiegand R, Curran T, Morcom AM. A meta-analysis of event-related potential correlates of recognition memory. Psychon Bull Rev 2023; 30:2083-2105. [PMID: 37434046 PMCID: PMC10728276 DOI: 10.3758/s13423-023-02309-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 07/13/2023]
Abstract
A longstanding question in memory research is whether recognition is supported by more than one mnemonic process. Dual-process models distinguish recollection of episodic detail from familiarity, while single-process models explain recognition in terms of one process that varies in strength. Dual process models have drawn support from findings that recollection and familiarity elicit distinct electroencephalographic event-related potentials (ERPs): a mid-frontal ERP effect that occurs at around 300-500 ms post-stimulus onset and is often larger for familiarity than recollection contrasts, and a parietal ERP effect that occurs at around 500-800 ms and is larger for recollection than familiarity contrasts. We sought to adjudicate between dual- and single-process models by investigating whether the dissociation between these two ERP effects is reliable over studies. We extracted effect sizes from 41 experiments that had used Remember-Know, source memory, and associative memory paradigms (1,000 participants). Meta-analysis revealed a strong interaction between ERP effect and mnemonic process of the form predicted by dual-process models. Although neither ERP effect was significantly process-selective taken alone, a moderator analysis revealed a larger mid-frontal effect for familiarity than recollection contrasts in studies using the Remember-Know paradigm. Mega-analysis of raw data from six studies further showed significant process-selectivity for both mid-frontal and parietal ERPs in the predicted time windows. On balance, the findings favor dual- over single-process theories of recognition memory, but point to a need to promote sharing of raw data.
Collapse
Affiliation(s)
- Simon Kwon
- Department of Psychology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
| | - Michael D Rugg
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
- School of Psychology, University of East Anglia, Norwich, UK
| | - Ronny Wiegand
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Tim Curran
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Alexa M Morcom
- Department of Psychology, University of Edinburgh, Edinburgh, UK.
- School of Psychology, University of Sussex, Brighton, UK.
| |
Collapse
|
9
|
de Chastelaine M, Horne ED, Hou M, Rugg MD. Relationships between age, fMRI correlates of familiarity and familiarity-based memory performance under single and dual task conditions. Neuropsychologia 2023; 189:108670. [PMID: 37633516 PMCID: PMC10591814 DOI: 10.1016/j.neuropsychologia.2023.108670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Using fMRI, we investigated the effects of age and divided attention on the neural correlates of familiarity and their relationship with memory performance. At study, word pairs were visually presented to young and older participants under the requirement to make a relational judgment on each pair. Participants were then scanned while undertaking an associative recognition test under single and dual (auditory tone detection) task conditions. The test items comprised studied, rearranged (words from different studied pairs) and new word pairs. fMRI familiarity effects were operationalized as greater activity elicited by studied pairs incorrectly identified as 'rearranged' than by correctly rejected new pairs. The reverse contrast was employed to identify 'novelty' effects. Behavioral familiarity estimates were equivalent across age groups and task conditions. Robust fMRI familiarity effects were identified in several regions, including medial and superior lateral parietal cortex, dorsal medial and left lateral prefrontal cortex, and bilateral caudate. fMRI novelty effects were identified in the anterior medial temporal lobe. Both familiarity and novelty effects were largely age-invariant and did not vary, or varied minimally, according to task condition. In addition, the familiarity effects correlated positively with a behavioral estimate of familiarity strength irrespective of age. These findings extend a previous report from our laboratory, and converge with prior behavioral reports, in demonstrating that the factors of age and divided attention have little impact on behavioral and neural estimates of familiarity.
Collapse
Affiliation(s)
- Marianne de Chastelaine
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas, Dallas, TX, USA.
| | - Erin D Horne
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas, Dallas, TX, USA
| | - Mingzhu Hou
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas, Dallas, TX, USA
| | - Michael D Rugg
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas, Dallas, TX, USA
| |
Collapse
|
10
|
Mecklinger A, Kamp SM. Observing memory encoding while it unfolds: Functional interpretation and current debates regarding ERP subsequent memory effects. Neurosci Biobehav Rev 2023; 153:105347. [PMID: 37543177 DOI: 10.1016/j.neubiorev.2023.105347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/10/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Our ability to remember the past depends on neural processes set in train in the moment an event is experienced. These processes can be studied by segregating brain activity according to whether an event is later remembered or forgotten. The present review integrates a large number of studies examining this differential brain activity, labeled subsequent memory effect (SME), with the ERP technique, into a functional organization and discusses routes for further research. Based on the reviewed literature, we suggest that memory encoding is implemented by multiple processes, typically reflected in three functionally different subcomponents of the ERP SME elicited by study stimuli, which presumably interact with preparatory SME activity preceding the to be encoded event. We argue that ERPs are a valuable method in the SME paradigm because they have a sufficiently high temporal resolution to disclose the subcomponents of encoding-related brain activity. Implications of the proposed functional organization for future studies using the SME procedure in basic and applied settings will be discussed.
Collapse
Affiliation(s)
- Axel Mecklinger
- Experimental Neuropsychology Unit, Saarland University, Campus A 2-4, 66123 Saarbrücken, Germany.
| | - Siri-Maria Kamp
- Neurocognitive Psychology Unit, Universität Trier, Johanniterufer 15, 54290 Trier, Germany
| |
Collapse
|
11
|
Ben-Zvi Feldman S, Soroker N, Levy DA. Lesion-behavior mapping indicates a strategic role for parietal substrates of associative memory. Cortex 2023; 167:148-166. [PMID: 37562150 DOI: 10.1016/j.cortex.2023.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/24/2023] [Accepted: 06/27/2023] [Indexed: 08/12/2023]
Abstract
Numerous neuroimaging studies indicate that ventral parietal cortex (VPC), especially angular gyrus, plays an important role in episodic memory. However, the nature of the mnemonic processes supported by this region is far from clear. We previously found that stroke lesions in VPC and lateral temporal cortex caused deficits in cued recall of unimodal word pairs and picture pairs, and cross-modal picture-sound pairs, with larger deficits in the cross-modal task. However, those findings leave open the question whether those regions' integrity is necessary for maintenance of associative representations, or for strategic processes required for their recall. We addressed this question using associative recognition versions of those tasks. We additionally manipulated semantic relatedness of the associated memoranda, to assess VPC's involvement in semantic processing in the context of episodic memory. We analyzed performance of 62 first-event, sub-acute phase stroke patients (31 right- and 31 left-hemisphere damage) relative to 65 healthy participants, and employed voxel-based lesion-behavior mapping (VLBM) to identify task-relevant structures. Patients displayed greater false associative recognition of semantically related compared to unrelated recombined pairs. VLBM analysis implicated right lateral temporo-parietal regions in associative recognition deficits in the cross-modal pairs task, specifically for related recombined and new pairs, seemingly because of difficulty overcoming semantic relatedness bias effects on episodic discrimination. In contrast, damage to ventral parietal and lateral temporal cortex was not implicated in memory for unrelated memoranda. We interpret this pattern of lesion-behavior effects as indicating lateral temporo-parietal cortex involvement in strategic, rather than representational, roles in episodic associative memory.
Collapse
Affiliation(s)
- Shir Ben-Zvi Feldman
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel; Baruch Ivcher School of Psychology, Reichman University, Herzliya, Israel
| | - Nachum Soroker
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel; Loewenstein Rehabilitation Medical Center, Raanana, Israel
| | - Daniel A Levy
- Baruch Ivcher School of Psychology, Reichman University, Herzliya, Israel.
| |
Collapse
|
12
|
Koslov SR, Kable JW, Foster BL. Dissociable contributions of the medial parietal cortex to recognition memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557048. [PMID: 37745317 PMCID: PMC10515876 DOI: 10.1101/2023.09.12.557048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Human neuroimaging studies of episodic memory retrieval routinely observe the engagement of specific cortical regions beyond the medial temporal lobe. Of these, medial parietal cortex (MPC) is of particular interest given its ubiquitous, and yet distinct, functional characteristics during different types of retrieval tasks. Specifically, while recognition memory and autobiographical recall tasks are both used to probe episodic retrieval, these paradigms consistently drive distinct patterns of response within MPC. This dissociation adds to growing evidence suggesting a common principle of functional organization across memory related brain structures, specifically regarding the control or content demands of memory-based decisions. To carefully examine this putative organization, we used a high-resolution fMRI dataset collected at ultra-high field (7T) while subjects performed thousands of recognition-memory trials to identify MPC regions responsive to recognition-decisions or semantic content of stimuli within and across individuals. We observed interleaving, though distinct, functional subregions of MPC where responses were sensitive to either recognition decisions or the semantic representation of stimuli, but rarely both. In addition, this functional dissociation within MPC was further accentuated by distinct profiles of connectivity bias with the hippocampus during task and rest. Finally, we show that recent observations of person and place selectivity within MPC reflect category specific responses from within identified semantic regions that are sensitive to mnemonic demands. Together, these data better account for how distinct patterns of MPC responses can occur as a result of task demands during episodic retrieval and may reflect a common principle of organization throughout hippocampal-neocortical memory systems.
Collapse
Affiliation(s)
- Seth R. Koslov
- Department of Neurosurgery, Perelman School of Medicine; University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Joseph W. Kable
- Department of Psychology; University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Brett L. Foster
- Department of Neurosurgery, Perelman School of Medicine; University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| |
Collapse
|
13
|
Sridhar S, Khamaj A, Asthana MK. Cognitive neuroscience perspective on memory: overview and summary. Front Hum Neurosci 2023; 17:1217093. [PMID: 37565054 PMCID: PMC10410470 DOI: 10.3389/fnhum.2023.1217093] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
This paper explores memory from a cognitive neuroscience perspective and examines associated neural mechanisms. It examines the different types of memory: working, declarative, and non-declarative, and the brain regions involved in each type. The paper highlights the role of different brain regions, such as the prefrontal cortex in working memory and the hippocampus in declarative memory. The paper also examines the mechanisms that underlie the formation and consolidation of memory, including the importance of sleep in the consolidation of memory and the role of the hippocampus in linking new memories to existing cognitive schemata. The paper highlights two types of memory consolidation processes: cellular consolidation and system consolidation. Cellular consolidation is the process of stabilizing information by strengthening synaptic connections. System consolidation models suggest that memories are initially stored in the hippocampus and are gradually consolidated into the neocortex over time. The consolidation process involves a hippocampal-neocortical binding process incorporating newly acquired information into existing cognitive schemata. The paper highlights the role of the medial temporal lobe and its involvement in autobiographical memory. Further, the paper discusses the relationship between episodic and semantic memory and the role of the hippocampus. Finally, the paper underscores the need for further research into the neurobiological mechanisms underlying non-declarative memory, particularly conditioning. Overall, the paper provides a comprehensive overview from a cognitive neuroscience perspective of the different processes involved in memory consolidation of different types of memory.
Collapse
Affiliation(s)
- Sruthi Sridhar
- Department of Psychology, Mount Allison University, Sackville, NB, Canada
| | - Abdulrahman Khamaj
- Department of Industrial Engineering, College of Engineering, Jazan University, Jazan, Saudi Arabia
| | - Manish Kumar Asthana
- Department of Humanities and Social Sciences, Indian Institute of Technology Roorkee, Roorkee, India
- Department of Design, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
14
|
Kanagamani T, Chakravarthy VS, Ravindran B, Menon RN. A deep network-based model of hippocampal memory functions under normal and Alzheimer's disease conditions. Front Neural Circuits 2023; 17:1092933. [PMID: 37416627 PMCID: PMC10320296 DOI: 10.3389/fncir.2023.1092933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 06/02/2023] [Indexed: 07/08/2023] Open
Abstract
We present a deep network-based model of the associative memory functions of the hippocampus. The proposed network architecture has two key modules: (1) an autoencoder module which represents the forward and backward projections of the cortico-hippocampal projections and (2) a module that computes familiarity of the stimulus and implements hill-climbing over the familiarity which represents the dynamics of the loops within the hippocampus. The proposed network is used in two simulation studies. In the first part of the study, the network is used to simulate image pattern completion by autoassociation under normal conditions. In the second part of the study, the proposed network is extended to a heteroassociative memory and is used to simulate picture naming task in normal and Alzheimer's disease (AD) conditions. The network is trained on pictures and names of digits from 0 to 9. The encoder layer of the network is partly damaged to simulate AD conditions. As in case of AD patients, under moderate damage condition, the network recalls superordinate words ("odd" instead of "nine"). Under severe damage conditions, the network shows a null response ("I don't know"). Neurobiological plausibility of the model is extensively discussed.
Collapse
Affiliation(s)
- Tamizharasan Kanagamani
- Laboratory for Computational Neuroscience, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, TN, India
| | - V. Srinivasa Chakravarthy
- Laboratory for Computational Neuroscience, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, TN, India
| | - Balaraman Ravindran
- Department of Computer Science and Engineering, Robert Bosch Centre for Data Science and AI, Indian Institute of Technology Madras, Chennai, TN, India
| | - Ramshekhar N. Menon
- Cognition and Behavioural Neurology Section, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| |
Collapse
|
15
|
Kizilirmak JM, Soch J, Schütze H, Düzel E, Feldhoff H, Fischer L, Knopf L, Maass A, Raschick M, Schult A, Yakupov R, Richter A, Schott BH. The relationship between resting-state amplitude fluctuations and memory-related deactivations of the default mode network in young and older adults. Hum Brain Mapp 2023; 44:3586-3609. [PMID: 37051727 PMCID: PMC10203811 DOI: 10.1002/hbm.26299] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
The default mode network (DMN) typically exhibits deactivations during demanding tasks compared to periods of relative rest. In functional magnetic resonance imaging (fMRI) studies of episodic memory encoding, increased activity in DMN regions even predicts later forgetting in young healthy adults. This association is attenuated in older adults and, in some instances, increased DMN activity even predicts remembering rather than forgetting. It is yet unclear whether this phenomenon is due to a compensatory mechanism, such as self-referential or schema-dependent encoding, or whether it reflects overall reduced DMN activity modulation in older age. We approached this question by systematically comparing DMN activity during successful encoding and tonic, task-independent, DMN activity at rest in a sample of 106 young (18-35 years) and 111 older (60-80 years) healthy participants. Using voxel-wise multimodal analyses, we assessed the age-dependent relationship between DMN resting-state amplitude (mean percent amplitude of fluctuation, mPerAF) and DMN fMRI signals related to successful memory encoding, as well as their modulation by age-related hippocampal volume loss, while controlling for regional grey matter volume. Older adults showed lower resting-state DMN amplitudes and lower task-related deactivations. However, a negative relationship between resting-state mPerAF and subsequent memory effect within the precuneus was observed only in young, but not older adults. Hippocampal volumes showed no relationship with the DMN subsequent memory effect or mPerAF. Lastly, older adults with higher mPerAF in the DMN at rest tend to show higher memory performance, pointing towards the importance of a maintained ability to modulate DMN activity in old age.
Collapse
Affiliation(s)
- Jasmin M. Kizilirmak
- Cognitive Geriatric PsychiatryGerman Center for Neurodegenerative DiseasesGöttingenGermany
- Neurodidactics and NeuroLabInstitute for Psychology, University of HildesheimHildesheimGermany
- German Centre for Higher Education Research and Science StudiesHannoverGermany
| | - Joram Soch
- Cognitive Geriatric PsychiatryGerman Center for Neurodegenerative DiseasesGöttingenGermany
- Bernstein Center for Computational NeuroscienceBerlinGermany
| | - Hartmut Schütze
- Medical Faculty, Institute for Cognitive Neurology and Dementia ResearchOtto‐von‐Guericke‐UniversityMagdeburgGermany
- Center for Behavioral Brain SciencesMagdeburgGermany
| | - Emrah Düzel
- Medical Faculty, Institute for Cognitive Neurology and Dementia ResearchOtto‐von‐Guericke‐UniversityMagdeburgGermany
- Center for Behavioral Brain SciencesMagdeburgGermany
- German Center for Neurodegenerative DiseasesMagdeburgGermany
| | | | | | - Lea Knopf
- Leibniz Institute for NeurobiologyMagdeburgGermany
| | - Anne Maass
- German Center for Neurodegenerative DiseasesMagdeburgGermany
| | | | | | - Renat Yakupov
- German Center for Neurodegenerative DiseasesMagdeburgGermany
| | - Anni Richter
- Leibniz Institute for NeurobiologyMagdeburgGermany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C‐I‐R‐C)Jena‐Magdeburg‐HalleGermany
| | - Björn H. Schott
- Cognitive Geriatric PsychiatryGerman Center for Neurodegenerative DiseasesGöttingenGermany
- Center for Behavioral Brain SciencesMagdeburgGermany
- Leibniz Institute for NeurobiologyMagdeburgGermany
- Department of Psychiatry and PsychotherapyUniversity Medical Center GöttingenGöttingenGermany
| |
Collapse
|
16
|
de Chastelaine M, Horne ED, Hou M, Rugg MD. Relationships between age, fMRI correlates of familiarity and familiarity-based memory performance under single and dual task conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542526. [PMID: 37398000 PMCID: PMC10312430 DOI: 10.1101/2023.05.26.542526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Using fMRI, we investigated the effects of age and divided attention on the neural correlates of familiarity and their relationship with memory performance. At study, word pairs were visually presented to young and older participants under the requirement to make a relational judgment on each pair. Participants were then scanned while undertaking an associative recognition test under single and dual (auditory tone detection) task conditions. The test items comprised studied, rearranged (words from different studied pairs) and new word pairs. fMRI familiarity effects were operationalized as greater activity elicited by studied pairs incorrectly identified as 'rearranged' than by correctly rejected new pairs. The reverse contrast was employed to identify 'novelty' effects. Behavioral familiarity estimates were equivalent across age groups and task conditions. Robust fMRI familiarity effects were identified in several regions, including medial and superior lateral parietal cortex, dorsal medial and left lateral prefrontal cortex, and bilateral caudate. fMRI novelty effects were identified in the anterior medial temporal lobe. Both familiarity and novelty effects were age-invariant and did not vary according to task condition. In addition, the familiarity effects correlated positively with a behavioral estimate of familiarity strength irrespective of age. These findings extend a previous report from our laboratory, and converge with prior behavioral reports, in demonstrating that the factors of age and divided attention have minimal impact on behavioral and neural estimates of familiarity.
Collapse
|
17
|
Sweatman H, Lewis-de los Angeles CP, Zhang J, de los Angeles C, Ofen N, Gabrieli JDE, Chai XJ. Development of the neural correlates of recollection. Cereb Cortex 2023; 33:6028-6037. [PMID: 36520501 PMCID: PMC10183736 DOI: 10.1093/cercor/bhac481] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022] Open
Abstract
Recollection of past events has been associated with the core recollection network comprising the posterior medial temporal lobe and parietal regions, as well as the medial prefrontal cortex (mPFC). The development of the brain basis for recollection is understudied. In a sample of adults (n = 22; 18-25 years) and children (n = 23; 9-13 years), the present study aimed to address this knowledge gap using a cued recall paradigm, known to elicit recollection experience. Successful recall was associated with activations in regions of the core recollection network and frontoparietal network. Adults exhibited greater successful recall activations compared with children in the precuneus and right angular gyrus. In contrast, similar levels of successful recall activations were observed in both age groups in the mPFC. Group differences were also seen in the hippocampus and lateral frontal regions. These findings suggest that the engagement of the mPFC in episodic retrieval may be relatively early maturing, whereas the contribution to episodic retrieval of more posterior regions such as the precuneus and angular gyrus undergoes more protracted maturation.
Collapse
Affiliation(s)
- Hilary Sweatman
- Department of Neurology and Neurosurgery, McGill University, 3801 Rue University, Montréal, QC H3A 2B4, Canada
| | - C Paula Lewis-de los Angeles
- Department of Pediatrics, Hasbro Children’s Hospital, Alpert Medical School of Brown University, 593 Eddy St, Providence, RI 02903, United States
| | - Jiahe Zhang
- Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States
| | - Carlo de los Angeles
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA 94305, United States
| | - Noa Ofen
- Department of Psychology and the Institute of Gerontology, Wayne State University, 87 East Ferry Street, Detroit, MI 48202, United States
| | - John D E Gabrieli
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, 524 Main Street, Cambridge, MA 02139, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 45 Carleton Street, Cambridge, MA 02142, United States
| | - Xiaoqian J Chai
- Department of Neurology and Neurosurgery, McGill University, 3801 Rue University, Montréal, QC H3A 2B4, Canada
| |
Collapse
|
18
|
Kim H. Neural correlates of paired associate recollection: A neuroimaging meta-analysis. Brain Res 2023; 1801:148200. [PMID: 36513138 DOI: 10.1016/j.brainres.2022.148200] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/26/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Functional neuroimaging data on paired associate recollection have expanded over the years, raising the need for an integrative understanding of the literature. The present study performed a quantitative meta-analysis of the data to fulfill that need. The meta-analysis focused on the three most widely used types of activation contrast: Hit > Miss, Intact > Rearranged, and Memory > Perception. The major results were as follows. First, the Hit > Miss contrast mainly involved regions in the default mode network (DMN)/medial temporal lobe (MTL), likely reflecting a greater amount of retrieved information during the Hit than Miss trials. Second, the Intact > Rearranged contrast mainly involved regions in the DMN/MTL, supporting the view that rejecting recombination foils is based on familiarity with the component parts in the absence of recollection. Third, the Memory > Perception contrast primarily involved regions in the frontoparietal control network, likely reflecting the greater demands on controlled processing during Memory than Perception conditions. Fourth, the subcortical clusters included the amygdala, caudate nucleus/putamen, and mediodorsal thalamus regions, suggesting that these regions are components of the neural circuits supporting associative recollection. Finally, comparisons with previous meta-analyses suggested that associative recollection involves the DMN regions more strongly than source recollection but less strongly than subjective recollection. In conclusion, this study contributes uniquely to the growing literature on paired associate recollection by clarifying the convergent findings and differences among studies.
Collapse
Affiliation(s)
- Hongkeun Kim
- Department of Rehabilitation Psychology, Daegu University, 201 Daegudae-ro, Gyeongsan-si, Gyeongsangbuk-do 38453, Republic of Korea.
| |
Collapse
|
19
|
Wu Z, Buckley MJ. Prefrontal and Medial Temporal Lobe Cortical Contributions to Visual Short-Term Memory. J Cogn Neurosci 2022; 35:27-43. [PMID: 36306260 DOI: 10.1162/jocn_a_01937] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
A number of recent studies have indicated that the medial temporal lobe (MTL) plays a critical role in working memory (WM) and perception, but these results have been highly controversial given the traditional association of MTL with long-term memory. We review the research and highlight important factors that need to be considered in determining the role of MTL in WM including set-size of used stimuli and feature complexity and/or feature conjunctions/bindings embedded in those stimuli. These factors relate to hierarchical and, accordingly, domain-specific theories of functional organization within the temporal lobe. In addition, one must consider process-specific theories too, because two key processes commonly understood to contribute recognition memory, namely, recollection and familiarity, also have robust support from neurophysiological and neuroimaging research as to their functional dissociations within MTL. PFC has long been heavily implicated in WM; however, relatively less is known about how the PFC contributes to recollection and familiarity, although dynamic prefrontal coding models in WM may help to explain their neural mechanisms. The MTL and PFC are heavily interconnected and do not operate independently in underlying WM. We propose that investigation of the interactions between these two regions in WM, particularly their coordinated neural activities, and the modeling of such interactions, will be crucial for the advancing understanding of the neural mechanisms of WM.
Collapse
Affiliation(s)
- Zhemeng Wu
- University of Oxford, United Kingdom.,University of Toronto, Ontario, Canada
| | | |
Collapse
|
20
|
Xu K, Wei Y, Zhang S, Zhao L, Geng B, Mai W, Li P, Liang L, Chen D, Zeng X, Deng D, Liu P. Percentage amplitude of fluctuation and structural covariance changes of subjective cognitive decline in patients: A multimodal imaging study. Front Neurosci 2022; 16:888174. [PMID: 35937877 PMCID: PMC9354620 DOI: 10.3389/fnins.2022.888174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/30/2022] [Indexed: 11/23/2022] Open
Abstract
Back ground Subjective cognitive decline (SCD) may be the first clinical sign of Alzheimer’s disease (AD). The possible neural mechanisms of SCD are not well known. This study aimed to compare percent amplitude of fluctuation (PerAF) and structural covariance patterns in patients with SCD and healthy controls (HCs). Methods We enrolled 53 patients with SCD and 65 HCs. Resting-state functional magnetic resonance imaging (MRI) data and T1-weighted anatomical brain 3.0-T MRI scans were collected. The PerAF approach was applied to distinguish altered brain functions between the two groups. A whole-brain voxel-based morphometry analysis was performed, and all significant regions were selected as regions of interest (ROIs) for the structural covariance analysis. Statistical analysis was performed using two-sample t-tests, and multiple regressions were applied to examine the relationships between neuroimaging findings and clinical symptoms. Results Functional MRI results revealed significantly increased PerAF including the right hippocampus (HIPP) and right thalamus (THA) in patients with SCD relative to HCs. Gray matter volume (GMV) results demonstrated decreased GMV in the bilateral ventrolateral prefrontal cortex (vlPFC) and right insula in patients with SCD relative to HCs. Taking these three areas including the bilateral vlPFC and right insula as ROIs, differences were observed in the structural covariance of the ROIs with several regions between the two groups. Additionally, significant correlations were observed between neuroimaging findings and clinical symptoms. Conclusion Our study investigated the abnormal PerAF and structural covariance patterns in patients with SCD, which might provide new insights into the pathological mechanisms of SCD.
Collapse
Affiliation(s)
- Ke Xu
- School of Life Sciences and Technology, Life Science Research Center, Xidian University, Xi’an, China
- School of Life Sciences and Technology, Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xidian University, Xi’an, China
| | - Yichen Wei
- Department of Radiology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shuming Zhang
- School of Life Sciences and Technology, Life Science Research Center, Xidian University, Xi’an, China
- School of Life Sciences and Technology, Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xidian University, Xi’an, China
| | - Lihua Zhao
- Department of Acupuncture, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Bowen Geng
- School of Life Sciences and Technology, Life Science Research Center, Xidian University, Xi’an, China
- School of Life Sciences and Technology, Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xidian University, Xi’an, China
| | - Wei Mai
- Department of Acupuncture, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Pengyu Li
- School of Life Sciences and Technology, Life Science Research Center, Xidian University, Xi’an, China
- School of Life Sciences and Technology, Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xidian University, Xi’an, China
| | - Lingyan Liang
- Department of Radiology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Duoli Chen
- School of Life Sciences and Technology, Life Science Research Center, Xidian University, Xi’an, China
- School of Life Sciences and Technology, Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xidian University, Xi’an, China
| | - Xiao Zeng
- School of Life Sciences and Technology, Life Science Research Center, Xidian University, Xi’an, China
- School of Life Sciences and Technology, Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xidian University, Xi’an, China
| | - Demao Deng
- Department of Radiology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Demao Deng,
| | - Peng Liu
- School of Life Sciences and Technology, Life Science Research Center, Xidian University, Xi’an, China
- School of Life Sciences and Technology, Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xidian University, Xi’an, China
- *Correspondence: Peng Liu,
| |
Collapse
|
21
|
Toglia MP, Schmuller J, Surprenant BG, Hooper KC, DeMeo NN, Wallace BL. Novel Approaches and Cognitive Neuroscience Perspectives on False Memory and Deception. Front Psychol 2022; 13:721961. [PMID: 35386904 PMCID: PMC8979290 DOI: 10.3389/fpsyg.2022.721961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
The DRM (Deese-Roediger-McDermott) paradigm produces robust false memories of non-presented critical words. After studying a thematic word list (e.g., bed, rest, and pillow) participants falsely remember the critical item "sleep." We report two false memory experiments. Study One introduces a novel use of the lexical decision task (LDT) to prime critical words. Participants see two letter-strings and make timed responses indicating whether they are both words. The word pairs Night-Bed and Dream-Thweeb both prime "sleep" but only one pair contains two words. Our primary purpose is to introduce this new methodology via two pilot experiments. The results, considered preliminary, are promising as they indicate that participants were as likely to recognize critical words (false memories) and presented words (true memories) just as when studying thematic lists. Study Two actually employs the standard DRM lists so that semantic priming is in play there as well. The second study, however, uses functional near-infrared spectroscopy (fNIRS) to measure activity in the prefrontal cortex during a DRM task which includes a deception phase where participants intentionally lie about critical lures. False and true memories occurred at high levels and activated many of the same brain regions but, compared to true memories, cortical activity was higher for false memories and lies. Accuracy findings are accompanied by confidence and reaction time results. Both investigations suggest that it is difficult to distinguish accurate from inaccurate memories. We explain results in terms of activation-monitoring theory and Fuzzy Trace Theory. We provide real world implications and suggest extending the present research to varying age groups and special populations. A nagging question has not been satisfactorily answered: Could neural pathways exist that signal the presence of false memories and lies? Answering this question will require imaging experiments that focus on regions of distinction such as the anterior prefrontal cortex.
Collapse
Affiliation(s)
- Michael P. Toglia
- Department of Psychology, Cornell University, Ithaca, NY, United States
| | - Joseph Schmuller
- Department of Psychology, University of North Florida, Jacksonville, FL, United States
| | | | - Katherine C. Hooper
- Department of Psychology, University of North Florida, Jacksonville, FL, United States
| | - Natasha N. DeMeo
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, United States
| | - Brett L. Wallace
- School of Psychology, Florida Institute of Technology, Melbourne, FL, United States
| |
Collapse
|
22
|
Recruitment of a long-term memory supporting neural network during repeated maintenance of a multi-item abstract visual image in working memory. Sci Rep 2022; 12:575. [PMID: 35022456 PMCID: PMC8755800 DOI: 10.1038/s41598-021-04384-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 12/17/2021] [Indexed: 11/08/2022] Open
Abstract
Humans can flexibly transfer information between different memory systems. Information in visual working memory (VWM) can for instance be stored in long-term memory (LTM). Conversely, information can be retrieved from LTM and temporarily held in WM when needed. It has previously been suggested that a neural transition from parietal- to midfrontal activity during repeated visual search reflects transfer of information from WM to LTM. Whether this neural transition indeed reflects consolidation and is also observed when memorizing a rich visual scene (rather than responding to a single target), is not known. To investigate this, we employed an EEG paradigm, in which abstract six-item colour-arrays were repeatedly memorized and explicitly visualized, or merely attended to. Importantly, we tested the functional significance of a potential neural shift for longer-term consolidation in a subsequent recognition task. Our results show a gradually enhanced- and sustained modulation of the midfrontal P170 component and a decline in parietal CDA, during repeated WM maintenance. Improved recollection/visualization of memoranda upon WM-cueing, was associated with contralateral parietal- and right temporal activity. Importantly, only colour-arrays previously held in WM, induced a greater midfrontal P170-response, together with left temporal- and late centro-parietal activity, upon re-exposure. These findings provide evidence for recruitment of an LTM-supporting neural network which facilitates visual WM maintenance.
Collapse
|
23
|
Lesion-behaviour mapping reveals multifactorial neurocognitive processes in recognition memory for unfamiliar faces. Neuropsychologia 2021; 163:108078. [PMID: 34743937 DOI: 10.1016/j.neuropsychologia.2021.108078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 11/20/2022]
Abstract
Face recognition abilities, which play a critical role in social interactions, involve face processing and identifying familiar faces, but also remembering one-off encounters with previously unfamiliar faces. Previous functional imaging and lesion studies have found evidence for temporal, frontal, and parietal contributions to episodic recognition memory for previously unfamiliar faces. However, the functional contributions of these regions remain unclear. We, therefore, conducted a systematic group analysis of this memory function using lesion-behavior mapping. 95 first-event stroke patients (53 with right- and 42 with left-hemisphere damage) in the sub-acute phase performed the Wechsler Memory Scale (WMS-III) face recognition memory subtest. We analyzed their performance relative to 75 healthy controls, using signal detection measures. To identify brain lesions specifically implicated in face recognition deficits, we used voxel-based lesion-behavior mapping (VLBM; an analysis comparing the performance of participants with and without damage affecting a given voxel). Behavioral analysis disclosed a pronounced impairment in the performance of patients with right hemisphere damage. Frontal damage was associated with an increased amount of false alarms (i.e., failed rejection of new face items) and overly liberal criterion setting, without affecting the recognition of studied faces. In contrast, parietal damage was associated with impaired recognition of studied faces, which was more pronounced in immediate than in delayed retrieval. These findings suggest the existence of multifactorial neurocognitive processes in recognition memory for unfamiliar faces.
Collapse
|
24
|
Watanuki S. Watershed Brain Regions for Characterizing Brand Equity-Related Mental Processes. Brain Sci 2021; 11:brainsci11121619. [PMID: 34942922 PMCID: PMC8699238 DOI: 10.3390/brainsci11121619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/28/2021] [Accepted: 12/02/2021] [Indexed: 12/04/2022] Open
Abstract
Brand equity is an important intangible for enterprises. As one advantage, products with brand equity can increase revenue, compared with those without such equity. However, unlike tangibles, it is difficult for enterprises to manage brand equity because it exists within consumers’ minds. Although, over the past two decades, numerous consumer neuroscience studies have revealed the brain regions related to brand equity, the identification of unique brain regions related to such equity is still controversial. Therefore, this study identifies the unique brain regions related to brand equity and assesses the mental processes derived from these regions. For this purpose, three analysis methods (i.e., the quantitative meta-analysis, chi-square tests, and machine learning) were conducted. The data were collected in accordance with the general procedures of a qualitative meta-analysis. In total, 65 studies (1412 foci) investigating branded objects with brand equity and unbranded objects without brand equity were examined, whereas the neural systems involved for these two brain regions were contrasted. According to the results, the parahippocampal gyrus and the lingual gyrus were unique brand equity-related brain regions, whereas automatic mental processes based on emotional associative memories derived from these regions were characteristic mental processes that discriminate branded from unbranded objects.
Collapse
Affiliation(s)
- Shinya Watanuki
- Department of Marketing, Faculty of Commerce, University of Marketing and Distribution Sciences, Kobe 651-2188, Japan
| |
Collapse
|
25
|
Wu Z, Kavanova M, Hickman L, Boschin EA, Galeazzi JM, Verhagen L, Ainsworth M, Pedreira C, Buckley MJ. Low-beta repetitive transcranial magnetic stimulation to human dorsolateral prefrontal cortex during object recognition memory sample presentation, at a task-related frequency observed in local field potentials in homologous macaque cortex, impairs subsequent recollection but not familiarity. Eur J Neurosci 2021; 54:7918-7945. [PMID: 34796568 PMCID: PMC8941981 DOI: 10.1111/ejn.15535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/22/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022]
Abstract
According to dual‐process signal‐detection (DPSD) theories, short‐ and long‐term recognition memory draws upon both familiarity and recollection. It remains unclear how primate prefrontal cortex (PFC) contributes to these processes, but frequency‐specific neuronal activities are considered to play a key role. In Experiment 1, nonhuman primate (NHP) local field potential (LFP) electrophysiological recordings in macaque left dorsolateral PFC (dlPFC) revealed performance‐related differences in a low‐beta frequency range during the sample presentation phase of a visual object recognition memory task. Experiment 2 employed a similar task in humans and targeted left dlPFC (and vertex as a control) with repetitive transcranial magnetic stimulation (rTMS) at 12.5 Hz during occasional sample presentations. This low‐beta frequency rTMS to dlPFC decreased DPSD derived indices of recollection, but not familiarity, in subsequent memory tests of the targeted samples after short delays. The same number of rTMS pulses over the same total duration albeit at a random frequency had no effect on either recollection or familiarity. Neither stimulation protocols had any causal effect upon behaviour when targeted to the control site (vertex). In this study, our hypotheses for our human TMS study were derived from our observations in NHPs; this approach might inspire further translational research through investigation of homologous brain regions and tasks across species using similar neuroscientific methodologies to advance the neural mechanism of recognition memory in primates.
Collapse
Affiliation(s)
- Zhemeng Wu
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,Department of Psychology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Martina Kavanova
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Lydia Hickman
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,School of Psychology, University of Birmingham, Birmingham, UK
| | - Erica A Boschin
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Juan M Galeazzi
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Lennart Verhagen
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen 6525 XZ, the Netherlands
| | - Matthew Ainsworth
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Carlos Pedreira
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Mark J Buckley
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
26
|
Karlaftis VM, Giorgio J, Zamboni E, Frangou P, Rideaux R, Ziminski JJ, Kourtzi Z. Functional Interactions between Sensory and Memory Networks for Adaptive Behavior. Cereb Cortex 2021; 31:5319-5330. [PMID: 34185848 PMCID: PMC8568003 DOI: 10.1093/cercor/bhab160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
The brain's capacity to adapt to sensory inputs is key for processing sensory information efficiently and interacting in new environments. Following repeated exposure to the same sensory input, brain activity in sensory areas is known to decrease as inputs become familiar, a process known as adaptation. Yet, the brain-wide mechanisms that mediate adaptive processing remain largely unknown. Here, we combine multimodal brain imaging (functional magnetic resonance imaging [fMRI], magnetic resonance spectroscopy) with behavioral measures of orientation-specific adaptation (i.e., tilt aftereffect) to investigate the functional and neurochemical mechanisms that support adaptive processing. Our results reveal two functional brain networks: 1) a sensory-adaptation network including occipital and dorsolateral prefrontal cortex regions that show decreased fMRI responses for repeated stimuli and 2) a perceptual-memory network including regions in the parietal memory network (PMN) and dorsomedial prefrontal cortex that relate to perceptual bias (i.e., tilt aftereffect). We demonstrate that adaptation relates to increased occipito-parietal connectivity, while decreased connectivity between sensory-adaptation and perceptual-memory networks relates to GABAergic inhibition in the PMN. Thus, our findings provide evidence that suppressive interactions between sensory-adaptation (i.e., occipito-parietal) and perceptual-memory (i.e., PMN) networks support adaptive processing and behavior, proposing a key role of memory systems in efficient sensory processing.
Collapse
Affiliation(s)
| | - Joseph Giorgio
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Elisa Zamboni
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Polytimi Frangou
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Reuben Rideaux
- Department of Psychology, University of Cambridge, Cambridge, UK
| | | | - Zoe Kourtzi
- Department of Psychology, University of Cambridge, Cambridge, UK
| |
Collapse
|
27
|
Sommer T, Schröter R, Bayer J. Probing emotional recognition memory: how different response formats affect response behaviour. Memory 2021; 29:1216-1231. [PMID: 34486950 DOI: 10.1080/09658211.2021.1974049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Receiver-operating characteristic curves from confidence ratings and remember/know (R/K) judgments are often used to estimate the contribution of familiarity and recollection to recognition memory. Both coming with specific advantages and disadvantages, which could be reduced by their combination. Little is known how the combination of both methods impacts response behaviour. This could be particularly important for emotional memory research, which is susceptible to variation in meta-mnemonic processes. We obtained reference performance indices from the two methods, instructing individuals to give confidence ratings or R/K judgments in one step. Against these, we contrasted R/K judgments in a two-step format and two combined formats, confidence ratings followed by R/K judgments and vice versa. Regarding reference formats, confidence ratings resulted in more liberal response criteria and false alarm rates than R/K judgments. Two-step R/K judgments and confidence ratings followed by R/K judgments resulted in patterns similar to one-step R/K judgments. Reversing the order resulted in more liberal response biases, higher hit and false alarms rates. Recollection and familiarity were unaffected by response formats. Valence effects did not vary with response formats. The present results suggest that confidence ratings followed by R/K judgments provide the advantages of both without biasing response behaviour.
Collapse
Affiliation(s)
- Tobias Sommer
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Romy Schröter
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Janine Bayer
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
28
|
Wang X, Chen Q, Li Y, Ding K, Qiu J. The brain functional connectivity in the default mode network is associated with self-efficacy in young adults. Brain Imaging Behav 2021; 16:107-117. [PMID: 34424443 DOI: 10.1007/s11682-021-00480-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2021] [Indexed: 10/20/2022]
Abstract
Self-efficacy is a subjective belief that depends on self-related past experience, and is a strong predictor for individual future performance. To the aim of promoting one's future performance, it is necessary to gain better knowledge of it's cognitive process and brain mechanism. The present research sought to investigate the functional connectivity basis of self-efficacy by using the resting-state functional magnetic resonance imaging data of a large sample of young adults (536 participants). Multiple regression analysis was performed to examine the relationship between self-efficacy integrated score and brain functional connectivity measures. Gender, age, mean framewise displacement and grey matter volume were used as nuisance covariates. The whole-brain analysis revealed an association between self-efficacy and the functional connectivity of several regions within the default mode network. These regions included the right anterior cingulate cortex, the left posterior cingulate cortex/precuneus and bilateral parahippocampal cortex. Our findings suggest that the default mode network plays a crucial role in self-efficacy, and hold the view that episodic memory and self-related processing have influence on self-efficacy.
Collapse
Affiliation(s)
- Xi Wang
- Faculty of Psychology, Southwest University, Chongqing, China.,Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China
| | - Qunlin Chen
- Faculty of Psychology, Southwest University, Chongqing, China.,Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China
| | - Yu Li
- Faculty of Psychology, Southwest University, Chongqing, China.,Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China
| | - Ke Ding
- Faculty of Psychology, Southwest University, Chongqing, China.,Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China
| | - Jiang Qiu
- Faculty of Psychology, Southwest University, Chongqing, China. .,Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China.
| |
Collapse
|
29
|
Hutchinson C, Brereton M, Adams J, De La Salle B, Sims J, Hyde K, Chasty R, Brown R, Rees-Unwin K, Burthem J. The Use and Effectiveness of an Online Diagnostic Support System for Blood Film Interpretation: Comparative Observational Study. J Med Internet Res 2021; 23:e20815. [PMID: 34383663 PMCID: PMC8386359 DOI: 10.2196/20815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/28/2020] [Accepted: 04/19/2021] [Indexed: 01/24/2023] Open
Abstract
Background The recognition and interpretation of abnormal blood cell morphology is often the first step in diagnosing underlying serious systemic illness or leukemia. Supporting the staff who interpret blood film morphology is therefore essential for a safe laboratory service. This paper describes an open-access, web-based decision support tool, developed by the authors to support morphological diagnosis, arising from earlier studies identifying mechanisms of error in blood film reporting. The effectiveness of this intervention was assessed using the unique resource offered by the online digital morphology Continuing Professional Development scheme (DM scheme) offered by the UK National External Quality Assessment Service for Haematology, with more than 3000 registered users. This allowed the effectiveness of decision support to be tested within a defined user group, each of whom viewed and interpreted the morphology of identical digital blood films. Objective The primary objective of the study was to test the effectiveness of the decision support system in supporting users to identify and interpret abnormal morphological features. The secondary objective was to determine the pattern and frequency of use of the system for different case types, and to determine how users perceived the support in terms of their confidence in decision-making. Methods This was a comparative study of identical blood films evaluated either with or without decision support. Selected earlier cases from the DM scheme were rereleased as new cases but with decision support made available; this allowed a comparison of data sets for identical cases with or without decision support. To address the primary objectives, the study used quantitative evaluation and statistical comparisons of the identification and interpretation of morphological features between the two different case releases. To address the secondary objective, the use of decision support was assessed using web analytical tools, while a questionnaire was used to assess user perceptions of the system. Results Cases evaluated with the aid of decision support had significantly improved accuracy of identification for relevant morphological features (mean improvement 9.8%) and the interpretation of those features (mean improvement 11%). The improvement was particularly significant for cases with higher complexity or for rarer diagnoses. Analysis of website usage demonstrated a high frequency of access for web pages relevant to each case (mean 9298 for each case, range 2661-24,276). Users reported that the decision support website increased their confidence for feature identification (4.8/5) and interpretation (4.3/5), both within the context of training (4.6/5) and also in their wider laboratory practice (4.4/5). Conclusions The findings of this study demonstrate that directed online decision support for blood morphology evaluation improves accuracy and confidence in the context of educational evaluation of digital films, with effectiveness potentially extending to wider laboratory use.
Collapse
Affiliation(s)
- Claire Hutchinson
- Medicine, Dentistry and Human Sciences, Faculty of Health, University of Plymouth, Plymouth, United Kingdom.,University Hospitals Plymouth NHS Trust, Plymouth, United Kingdom
| | | | - Julie Adams
- Manchester Foundation Trust, Manchester, United Kingdom
| | | | - Jon Sims
- UK NEQAS Haematology, Watford, United Kingdom
| | - Keith Hyde
- Manchester Foundation Trust, Manchester, United Kingdom
| | - Richard Chasty
- The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Rachel Brown
- Manchester Foundation Trust, Manchester, United Kingdom
| | - Karen Rees-Unwin
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - John Burthem
- Manchester Foundation Trust, Manchester, United Kingdom.,Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
30
|
Vallesi A. The Quest for Hemispheric Asymmetries Supporting and Predicting Executive Functioning. J Cogn Neurosci 2021; 33:1679-1697. [PMID: 33135967 DOI: 10.1162/jocn_a_01646] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This narrative review addresses the neural bases of two executive functions: criterion setting, that is, the capacity to flexibly set up and select task rules and associations between stimuli, responses, and nonresponses, and monitoring, that is, the process of continuously evaluating whether task rules are being applied optimally. There is a documented tendency for criterion setting and monitoring to differentially recruit left and right lateral prefrontal regions and connected networks, respectively, above and beyond the specific task context. This model, known as the ROtman-Baycrest Battery to Investigate Attention (ROBBIA) model, initially sprung from extensive neuropsychological work led by Don Stuss. In subsequent years, multimodal lines of empirical investigation on both healthy individuals and patients with brain damage, coming from functional neuroimaging, EEG, neurostimulation, individual difference approaches, and, again, neuropsychology, so to "complete the circle," corroborated the functional mapping across the two hemispheres as predicted by the model. More recent electrophysiological evidence has further shown that hemispheric differences in intrinsic prefrontal dynamics are able to predict cognitive performance in tasks tapping these domain-general functions. These empirical contributions will be presented together with contrasting evidence, limits, and possible future directions to better fine-tune this model and extend its scope to new fields.
Collapse
|
31
|
Neri F, Cappa SF, Mencarelli L, Momi D, Santarnecchi E, Rossi S. Brain Functional Correlates of Episodic Memory Using an Ecological Free Recall Task. Brain Sci 2021; 11:brainsci11070911. [PMID: 34356144 PMCID: PMC8303916 DOI: 10.3390/brainsci11070911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/28/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022] Open
Abstract
Episodic Memory (EM) allows us to revive a past event through mental time-travel. The neural correlates of memories recollection have been identified in hippocampal regions and multiple neocortical areas, but few neuroimaging studies have used an ecological task such as a free recall of a structured story. Using an ecological fMRI-free recall (FR) task, we aimed to investigate the relevant recruitment of the brain networks associated with the story recollection process and its performance. Fourteen healthy participants listened to a brief story and were tested for Immediate-Recall (IR), a task that is widely used in a neuropsychological evaluation. Then, the subjects underwent an fMRI session, where they had to perform a free recall (FR) of the story subvocally. Finally, the participants were tested for Delayed-Recall (DR). IR and DR scores were significantly (r = 0.942; p < 0.001) correlated. FR enhanced the activity of the Language, the Left Executive Control, the Default Mode and the Precuneus brain networks, with the strongest BOLD signal localized in the left Angular Gyrus (AG) (p < 0.05; FWE-corrected). Furthermore, the story recall performance covaried with specific network activation patterns and the recruitment of the left anterior/posterior AG correlated, respectively, with higher/lower performance scores (p > 0.05). FR seems to be a promising task to investigate ecologically the neural correlates of EM. Moreover, the recruitment of the anterior AG might be a marker for an optimal functioning of the recall process. Preliminary outcomes lay the foundation for the investigation of the brain networks in the healthy and pathological elderly population during FR.
Collapse
Affiliation(s)
- Francesco Neri
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, SI, Italy; (L.M.); (D.M.); (S.R.)
- Correspondence: ; Tel.: +39-339-341-257
| | - Stefano F. Cappa
- Institute for Advanced Study, IUSS, 27100 Pavia, PV, Italy;
- IRCCS Mondino Foundation, 27100 Pavia, PV, Italy
| | - Lucia Mencarelli
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, SI, Italy; (L.M.); (D.M.); (S.R.)
| | - Davide Momi
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, SI, Italy; (L.M.); (D.M.); (S.R.)
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA;
- Department of Cognitive Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Simone Rossi
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, SI, Italy; (L.M.); (D.M.); (S.R.)
| |
Collapse
|
32
|
Ye Q, Zhang Z, Sun W, Fan Q, Li Y. Disrupted functional connectivity of precuneus subregions in obsessive-compulsive disorder. NEUROIMAGE-CLINICAL 2021; 31:102720. [PMID: 34146773 PMCID: PMC8220401 DOI: 10.1016/j.nicl.2021.102720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/15/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022]
Abstract
Obsessive-compulsive disorder (OCD) is a chronic and disablingpsychiatric disorder with high lifetime prevalence, yet the underlying pathogenesis remains not fully understood. Increasing neuroimaging evidence has shown that the disrupted activity of brain functional hubs might contribute to the pathophysiology of OCD. Precuneus is an important brain hub which showed structural and functional abnormalities in OCD patients. However, the functional heterogeneity of the precuneus subregion has not been considered and its relation to OCD symptomatology remains to be elucidated. In this paper, a total of 73 unmedicated OCD patients and 79 matched healthy subjects were recruited and the heterogeneous functional connectivities (FCs) of the precuneus subregions were investigated using resting-state functional magnetic resonance imaging. The FC-based subdivision of the precuneus was performed using the K-means clustering algorithm, which led to a tripartite functional parcellation of precuneus. For each subregion, the distinct connectivity pattern with the whole brain was shown, using both voxel-wise and module-wise analysis, respectively. Decreased FC between dorsal posterior precuneus and vermis (corrected p<0.01) was shown in the patient group, which was negatively correlated with patient compulsions score (ρ = - 0.393, p = 0.001), indicating its contribution to the compulsive behavior inhibition of OCD. Our work might provide new insights into the understanding of precuneus subregion function and the importance of dorsal precuneus-cerebellum functional connectivity in OCD pathophysiology.
Collapse
Affiliation(s)
- Qianqian Ye
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Zongfeng Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 200030, PR China
| | - Wanqing Sun
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Qing Fan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 200030, PR China.
| | - Yao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, PR China.
| |
Collapse
|
33
|
Roe JM, Vidal-Piñeiro D, Sneve MH, Kompus K, Greve DN, Walhovd KB, Fjell AM, Westerhausen R. Age-Related Differences in Functional Asymmetry During Memory Retrieval Revisited: No Evidence for Contralateral Overactivation or Compensation. Cereb Cortex 2021; 30:1129-1147. [PMID: 31408102 DOI: 10.1093/cercor/bhz153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/31/2022] Open
Abstract
Brain asymmetry is inherent to cognitive processing and seems to reflect processing efficiency. Lower frontal asymmetry is often observed in older adults during memory retrieval, yet it is unclear whether lower asymmetry implies an age-related increase in contralateral recruitment, whether less asymmetry reflects compensation, is limited to frontal regions, or predicts neurocognitive stability or decline. We assessed age-related differences in asymmetry across the entire cerebral cortex, using functional magnetic resonance imaging data from 89 young and 76 older adults during successful retrieval, and surface-based methods allowing direct homotopic comparison of activity between cortical hemispheres . An extensive left-asymmetric network facilitated retrieval in both young and older adults, whereas diverse frontal and parietal regions exhibited lower asymmetry in older adults. However, lower asymmetry was not associated with age-related increases in contralateral recruitment but primarily reflected either less deactivation in contralateral regions reliably signaling retrieval failure in the young or lower recruitment of the dominant hemisphere-suggesting that functional deficits may drive lower asymmetry in older brains, not compensatory activity. Lower asymmetry predicted neither current memory performance nor the extent of memory change across the preceding ~ 8 years in older adults. Together, these findings are inconsistent with a compensation account for lower asymmetry during retrieval and aging.
Collapse
Affiliation(s)
- James M Roe
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0317 Oslo, Norway
| | - Didac Vidal-Piñeiro
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0317 Oslo, Norway
| | - Markus H Sneve
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0317 Oslo, Norway
| | - Kristiina Kompus
- Department of Biological and Medical Psychology, University of Bergen, 5009 Bergen, Norway
| | - Douglas N Greve
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/ Harvard Medical School, Charlestown, MA 02129, USA.,Department of Radiology and Nuclear Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Kristine B Walhovd
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0317 Oslo, Norway.,Department of Radiology and Nuclear Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Anders M Fjell
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0317 Oslo, Norway.,Department of Radiology and Nuclear Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - René Westerhausen
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0317 Oslo, Norway
| |
Collapse
|
34
|
Overman MJ, Zamboni G, Butler C, Ahmed S. Splenial white matter integrity is associated with memory impairments in posterior cortical atrophy. Brain Commun 2021; 3:fcab060. [PMID: 34007964 PMCID: PMC8112963 DOI: 10.1093/braincomms/fcab060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/09/2020] [Accepted: 02/23/2021] [Indexed: 11/22/2022] Open
Abstract
Posterior cortical atrophy is an atypical form of Alzheimer’s disease characterized by visuospatial impairments and predominant tissue loss in the posterior parieto-occipital and temporo-occipital cortex. Whilst episodic memory is traditionally thought to be relatively preserved in posterior cortical atrophy, recent work indicates that memory impairments form a common clinical symptom in the early stages of the disease. Neuroimaging studies suggest that memory dysfunction in posterior cortical atrophy may originate from atrophy and functional hypoconnectivity of parietal cortex. The structural connectivity patterns underpinning these memory impairments, however, have not been investigated. This line of inquiry is of particular interest, as changes in white matter tracts of posterior cortical atrophy patients have been shown to be more extensive than expected based on posterior atrophy of grey matter. In this cross-sectional diffusion tensor imaging MRI study, we examine the relationship between white matter microstructure and verbal episodic memory in posterior cortical atrophy. We assessed episodic memory performance in a group of posterior cortical atrophy patients (n = 14) and a group of matched healthy control participants (n = 19) using the Free and Cued Selective Reminding Test with Immediate Recall. Diffusion tensor imaging measures were obtained for 13 of the posterior cortical atrophy patients and a second control group of 18 healthy adults. Patients and healthy controls demonstrated similar memory encoding performance, indicating that learning of verbal information was preserved in posterior cortical atrophy. However, retrieval of verbal items was significantly impaired in the patient group compared with control participants. As expected, tract-based spatial statistics analyses showed widespread reductions of white matter integrity in posterior cortical regions of patients compared with healthy adults. Correlation analyses indicated that poor verbal retrieval in the patient group was specifically associated with microstructural damage of the splenium of the corpus callosum. Post-hoc tractography analyses in healthy controls demonstrated that this splenial region was connected to thalamic radiations and the retrolenticular part of the internal capsule. These results provide insight into the brain circuits that underlie memory impairments in posterior cortical atrophy. From a cognitive perspective, we propose that the association between splenial integrity and memory dysfunction could arise indirectly via disruption of attentional processes. We discuss implications for the clinical phenotype and development of therapeutic aids for cognitive impairment in posterior cortical atrophy.
Collapse
Affiliation(s)
- Margot Juliëtte Overman
- Research Institute for the Care of Older People (RICE), Bath BA1 3NG, UK.,MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| | - Giovanna Zamboni
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Modena, Italy.,Center for Neuroscience and Neurotechnology, Università di Modena e Reggio Emilia, Modena, Italy.,Nuffield Department of Clinical Neuroscience, University of Oxford, Oxfordshire OX3 9DU, UK
| | - Christopher Butler
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxfordshire OX3 9DU, UK.,Department of Brain Sciences, Imperial College London, London SW7 2AZ, UK.,Departamento de Neurología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Samrah Ahmed
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxfordshire OX3 9DU, UK.,School of Psychology and Clinical Language Sciences, University of Reading, Reading RG6 6ES, UK
| |
Collapse
|
35
|
Steber S, Rossi S. The challenge of learning a new language in adulthood: Evidence from a multi-methodological neuroscientific approach. PLoS One 2021; 16:e0246421. [PMID: 33606715 PMCID: PMC7894913 DOI: 10.1371/journal.pone.0246421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 01/19/2021] [Indexed: 11/18/2022] Open
Abstract
Being proficient in several foreign languages is an essential part of every-day life. In contrast to childhood, learning a new language can be highly challenging for adults. The present study aims at investigating neural mechanisms supporting very initial foreign language learning in adulthood. For this reason, subjects underwent an implicit semantic associative training in which they had to learn new pseudoword-picture pairings. Learning success was measured via a recognition experiment presenting learned versus new pseudoword-picture pairings. Neural correlates were assessed by an innovative multi-methodological approach simultaneously applying electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). Results indicate memory-related processes based on familiarity and mechanisms of cognitive control to be present during initial vocabulary learning. Findings underline the fascinating plasticity of the adult brain during foreign language learning, even after a short semantic training of only 18 minutes as well as the importance of comparing evidence from different neuroscientific methods and behavioral data.
Collapse
Affiliation(s)
- Sarah Steber
- ICONE—Innsbruck Cognitive Neuroscience, Department for Hearing, Speech, and Voice Disorders, Medical University of Innsbruck, Innsbruck, Austria
- Department of Psychology, University of Innsbruck, Innsbruck, Austria
| | - Sonja Rossi
- ICONE—Innsbruck Cognitive Neuroscience, Department for Hearing, Speech, and Voice Disorders, Medical University of Innsbruck, Innsbruck, Austria
- * E-mail:
| |
Collapse
|
36
|
Humphreys GF, Lambon Ralph MA, Simons JS. A Unifying Account of Angular Gyrus Contributions to Episodic and Semantic Cognition. Trends Neurosci 2021; 44:452-463. [PMID: 33612312 DOI: 10.1016/j.tins.2021.01.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 12/22/2022]
Abstract
The angular gyrus (AG) region of lateral parietal cortex has been implicated in a wide variety of tasks and functions, generating numerous influential theories. However, these theories largely fail to explain why so many apparently distinct cognitive activities implicate common parietal structures. We propose a unifying model, based on a set of central principles, to account for coalescences of cognitive task activations across AG. To illustrate the proposed framework, we show how these principles account for findings from studies of episodic and semantic memory that have independently implicated the same AG regions but thus far been considered from largely domain-specific perspectives. We conclude that AG computations, as part of a wider lateral parietal system, enable the online dynamic buffering of multisensory spatiotemporally extended representations.
Collapse
Affiliation(s)
- Gina F Humphreys
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 3EF, UK
| | | | - Jon S Simons
- Department of Psychology, University of Cambridge, Cambridge CB2 3EF, UK.
| |
Collapse
|
37
|
Soch J, Richter A, Schütze H, Kizilirmak JM, Assmann A, Knopf L, Raschick M, Schult A, Maass A, Ziegler G, Richardson-Klavehn A, Düzel E, Schott BH. Bayesian model selection favors parametric over categorical fMRI subsequent memory models in young and older adults. Neuroimage 2021; 230:117820. [PMID: 33524573 DOI: 10.1016/j.neuroimage.2021.117820] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/25/2021] [Indexed: 01/10/2023] Open
Abstract
Subsequent memory paradigms allow to identify neural correlates of successful encoding by separating brain responses as a function of memory performance during later retrieval. In functional magnetic resonance imaging (fMRI), the paradigm typically elicits activations of medial temporal lobe, prefrontal and parietal cortical structures in young, healthy participants. This categorical approach is, however, limited by insufficient memory performance in older and particularly memory-impaired individuals. A parametric modulation of encoding-related activations with memory confidence could overcome this limitation. Here, we applied cross-validated Bayesian model selection (cvBMS) for first-level fMRI models to a visual subsequent memory paradigm in young (18-35 years) and older (51-80 years) adults. Nested cvBMS revealed that parametric models, especially with non-linear transformations of memory confidence ratings, outperformed categorical models in explaining the fMRI signal variance during encoding. We thereby provide a framework for improving the modeling of encoding-related activations and for applying subsequent memory paradigms to memory-impaired individuals.
Collapse
Affiliation(s)
- Joram Soch
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany; Bernstein Center for Computational Neuroscience (BCCN), Berlin, Germany.
| | - Anni Richter
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
| | - Hartmut Schütze
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Otto von Guericke University, Medical Faculty, Magdeburg, Germany
| | | | - Anne Assmann
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Otto von Guericke University, Medical Faculty, Magdeburg, Germany
| | - Lea Knopf
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany; Otto von Guericke University, Medical Faculty, Magdeburg, Germany
| | - Matthias Raschick
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany; Otto von Guericke University, Medical Faculty, Magdeburg, Germany
| | - Annika Schult
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany; Otto von Guericke University, Medical Faculty, Magdeburg, Germany
| | - Anne Maass
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Gabriel Ziegler
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Otto von Guericke University, Medical Faculty, Magdeburg, Germany
| | | | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Otto von Guericke University, Medical Faculty, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Björn H Schott
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany; Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany; Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
38
|
Kim BM, Kim MS, Kim JS. Alterations of Functional Connectivity During the Resting State and Their Associations With Visual Memory in College Students Who Binge Drink. Front Hum Neurosci 2021; 14:600437. [PMID: 33424567 PMCID: PMC7793784 DOI: 10.3389/fnhum.2020.600437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/06/2020] [Indexed: 12/15/2022] Open
Abstract
This study investigated the characteristics of neural oscillation and functional connectivity (FC) in college students engaging in binge drinking (BD) using resting-state electroencephalography (EEG). Also, the associations of visual memory, evaluated by the Rey-Osterrieth Complex Figure Test (RCFT), and neural oscillation with FC during the resting state were investigated. The BD (n = 35) and non-BD (n = 35) groups were selected based on scores of the Korean version of the Alcohol use disorders (AUDs) Identification Test and the Alcohol Use Questionnaire. EEG was performed for 6 min while the participants rested with eyes closed. The theta, lower-alpha, and upper alpha powers did not differ between the BD and non-BD groups. Concerning FC, the BD group exhibited stronger theta coherence than that of the non-BD group, and in the lower and upper alpha bands, the BD group showed stronger coherence in some areas but weaker coherence in others compared with the non-BD group. However, these significant results were not observed after Bonferroni correction. The BD group showed significantly lower delayed recall scores on the RCFT than did the non-BD group. A positive correlation between the left prefrontal-parietal-occipital midline connection and performance on the delayed recall of the RCFT was observed in the BD group. The present results could suggest that binge drinkers have alterations in brain FC, which may be related to their visual memory deficits.
Collapse
Affiliation(s)
- Bo-Mi Kim
- Department of Psychology, Sungshin Women's University, Seoul, South Korea
| | - Myung-Sun Kim
- Department of Psychology, Sungshin Women's University, Seoul, South Korea
| | - June Sic Kim
- Research Institute of Basic Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
39
|
Should context hold a special place in hippocampal memory? PSYCHOLOGY OF LEARNING AND MOTIVATION 2021. [DOI: 10.1016/bs.plm.2021.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Andrade MÂ, Raposo A. Underdeveloped recollection during adolescence: Semantic elaboration and inhibition as underlying mechanisms. J Exp Child Psychol 2020; 203:105044. [PMID: 33316567 DOI: 10.1016/j.jecp.2020.105044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/20/2020] [Accepted: 10/31/2020] [Indexed: 11/26/2022]
Abstract
Recognition memory abilities undergo important developmental changes until adulthood, with earlier studies showing different trajectories for recollection and familiarity-based processes. However, previous work has primarily focused on childhood, and differences in memory retrieval, notably in recollection, between adolescents and adults, have been hard to confirm. To address this gap in the literature and to better characterize the development of recollection and familiarity during adolescence, we applied the process dissociation procedure to a word recognition memory task, after semantic and perceptual encoding of words, in adolescents (n = 30, 13-15 years of age) and young adults (n = 30, 20-22 years). Relative to young adults, adolescents' lower recognition memory performance was restricted to context recollection of semantically encoded items. This effect was predicted by individual differences in inhibitory control abilities. These findings highlight the distinct developmental trajectories of familiarity and context recollection over the course of adolescence, and suggest that semantic elaboration and inhibition are two key mechanisms toward the full maturation of recollection processes.
Collapse
Affiliation(s)
| | - Ana Raposo
- Faculdade de Psicologia, Universidade de Lisboa, 1649-013 Lisbon, Portugal.
| |
Collapse
|
41
|
Horne ED, de Chastelaine M, Rugg MD. Neural correlates of post-retrieval monitoring in older adults are preserved under divided attention, but are decoupled from memory performance. Neurobiol Aging 2020; 97:106-119. [PMID: 33190122 DOI: 10.1016/j.neurobiolaging.2020.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/01/2020] [Accepted: 10/12/2020] [Indexed: 11/26/2022]
Abstract
Post-retrieval monitoring is associated with engagement of anterior cingulate and dorsolateral prefrontal cortex. Recent fMRI studies reported age-invariant monitoring effects in these regions and an age-invariant correlation between these effects and memory performance. The present study examined monitoring effects during associative recognition (difference in activity elicited by 'rearranged' and 'intact' test pairs) under single and dual (tone detection) task conditions in young and older adults (Ns = 28 per group). It was predicted that, for the older adults only, dual tasking would attenuate memory performance and monitoring effects and weaken their correlation. Consistent with this prediction, in the older group imposition of the secondary task led to lower memory performance and elimination of the relationship between monitoring effects and performance. However, the size of the effects did not differ between single and dual task conditions. The findings suggest that the decline in older adults' memory performance in the dual task condition resulted not from impaired monitoring, but from a different cause that also weakened the dependence of performance on monitoring.
Collapse
Affiliation(s)
- Erin D Horne
- Center for Vital Longevity, University of Texas at Dallas, Dallas, TX, USA; Center for BrainHealth, University of Texas at Dallas, Dallas, TX, USA.
| | | | - Michael D Rugg
- Center for Vital Longevity, University of Texas at Dallas, Dallas, TX, USA; School of Psychology, University of East Anglia, Norwich, UK
| |
Collapse
|
42
|
Contextual source information modulates neural face processing in the absence of conscious recognition: A threat-of-shock study. Neurobiol Learn Mem 2020; 174:107280. [DOI: 10.1016/j.nlm.2020.107280] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/15/2020] [Accepted: 07/17/2020] [Indexed: 11/21/2022]
|
43
|
Rivas-Fernández MÁ, Galdo-Álvarez S, Zurrón M, Díaz F, Lindín M. Spatiotemporal pattern of brain electrical activity related to immediate and delayed episodic memory retrieval. Neurobiol Learn Mem 2020; 175:107309. [PMID: 32890759 DOI: 10.1016/j.nlm.2020.107309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/30/2020] [Accepted: 08/26/2020] [Indexed: 10/23/2022]
Abstract
In the present study we used the event-related brain potentials (ERP) technique and eLORETA (exact low-resolution electromagnetic tomography) method in order to characterize and compare the performance and the spatiotemporal pattern of the brain electrical activity related to the immediate episodic retrieval of information (words) that is being learned relative to delayed episodic retrieval twenty-minutes later. For this purpose, 16 young participants carried out an old/new word recognition task with source memory (word colour). The task included an immediate memory phase (with three study-test blocks) followed (20 min later) by a delayed memory phase with one test block. The behavioural data showed progressive learning and consolidation of the information (old words) during the immediate memory phase. The ERP data to correctly identified old words for which the colour was subsequently recollected (H/H) compared to the correctly rejected new words (CR) showed: (1) a significant more positive-going potential in the 500-675 ms post-stimulus interval (parietal old/new effect, related to recollection), and (2) a more negative-going potential in the 950-1850 ms interval (LPN effect, related to retrieval and post-retrieval processes). The eLORETA data also revealed that the successful recognition of old words (and probably retrieval of their colour) was accompanied by activation of (1) left medial temporal (parahippocampal gyrus) and parietal regions involved in the recollection in both memory phases, and (2) prefrontal regions and the superior temporal gyrus (in the immediate and delayed memory phases respectively) involved in monitoring, evaluating and maintaining the retrieval products. These findings indicate that episodic memory retrieval depends on a network involving medial temporal lobe and frontal, parietal and temporal neocortical structures. That network was involved in immediate and delayed memory retrieval and during the course of memory consolidation, with greater activation of some nodes (mobilization of more processing resources) for the delayed respect to the immediate retrieval condition.
Collapse
Affiliation(s)
- Miguel Ángel Rivas-Fernández
- Laboratorio de Neurociencia Cognitiva, Departamento de Psicoloxía Clínica e Psicobioloxía, Universidade de Santiago de Compostela, Galicia, Spain.
| | - Santiago Galdo-Álvarez
- Laboratorio de Neurociencia Cognitiva, Departamento de Psicoloxía Clínica e Psicobioloxía, Universidade de Santiago de Compostela, Galicia, Spain.
| | - Montserrat Zurrón
- Laboratorio de Neurociencia Cognitiva, Departamento de Psicoloxía Clínica e Psicobioloxía, Universidade de Santiago de Compostela, Galicia, Spain.
| | - Fernando Díaz
- Laboratorio de Neurociencia Cognitiva, Departamento de Psicoloxía Clínica e Psicobioloxía, Universidade de Santiago de Compostela, Galicia, Spain.
| | - Mónica Lindín
- Laboratorio de Neurociencia Cognitiva, Departamento de Psicoloxía Clínica e Psicobioloxía, Universidade de Santiago de Compostela, Galicia, Spain.
| |
Collapse
|
44
|
Mecklinger A, Bader R. From fluency to recognition decisions: A broader view of familiarity-based remembering. Neuropsychologia 2020; 146:107527. [DOI: 10.1016/j.neuropsychologia.2020.107527] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 01/30/2023]
|
45
|
Umanath S, Coane JH. Face Validity of Remembering and Knowing: Empirical Consensus and Disagreement Between Participants and Researchers. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2020; 15:1400-1422. [DOI: 10.1177/1745691620917672] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ever since Endel Tulving first distinguished between episodic and semantic memory, the remember/know paradigm has become a standard means of probing the phenomenology of participants’ memorial experiences by memory researchers, neuropsychologists, neuroscientists, and others. However, this paradigm has not been without its problems and has been used to capture many different phenomenological experiences, including retrieval from episodic versus semantic memory, recollection versus familiarity, strength of memory traces, and so on. We first conducted a systematic review of its uses across the literature and then examined how memory experts, other cognitive psychology experts, experts in other areas of psychology, and lay participants (Amazon Mechanical Turk workers) define what it means when one says “I remember” and “I know.” From coding their open-ended responses using a number of theory-bound dimensions, it seems that lay participants do not see eye to eye with memory experts in terms of associating “I remember” responses with recollection and “I know” responses with familiarity. However, there is general consensus with Tulving’s original distinction, linking remembering with memory for events and knowing with semantic memory. Recommendations and implications across fields are discussed.
Collapse
Affiliation(s)
- Sharda Umanath
- Department of Psychological Science, Claremont McKenna College
| | | |
Collapse
|
46
|
Names and their meanings: A dual-process account of proper-name encoding and retrieval. Neurosci Biobehav Rev 2019; 108:308-321. [PMID: 31734171 DOI: 10.1016/j.neubiorev.2019.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 11/24/2022]
Abstract
The ability to pick out a unique entity with a proper name is an important component of human language. It has been a primary focus of research in the philosophy of language since the nineteenth century. Brain-based evidence has shed new light on this capacity, and an extensive literature indicates the involvement of distinct fronto-temporal and temporo-occipito-parietal association cortices in proper-name retrieval. However, comparatively few efforts have sought to explain how memory encoding processes lead to the later recruitment of these distinct regions at retrieval. Here, we provide a unified account of proper-name encoding and retrieval, reviewing evidence that socio-emotional and unitized encoding subserve the retrieval of proper names via anterior-temporal-prefrontal activations. Meanwhile, non-unitized item-item and item-context encoding support subsequent retrieval, largely dependent on the temporo-occipito-parietal cortex. We contend that this well-established divergence in encoding systems can explain how proper names are later retrieved from distinct neural structures. Furthermore, we explore how evidence reviewed here can inform a century-and-a-half-old debate about proper names and the meanings they pick out.
Collapse
|
47
|
Brain activation in highly superior autobiographical memory: The role of the precuneus in the autobiographical memory retrieval network. Cortex 2019; 120:588-602. [DOI: 10.1016/j.cortex.2019.02.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/13/2018] [Accepted: 02/16/2019] [Indexed: 12/29/2022]
|
48
|
Wu CL, Tsai MN, Chen HC. The neural mechanism of pure and pseudo-insight problem solving. THINKING & REASONING 2019. [DOI: 10.1080/13546783.2019.1663763] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Ching-Lin Wu
- Program of Learning Sciences, National Taiwan Normal University, Taipei, Taiwan
- Institute for Research Excellence in Learning Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Meng-Ning Tsai
- Department of Educational Psychology and Counselling, National Taiwan Normal University, Taipei, Taiwan
| | - Hsueh-Chih Chen
- Institute for Research Excellence in Learning Sciences, National Taiwan Normal University, Taipei, Taiwan
- Department of Educational Psychology and Counselling, National Taiwan Normal University, Taipei, Taiwan
- Chinese Language and Technology Center, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
49
|
Gaynor AM, Chua EF. Transcranial Direct Current Stimulation over the Prefrontal Cortex Alters Encoding and Judgments of Learning Based on Fluency. J Cogn Neurosci 2019; 31:1710-1725. [PMID: 31322469 DOI: 10.1162/jocn_a_01449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Past research has shown that judgments of learning (JOLs), subjective confidence judgments made at study about later memorability, are inferential in nature and based on cues available during encoding. Participants tend to use fluency as a cue and give higher JOLs to more fluently encoded items, despite having better recognition memory for disfluently encoded items, which leads to poor JOL accuracy. Research has implicated the dorsolateral prefrontal cortex (DLPFC) and anterior prefrontal cortex (aPFC) in JOL and encoding processes, but no studies to date have tested how the roles of these regions vary with the information on which JOLs are based. We used high-definition transcranial direct current stimulation to test the causal roles of DLPFC and aPFC in encoding success, JOL ratings, and JOL accuracy. Participants studied and made JOLs about words that varied in fluency (i.e., frequency and orientation). High-definition transcranial direct current stimulation over the DLPFC impaired encoding, as evidenced by an increase in subsequent false alarms. For words that were less fluently encoded, aPFC stimulation improved JOL accuracy, perhaps making participants more aware of encoding failures under conditions of disfluency. Conversely, DLPFC and aPFC stimulation decreased JOL accuracy for high-frequency words, suggesting the roles of these regions in JOLs vary with the cognitive bases of the judgments. These results contribute to our understanding of the causal roles of prefrontal regions in objective and subjective memory processes and how their contributions to metamemory accuracy vary with information on which subjective assessments are based.
Collapse
Affiliation(s)
- Alexandra M Gaynor
- Brooklyn College of the City University of New York.,The Graduate Center of the City University of New York
| | - Elizabeth F Chua
- Brooklyn College of the City University of New York.,The Graduate Center of the City University of New York
| |
Collapse
|
50
|
Biel D, Bunzeck N. Novelty Before or After Word Learning Does Not Affect Subsequent Memory Performance. Front Psychol 2019; 10:1379. [PMID: 31316414 PMCID: PMC6610293 DOI: 10.3389/fpsyg.2019.01379] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/28/2019] [Indexed: 01/10/2023] Open
Abstract
In humans, exposure to novel images and exploration of novel virtual environments before the encoding of words improved subsequent memory performance. Animal studies revealed similar effects of novelty, both before and after learning, and could show that hippocampus-dependent dopaminergic neuromodulation plays an important role. Here, we further investigated the effects of novelty on long-term memory in humans using a novel paradigm employing short sequences of nature movies presented either before or at two time points after learning of unrelated words. Since novelty processing is associated with a release of dopamine into the hippocampus, we hypothesized that novelty exposure primarily affects hippocampus-dependent memory (i.e., recollection) but not hippocampus-independent memory (i.e., familiarity). We tested 182 healthy human subjects in three experiments including a word-learning task followed by a 1-day delayed recognition task. Importantly, participants were exposed to novel (NOV) or familiar movies (FAM) at three time points: (experiment 1) directly after encoding of the word list, (experiment 2) 15 min after encoding, (experiment 3) 15 min prior to encoding. As expected, novel movies were perceived as more interesting and led to better mood. During word recognition, reaction times were faster for remember as compared to familiarity responses in all three experiments, but this effect was not modulated by novelty. In contrast to our main hypothesis, there was no effect of novelty – before or after encoding – on subsequent word recognition, including recollection and familiarity scores. Therefore, an exposure to novel movies without an active task does not affect hippocampus-dependent and hippocampus-independent long-term recognition memory for words in humans.
Collapse
Affiliation(s)
- Davina Biel
- Institute of Psychology I, University of Lübeck, Lübeck, Germany
| | - Nico Bunzeck
- Institute of Psychology I, University of Lübeck, Lübeck, Germany
| |
Collapse
|