1
|
Yao Y, Qiu L, Wei X, Chen J, Choy KW, Zheng G, Yang T, Li S, Yang F. Functional study of a rare L1CAM gene c.1759G>C variant prove its pathogenicity. Cell Biochem Funct 2024; 42:e4034. [PMID: 38715189 DOI: 10.1002/cbf.4034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024]
Abstract
L1 syndrome, a neurological disorder with an X-linked inheritance pattern, mainly results from mutations occurring in the L1 cell adhesion molecule (L1CAM) gene. The L1CAM molecule, belonging to the immunoglobulin (Ig) superfamily of neurocyte adhesion molecules, plays a pivotal role in facilitating intercellular signal transmission across membranes and is indispensable for proper neuronal development and function. This study identified a rare missense variant (c.1759G>C; p.G587R) in the L1CAM gene within a male fetus presenting with hydrocephalus. Due to a lack of functional analysis, the significance of the L1CAM mutation c.1759G>C (p.G587R) remains unknown. We aimed to perform further verification for its pathogenicity. Blood samples were obtained from the proband and his parents for trio clinical exome sequencing and mutation analysis. Expression level analysis was conducted using western blot techniques. Immunofluorescence was employed to investigate L1CAM subcellular localization, while cell aggregation and cell scratch assays were utilized to assess protein function. The study showed that the mutation (c.1759G>C; p.G587R) affected posttranslational glycosylation modification and induced alterations in the subcellular localization of L1-G587R in the cells. It resulted in the diminished expression of L1CAM on the cell surface and accumulation in the endoplasmic reticulum. The p.G587R altered the function of L1CAM protein and reduced homophilic adhesion capacity of proteins, leading to impaired adhesion and migration of proteins between cells. Our findings provide first biological evidence for the association between the missense mutation (c.1759G>c; p.G587R) in the L1CAM gene and L1 syndrome, confirming the pathogenicity of this missense mutation.
Collapse
Affiliation(s)
- Yuqing Yao
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Liyan Qiu
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xingyu Wei
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jianping Chen
- Medical Equipment Department, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Kwong Wai Choy
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Laboratory of Genetics and Genomics, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Guiyun Zheng
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tuyin Yang
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Sisi Li
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Fang Yang
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Granato V, Congiu L, Jakovcevski I, Kleene R, Schwindenhammer B, Fernandes L, Freitag S, Schachner M, Loers G. Mice Mutated in the First Fibronectin Domain of Adhesion Molecule L1 Show Brain Malformations and Behavioral Abnormalities. Biomolecules 2024; 14:468. [PMID: 38672483 PMCID: PMC11048097 DOI: 10.3390/biom14040468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/18/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The X-chromosome-linked cell adhesion molecule L1 (L1CAM), a glycoprotein mainly expressed by neurons in the central and peripheral nervous systems, has been implicated in many neural processes, including neuronal migration and survival, neuritogenesis, synapse formation, synaptic plasticity and regeneration. L1 consists of extracellular, transmembrane and cytoplasmic domains. Proteolytic cleavage of L1's extracellular and transmembrane domains by different proteases generates several L1 fragments with different functions. We found that myelin basic protein (MBP) cleaves L1's extracellular domain, leading to enhanced neuritogenesis and neuronal survival in vitro. To investigate in vivo the importance of the MBP-generated 70 kDa fragment (L1-70), we generated mice with an arginine to alanine substitution at position 687 (L1/687), thereby disrupting L1's MBP cleavage site and obliterating L1-70. Young adult L1/687 males showed normal anxiety and circadian rhythm activities but enhanced locomotion, while females showed altered social interactions. Older L1/687 males were impaired in motor coordination. Furthermore, L1/687 male and female mice had a larger hippocampus, with more neurons in the dentate gyrus and more proliferating cells in the subgranular layer, while the thickness of the corpus callosum and the size of lateral ventricles were normal. In summary, subtle mutant morphological changes result in subtle behavioral changes.
Collapse
Affiliation(s)
- Viviana Granato
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany; (V.G.); (L.C.); (R.K.); (S.F.)
| | - Ludovica Congiu
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany; (V.G.); (L.C.); (R.K.); (S.F.)
| | - Igor Jakovcevski
- Institut für Anatomie und Klinische Morphologie, Universität Witten/Herdecke, 58455 Witten, Germany; (I.J.); (B.S.)
- Department of Neuroanatomy and Molecular Brain Research, Institute of Anatomy, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany; (V.G.); (L.C.); (R.K.); (S.F.)
| | - Benjamin Schwindenhammer
- Institut für Anatomie und Klinische Morphologie, Universität Witten/Herdecke, 58455 Witten, Germany; (I.J.); (B.S.)
- Department of Neuroanatomy and Molecular Brain Research, Institute of Anatomy, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Luciana Fernandes
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany; (V.G.); (L.C.); (R.K.); (S.F.)
| | - Sandra Freitag
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany; (V.G.); (L.C.); (R.K.); (S.F.)
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA
| | - Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany; (V.G.); (L.C.); (R.K.); (S.F.)
| |
Collapse
|
3
|
Rodríguez-Pérez LM, López-de-San-Sebastián J, de Diego I, Smith A, Roales-Buján R, Jiménez AJ, Paez-Gonzalez P. A selective defect in the glial wedge as part of the neuroepithelium disruption in hydrocephalus development in the mouse hyh model is associated with complete corpus callosum dysgenesis. Front Cell Neurosci 2024; 18:1330412. [PMID: 38450283 PMCID: PMC10915275 DOI: 10.3389/fncel.2024.1330412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/08/2024] [Indexed: 03/08/2024] Open
Abstract
Introduction Dysgenesis of the corpus callosum is present in neurodevelopmental disorders and coexists with hydrocephalus in several human congenital syndromes. The mechanisms that underlie the etiology of congenital hydrocephalus and agenesis of the corpus callosum when they coappear during neurodevelopment persist unclear. In this work, the mechanistic relationship between both disorders is investigated in the hyh mouse model for congenital hydrocephalus, which also develops agenesis of the corpus callosum. In this model, hydrocephalus is generated by a defective program in the development of neuroepithelium during its differentiation into radial glial cells. Methods In this work, the populations implicated in the development of the corpus callosum (callosal neurons, pioneering axons, glial wedge cells, subcallosal sling and indusium griseum glial cells) were studied in wild-type and hyh mutant mice. Immunohistochemistry, mRNA in situ hybridization, axonal tracing experiments, and organotypic cultures from normal and hyh mouse embryos were used. Results Our results show that the defective program in the neuroepithelium/radial glial cell development in the hyh mutant mouse selectively affects the glial wedge cells. The glial wedge cells are necessary to guide the pioneering axons as they approach the corticoseptal boundary. Our results show that the pioneering callosal axons arising from neurons in the cingulate cortex can extend projections to the interhemispheric midline in normal and hyh mice. However, pioneering axons in the hyh mutant mouse, when approaching the area corresponding to the damaged glial wedge cell population, turned toward the ipsilateral lateral ventricle. This defect occurred before the appearance of ventriculomegaly. Discussion In conclusion, the abnormal development of the ventricular zone, which appears to be inherent to the etiology of several forms of congenital hydrocephalus, can explain, in some cases, the common association between hydrocephalus and corpus callosum dysgenesis. These results imply that further studies may be needed to understand the corpus callosum dysgenesis etiology when it concurs with hydrocephalus.
Collapse
Affiliation(s)
- Luis-Manuel Rodríguez-Pérez
- Departamento de Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, Universidad de Málaga, Malaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain
| | | | - Isabel de Diego
- Departamento de Anatomía y Medicina Legal e Historia de la Ciencia, Universidad de Málaga, Malaga, Spain
| | - Aníbal Smith
- Departamento de Anatomía y Medicina Legal e Historia de la Ciencia, Universidad de Málaga, Malaga, Spain
| | - Ruth Roales-Buján
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Malaga, Spain
| | - Antonio J. Jiménez
- Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Malaga, Spain
| | - Patricia Paez-Gonzalez
- Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Malaga, Spain
| |
Collapse
|
4
|
Lynton Z, Suárez R, Fenlon LR. Brain plasticity following corpus callosum agenesis or loss: a review of the Probst bundles. Front Neuroanat 2023; 17:1296779. [PMID: 38020213 PMCID: PMC10657877 DOI: 10.3389/fnana.2023.1296779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
The corpus callosum is the largest axonal tract in the human brain, connecting the left and right cortical hemipheres. This structure is affected in myriad human neurodevelopmental disorders, and can be entirely absent as a result of congenital or surgical causes. The age when callosal loss occurs, for example via surgical section in cases of refractory epilepsy, correlates with resulting brain morphology and neuropsychological outcomes, whereby an earlier loss generally produces relatively improved interhemispheric connectivity compared to a loss in adulthood (known as the "Sperry's paradox"). However, the mechanisms behind these age-dependent differences remain unclear. Perhaps the best documented and most striking of the plastic changes that occur due to developmental, but not adult, callosal loss is the formation of large, bilateral, longitudinal ectopic tracts termed Probst bundles. Despite over 100 years of research into these ectopic tracts, which are the largest and best described stereotypical ectopic brain tracts in humans, much remains unclear about them. Here, we review the anatomy of the Probst bundles, along with evidence for their faciliatory or detrimental function, the required conditions for their formation, patterns of etiology, and mechanisms of development. We provide hypotheses for many of the remaining mysteries of the Probst bundles, including their possible relationship to preserved interhemispheric communication following corpus callosum absence. Future research into naturally occurring plastic tracts such as Probst bundles will help to inform the general rules governing axon plasticity and disorders of brain miswiring.
Collapse
Affiliation(s)
- Zorana Lynton
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Rodrigo Suárez
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Laura R. Fenlon
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
5
|
Murphy KE, Duncan B, Sperringer JE, Zhang E, Haberman V, Wyatt EV, Maness P. Ankyrin B promotes developmental spine regulation in the mouse prefrontal cortex. Cereb Cortex 2023; 33:10634-10648. [PMID: 37642601 PMCID: PMC10560577 DOI: 10.1093/cercor/bhad311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
Postnatal regulation of dendritic spine formation and refinement in cortical pyramidal neurons is critical for excitatory/inhibitory balance in neocortical networks. Recent studies have identified a selective spine pruning mechanism in the mouse prefrontal cortex mediated by class 3 Semaphorins and the L1 cell adhesion molecules, neuron-glia related cell adhesion molecule, Close Homolog of L1, and L1. L1 cell adhesion molecules bind Ankyrin B, an actin-spectrin adaptor encoded by Ankyrin2, a high-confidence gene for autism spectrum disorder. In a new inducible mouse model (Nex1Cre-ERT2: Ank2flox: RCE), Ankyrin2 deletion in early postnatal pyramidal neurons increased spine density on apical dendrites in prefrontal cortex layer 2/3 of homozygous and heterozygous Ankyrin2-deficient mice. In contrast, Ankyrin2 deletion in adulthood had no effect on spine density. Sema3F-induced spine pruning was impaired in cortical neuron cultures from Ankyrin B-null mice and was rescued by re-expression of the 220 kDa Ankyrin B isoform but not 440 kDa Ankyrin B. Ankyrin B bound to neuron-glia related CAM at a cytoplasmic domain motif (FIGQY1231), and mutation to FIGQH inhibited binding, impairing Sema3F-induced spine pruning in neuronal cultures. Identification of a novel function for Ankyrin B in dendritic spine regulation provides insight into cortical circuit development, as well as potential molecular deficiencies in autism spectrum disorder.
Collapse
Affiliation(s)
- Kelsey E Murphy
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine at Chapel Hill, Campus Box 7260, Chapel Hill, NC, 27599, United States
| | - Bryce Duncan
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine at Chapel Hill, Campus Box 7260, Chapel Hill, NC, 27599, United States
| | - Justin E Sperringer
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine at Chapel Hill, Campus Box 7260, Chapel Hill, NC, 27599, United States
| | - Erin Zhang
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine at Chapel Hill, Campus Box 7260, Chapel Hill, NC, 27599, United States
| | - Victoria Haberman
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine at Chapel Hill, Campus Box 7260, Chapel Hill, NC, 27599, United States
| | - Elliott V Wyatt
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine at Chapel Hill, Campus Box 7260, Chapel Hill, NC, 27599, United States
| | - Patricia Maness
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine at Chapel Hill, Campus Box 7260, Chapel Hill, NC, 27599, United States
| |
Collapse
|
6
|
Murphy KE, Duncan BW, Sperringer JE, Zhang EY, Haberman VA, Wyatt EV, Maness PF. Ankyrin B Promotes Developmental Spine Regulation in the Mouse Prefrontal Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.11.548527. [PMID: 37503187 PMCID: PMC10369899 DOI: 10.1101/2023.07.11.548527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Postnatal regulation of dendritic spine formation and refinement in cortical pyramidal neurons is critical for excitatory/inhibitory balance in neocortical networks. Recent studies have identified a selective spine pruning mechanism in the mouse prefrontal cortex (PFC) mediated by class 3 Semaphorins and the L1-CAM cell adhesion molecules Neuron-glia related CAM (NrCAM), Close Homolog of L1 (CHL1), and L1. L1-CAMs bind Ankyrin B (AnkB), an actin-spectrin adaptor encoded by Ankyrin2 ( ANK2 ), a high confidence gene for autism spectrum disorder (ASD). In a new inducible mouse model (Nex1Cre-ERT2: Ank2 flox : RCE), Ank2 deletion in early postnatal pyramidal neurons increased spine density on apical dendrites in PFC layer 2/3 of homozygous and heterozygous Ank2 -deficient mice. In contrast, Ank2 deletion in adulthood had no effect on spine density. Sema3F-induced spine pruning was impaired in cortical neuron cultures from AnkB-null mice and was rescued by re-expression of the 220 kDa AnkB isoform but not 440 kDa AnkB. AnkB bound to NrCAM at a cytoplasmic domain motif (FIGQY 1231 ), and mutation to FIGQH inhibited binding, impairing Sema3F-induced spine pruning in neuronal cultures. Identification of a novel function for AnkB in dendritic spine regulation provides insight into cortical circuit development, as well as potential molecular deficiencies in ASD.
Collapse
|
7
|
Congiu L, Granato V, Jakovcevski I, Kleene R, Fernandes L, Freitag S, Kneussel M, Schachner M, Loers G. Mice Mutated in the Third Fibronectin Domain of L1 Show Enhanced Hippocampal Neuronal Cell Death, Astrogliosis and Alterations in Behavior. Biomolecules 2023; 13:776. [PMID: 37238646 PMCID: PMC10216033 DOI: 10.3390/biom13050776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Adhesion molecules play major roles in cell proliferation, migration, survival, neurite outgrowth and synapse formation during nervous system development and in adulthood. The neural cell adhesion molecule L1 contributes to these functions during development and in synapse formation and synaptic plasticity after trauma in adulthood. Mutations of L1 in humans result in L1 syndrome, which is associated with mild-to-severe brain malformations and mental disabilities. Furthermore, mutations in the extracellular domain were shown to cause a severe phenotype more often than mutations in the intracellular domain. To explore the outcome of a mutation in the extracellular domain, we generated mice with disruption of the dibasic sequences RK and KR that localize to position 858RKHSKR863 in the third fibronectin type III domain of murine L1. These mice exhibit alterations in exploratory behavior and enhanced marble burying activity. Mutant mice display higher numbers of caspase 3-positive neurons, a reduced number of principle neurons in the hippocampus, and an enhanced number of glial cells. Experiments suggest that disruption of the dibasic sequence in L1 results in subtle impairments in brain structure and functions leading to obsessive-like behavior in males and reduced anxiety in females.
Collapse
Affiliation(s)
- Ludovica Congiu
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany (R.K.); (S.F.); (M.K.)
| | - Viviana Granato
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany (R.K.); (S.F.); (M.K.)
| | - Igor Jakovcevski
- Institut für Anatomie und Klinische Morphologie, Universität Witten/Herdecke, 58455 Witten, Germany;
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany (R.K.); (S.F.); (M.K.)
| | - Luciana Fernandes
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany (R.K.); (S.F.); (M.K.)
| | - Sandra Freitag
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany (R.K.); (S.F.); (M.K.)
| | - Matthias Kneussel
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany (R.K.); (S.F.); (M.K.)
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA
| | - Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany (R.K.); (S.F.); (M.K.)
| |
Collapse
|
8
|
Murphy KE, Wade SD, Sperringer JE, Mohan V, Duncan BW, Zhang EY, Pak Y, Lutz D, Schachner M, Maness PF. The L1 cell adhesion molecule constrains dendritic spine density in pyramidal neurons of the mouse cerebral cortex. Front Neuroanat 2023; 17:1111525. [PMID: 37007644 PMCID: PMC10062527 DOI: 10.3389/fnana.2023.1111525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/24/2023] [Indexed: 03/18/2023] Open
Abstract
A novel function for the L1 cell adhesion molecule, which binds the actin adaptor protein Ankyrin was identified in constraining dendritic spine density on pyramidal neurons in the mouse neocortex. In an L1-null mouse mutant increased spine density was observed on apical but not basal dendrites of pyramidal neurons in diverse cortical areas (prefrontal cortex layer 2/3, motor cortex layer 5, visual cortex layer 4. The Ankyrin binding motif (FIGQY) in the L1 cytoplasmic domain was critical for spine regulation, as demonstrated by increased spine density and altered spine morphology in the prefrontal cortex of a mouse knock-in mutant (L1YH) harboring a tyrosine (Y) to histidine (H) mutation in the FIGQY motif, which disrupted L1-Ankyrin association. This mutation is a known variant in the human L1 syndrome of intellectual disability. L1 was localized by immunofluorescence staining to spine heads and dendrites of cortical pyramidal neurons. L1 coimmunoprecipitated with Ankyrin B (220 kDa isoform) from lysates of wild type but not L1YH forebrain. This study provides insight into the molecular mechanism of spine regulation and underscores the potential for this adhesion molecule to regulate cognitive and other L1-related functions that are abnormal in the L1 syndrome.
Collapse
Affiliation(s)
- Kelsey E. Murphy
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC, United States
- Carolina Institute of Developmental Disabilities, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC, United States
| | - Sarah D. Wade
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC, United States
- Carolina Institute of Developmental Disabilities, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC, United States
| | - Justin E. Sperringer
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC, United States
- Carolina Institute of Developmental Disabilities, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC, United States
| | - Vishwa Mohan
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC, United States
- Carolina Institute of Developmental Disabilities, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC, United States
| | - Bryce W. Duncan
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC, United States
- Carolina Institute of Developmental Disabilities, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC, United States
| | - Erin Y. Zhang
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC, United States
- Carolina Institute of Developmental Disabilities, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC, United States
| | - Yubin Pak
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC, United States
- Carolina Institute of Developmental Disabilities, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC, United States
| | - David Lutz
- Division of Neuroanatomy and Molecular Brain Research, Ruhr University-Bochum, Bochum, Germany
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscatawy, NJ, United States
| | - Patricia F. Maness
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC, United States
- Carolina Institute of Developmental Disabilities, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: Patricia F. Maness
| |
Collapse
|
9
|
Murphy KE, Zhang EY, Wyatt EV, Sperringer JE, Duncan BW, Maness PF. Doublecortin-Like Kinase 1 Facilitates Dendritic Spine Growth of Pyramidal Neurons in Mouse Prefrontal Cortex. Neuroscience 2023; 508:98-109. [PMID: 36064052 PMCID: PMC10317307 DOI: 10.1016/j.neuroscience.2022.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 01/17/2023]
Abstract
The L1 cell adhesion molecule NrCAM (Neuron-glia related cell adhesion molecule) functions as a co-receptor for secreted class 3 Semaphorins to prune subpopulations of dendritic spines on apical dendrites of pyramidal neurons in the developing mouse neocortex. The developing spine cytoskeleton is enriched in actin filaments, but a small number of microtubules have been shown to enter the spine apparently trafficking vesicles to the membrane. Doublecortin-like kinase 1 (DCLK1) is a member of the Doublecortin (DCX) family of microtubule-binding proteins with serine/threonine kinase activity. To determine if DCLK1 plays a role in spine remodeling, we generated a tamoxifen-inducible mouse line (Nex1Cre-ERT2: DCLK1flox/flox: RCE) to delete microtubule binding isoforms of DCLK1 from pyramidal neurons during postnatal stages of spine development. Homozygous DCLK1 conditional mutant mice exhibited decreased spine density on apical dendrites of pyramidal neurons in the prefrontal cortex (layer 2/3). Mature mushroom spines were selectively decreased upon DCLK1 deletion but dendritic arborization was unaltered. Mutagenesis and binding studies revealed that DCLK1 bound NrCAM at the conserved FIGQY1231 motif in the NrCAM cytoplasmic domain, a known interaction site for the actin-spectrin adaptor Ankyrin. These findings demonstrate in a novel mouse model that DCLK1 facilitates spine growth and maturation on cortical pyramidal neurons in the mouse prefrontal cortex.
Collapse
Affiliation(s)
- Kelsey E Murphy
- Department of Biochemistry and Biophysics, and Carolina Institute of Developmental Disabilities, University of North Carolina, School of Medicine at Chapel Hill, United States
| | - Erin Y Zhang
- Department of Biochemistry and Biophysics, and Carolina Institute of Developmental Disabilities, University of North Carolina, School of Medicine at Chapel Hill, United States
| | - Elliott V Wyatt
- Department of Biochemistry and Biophysics, and Carolina Institute of Developmental Disabilities, University of North Carolina, School of Medicine at Chapel Hill, United States
| | - Justin E Sperringer
- Department of Biochemistry and Biophysics, and Carolina Institute of Developmental Disabilities, University of North Carolina, School of Medicine at Chapel Hill, United States
| | - Bryce W Duncan
- Department of Biochemistry and Biophysics, and Carolina Institute of Developmental Disabilities, University of North Carolina, School of Medicine at Chapel Hill, United States
| | - Patricia F Maness
- Department of Biochemistry and Biophysics, and Carolina Institute of Developmental Disabilities, University of North Carolina, School of Medicine at Chapel Hill, United States.
| |
Collapse
|
10
|
Castañeyra-Ruiz L, González-Marrero I, Hernández-Abad LG, Lee S, Castañeyra-Perdomo A, Muhonen M. AQP4, Astrogenesis, and Hydrocephalus: A New Neurological Perspective. Int J Mol Sci 2022; 23:10438. [PMID: 36142348 PMCID: PMC9498986 DOI: 10.3390/ijms231810438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Aquaporin 4 (AQP4) is a cerebral glial marker that labels ependymal cells and astrocytes' endfeet and is the main water channel responsible for the parenchymal fluid balance. However, in brain development, AQP4 is a marker of glial stem cells and plays a crucial role in the pathophysiology of pediatric hydrocephalus. Gliogenesis characterization has been hampered by a lack of biomarkers for precursor and intermediate stages and a deeper understanding of hydrocephalus etiology is needed. This manuscript is a focused review of the current research landscape on AQP4 as a possible biomarker for gliogenesis and its influence in pediatric hydrocephalus, emphasizing reactive astrogliosis. The goal is to understand brain development under hydrocephalic and normal physiologic conditions.
Collapse
Affiliation(s)
| | - Ibrahim González-Marrero
- Departamento de Ciencias Médicas Basicas, Anatomía, Facultad de Medicina, Universidad de La Laguna, Ofra s/n, 38071 La Laguna, Spain
| | - Luis G. Hernández-Abad
- Departamento de Ciencias Médicas Basicas, Anatomía, Facultad de Medicina, Universidad de La Laguna, Ofra s/n, 38071 La Laguna, Spain
| | - Seunghyun Lee
- CHOC Children’s Research Institute, 1201 W, La Veta Avenue, Orange, CA 92868, USA
| | - Agustín Castañeyra-Perdomo
- Departamento de Ciencias Médicas Basicas, Anatomía, Facultad de Medicina, Universidad de La Laguna, Ofra s/n, 38071 La Laguna, Spain
- Instituto de Investigación y Ciencias de Puerto del Rosario, 35600 Puerto del Rosario, Spain
| | - Michael Muhonen
- Neurosurgery Department at CHOC Children’s Hospital, 505 S Main St., Orange, CA 92868, USA
| |
Collapse
|
11
|
Kleene R, Loers G, Castillo G, Schachner M. Cell adhesion molecule L1 interacts with the chromo shadow domain of heterochromatin protein 1 isoforms α, β, and ɣ via its intracellular domain. FASEB J 2021; 36:e22074. [PMID: 34859928 DOI: 10.1096/fj.202100816r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/01/2021] [Accepted: 11/15/2021] [Indexed: 11/11/2022]
Abstract
Cell adhesion molecule L1 regulates multiple cell functions and L1 deficiency is linked to several neural diseases. Proteolytic processing generates functionally decisive L1 fragments, which are imported into the nucleus. By computational analysis, we found at L1's C-terminal end the chromo shadow domain-binding motif PxVxL, which directs the binding of nuclear proteins to the heterochromatin protein 1 (HP1) isoforms α, β, and ɣ. By enzyme-linked immunosorbent assay, we show that the intracellular L1 domain binds to all HP1 isoforms. These interactions involve the HP1 chromo shadow domain and are mediated via the sequence 1158 KDET1161 in the intracellular domain of murine L1, but not by L1's C-terminal PxVxL motif. Immunoprecipitation using nuclear extracts from the brain and from cultured cerebellar and cortical neurons indicates that HP1 isoforms interact with a yet unknown nuclear L1 fragment of approximately 55 kDa (L1-55), which carries ubiquitin residues. Proximity ligation indicates a close association between L1-55 and the HP1 isoforms in neuronal nuclei. This association is reduced after the treatment of neurons with inhibitors of metalloproteases, β-site of amyloid precursor protein cleaving enzyme (BACE1), or ɣ-secretase, suggesting that cleavage of full-length L1 by these proteases generates L1-55. Reduction of HP1α, -β, or -ɣ expression by siRNA decreases L1-dependent neurite outgrowth from cultured cortical neurons and decreases the L1-dependent migration of L1-transfected HEK293 cells in a scratch assay. These findings indicate that the interaction of the novel fragment L1-55 with HP1 isoforms in nuclei affects L1-dependent functions, such as neurite outgrowth and neuronal migration.
Collapse
Affiliation(s)
- Ralf Kleene
- Research Group Biosynthesis of Neural Structures, Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Gabriele Loers
- Research Group Biosynthesis of Neural Structures, Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Gaston Castillo
- Research Group Biosynthesis of Neural Structures, Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Melitta Schachner
- Department of Cell Biology and Neuroscience, Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
12
|
Hemizygous mutations in L1CAM in two unrelated male probands with childhood onset psychosis. Psychiatr Genet 2021; 30:73-82. [PMID: 32404617 DOI: 10.1097/ypg.0000000000000253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To identify genes underlying childhood onset psychosis. METHODS Patients with onset of psychosis at age 13 or younger were identified from clinics across England, and they and their parents were exome sequenced and analysed for possible highly penetrant genetic contributors. RESULTS We report two male childhood onset psychosis patients of different ancestries carrying hemizygous very rare possibly damaging missense variants (p.Arg846His and p.Pro145Ser) in the L1CAM gene. L1CAM is an X-linked Mendelian disease gene in which both missense and loss of function variants are associated with syndromic forms of intellectual disability and developmental disorder. CONCLUSIONS This is the first study reporting a possible extension of the phenotype of L1CAM variant carriers to childhood onset psychosis. The family history and presence of other significant rare genetic variants in the patients suggest that there may be genetic interactions modulating the presentation.
Collapse
|
13
|
Clements J, Buhler K, Winant M, Vulsteke V, Callaerts P. Glial and Neuronal Neuroglian, Semaphorin-1a and Plexin A Regulate Morphological and Functional Differentiation of Drosophila Insulin-Producing Cells. Front Endocrinol (Lausanne) 2021; 12:600251. [PMID: 34276554 PMCID: PMC8281472 DOI: 10.3389/fendo.2021.600251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 06/11/2021] [Indexed: 11/21/2022] Open
Abstract
The insulin-producing cells (IPCs), a group of 14 neurons in the Drosophila brain, regulate numerous processes, including energy homeostasis, lifespan, stress response, fecundity, and various behaviors, such as foraging and sleep. Despite their importance, little is known about the development and the factors that regulate morphological and functional differentiation of IPCs. In this study, we describe the use of a new transgenic reporter to characterize the role of the Drosophila L1-CAM homolog Neuroglian (Nrg), and the transmembrane Semaphorin-1a (Sema-1a) and its receptor Plexin A (PlexA) in the differentiation of the insulin-producing neurons. Loss of Nrg results in defasciculation and abnormal neurite branching, including ectopic neurites in the IPC neurons. Cell-type specific RNAi knockdown experiments reveal that Nrg, Sema-1a and PlexA are required in IPCs and glia to control normal morphological differentiation of IPCs albeit with a stronger contribution of Nrg and Sema-1a in glia and of PlexA in the IPCs. These observations provide new insights into the development of the IPC neurons and identify a novel role for Sema-1a in glia. In addition, we show that Nrg, Sema-1a and PlexA in glia and IPCs not only regulate morphological but also functional differentiation of the IPCs and that the functional deficits are likely independent of the morphological phenotypes. The requirements of nrg, Sema-1a, and PlexA in IPC development and the expression of their vertebrate counterparts in the hypothalamic-pituitary axis, suggest that these functions may be evolutionarily conserved in the establishment of vertebrate endocrine systems.
Collapse
|
14
|
Sullivan CS, Mohan V, Manis PB, Moy SS, Truong Y, Duncan BW, Maness PF. Developmental Regulation of Basket Interneuron Synapses and Behavior through NCAM in Mouse Prefrontal Cortex. Cereb Cortex 2020; 30:4689-4707. [PMID: 32249896 DOI: 10.1093/cercor/bhaa074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/07/2019] [Indexed: 02/07/2023] Open
Abstract
Parvalbumin (PV)-expressing basket interneurons in the prefrontal cortex (PFC) regulate pyramidal cell firing, synchrony, and network oscillations. Yet, it is unclear how their perisomatic inputs to pyramidal neurons are integrated into neural circuitry and adjusted postnatally. Neural cell adhesion molecule NCAM is expressed in a variety of cells in the PFC and cooperates with EphrinA/EphAs to regulate inhibitory synapse density. Here, analysis of a novel parvalbumin (PV)-Cre: NCAM F/F mouse mutant revealed that NCAM functions presynaptically in PV+ basket interneurons to regulate postnatal elimination of perisomatic synapses. Mutant mice exhibited an increased density of PV+ perisomatic puncta in PFC layer 2/3, while live imaging in mutant brain slices revealed fewer puncta that were dynamically eliminated. Furthermore, EphrinA5-induced growth cone collapse in PV+ interneurons in culture depended on NCAM expression. Electrophysiological recording from layer 2/3 pyramidal cells in mutant PFC slices showed a slower rise time of inhibitory synaptic currents. PV-Cre: NCAM F/F mice exhibited impairments in working memory and social behavior that may be impacted by altered PFC circuitry. These findings suggest that the density of perisomatic synapses of PV+ basket interneurons is regulated postnatally by NCAM, likely through EphrinA-dependent elimination, which is important for appropriate PFC network function and behavior.
Collapse
Affiliation(s)
- Chelsea S Sullivan
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Vishwa Mohan
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Paul B Manis
- Department of Otolaryngology/Head and Neck Surgery, and Cell Biology and Physiology, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sheryl S Moy
- Department of Psychiatry, Carolina Institute for Developmental Disabilities, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Young Truong
- Department of Biostatistics, School of Global Public Health, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bryce W Duncan
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Patricia F Maness
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
15
|
Lorenzo DN. Cargo hold and delivery: Ankyrins, spectrins, and their functional patterning of neurons. Cytoskeleton (Hoboken) 2020; 77:129-148. [PMID: 32034889 DOI: 10.1002/cm.21602] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 01/12/2023]
Abstract
The highly polarized, typically very long, and nonmitotic nature of neurons present them with unique challenges in the maintenance of their homeostasis. This architectural complexity serves a rich and tightly controlled set of functions that enables their fast communication with neighboring cells and endows them with exquisite plasticity. The submembrane neuronal cytoskeleton occupies a pivotal position in orchestrating the structural patterning that determines local and long-range subcellular specialization, membrane dynamics, and a wide range of signaling events. At its center is the partnership between ankyrins and spectrins, which self-assemble with both remarkable long-range regularity and micro- and nanoscale specificity to precisely position and stabilize cell adhesion molecules, membrane transporters, ion channels, and other cytoskeletal proteins. To accomplish these generally conserved, but often functionally divergent and spatially diverse, roles these partners use a combinatorial program of a couple of dozens interacting family members, whose code is not fully unraveled. In a departure from their scaffolding roles, ankyrins and spectrins also enable the delivery of material to the plasma membrane by facilitating intracellular transport. Thus, it is unsurprising that deficits in ankyrins and spectrins underlie several neurodevelopmental, neurodegenerative, and psychiatric disorders. Here, I summarize key aspects of the biology of spectrins and ankyrins in the mammalian neuron and provide a snapshot of the latest advances in decoding their roles in the nervous system.
Collapse
Affiliation(s)
- Damaris N Lorenzo
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
16
|
Dierssen M. Top ten discoveries of the year: Neurodevelopmental disorders. FREE NEUROPATHOLOGY 2020; 1:1-13. [PMID: 37283674 PMCID: PMC10209851 DOI: 10.17879/freeneuropathology-2020-2672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/12/2020] [Indexed: 06/08/2023]
Abstract
Developmental brain disorders, a highly heterogeneous group of disorders with a prevalence of around 3% of worldwide population, represent a growing medical challenge. They are characterized by impaired neurodevelopmental processes leading to deficits in cognition, social interaction, behavior and motor functioning as a result of abnormal development of brain. This can include developmental brain dysfunction, which can manifest as neuropsychiatric problems or impaired motor function, learning, language or non-verbal communication. Several of these phenotypes can often co-exist in the same patient and characterize the same disorder. Here I discuss some contributions in 2019 that are shaking our basic understanding of the pathogenesis of neurodevelopmental disorders. Recent developments in sophisticated in-utero imaging diagnostic tools have raised the possibility of imaging the fetal human brain growth, providing insights into the developing anatomy and improving diagnostics but also allowing a better understanding of antenatal pathology. On the other hand, advances in our understanding of the pathogenetic mechanisms reveal a remarkably complex molecular neuropathology involving a myriad of genetic architectures and regulatory elements that will help establish more rigorous genotype-phenotype correlations.
Collapse
Affiliation(s)
- Mara Dierssen
- Centre for Genomic Regulation (CRG); The Barcelona Institute of Science and Technology, and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| |
Collapse
|
17
|
Nascimento JM, Saia-Cereda VM, Sartore RC, da Costa RM, Schitine CS, Freitas HR, Murgu M, de Melo Reis RA, Rehen SK, Martins-de-Souza D. Human Cerebral Organoids and Fetal Brain Tissue Share Proteomic Similarities. Front Cell Dev Biol 2019; 7:303. [PMID: 31850342 PMCID: PMC6893972 DOI: 10.3389/fcell.2019.00303] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022] Open
Abstract
The limited access to functional human brain tissue has led to the development of stem cell-based alternative models. The differentiation of human pluripotent stem cells into cerebral organoids with self-organized architecture has created novel opportunities to study the early stages of the human cerebral formation. Here we applied state-of-the-art label-free shotgun proteomics to compare the proteome of stem cell-derived cerebral organoids to the human fetal brain. We identified 3,073 proteins associated with different developmental stages, from neural progenitors to neurons, astrocytes, or oligodendrocytes. The major protein groups are associated with neurogenesis, axon guidance, synaptogenesis, and cortical brain development. Glial cell proteins related to cell growth and maintenance, energy metabolism, cell communication, and signaling were also described. Our data support the variety of cells and neural network functional pathways observed within cell-derived cerebral organoids, confirming their usefulness as an alternative model. The characterization of brain organoid proteome is key to explore, in a dish, atypical and disrupted processes during brain development or neurodevelopmental, neurodegenerative, and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Juliana Minardi Nascimento
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil.,D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Verônica M Saia-Cereda
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Rafaela C Sartore
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil.,National Institute of Traumatology and Orthopedics, Rio de Janeiro, Brazil
| | | | - Clarissa S Schitine
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.,Institute of Biophysics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Hercules Rezende Freitas
- Institute of Biophysics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.,School of Health Sciences, IBMR - University Center, Rio de Janeiro, Brazil
| | | | - Ricardo A de Melo Reis
- Institute of Biophysics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Stevens K Rehen
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil.,Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil.,Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, Brazil
| |
Collapse
|
18
|
Emmert AS, Iwasawa E, Shula C, Schultz P, Lindquist D, Dunn RS, Fugate EM, Hu YC, Mangano FT, Goto J. Impaired neural differentiation and glymphatic CSF flow in the Ccdc39 rat model of neonatal hydrocephalus: genetic interaction with L1cam. Dis Model Mech 2019; 12:12/11/dmm040972. [PMID: 31771992 PMCID: PMC6898999 DOI: 10.1242/dmm.040972] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/14/2019] [Indexed: 01/07/2023] Open
Abstract
Neonatal hydrocephalus affects about one child per 1000 births and is a major congenital brain abnormality. We previously discovered a gene mutation within the coiled-coil domain-containing 39 (Ccdc39) gene, which causes the progressive hydrocephalus (prh) phenotype in mice due to lack of ependymal-cilia-mediated cerebrospinal fluid (CSF) flow. In this study, we used CRISPR/Cas9 to introduce the Ccdc39 gene mutation into rats, which are more suitable for imaging and surgical experiments. The Ccdc39prh/prh mutants exhibited mild ventriculomegaly at postnatal day (P)5 that progressed into severe hydrocephalus by P11 (P<0.001). After P11, macrophage and neutrophil invasion along with subarachnoid hemorrhage were observed in mutant brains showing reduced neurofilament density, hypomyelination and increased cell death signals compared with wild-type brains. Significantly more macrophages entered the brain parenchyma at P5 before hemorrhaging was noted and increased expression of a pro-inflammatory factor (monocyte chemoattractant protein-1) was found in the cortical neural and endothelial cells in the mutant brains at P11. Glymphatic-mediated CSF circulation was progressively impaired along the middle cerebral artery from P11 as mutants developed severe hydrocephalus (P<0.001). In addition, Ccdc39prh/prh mutants with L1 cell adhesion molecule (L1cam) gene mutation, which causes X-linked human congenital hydrocephalus, showed an accelerated early hydrocephalus phenotype (P<0.05-0.01). Our findings in Ccdc39prh/prh mutant rats demonstrate a possible causal role of neuroinflammation in neonatal hydrocephalus development, which involves impaired cortical development and glymphatic CSF flow. Improved understanding of inflammatory responses and the glymphatic system in neonatal hydrocephalus could lead to new therapeutic strategies for this condition. This article has an associated First Person interview with the joint first authors of the paper. Summary: Glymphatic CSF circulation and development of the cerebral cortex are impaired in our new genetic rat model of neonatal hydrocephalus with the onset of parenchymal inflammation and hemorrhage.
Collapse
Affiliation(s)
- A Scott Emmert
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Eri Iwasawa
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Crystal Shula
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Preston Schultz
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Diana Lindquist
- Division of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - R Scott Dunn
- Division of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Elizabeth M Fugate
- Division of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yueh-Chiang Hu
- Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Francesco T Mangano
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - June Goto
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
19
|
Mora C, Velásquez C, Martino J. The neural pathway midline crossing theory: a historical analysis of Santiago Rámon y Cajal's contribution on cerebral localization and on contralateral forebrain organization. Neurosurg Focus 2019; 47:E10. [PMID: 31473669 DOI: 10.3171/2019.6.focus19341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/25/2019] [Indexed: 11/06/2022]
Abstract
Throughout history, many scientists have wondered about the reason for neural pathway decussation in the CNS resulting in contralateral forebrain organization. Hitherto, one of the most accepted theories is the one described by the renowned Spanish physician, Santiago Rámon y Cajal at the end of the 19th century. This Nobel Prize winner, among his many contributions to science, gave us the answer to this question: the key lies in the optic chiasm. Based on the fact that the ocular lenses invert the image formed in the retina, Cajal explained how the decussation of the fibers in the optic chiasm is necessary to obtain a continuous image of the outside in the brain. The crossing of the tactile and motor pathways occurred posteriorly as a compensatory mechanism to allow the cortical integration of the sensory, motor, and visual functions. This theory had a great influence on the scientific community of his time, and maintains its importance today, in which none of the theories formulated to date has managed to entirely refute Cajal's. In addition, the decussation of neural pathways plays a significant role in different diseases, especially in the recovery process after a hemispheric lesion and in several congenital pathologies. The advantages of cerebral lateralization have also recently been published, although the evolutionary connection between fiber decussation and cortical function lateralization remains a mystery to be solved. A better understanding of the molecular and genetic substrates of the midline crossing processes might result in significant clinical advances in brain plasticity and repair.
Collapse
|
20
|
Complexity of Generating Mouse Models to Study the Upper Motor Neurons: Let Us Shift Focus from Mice to Neurons. Int J Mol Sci 2019; 20:ijms20163848. [PMID: 31394733 PMCID: PMC6720674 DOI: 10.3390/ijms20163848] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/26/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022] Open
Abstract
Motor neuron circuitry is one of the most elaborate circuitries in our body, which ensures voluntary and skilled movement that requires cognitive input. Therefore, both the cortex and the spinal cord are involved. The cortex has special importance for motor neuron diseases, in which initiation and modulation of voluntary movement is affected. Amyotrophic lateral sclerosis (ALS) is defined by the progressive degeneration of both the upper and lower motor neurons, whereas hereditary spastic paraplegia (HSP) and primary lateral sclerosis (PLS) are characterized mainly by the loss of upper motor neurons. In an effort to reveal the cellular and molecular basis of neuronal degeneration, numerous model systems are generated, and mouse models are no exception. However, there are many different levels of complexities that need to be considered when developing mouse models. Here, we focus our attention to the upper motor neurons, which are one of the most challenging neuron populations to study. Since mice and human differ greatly at a species level, but the cells/neurons in mice and human share many common aspects of cell biology, we offer a solution by focusing our attention to the affected neurons to reveal the complexities of diseases at a cellular level and to improve translational efforts.
Collapse
|
21
|
Rosa JB, Sagasti A. Developmental Neurobiology: It Takes Nrg to Separate Dendrites. Curr Biol 2019; 29:R327-R329. [PMID: 31063725 DOI: 10.1016/j.cub.2019.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The development of sensory receptive fields requires the coordinated spatial patterning of neurites from multiple sensory neuron subtypes. A new study identifies a role for neuron-skin cell interactions in preventing the bundling of dendritic arbors from distinct neurons.
Collapse
Affiliation(s)
- Jeffrey B Rosa
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, CA 90095-1606, USA
| | - Alvaro Sagasti
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, CA 90095-1606, USA.
| |
Collapse
|
22
|
A Human Induced Pluripotent Stem Cell-Derived Tissue Model of a Cerebral Tract Connecting Two Cortical Regions. iScience 2019; 14:301-311. [PMID: 31006610 PMCID: PMC6489017 DOI: 10.1016/j.isci.2019.03.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 12/13/2018] [Accepted: 03/11/2019] [Indexed: 11/25/2022] Open
Abstract
Cerebral tracts connect separated regions within a brain and serve as fundamental structures that support integrative brain functions. However, understanding the mechanisms of cerebral tract development, macro-circuit formation, and related disorders has been hampered by the lack of an in vitro model. Here, we developed a human stem cell-derived model of cerebral tracts, which is composed of two spheroids of cortical neurons and a robust fascicle of axons linking these spheroids reciprocally. In a microdevice, two spheroids of cerebral neurons extended axons into a microchannel between the spheroids and spontaneously formed an axon fascicle, mimicking a cerebral tract. We found that the formation of axon fascicle was significantly promoted when two spheroids extended axons toward each other compared with axons extended from only one spheroid. The two spheroids were able to communicate electrically through the axon fascicle. This model tissue could facilitate studies of cerebral tract development and diseases. A cerebral tract model was generated from iPS cell-derived cortical spheroids Two spheroids were spontaneously connected with an axon fascicle in a microdevice An axon fascicle electrically connected two cortical spheroids Knockdown of L1CAM disrupted axon fascicle formation in the model tissue
Collapse
|
23
|
Linneberg C, Toft CLF, Kjaer-Sorensen K, Laursen LS. L1cam-mediated developmental processes of the nervous system are differentially regulated by proteolytic processing. Sci Rep 2019; 9:3716. [PMID: 30842511 PMCID: PMC6403279 DOI: 10.1038/s41598-019-39884-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/08/2018] [Indexed: 11/09/2022] Open
Abstract
Normal brain development depends on tight temporal and spatial regulation of connections between cells. Mutations in L1cam, a member of the immunoglobulin (Ig) superfamily that mediate cell-cell contacts through homo- and heterophilic interactions, are associated with several developmental abnormalities of the nervous system, including mental retardation, limb spasticity, hydrocephalus, and corpus callosum aplasia. L1cam has been reported to be shed from the cell surface, but the significance of this during different phases of brain development is unknown. We here show that ADAM10-mediated shedding of L1cam is regulated by its fibronectin type III (FNIII) domains. Specifically, the third FNIII domain is important for maintaining a conformation where access to a membrane proximal cleavage site is restricted. To define the role of ADAM10/17/BACE1-mediated shedding of L1cam during brain development, we used a zebrafish model system. Knockdown of the zebrafish, l1camb, caused hydrocephalus, defects in axonal outgrowth, and myelination abnormalities. Rescue experiments with proteinase-resistant and soluble L1cam variants showed that proteolytic cleavage is not required for normal axonal outgrowth and development of the ventricular system. In contrast, metalloproteinase-mediated shedding is required for efficient myelination, and only specific fragments are able to mediate this stimulatory function of the shedded L1cam.
Collapse
Affiliation(s)
- Cecilie Linneberg
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000, Aarhus C, Denmark
| | - Christian Liebst Frisk Toft
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000, Aarhus C, Denmark
| | - Kasper Kjaer-Sorensen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000, Aarhus C, Denmark
| | - Lisbeth S Laursen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000, Aarhus C, Denmark.
| |
Collapse
|
24
|
Vgontzas A, Renthal W. Introduction to Neurogenetics. Am J Med 2019; 132:142-152. [PMID: 30098310 DOI: 10.1016/j.amjmed.2018.07.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/26/2018] [Accepted: 07/26/2018] [Indexed: 12/17/2022]
Abstract
Genetic variation can directly cause or increase susceptibility to neurologic diseases. An explosion of new genetic technologies has enabled the characterization of specific genes responsible for many neurologic diseases and has provided fundamentally new insight into their pathophysiology. These advancements, along with recent breakthroughs in gene therapy, are beginning to result in the translation of an individual's genetic sequence into targeted treatment strategies. This review aims to introduce key genetic concepts and to illustrate how these principles apply in cases of rare, single-gene neurologic diseases as well as more common, polygenic diseases that are encountered frequently in clinical practice.
Collapse
Affiliation(s)
- Angeliki Vgontzas
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass.
| | - William Renthal
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| |
Collapse
|
25
|
Tripathy R, Leca I, van Dijk T, Weiss J, van Bon BW, Sergaki MC, Gstrein T, Breuss M, Tian G, Bahi-Buisson N, Paciorkowski AR, Pagnamenta AT, Wenninger-Weinzierl A, Martinez-Reza MF, Landler L, Lise S, Taylor JC, Terrone G, Vitiello G, Del Giudice E, Brunetti-Pierri N, D'Amico A, Reymond A, Voisin N, Bernstein JA, Farrelly E, Kini U, Leonard TA, Valence S, Burglen L, Armstrong L, Hiatt SM, Cooper GM, Aldinger KA, Dobyns WB, Mirzaa G, Pierson TM, Baas F, Chelly J, Cowan NJ, Keays DA. Mutations in MAST1 Cause Mega-Corpus-Callosum Syndrome with Cerebellar Hypoplasia and Cortical Malformations. Neuron 2018; 100:1354-1368.e5. [PMID: 30449657 PMCID: PMC6436622 DOI: 10.1016/j.neuron.2018.10.044] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 05/03/2018] [Accepted: 10/24/2018] [Indexed: 01/04/2023]
Abstract
Corpus callosum malformations are associated with a broad range of neurodevelopmental diseases. We report that de novo mutations in MAST1 cause mega-corpus-callosum syndrome with cerebellar hypoplasia and cortical malformations (MCC-CH-CM) in the absence of megalencephaly. We show that MAST1 is a microtubule-associated protein that is predominantly expressed in post-mitotic neurons and is present in both dendritic and axonal compartments. We further show that Mast1 null animals are phenotypically normal, whereas the deletion of a single amino acid (L278del) recapitulates the distinct neurological phenotype observed in patients. In animals harboring Mast1 microdeletions, we find that the PI3K/AKT3/mTOR pathway is unperturbed, whereas Mast2 and Mast3 levels are diminished, indicative of a dominant-negative mode of action. Finally, we report that de novo MAST1 substitutions are present in patients with autism and microcephaly, raising the prospect that mutations in this gene give rise to a spectrum of neurodevelopmental diseases.
Collapse
Affiliation(s)
- Ratna Tripathy
- Research Institute of Molecular Pathology, Campus Vienna Biocenter 1, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Ines Leca
- Research Institute of Molecular Pathology, Campus Vienna Biocenter 1, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Tessa van Dijk
- Department of Clinical Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Janneke Weiss
- Amsterdam UMC, Vrije Universiteit Amsterdam, Clinical Genetics, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Bregje W van Bon
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Maria Christina Sergaki
- Research Institute of Molecular Pathology, Campus Vienna Biocenter 1, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Thomas Gstrein
- Research Institute of Molecular Pathology, Campus Vienna Biocenter 1, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Martin Breuss
- Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Guoling Tian
- Department of Biochemistry & Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Nadia Bahi-Buisson
- Université Paris Descartes, Institut Cochin Hôpital Cochin, 75014 Paris, France
| | | | - Alistair T Pagnamenta
- NIHR Oxford Biomedical Research Centre, Oxford, UK, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Andrea Wenninger-Weinzierl
- Research Institute of Molecular Pathology, Campus Vienna Biocenter 1, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Maria Fernanda Martinez-Reza
- Research Institute of Molecular Pathology, Campus Vienna Biocenter 1, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Lukas Landler
- Research Institute of Molecular Pathology, Campus Vienna Biocenter 1, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Stefano Lise
- NIHR Oxford Biomedical Research Centre, Oxford, UK, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Jenny C Taylor
- NIHR Oxford Biomedical Research Centre, Oxford, UK, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Gaetano Terrone
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, 80131 Naples, Italy
| | - Giuseppina Vitiello
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, 80131 Naples, Italy
| | - Ennio Del Giudice
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, 80131 Naples, Italy
| | - Nicola Brunetti-Pierri
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, 80131 Naples, Italy; Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Naples, Italy
| | - Alessandra D'Amico
- Department of Advanced Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Norine Voisin
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | | | | | - Usha Kini
- Department of Clinical Genetics, Oxford Regional Genetics Service, Churchill Hospital, Oxford OX3 7LJ, UK
| | - Thomas A Leonard
- Center for Medical Biochemistry, Medical University of Vienna, Max F. Perutz Laboratories, Vienna Biocenter (VBC), Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Stéphanie Valence
- Centre de référence des Malformations et Maladies Congénitales du Cervelet et Département de Génétique et Embryologie Médicale, APHP, Hôpital Trousseau, 75012 Paris, France
| | - Lydie Burglen
- Centre de référence des Malformations et Maladies Congénitales du Cervelet et Département de Génétique et Embryologie Médicale, APHP, Hôpital Trousseau, 75012 Paris, France
| | - Linlea Armstrong
- Provincial Medical Genetics Programme, BCWH and Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Susan M Hiatt
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Gregory M Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Kimberly A Aldinger
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA 98101, USA
| | - William B Dobyns
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA 98101, USA
| | - Ghayda Mirzaa
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA 98101, USA
| | - Tyler Mark Pierson
- Departments of Pediatrics and Neurology & the Board of Governors Regenerative Medicine, Institute Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Frank Baas
- Department of Clinical Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Jamel Chelly
- Service de Diagnostic Génétique, Hôpital Civil de Strasbourg, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France
| | - Nicholas J Cowan
- Department of Biochemistry & Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA
| | - David Anthony Keays
- Research Institute of Molecular Pathology, Campus Vienna Biocenter 1, Vienna Biocenter (VBC), Vienna 1030, Austria.
| |
Collapse
|
26
|
Opposing Morphogenetic Defects on Dendrites and Mossy Fibers of Dentate Granular Neurons in CRMP3-Deficient Mice. Brain Sci 2018; 8:brainsci8110196. [PMID: 30400291 PMCID: PMC6265834 DOI: 10.3390/brainsci8110196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/27/2022] Open
Abstract
Collapsin response mediator proteins (CRMPs) are highly expressed in the brain during early postnatal development and continue to be present in specific regions into adulthood, especially in areas with extensive neuronal plasticity including the hippocampus. They are found in the axons and dendrites of neurons wherein they contribute to specific signaling mechanisms involved in the regulation of axonal and dendritic development/maintenance. We previously identified CRMP3’s role on the morphology of hippocampal CA1 pyramidal dendrites and hippocampus-dependent functions. Our focus here was to further analyze its role in the dentate gyrus where it is highly expressed during development and in adults. On the basis of our new findings, it appears that CRMP3 has critical roles both in axonal and dendritic morphogenesis of dentate granular neurons. In CRMP3-deficient mice, the dendrites become dystrophic while the infrapyramidal bundle of the mossy fiber shows aberrant extension into the stratum oriens of CA3. This axonal misguided projection of granular neurons suggests that the mossy fiber-CA3 synaptic transmission, important for the evoked propagation of the activity of the hippocampal trisynaptic circuitry, may be altered, whereas the dystrophic dendrites may impair the dynamic interactions with the entorhinal cortex, both expected to affect hippocampal function.
Collapse
|
27
|
Medina-Cano D, Ucuncu E, Nguyen LS, Nicouleau M, Lipecka J, Bizot JC, Thiel C, Foulquier F, Lefort N, Faivre-Sarrailh C, Colleaux L, Guerrera IC, Cantagrel V. High N-glycan multiplicity is critical for neuronal adhesion and sensitizes the developing cerebellum to N-glycosylation defect. eLife 2018; 7:38309. [PMID: 30311906 PMCID: PMC6185108 DOI: 10.7554/elife.38309] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/01/2018] [Indexed: 12/14/2022] Open
Abstract
Proper brain development relies highly on protein N-glycosylation to sustain neuronal migration, axon guidance and synaptic physiology. Impairing the N-glycosylation pathway at early steps produces broad neurological symptoms identified in congenital disorders of glycosylation. However, little is known about the molecular mechanisms underlying these defects. We generated a cerebellum specific knockout mouse for Srd5a3, a gene involved in the initiation of N-glycosylation. In addition to motor coordination defects and abnormal granule cell development, Srd5a3 deletion causes mild N-glycosylation impairment without significantly altering ER homeostasis. Using proteomic approaches, we identified that Srd5a3 loss affects a subset of glycoproteins with high N-glycans multiplicity per protein and decreased protein abundance or N-glycosylation level. As IgSF-CAM adhesion proteins are critical for neuron adhesion and highly N-glycosylated, we observed impaired IgSF-CAM-mediated neurite outgrowth and axon guidance in Srd5a3 mutant cerebellum. Our results link high N-glycan multiplicity to fine-tuned neural cell adhesion during mammalian brain development.
Collapse
Affiliation(s)
- Daniel Medina-Cano
- Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Ekin Ucuncu
- Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Lam Son Nguyen
- Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Michael Nicouleau
- Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Joanna Lipecka
- Proteomics platform 3P5-Necker, Université Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | | | - Christian Thiel
- Center for Child and Adolescent Medicine, Kinderheilkunde I, University of Heidelberg, Heidelberg, Germany
| | - François Foulquier
- Université Lille, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, CNRS, Lille, France
| | | | | | - Laurence Colleaux
- Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Ida Chiara Guerrera
- Proteomics platform 3P5-Necker, Université Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Vincent Cantagrel
- Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris, France
| |
Collapse
|
28
|
Baba K, Yoshida W, Toriyama M, Shimada T, Manning CF, Saito M, Kohno K, Trimmer JS, Watanabe R, Inagaki N. Gradient-reading and mechano-effector machinery for netrin-1-induced axon guidance. eLife 2018; 7:34593. [PMID: 30082022 PMCID: PMC6080949 DOI: 10.7554/elife.34593] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 07/05/2018] [Indexed: 12/28/2022] Open
Abstract
Growth cones navigate axonal projection in response to guidance cues. However, it is unclear how they can decide the migratory direction by transducing the local spatial cues into protrusive forces. Here we show that knockout mice of Shootin1 display abnormal projection of the forebrain commissural axons, a phenotype similar to that of the axon guidance molecule netrin-1. Shallow gradients of netrin-1 elicited highly polarized Pak1-mediated phosphorylation of shootin1 within growth cones. We demonstrate that netrin-1–elicited shootin1 phosphorylation increases shootin1 interaction with the cell adhesion molecule L1-CAM; this, in turn, promotes F-actin–adhesion coupling and concomitant generation of forces for growth cone migration. Moreover, the spatially regulated shootin1 phosphorylation within growth cones is required for axon turning induced by netrin-1 gradients. Our study defines a mechano-effector for netrin-1 signaling and demonstrates that shootin1 phosphorylation is a critical readout for netrin-1 gradients that results in a directional mechanoresponse for axon guidance. Neurons communicate with each other by forming intricate webs that link cells together according to a precise pattern. A neuron can connect to another by growing a branch-like structure known as the axon. To contact the correct neuron, the axon must develop and thread its way to exactly the right place in the brain. Scientists know that the tip of the axon is extraordinarily sensitive to gradients of certain molecules in its surroundings, which guide the budding structure towards its final destination. In particular, two molecules seem to play an important part in this process: netrin-1, which is a protein found outside cells that attracts a growing axon, and shootin1a, which is present inside neurons. Previous studies have shown that netrin-1 can trigger a cascade of reactions that activates shootin1a. In turn, activated shootin1a molecules join the internal skeleton of the cell with L1-CAM, a molecule that attaches the neuron to its surroundings. If the internal skeleton is the engine of the axon, L1-CAMs are the wheels, and shootin1a the clutch. However, it is not clear whether shootin1a is involved in guiding growing axons, and how it could help neurons ‘understand’ and react to gradients of netrin-1. Here, Baba et al. discover that when shootin1a is absent in mice, the axons do not develop properly. Further experiments in rat neurons show that if there is a little more netrin-1 on one side of the tip of an axon, this switches on the shootin1a molecules on that edge. Activated shootin1a promote interactions between the internal skeleton and L1-CAM, helping the axon curve towards the area that has more netrin-1. In fact, if the activated shootin1a is present everywhere on the axon, and not just on one side, the structure can develop, but not turn. Taken together, the results suggest that shootin1a can read the gradients of netrin-1 and then coordinate the turning of a growing axon in response. Wound healing, immune responses or formation of organs are just a few examples of processes that rely on cells moving in an orderly manner through the body. Dissecting how axons are guided through their development may shed light on the migration of cells in general. Ultimately, this could help scientists to understand disorders such as birth abnormalities or neurological disabilities, which arise when this process goes awry.
Collapse
Affiliation(s)
- Kentarou Baba
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Wataru Yoshida
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Michinori Toriyama
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Tadayuki Shimada
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Colleen F Manning
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, United States
| | - Michiko Saito
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Kenji Kohno
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - James S Trimmer
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, United States
| | - Rikiya Watanabe
- Department of Applied Chemistry, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | - Naoyuki Inagaki
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
29
|
Kholodenko IV, Kalinovsky DV, Doronin II, Deyev SM, Kholodenko RV. Neuroblastoma Origin and Therapeutic Targets for Immunotherapy. J Immunol Res 2018; 2018:7394268. [PMID: 30116755 PMCID: PMC6079467 DOI: 10.1155/2018/7394268] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/27/2018] [Indexed: 01/30/2023] Open
Abstract
Neuroblastoma is a pediatric solid cancer of heterogeneous clinical behavior. The unique features of this type of cancer frequently hamper the process of determining clinical presentation and predicting therapy effectiveness. The tumor can spontaneously regress without treatment or actively develop and give rise to metastases despite aggressive multimodal therapy. In recent years, immunotherapy has become one of the most promising approaches to the treatment of neuroblastoma. Still, only one drug for targeted immunotherapy of neuroblastoma, chimeric monoclonal GD2-specific antibodies, is used in the clinic today, and its application has significant limitations. In this regard, the development of effective and safe GD2-targeted immunotherapies and analysis of other potential molecular targets for the treatment of neuroblastoma represents an important and topical task. The review summarizes biological characteristics of the origin and development of neuroblastoma and outlines molecular markers of neuroblastoma and modern immunotherapy approaches directed towards these markers.
Collapse
Affiliation(s)
- Irina V. Kholodenko
- Orekhovich Institute of Biomedical Chemistry, 10 Pogodinskaya St., Moscow 119121, Russia
| | - Daniel V. Kalinovsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
| | - Igor I. Doronin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
- Real Target LLC, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
| | - Sergey M. Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
- Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University “MEPhI”, Moscow 115409, Russia
| | - Roman V. Kholodenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
- Real Target LLC, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
| |
Collapse
|
30
|
Abstract
Craniosynostosis is one of the most common craniofacial conditions treated by neurologic and plastic surgeons. In addition to disfigurement, children with craniosynostosis experience significant cognitive dysfunction later in life. Surgery is performed in infancy to correct skull deformity; however, the field is at a crossroads regarding the best approach for correction. Since the cause of brain dysfunction in these patients has remained uncertain, the role and type of surgery might have in attenuating the later-observed cognitive deficits through impact on the brain has been unclear. Recently, however, advances in imaging such as event-related potentials, diffusion tensor imaging, and functional MRI, in conjunction with more robust clinical studies, are providing important insight into the potential etiologies of brain dysfunction in syndromic and nonsyndromic craniosynostosis patients. This review aims to outline the cause(s) of such brain dysfunction including the role extrinsic vault constriction might have on brain development and the current evidence for an intrinsic modular developmental error in brain development. Illuminating the cause of brain dysfunction will identify the role of surgery can play in improving observed functional deficits and thus direct optimal primary and adjuvant treatment.
Collapse
|
31
|
ATP6AP2 over-expression causes morphological alterations in the hippocampus and in hippocampus-related behaviour. Brain Struct Funct 2018; 223:2287-2302. [DOI: 10.1007/s00429-018-1633-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/18/2018] [Indexed: 01/07/2023]
|
32
|
Tan AP, Mankad K. Apert syndrome: magnetic resonance imaging (MRI) of associated intracranial anomalies. Childs Nerv Syst 2018; 34:205-216. [PMID: 29198073 DOI: 10.1007/s00381-017-3670-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/20/2017] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Apert syndrome is one of the most common craniosynostosis syndrome caused by mutations in genes encoding fibroblast growth factor receptor 2 (FGFR2). It is characterized by multisuture craniosynostosis, midfacial hypoplasia, abnormal skull base development and syndactyly of all extremities. Apert syndrome is associated with a wide array of central nervous system (CNS) anomalies, possibly the cause of the common occurrence of mental deficiency in patients with Apert syndrome. These CNS anomalies can be broadly classified into two groups; (1) those that are primary malformations and (2) those that occur secondary to osseous deformity/malformation. CONCLUSION Familiarity with CNS anomalies associated with Apert syndrome is important to both clinicians and radiologist as it impacts on management and prognostication. Cognitive development of patients has been linked to associated CNS anomalies, timing of surgery and social aspects. These associated anomalies can be broadly classified into (1) those that are primary malformations and (2) those that occur secondary to osseous deformity/malformation, as illustrated in our review paper.
Collapse
Affiliation(s)
- Ai Peng Tan
- Department of Diagnostic Radiology, National University Health System, 5 Lower Kent Ridge Road, Singapore, 119074, Singapore.
| | - Kshitij Mankad
- Department of Neuroradiology, Great Ormond Street Hospital NHS Foundation Trust, Great Ormond Street, London, WC1N 3JH, UK
| |
Collapse
|
33
|
Liu M, Xu P, Guan Z, Qian X, Dockery P, Fitzgerald U, O'Brien T, Shen S. Ulk4 deficiency leads to hypomyelination in mice. Glia 2017; 66:175-190. [PMID: 29034508 DOI: 10.1002/glia.23236] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/07/2017] [Accepted: 09/11/2017] [Indexed: 12/14/2022]
Abstract
Brain nerve fibers are insulated by myelin which is produced by oligodendrocytes. Defects in myelination are increasingly recognized as a common pathology underlying neuropsychiatric and neurodevelopmental disorders, which are associated with deletions of the Unc-51-like kinase 4 (ULK4) gene. Key transcription factors have been identified for oligodendrogenesis, but little is known about their associated regulators. Here we report that Ulk4 acts as a key regulator of myelination. Myelination is reduced by half in the Ulk4tm1a/tm1a hypomorph brain, whereas expression of axonal marker genes Tubb3, Nefh, Nefl and Nefm remains unaltered. Transcriptome analyses reveal that 8 (Gfap, Mbp, Mobp, Plp1, Slc1a2, Ttr, Cnp, Scd2) of the 10 most significantly altered genes in the Ulk4tm1a/tm1a brain are myelination-related. Ulk4 is co-expressed in Olig2+ (pan-oligodendrocyte marker) and CC1+ (mature myelinated oligodendrocyte marker) cells during postnatal development. Major oligodendrogeneic transcription factors, including Olig2, Olig1, Myrf, Sox10, Sox8, Sox6, Sox17, Nkx2-2, Nkx6-2 and Carhsp1, are significantly downregulated in the mutants. mRNA transcripts enriched in oligodendrocyte progenitor cells (OPCs), the newly formed oligodendrocytes (NFOs) and myelinating oligodendrocytes (MOs), are significantly attenuated. Expression of stage-specific oligodendrocyte factors including Cspg4, Sox17, Nfasc, Enpp6, Sirt2, Cnp, Plp1, Mbp, Ugt8, Mag and Mog are markedly decreased. Indirect effects of axon caliber and neuroinflammation may also contribute to the hypomyelination, as Ulk4 mutants display smaller axons and increased neuroinflammation. This is the first evidence demonstrating that ULK4 is a crucial regulator of myelination, and ULK4 may therefore become a novel therapeutic target for hypomyelination diseases.
Collapse
Affiliation(s)
- Min Liu
- Regenerative Medicine Institute, School of Medicine, National University of Ireland (NUI) Galway, Galway, Ireland
| | - Ping Xu
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, Beijing Institute of Radiation Medicine, Beijing, 102206, China
| | - Zhenlong Guan
- Department of Physiology, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Xiaohong Qian
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, Beijing Institute of Radiation Medicine, Beijing, 102206, China
| | - Peter Dockery
- Anatomy, School of Medicine, National University of Ireland (NUI) Galway, Galway, Ireland
| | - Una Fitzgerald
- National Centre for Biomedical Engineering Science, Galway Neuroscience Centre, National University of Ireland (NUI) Galway, Galway, Ireland
| | - Timothy O'Brien
- Regenerative Medicine Institute, School of Medicine, National University of Ireland (NUI) Galway, Galway, Ireland
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, National University of Ireland (NUI) Galway, Galway, Ireland
| |
Collapse
|
34
|
Sakurai T. The role of cell adhesion molecules in brain wiring and neuropsychiatric disorders. Mol Cell Neurosci 2017; 81:4-11. [PMID: 27561442 DOI: 10.1016/j.mcn.2016.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/16/2016] [Accepted: 08/19/2016] [Indexed: 12/15/2022] Open
Abstract
Cell adhesion molecules (CAMs) in the nervous system have long been a research focus, but many mice lacking CAMs show very subtle phenotypes, giving an impression that CAMs may not be major players in constructing the nervous system. However, recent human genetic studies suggest CAM involvement in many neuropsychiatric disorders, implicating that they must have significant functions in nervous system development, namely in circuitry formation. As CAMs can provide specificity through their molecular interactions, this review summarizes possible mechanisms on how alterations of CAMs can result in neuropsychiatric disorders through circuitry modification.
Collapse
Affiliation(s)
- Takeshi Sakurai
- Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
35
|
Zhang X, Sullivan CS, Kratz MB, Kasten MR, Maness PF, Manis PB. NCAM Regulates Inhibition and Excitability in Layer 2/3 Pyramidal Cells of Anterior Cingulate Cortex. Front Neural Circuits 2017; 11:19. [PMID: 28386219 PMCID: PMC5362729 DOI: 10.3389/fncir.2017.00019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 03/06/2017] [Indexed: 11/29/2022] Open
Abstract
The neural cell adhesion molecule (NCAM), has been shown to be an obligate regulator of synaptic stability and pruning during critical periods of cortical maturation. However, the functional consequences of NCAM deletion on the organization of inhibitory circuits in cortex are not known. In vesicular gamma-amino butyric acid (GABA) transporter (VGAT)-channelrhodopsin2 (ChR2)-enhanced yellow fluorescent protein (EYFP) transgenic mice, NCAM is expressed postnatally at perisomatic synaptic puncta of EYFP-labeled parvalbumin, somatostatin and calretinin-positive interneurons, and in the neuropil in the anterior cingulate cortex (ACC). To investigate how NCAM deletion affects the spatial organization of inhibitory inputs to pyramidal cells, we used laser scanning photostimulation in brain slices of VGAT-ChR2-EYFP transgenic mice crossed to either NCAM-null or wild type (WT) mice. Laser scanning photostimulation revealed that NCAM deletion increased the strength of close-in inhibitory connections to layer 2/3 pyramidal cells of the ACC. In addition, in NCAM-null mice, the intrinsic excitability of pyramidal cells increased, whereas the intrinsic excitability of GABAergic interneurons did not change. The increase in inhibitory tone onto pyramidal cells, and the increased pyramidal cell excitability in NCAM-null mice will alter the delicate coordination of excitation and inhibition (E/I coordination) in the ACC, and may be a factor contributing to circuit dysfunction in diseases such as schizophrenia and bipolar disorder, in which NCAM has been implicated.
Collapse
Affiliation(s)
- Xuying Zhang
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Chelsea S Sullivan
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Megan B Kratz
- Department of Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Michael R Kasten
- Department of Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Patricia F Maness
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Paul B Manis
- Department of Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel HillChapel Hill, NC, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel HillChapel Hill, NC, USA
| |
Collapse
|
36
|
Qi C, Bao J, Wang J, Zhu H, Xue Y, Wang X, Li H, Sun W, Gao W, Lai Y, Chen JG, Zhang Y. Asperterpenes A and B, two unprecedented meroterpenoids from Aspergillus terreus with BACE1 inhibitory activities. Chem Sci 2016; 7:6563-6572. [PMID: 28042460 PMCID: PMC5131395 DOI: 10.1039/c6sc02464e] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 06/25/2016] [Indexed: 11/21/2022] Open
Abstract
Asperterpenes A (1) and B (2), two 3,5-dimethylorsellinic acid-based meroterpenoids that contain a unique β-oriented Me-21 with an unprecedented 1,2,5-trimethyl-4,9-dioxobicyclo[3.3.1]non-2-ene-3-carboxylic acid moiety, were obtained from Aspergillus terreus in very limited amounts of 3.6 mg and 1.8 mg, respectively. The absolute structure of 1 was determined using X-ray diffraction. Because of the low yield of 1, a comprehensive characterization of the BACE1 inhibitory activities of 1 was completed via molecular biological, cell and animal studies guided by in silico target confirmation (ISTC). ISTC assays suggested that compounds 1 and 2 might be BACE1 inhibitors. In cell-based tests, asperterpenes A and B, as natural products, exhibited promising inhibitory activities against BACE1, with IC50 values of 78 and 59 nM, respectively. LY2811376 (the positive control), one of the most potent clinical BACE1 inhibitors, has shown an IC50 value of 260 nM. In vivo, compound 1 exhibited activity similar to that of LY2811376 against Alzheimer's disease (AD) in 3xTg AD mice. Taken together, these findings demonstrate that asperterpene A, which contains a novel carbon skeleton, is the first terpenoid to exhibit effective BACE1 inhibitory activity. Moreover, 1 represents a potential lead compound and a versatile scaffold for the development of drugs for the treatment of AD.
Collapse
Affiliation(s)
- Changxing Qi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation , School of Pharmacy , Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China .
| | - Jian Bao
- School of Basic Medicine , Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation , School of Pharmacy , Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China .
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation , School of Pharmacy , Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China .
| | - Yongbo Xue
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation , School of Pharmacy , Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China .
| | - Xiaochuan Wang
- School of Basic Medicine , Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Hua Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation , School of Pharmacy , Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China .
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation , School of Pharmacy , Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China .
| | - Weixi Gao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation , School of Pharmacy , Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China .
| | - Yongji Lai
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation , School of Pharmacy , Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China .
| | - Jian-Guo Chen
- School of Basic Medicine , Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation , School of Pharmacy , Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China .
| |
Collapse
|
37
|
Mestres I, Chuang JZ, Calegari F, Conde C, Sung CH. SARA regulates neuronal migration during neocortical development through L1 trafficking. Development 2016; 143:3143-53. [PMID: 27471254 DOI: 10.1242/dev.129338] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 07/17/2016] [Indexed: 12/21/2022]
Abstract
Emerging evidence suggests that endocytic trafficking of adhesion proteins plays a crucial role in neuronal migration during neocortical development. However, molecular insights into these processes remain elusive. Here, we study the early endosomal protein Smad anchor for receptor activation (SARA) in the developing mouse brain. SARA is enriched at the apical endfeet of radial glia of the neocortex. Although SARA knockdown did not lead to detectable neurogenic phenotypes, SARA-suppressed neurons exhibited impaired orientation and migration across the intermediate zone. Mechanistically, we show that SARA knockdown neurons exhibit increased surface expression of the L1 cell adhesion molecule. Neurons ectopically expressing L1 phenocopy the migration and orientation defects caused by SARA knockdown and display increased contact with neighboring neurites. L1 knockdown effectively rescues SARA suppression-induced phenotypes. SARA knockdown neurons eventually overcome their migration defect and enter later into the cortical plate. Nevertheless, these neurons localize at more superficial cortical layers than their control counterparts. These results suggest that SARA regulates the orientation, multipolar-to-bipolar transition and the positioning of cortical neurons via modulating surface L1 expression.
Collapse
Affiliation(s)
- Iván Mestres
- INIMEC, Instituto de Investigación Médica Mercedes y Martín Ferreyra, CONICET, Universidad Nacional de Córdoba UNC, Friuli 2434-5016, Córdoba, Argentina DFG-Research Center for Regenerative Therapies, Cluster of Excellence, TU-Dresden, Fetscherstrasse 105, Dresden 01307, Germany
| | - Jen-Zen Chuang
- Department of Ophthalmology, Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Federico Calegari
- DFG-Research Center for Regenerative Therapies, Cluster of Excellence, TU-Dresden, Fetscherstrasse 105, Dresden 01307, Germany
| | - Cecilia Conde
- INIMEC, Instituto de Investigación Médica Mercedes y Martín Ferreyra, CONICET, Universidad Nacional de Córdoba UNC, Friuli 2434-5016, Córdoba, Argentina Instituto Universitario Ciencias Biomédicas Córdoba (IUCBC), Córdoba 5016, Argentina
| | - Ching-Hwa Sung
- Department of Ophthalmology, Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, NY 10065, USA Departments of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY 10065, USA
| |
Collapse
|
38
|
Valente P, Lignani G, Medrihan L, Bosco F, Contestabile A, Lippiello P, Ferrea E, Schachner M, Benfenati F, Giovedì S, Baldelli P. Cell adhesion molecule L1 contributes to neuronal excitability regulating the function of voltage-gated Na+ channels. J Cell Sci 2016; 129:1878-91. [PMID: 26985064 DOI: 10.1242/jcs.182089] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 03/08/2016] [Indexed: 02/05/2023] Open
Abstract
L1 (also known as L1CAM) is a trans-membrane glycoprotein mediating neuron-neuron adhesion through homophilic and heterophilic interactions. Although experimental evidence has implicated L1 in axonal outgrowth, fasciculation and pathfinding, its contribution to voltage-gated Na(+) channel function and membrane excitability has remained unknown. Here, we show that firing rate, single cell spiking frequency and Na(+) current density are all reduced in hippocampal excitatory neurons from L1-deficient mice both in culture and in slices owing to an overall reduced membrane expression of Na(+) channels. Remarkably, normal firing activity was restored when L1 was reintroduced into L1-deficient excitatory neurons, indicating that abnormal firing patterns are not related to developmental abnormalities, but are a direct consequence of L1 deletion. Moreover, L1 deficiency leads to impairment of action potential initiation, most likely due to the loss of the interaction of L1 with ankyrin G that produces the delocalization of Na(+) channels at the axonal initial segment. We conclude that L1 contributes to functional expression and localization of Na(+) channels to the neuronal plasma membrane, ensuring correct initiation of action potential and normal firing activity.
Collapse
Affiliation(s)
- Pierluigi Valente
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, Genova 16132, Italy
| | - Gabriele Lignani
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy
| | - Lucian Medrihan
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy
| | - Federica Bosco
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, Genova 16132, Italy
| | - Andrea Contestabile
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy
| | - Pellegrino Lippiello
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, Genova 16132, Italy
| | - Enrico Ferrea
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong 515041, China
| | - Fabio Benfenati
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, Genova 16132, Italy Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy
| | - Silvia Giovedì
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, Genova 16132, Italy
| | - Pietro Baldelli
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, Genova 16132, Italy Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy
| |
Collapse
|
39
|
Patzke C, Acuna C, Giam LR, Wernig M, Südhof TC. Conditional deletion of L1CAM in human neurons impairs both axonal and dendritic arborization and action potential generation. J Exp Med 2016; 213:499-515. [PMID: 27001749 PMCID: PMC4821644 DOI: 10.1084/jem.20150951] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 02/12/2016] [Indexed: 01/02/2023] Open
Abstract
Patzke et al. create human embryonic stem cell–derived neurons that enable the generation of conditional loss-of-function mutations of L1CAM. Deletion of L1CAM impairs axonal elongation, dendritic arborization, and action potential generation. Hundreds of L1CAM gene mutations have been shown to be associated with congenital hydrocephalus, severe intellectual disability, aphasia, and motor symptoms. How such mutations impair neuronal function, however, remains unclear. Here, we generated human embryonic stem (ES) cells carrying a conditional L1CAM loss-of-function mutation and produced precisely matching control and L1CAM-deficient neurons from these ES cells. In analyzing two independent conditionally mutant ES cell clones, we found that deletion of L1CAM dramatically impaired axonal elongation and, to a lesser extent, dendritic arborization. Unexpectedly, we also detected an ∼20–50% and ∼20–30% decrease, respectively, in the levels of ankyrinG and ankyrinB protein, and observed that the size and intensity of ankyrinG staining in the axon initial segment was significantly reduced. Overexpression of wild-type L1CAM, but not of the L1CAM point mutants R1166X and S1224L, rescued the decrease in ankyrin levels. Importantly, we found that the L1CAM mutation selectively decreased activity-dependent Na+-currents, altered neuronal excitability, and caused impairments in action potential (AP) generation. Thus, our results suggest that the clinical presentations of L1CAM mutations in human patients could be accounted for, at least in part, by cell-autonomous changes in the functional development of neurons, such that neurons are unable to develop normal axons and dendrites and to generate normal APs.
Collapse
Affiliation(s)
- Christopher Patzke
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Claudio Acuna
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Louise R Giam
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305 Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305 Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
40
|
Hakanen J, Salminen M. Defects in neural guidepost structures and failure to remove leptomeningeal cells from the septal midline behind the interhemispheric fusion defects in Netrin1 deficient mice. Int J Dev Neurosci 2015; 47:206-15. [PMID: 26397040 DOI: 10.1016/j.ijdevneu.2015.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/19/2015] [Accepted: 08/19/2015] [Indexed: 11/18/2022] Open
Abstract
Corpus callosum (CC) is the largest commissural tract in mammalian brain and it acts to coordinate information between the two cerebral hemispheres. During brain development CC forms at the boundary area between the cortex and the septum and special transient neural and glial guidepost structures in this area are thought to be critical for CC formation. In addition, it is thought that the fusion of the two hemispheres in the septum area is a prerequisite for CC formation. However, very little is known of the molecular mechanisms behind the fusion of the two hemispheres. Netrin1 (NTN1) acts as an axon guidance molecule in the developing central nervous system and Ntn1 deficiency leads to the agenesis of CC in mouse. Here we have analyzed Ntn1 deficient mice to better understand the reasons behind the observed lack of CC. We show that Ntn1 deficiency leads to defects in neural, but not in glial guidepost structures that may contribute to the agenesis of CC. In addition, Nnt1 was expressed by the leptomeningeal cells bordering the two septal walls prior to fusion. Normally these cells are removed when the septal fusion occurs. At the same time, the Laminin containing basal lamina produced by the leptomeningeal cells is disrupted in the midline area to allow the cells to mix and the callosal axons to cross. In Ntn1 deficient embryos however, the leptomeninges and the basal lamina were not removed properly from the midline area and the septal fusion did not occur. Thus, NTN1 contributes to the formation of the CC by promoting the preceding removal of the midline leptomeningeal cells and interhemispheric fusion.
Collapse
Affiliation(s)
- Janne Hakanen
- Department of Veterinary Biosciences, University of Helsinki, Finland.
| | - Marjo Salminen
- Department of Veterinary Biosciences, University of Helsinki, Finland.
| |
Collapse
|
41
|
CRMPs: critical molecules for neurite morphogenesis and neuropsychiatric diseases. Mol Psychiatry 2015; 20:1037-45. [PMID: 26077693 DOI: 10.1038/mp.2015.77] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 04/29/2015] [Accepted: 05/08/2015] [Indexed: 12/11/2022]
Abstract
Neuronal polarity and spatial rearrangement of neuronal processes are central to the development of all mature nervous systems. Recent studies have highlighted the dynamic expression of Collapsin-Response-Mediator Proteins (CRMPs) in neuronal dendritic/axonal compartments, described their interaction with cytoskeleton proteins, identified their ability to activate L- and N-type voltage-gated calcium channels (VGCCs) and delineated their crucial role as signaling molecules essential for neuron differentiation and neural network development and maintenance. In addition, evidence obtained from genome-wide/genetic linkage/proteomic/translational approaches revealed that CRMP expression is altered in human pathologies including mental (schizophrenia and mood disorders) and neurological (Alzheimer's, prion encephalopathy, epilepsy and others) disorders. Changes in CRMPs levels have been observed after psychotropic treatments, and disrupting CRMP2 binding to calcium channels blocked neuropathic pain. These observations, altogether with those obtained from genetically modified mice targeting individual CRMPs and RNA interference approaches, pave the way for considering CRMPs as potential early disease markers and modulation of their activity as therapeutic strategy for disorders associated with neurite abnormalities.
Collapse
|
42
|
Koschützke L, Bertram J, Hartmann B, Bartsch D, Lotze M, von Bohlen und Halbach O. SrGAP3 knockout mice display enlarged lateral ventricles and specific cilia disturbances of ependymal cells in the third ventricle. Cell Tissue Res 2015; 361:645-50. [PMID: 26104135 DOI: 10.1007/s00441-015-2224-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/22/2015] [Indexed: 12/22/2022]
Abstract
In several mouse models of mental retardation, ventricular enlargements have been observed. Mutation in the SrGAP3 gene residing on chromosome 3p25 has previously been associated with intellectual disability in humans. In addition, SrGAP3 is related to Rho-GAPs signaling pathways, which play essential roles in the development and plasticity of the nervous system. About 10 % of postnatal homozygous SrGAP3-deficient mice die due to hydrocephalus, whereas the remaining mice survive into adulthood but display enlarged ventricles. We analyze the ventricular enlargement of these mice by performing a post-mortem MRI approach. We found a more than 15-fold enlargement of the lateral ventricles of homozygous SrGAP3-deficient mice. Moreover, we demonstrate that this phenotype was not accompanied by a stenosis of the aqueduct. Instead, SrGAP3 knockout mice displayed reduced densities of cilia of ependymal cells in These third ventricle compared to age-matched controls. This results indicate that the ventricular enlargement may be due to ciliopathy.
Collapse
Affiliation(s)
- Leif Koschützke
- Institute of Anatomy and Cell Biology, Universitätsmedizin Greifswald, Friedrich-Löffler-Straße-23c, 17487, Greifswald, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Itoh K, Fushiki S. The role of L1cam in murine corticogenesis, and the pathogenesis of hydrocephalus. Pathol Int 2015; 65:58-66. [DOI: 10.1111/pin.12245] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/21/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Kyoko Itoh
- Department of Pathology and Applied Neurobiology; Graduate School of Medical Science; Kyoto Prefectural University of Medicine; Kyoto Japan
| | - Shinji Fushiki
- Department of Pathology and Applied Neurobiology; Graduate School of Medical Science; Kyoto Prefectural University of Medicine; Kyoto Japan
| |
Collapse
|
44
|
Aujla PK, Huntley GW. Early postnatal expression and localization of matrix metalloproteinases-2 and -9 during establishment of rat hippocampal synaptic circuitry. J Comp Neurol 2014; 522:1249-63. [PMID: 24114974 DOI: 10.1002/cne.23468] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/06/2013] [Accepted: 09/17/2013] [Indexed: 11/10/2022]
Abstract
Matrix metalloproteinases (MMPs) are extracellular proteolytic enzymes that contribute to pericellular remodeling in a variety of tissues, including brain, where they function in adult hippocampal synaptic structural and functional plasticity. Synaptic plasticity and remodeling are also important for development of connectivity, but it is unclear whether MMPs--particularly MMP-2 and -9, the major MMPs operative in brain--contribute at these stages. Here, we use a combination of biochemical and anatomical methods to characterize expression and localization of MMP-2 and MMP-9 in early postnatal and adult rat hippocampus. Gene and protein expression of these MMPs were evident throughout hippocampus at all ages examined, but expression levels were highest during the first postnatal week. MMP-2 and MMP-9 immunolocalized to punctate structures within the neuropil that codistributed with foci of proteolytic activity, as well as with markers of growing axons and synapses. Taken together, discrete foci of MMP proteolysis are likely important for actively shaping and remodeling cellular and connectional architecture as hippocampal circuitry is becoming established during early postnatal life.
Collapse
Affiliation(s)
- Paven K Aujla
- Fishberg Department of Neuroscience, Friedman Brain Institute and The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029
| | | |
Collapse
|
45
|
Wu KY, He M, Hou QQ, Sheng AL, Yuan L, Liu F, Liu WW, Li G, Jiang XY, Luo ZG. Semaphorin 3A activates the guanosine triphosphatase Rab5 to promote growth cone collapse and organize callosal axon projections. Sci Signal 2014; 7:ra81. [PMID: 25161316 DOI: 10.1126/scisignal.2005334] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Axon guidance (pathfinding) wires the brain during development and is regulated by various attractive and repulsive cues. Semaphorin 3A (Sema3A) is a repulsive cue, inducing the collapse of axon growth cones. In the mammalian forebrain, the corpus callosum is the major commissure that transmits information flow between the two hemispheres, and contralateral axons assemble into well-defined tracts. We found that the patterning of callosal axon projections in rodent layer II and III (L2/3) cortical neurons in response to Sema3A was mediated by the activation of Rab5, a small guanosine triphosphatase (GTPase) that mediates endocytosis, through the membrane fusion protein Rabaptin-5 and the Rab5 guanine nucleotide exchange factor (GEF) Rabex-5. Rabaptin-5 bound directly to Plexin-A1 in the Sema3A receptor complex [an obligate heterodimer formed by Plexin-A1 and neuropilin 1 (NP1)]; Sema3A enhanced this interaction in cultured neurons. Rabaptin-5 bridged the interaction between Rab5 and Plexin-A1. Sema3A stimulated endocytosis from the cell surface of callosal axon growth cones. In utero electroporation to reduce Rab5 or Rabaptin-5 impaired axon fasciculation or caused mistargeting of L2/3 callosal projections in rats. Overexpression of Rabaptin-5 or Rab5 rescued the defective callosal axon fasciculation or mistargeting of callosal axons caused by the loss of Sema3A-Plexin-A1 signaling in rats expressing dominant-negative Plexin-A1 or in NP1-deficient mice. Thus, our findings suggest that Rab5, its effector Rabaptin-5, and its regulator Rabex-5 mediate Sema3A-induced axon guidance during brain development.
Collapse
Affiliation(s)
- Kong-Yan Wu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Miao He
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Qiong-Qiong Hou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Ai-Li Sheng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Lei Yuan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Fei Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Wen-Wen Liu
- Chinese Academy of Sciences Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, 11 Beiyitiao, Zhong Guan Cun, Beijing 100190, China
| | - Guangpu Li
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Xing-Yu Jiang
- Chinese Academy of Sciences Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, 11 Beiyitiao, Zhong Guan Cun, Beijing 100190, China
| | - Zhen-Ge Luo
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China.
| |
Collapse
|
46
|
Edwards TJ, Sherr EH, Barkovich AJ, Richards LJ. Clinical, genetic and imaging findings identify new causes for corpus callosum development syndromes. ACTA ACUST UNITED AC 2014; 137:1579-613. [PMID: 24477430 DOI: 10.1093/brain/awt358] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The corpus callosum is the largest fibre tract in the brain, connecting the two cerebral hemispheres, and thereby facilitating the integration of motor and sensory information from the two sides of the body as well as influencing higher cognition associated with executive function, social interaction and language. Agenesis of the corpus callosum is a common brain malformation that can occur either in isolation or in association with congenital syndromes. Understanding the causes of this condition will help improve our knowledge of the critical brain developmental mechanisms required for wiring the brain and provide potential avenues for therapies for callosal agenesis or related neurodevelopmental disorders. Improved genetic studies combined with mouse models and neuroimaging have rapidly expanded the diverse collection of copy number variations and single gene mutations associated with callosal agenesis. At the same time, advances in our understanding of the developmental mechanisms involved in corpus callosum formation have provided insights into the possible causes of these disorders. This review provides the first comprehensive classification of the clinical and genetic features of syndromes associated with callosal agenesis, and provides a genetic and developmental framework for the interpretation of future research that will guide the next advances in the field.
Collapse
Affiliation(s)
- Timothy J Edwards
- 1 Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Australia2 Departments of Neurology and Pediatrics, The University of California and the Benioff Children's Hospital, CA, 94158, USA
| | - Elliott H Sherr
- 3 Departments of Pediatrics and Neurosurgery, Radiology and Biomedical Imaging, The University of California Children's Hospital, CA 94143, USA
| | - A James Barkovich
- 3 Departments of Pediatrics and Neurosurgery, Radiology and Biomedical Imaging, The University of California Children's Hospital, CA 94143, USA4 Departments of Paediatrics and Neurosurgery, Radiology and Biomedical Imaging, The University of California San Francisco and The Benioff Children's Hospital, CA 94143-0628 USA
| | - Linda J Richards
- 1 Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Australia5 School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
47
|
Tonosaki M, Itoh K, Umekage M, Kishimoto T, Yaoi T, Lemmon VP, Fushiki S. L1cam is crucial for cell locomotion and terminal translocation of the Soma in radial migration during murine corticogenesis. PLoS One 2014; 9:e86186. [PMID: 24489698 PMCID: PMC3904877 DOI: 10.1371/journal.pone.0086186] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 12/08/2013] [Indexed: 11/27/2022] Open
Abstract
L1cam (L1) is a cell adhesion molecule associated with a spectrum of human neurological diseases, the most well-known being X-linked hydrocephalus. Although we recently demonstrated that L1 plays an important role in neuronal migration during cortical histogenesis, the mechanisms of delayed migration have still not been clarified. In this study, we found that cell locomotion in the intermediate zone and terminal translocation in the primitive cortical zone (PCZ) were affected by L1-knockdown (L1-KD). Time-lapse analyses revealed that L1-KD neurons produced by in utero electroporation of shRNA targeting L1 (L1-shRNAs) molecules showed decreased locomotion velocity in the intermediate zone, compared with control neurons. Furthermore, L1-KD neurons showed longer and more undulated leading processes during translocation through the primitive cortical zone. The curvature index, a quantitative index for curvilinearity, as well as the length of the leading process, were increased, whereas the somal movement was decreased in L1-KD neurons during terminal translocation in the PCZ. These results suggest that L1 has a role in radial migration of cortical neurons.
Collapse
Affiliation(s)
- Madoka Tonosaki
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kyoko Itoh
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- * E-mail:
| | - Masafumi Umekage
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomokazu Kishimoto
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takeshi Yaoi
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Vance P. Lemmon
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, Lois Pope LIFE Center, Miami, Florida, United States of America
| | - Shinji Fushiki
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
48
|
Nagaraj K, Mualla R, Hortsch M. The L1 Family of Cell Adhesion Molecules: A Sickening Number of Mutations and Protein Functions. ADVANCES IN NEUROBIOLOGY 2014; 8:195-229. [DOI: 10.1007/978-1-4614-8090-7_9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
49
|
Salzberg Y, Díaz-Balzac CA, Ramirez-Suarez NJ, Attreed M, Tecle E, Desbois M, Kaprielian Z, Bülow HE. Skin-derived cues control arborization of sensory dendrites in Caenorhabditis elegans. Cell 2013; 155:308-20. [PMID: 24120132 DOI: 10.1016/j.cell.2013.08.058] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 07/18/2013] [Accepted: 08/26/2013] [Indexed: 11/25/2022]
Abstract
Sensory dendrites depend on cues from their environment to pattern their growth and direct them toward their correct target tissues. Yet, little is known about dendrite-substrate interactions during dendrite morphogenesis. Here, we describe MNR-1/menorin, which is part of the conserved Fam151 family of proteins and is expressed in the skin to control the elaboration of "menorah"-like dendrites of mechanosensory neurons in Caenorhabditis elegans. We provide biochemical and genetic evidence that MNR-1 acts as a contact-dependent or short-range cue in concert with the neural cell adhesion molecule SAX-7/L1CAM in the skin and through the neuronal leucine-rich repeat transmembrane receptor DMA-1 on sensory dendrites. Our data describe an unknown pathway that provides spatial information from the skin substrate to pattern sensory dendrite development nonautonomously.
Collapse
Affiliation(s)
- Yehuda Salzberg
- Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Tu T, Gao Q, Luo Y, Chen J, Lu D, Feng J, Yang D, Song L, Yan X. CD146 deletion in the nervous system impairs appetite, locomotor activity and spatial learning in mice. PLoS One 2013; 8:e74124. [PMID: 24040184 PMCID: PMC3769362 DOI: 10.1371/journal.pone.0074124] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 07/29/2013] [Indexed: 11/19/2022] Open
Abstract
Cell adhesion molecules (CAMs) are crucial effectors for the development and maintenance of the nervous system. Mutations in human CAM genes are linked to brain disorders and psychological diseases, and CAM knockout mice always exhibit similar behavioral abnormalities. CD146 is a CAM of the immunoglobulin superfamily that interacts with Neurite Outgrowth Factor and involved in neurite extension in vitro. However, little is known about its in vivo function in the nervous system. In this study, we used a murine CD146 nervous system knockout (CD146(ns-ko)) model. We found that the brains of some CD146(ns-ko) mice were malformed with small olfactory bulbs. CD146(ns-ko) mice exhibited lower body weights and smaller food intake when compared with wild type littermates. Importantly, behavior tests revealed that CD146(ns-ko) mice exhibited significant decreased locomotor activity and impaired capacity for spatial learning and memory. Our results demonstrate that CD146 is important for mammalian nervous system development and proper behavior patterns.
Collapse
Affiliation(s)
- Tao Tu
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian Gao
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongting Luo
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jianan Chen
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Di Lu
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jing Feng
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Dongling Yang
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lina Song
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|