1
|
Ulku I, Leung R, Herre F, Walther L, Shobo A, Saftig P, Hancock MA, Liebsch F, Multhaup G. Inhibition of BACE1 affected both its Aβ producing and degrading activities and increased Aβ42 and Aβ40 levels at high-level BACE1 expression. J Biol Chem 2024; 300:107510. [PMID: 38944120 PMCID: PMC11324814 DOI: 10.1016/j.jbc.2024.107510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024] Open
Abstract
The beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) is the predominant β-secretase, cleaving the amyloid precursor protein (APP) via the amyloidogenic pathway. In addition, BACE1 as an amyloid degrading enzyme (ADE), cleaves Aβ to produce the C-terminally truncated non-toxic Aβ fragment Aβ34 which is an indicator of amyloid clearance. Here, we analyzed the effects of BACE1 inhibitors on its opposing enzymatic functions, i.e., amyloidogenic (Aβ producing) and amyloidolytic (Aβ degrading) activities, using cell culture models with varying BACE1/APP ratios. Under high-level BACE1 expression, low-dose inhibition unexpectedly yielded a two-fold increase in Aβ42 and Aβ40 levels. The concomitant decrease in Aβ34 and secreted APPβ levels suggested that the elevated Aβ42 and Aβ40 levels were due to the attenuated Aβ degrading activity of BACE1. Notably, the amyloidolytic activity of BACE1 was impeded at lower BACE1 inhibitor concentrations compared to its amyloidogenic activity, thereby suggesting that the Aβ degrading activity of BACE1 was more sensitive to inhibition than its Aβ producing activity. Under endogenous BACE1 and APP levels, "low-dose" BACE1 inhibition affected both the Aβ producing and degrading activities of BACE1, i.e., significantly increased Aβ42/Aβ40 ratio and decreased Aβ34 levels, respectively. Further, we incubated recombinant BACE1 with synthetic Aβ peptides and found that BACE1 has a higher affinity for Aβ substrates over APP. In summary, our results suggest that stimulating BACE1's ADE activity and halting Aβ production without decreasing Aβ clearance could still be a promising therapeutic approach with new, yet to be developed, BACE1 modulators.
Collapse
Affiliation(s)
- Irem Ulku
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Rocher Leung
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Fritz Herre
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Lina Walther
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Adeola Shobo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Paul Saftig
- Biochemisches Institut, CAU Kiel, Kiel, Germany
| | - Mark A Hancock
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Filip Liebsch
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Gerhard Multhaup
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
2
|
Özcan GG, Lim S, Canning T, Tirathdas L, Donnelly J, Kundu T, Rihel J. Genetic and chemical disruption of amyloid precursor protein processing impairs zebrafish sleep maintenance. iScience 2024; 27:108870. [PMID: 38318375 PMCID: PMC10839650 DOI: 10.1016/j.isci.2024.108870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/12/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Amyloid precursor protein (APP) is a brain-rich, single pass transmembrane protein that is proteolytically processed into multiple products, including amyloid-beta (Aβ), a major driver of Alzheimer disease (AD). Although both overexpression of APP and exogenously delivered Aβ lead to changes in sleep, whether APP processing plays an endogenous role in regulating sleep is unknown. Here, we demonstrate that APP processing into Aβ40 and Aβ42 is conserved in zebrafish and then describe sleep/wake phenotypes in loss-of-function appa and appb mutants. Larvae with mutations in appa had reduced waking activity, whereas larvae that lacked appb had shortened sleep bout durations at night. Treatment with the γ-secretase inhibitor DAPT also shortened night sleep bouts, whereas the BACE-1 inhibitor lanabecestat lengthened sleep bouts. Intraventricular injection of P3 also shortened night sleep bouts, suggesting that the proper balance of Appb proteolytic processing is required for normal sleep maintenance in zebrafish.
Collapse
Affiliation(s)
- Güliz Gürel Özcan
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Sumi Lim
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Thomas Canning
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Lavitasha Tirathdas
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Joshua Donnelly
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Tanushree Kundu
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Jason Rihel
- Department of Cell and Developmental Biology, University College London, London, UK
| |
Collapse
|
3
|
Kepp KP, Robakis NK, Høilund-Carlsen PF, Sensi SL, Vissel B. The amyloid cascade hypothesis: an updated critical review. Brain 2023; 146:3969-3990. [PMID: 37183523 DOI: 10.1093/brain/awad159] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/16/2023] Open
Abstract
Results from recent clinical trials of antibodies that target amyloid-β (Aβ) for Alzheimer's disease have created excitement and have been heralded as corroboration of the amyloid cascade hypothesis. However, while Aβ may contribute to disease, genetic, clinical, imaging and biochemical data suggest a more complex aetiology. Here we review the history and weaknesses of the amyloid cascade hypothesis in view of the new evidence obtained from clinical trials of anti-amyloid antibodies. These trials indicate that the treatments have either no or uncertain clinical effect on cognition. Despite the importance of amyloid in the definition of Alzheimer's disease, we argue that the data point to Aβ playing a minor aetiological role. We also discuss data suggesting that the concerted activity of many pathogenic factors contribute to Alzheimer's disease and propose that evolving multi-factor disease models will better underpin the search for more effective strategies to treat the disease.
Collapse
Affiliation(s)
- Kasper P Kepp
- Section of Biophysical and Biomedicinal chemistry, DTU Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Nikolaos K Robakis
- Icahn School of Medicine at Mount Sinai Medical Center, New York, NY 10029, USA
| | - Poul F Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, 5000 Odense C, Denmark
- Department of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
| | - Stefano L Sensi
- Center for Advanced Studies and Technology-CAST, and Institute for Advanced Biotechnology (ITAB), University G. d'Annunzio of Chieti-Pescara, Chieti, 66013, Italy
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, 66013, Italy
| | - Bryce Vissel
- St Vincent's Hospital Centre for Applied Medical Research, St Vincent's Hospital, Sydney, 2010, Australia
- School of Clinical Medicine, UNSW Medicine and Health, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, Sydney, NSW 2052, Australia
| |
Collapse
|
4
|
Kawahara M, Kato-Negishi M, Tanaka KI. Dietary Trace Elements and the Pathogenesis of Neurodegenerative Diseases. Nutrients 2023; 15:2067. [PMID: 37432185 PMCID: PMC10180548 DOI: 10.3390/nu15092067] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 07/12/2023] Open
Abstract
Trace elements such as iron (Fe), zinc (Zn), copper (Cu), and manganese (Mn) are absorbed from food via the gastrointestinal tract, transported into the brain, and play central roles in normal brain functions. An excess of these trace elements often produces reactive oxygen species and damages the brain. Moreover, increasing evidence suggests that the dyshomeostasis of these metals is involved in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease, prion diseases, and Lewy body diseases. The disease-related amyloidogenic proteins can regulate metal homeostasis at the synapses, and thus loss of the protective functions of these amyloidogenic proteins causes neurodegeneration. Meanwhile, metal-induced conformational changes of the amyloidogenic proteins contribute to enhancing their neurotoxicity. Moreover, excess Zn and Cu play central roles in the pathogenesis of vascular-type senile dementia. Here, we present an overview of the intake, absorption, and transport of four essential elements (Fe, Zn, Cu, Mn) and one non-essential element (aluminum: Al) in food and their connections with the pathogenesis of neurodegenerative diseases based on metal-protein, and metal-metal cross-talk.
Collapse
Affiliation(s)
- Masahiro Kawahara
- Department of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo 202-8585, Japan
| | - Midori Kato-Negishi
- Department of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo 202-8585, Japan
| | - Ken-Ichiro Tanaka
- Department of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo 202-8585, Japan
| |
Collapse
|
5
|
Ma F, Akolkar H, Xu J, Liu Y, Popova D, Xie J, Youssef MM, Benosman R, Hart RP, Herrup K. The Amyloid Precursor Protein Modulates the Position and Length of the Axon Initial Segment. J Neurosci 2023; 43:1830-1844. [PMID: 36717226 PMCID: PMC10010458 DOI: 10.1523/jneurosci.0172-22.2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
The amyloid precursor protein (APP) is linked to the genetics and pathogenesis of Alzheimer's disease (AD). It is the parent protein of the β-amyloid (Aβ) peptide, the main constituent of the amyloid plaques found in an AD brain. The pathways from APP to Aβ are intensively studied, yet the normal functions of APP itself have generated less interest. We report here that glutamate stimulation of neuronal activity leads to a rapid increase in App gene expression. In mouse and human neurons, elevated APP protein changes the structure of the axon initial segment (AIS) where action potentials are initiated. The AIS is shortened in length and shifts away from the cell body. The GCaMP8f Ca2+ reporter confirms the predicted decrease in neuronal activity. NMDA antagonists or knockdown of App block the glutamate effects. The actions of APP on the AIS are cell-autonomous; exogenous Aβ, either fibrillar or oligomeric, has no effect. In culture, APPSwe (a familial AD mutation) induces larger AIS changes than wild type APP. Ankyrin G and βIV-spectrin, scaffolding proteins of the AIS, both physically associate with APP, more so in AD brains. Finally, in humans with sporadic AD or in the R1.40 AD mouse model, both females and males, neurons have elevated levels of APP protein that invade the AIS. In vivo as in vitro, this increased APP is associated with a significant shortening of the AIS. The findings outline a new role for the APP and encourage a reconsideration of its relationship to AD.SIGNIFICANCE STATEMENT While the amyloid precursor protein (APP) has long been associated with Alzheimer's disease (AD), the normal functions of the full-length Type I membrane protein have been largely unexplored. We report here that the levels of APP protein increase with neuronal activity. In vivo and in vitro, modest amounts of excess APP alter the properties of the axon initial segment. The β-amyloid peptide derived from APP is without effect. Consistent with the observed changes in the axon initial segment which would be expected to decrease action potential firing, we show that APP expression depresses neuronal activity. In mouse AD models and human sporadic AD, APP physically associates with the scaffolding proteins of the axon initial segment, suggesting a relationship with AD dementia.
Collapse
Affiliation(s)
- Fulin Ma
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Himanshu Akolkar
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Jianquan Xu
- Departments of Medicine and Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Yang Liu
- Departments of Medicine and Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Dina Popova
- Human Genetics Institute, Rutgers University, Piscataway, NJ 08854
| | - Jiaan Xie
- Departments of Medicine and Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Mark M Youssef
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854
| | - Ryad Benosman
- Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Ronald P Hart
- Human Genetics Institute, Rutgers University, Piscataway, NJ 08854
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854
| | - Karl Herrup
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Departments of Medicine and Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
6
|
A novel 3-acetyl coumarin based AIE luminophore for colorimetric recognition of Cu2+ and F− ions. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Alshammari M, Aly AA, Bräse S, Nieger M, Ibrahim MAA, Abd El-Haleem LE. Copper Complexes of 1,4-Naphthoquinone Containing Thiosemicarbazide and Triphenylphosphine Oxide Moieties; Synthesis and Identification by NMR, IR, Mass, UV Spectra, and DFT Calculations. ACS OMEGA 2022; 7:34463-34475. [PMID: 36188271 PMCID: PMC9520736 DOI: 10.1021/acsomega.2c04113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
New 1,4-naphthoquinone derived by triphenylphosphaneylidene (Ph3P) and N-substituted-hydrazine-1-carbothioamides were obtained during a one-pot reaction of 2,3-dichloro-1,4-naphthoquinone with thiosemicarbazides, Ph3P and in the presence of triethyl amine (Et3N) as a catalyst. The structure of the ligands was established by ESI, IR, and NMR spectra, in addition to elemental analyses and X-ray structure analysis. On subjecting the newly prepared ligands with CuCl2 and Ph3P, autoxidation occurs, and (E)-(2-(1,4-dioxo-3-(triphenyl phosphanylidene)-3,4-dihydronaphthalen-2(1H)-ylidene)carbamothioyl)hydrazinyl)-((triphenylphosphanyl)oxy)copper derivatives were formed in very good yields. The structure of the obtained complexes was proved by ESI, IR, NMR, and UV spectra, in addition to elemental analyses and theoretical calculations.
Collapse
Affiliation(s)
- Mohammed
B. Alshammari
- Chemistry
Department, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, P.O. 10 Box 83, Al-Kharij 11942, Saudi Arabia
| | - Ashraf A. Aly
- Chemistry
Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt
| | - Stefan Bräse
- Institute
of Organic Chemistry, Karlsruher Institut
fur Technologie, 76131 Karlsruhe, Germany
- Institute
of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Martin Nieger
- Martin
Nieger, Department of Chemistry, University
of Helsinki, P.O. Box 55 (A. I. Virtasen aukio I), 00014 Helsinki, Finland
| | | | | |
Collapse
|
8
|
Isibor H, Ajayi AM, Ben-Azu B, Omeiza NA, Ademola AP, Umukoro S. D-ribose-L-cysteine reduces oxidative stress and inflammatory cytokines to mitigate liver damage, and memory decline induced by copper sulfate in mice. J Trace Elem Med Biol 2022; 73:127001. [PMID: 35617721 DOI: 10.1016/j.jtemb.2022.127001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Current evidences have implicated copper in amyloid aggregation that trigger the downstream oxidative stress-mediated neuroinflammation that characterized memory deterioration in patients with Alzheimer's disease (AD). Thus, this study was designed to evaluate the effect of D-Ribose-L-Cysteine (DRLC), a potent antioxidant agent, on copper sulfate (CuSO4)-induced memory deterioration and the biochemical mechanisms underpinning its action in mice. METHODS Male Swiss mice were randomly distributed into 5 groups (n = 10/group). Mice in group 1 were given distilled water (control), group 2 CuSO4 (100 mg/kg) while groups 3-5 were pretreated with CuSO4 (100 mg/kg) 30 min before administration of DRLC (10, 25 and 50 mg/kg). Treatments were given through oral gavage, daily for 28 days. Memory function was evaluated on day 28 using Y-maze test. The isolated liver and brain tissues were then processed for oxidative stress biomarkers, and proinflammatory cytokines [tumor necrosis factor- α (TNF-α) and interleukin-6)] assays. Brian acetylcholinesterase (AChE) and liver enzymes [aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities were also determined. RESULTS DRLC reversed memory impairment and dysregulated levels of malondialdehyde, glutathione, nitrite and glutathione S-transferase in the liver and brain tissues of mice pretreated with CuSO4. The increased proinflammatory cytokines concentrations in the liver and brain tissues of mice pretreated with CuSO4 were reduced by DRLC. The elevated brain AChE and liver enzymes activities induced by CuSO4 were also reduced by DRLC. CONCLUSION Taken together, these findings suggest that DRLC attenuates CuSO4-induced memory dysfunctions in mice through enhancement of antioxidative pathway, inhibition of pro-inflammatory cytokines and augmentation of liver function.
Collapse
Affiliation(s)
- Happy Isibor
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Abayomi Mayowa Ajayi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Benneth Ben-Azu
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria; Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta University, Abraka, Nigeria
| | - Noah Adavize Omeiza
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Adeleke Paul Ademola
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Solomon Umukoro
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
| |
Collapse
|
9
|
Islam F, Shohag S, Akhter S, Islam MR, Sultana S, Mitra S, Chandran D, Khandaker MU, Ashraf GM, Idris AM, Emran TB, Cavalu S. Exposure of metal toxicity in Alzheimer’s disease: An extensive review. Front Pharmacol 2022; 13:903099. [PMID: 36105221 PMCID: PMC9465172 DOI: 10.3389/fphar.2022.903099] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Metals serve important roles in the human body, including the maintenance of cell structure and the regulation of gene expression, the antioxidant response, and neurotransmission. High metal uptake in the nervous system is harmful because it can cause oxidative stress, disrupt mitochondrial function, and impair the activity of various enzymes. Metal accumulation can cause lifelong deterioration, including severe neurological problems. There is a strong association between accidental metal exposure and various neurodegenerative disorders, including Alzheimer’s disease (AD), the most common form of dementia that causes degeneration in the aged. Chronic exposure to various metals is a well-known environmental risk factor that has become more widespread due to the rapid pace at which human activities are releasing large amounts of metals into the environment. Consequently, humans are exposed to both biometals and heavy metals, affecting metal homeostasis at molecular and biological levels. This review highlights how these metals affect brain physiology and immunity and their roles in creating harmful proteins such as β-amyloid and tau in AD. In addition, we address findings that confirm the disruption of immune-related pathways as a significant toxicity mechanism through which metals may contribute to AD.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Sheikh Shohag
- Department of Genetic Engineering and Biotechnology, Faculty of Earth and Ocean Science, Bangabandhu Sheikh Mujibur Rahman Maritime University, Dhaka, Bangladesh
| | - Shomaya Akhter
- Department of Genetic Engineering and Biotechnology, Faculty of Earth and Ocean Science, Bangabandhu Sheikh Mujibur Rahman Maritime University, Dhaka, Bangladesh
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Sharifa Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, India
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Subang Jaya, Malaysia
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- *Correspondence: Ghulam Md Ashraf, ; Abubakr M. Idris, ; Talha Bin Emran, ; Simona Cavalu,
| | - Abubakr M. Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- *Correspondence: Ghulam Md Ashraf, ; Abubakr M. Idris, ; Talha Bin Emran, ; Simona Cavalu,
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- *Correspondence: Ghulam Md Ashraf, ; Abubakr M. Idris, ; Talha Bin Emran, ; Simona Cavalu,
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
- *Correspondence: Ghulam Md Ashraf, ; Abubakr M. Idris, ; Talha Bin Emran, ; Simona Cavalu,
| |
Collapse
|
10
|
Antitumor Activity and Physicochemical Properties of New Thiosemicarbazide Derivative and Its Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) Complexes. Molecules 2022; 27:molecules27092703. [PMID: 35566053 PMCID: PMC9100868 DOI: 10.3390/molecules27092703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/19/2022] Open
Abstract
A novel biologically active thiosemicarbazide derivative ligand L (N-[(phenylcarbamothioyl)amino]pyridine-3-carboxamide) and a series of its five metal(II) complexes, namely: [Co(L)Cl2], [Ni(L)Cl2(H2O)], [Cu(L)Cl2(H2O)], [Zn(L)Cl2] and [Cd(L)Cl2(H2O)] have been synthesized and thoroughly investigated. The physicochemical characterization of the newly obtained compounds has been performed using appropriate analytical techniques, such as 1H and l3C nuclear magnetic resonance (NMR), inductively coupled plasma (ICP), thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR) and magnetic measurements. In order to study the pharmacokinetic profile of the compounds, ADMET analysis was performed. The in vitro studies revealed that the synthesized compounds exhibit potent biological activity against A549 human cancer cell line.
Collapse
|
11
|
Choe YM, Suh GH, Lee BC, Choi IG, Lee JH, Kim HS, Kim JW. Association Between Copper and Global Cognition and the Moderating Effect of Iron. Front Aging Neurosci 2022; 14:811117. [PMID: 35422696 PMCID: PMC9003994 DOI: 10.3389/fnagi.2022.811117] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background Despite the known association between abnormal serum copper levels and Alzheimer’s disease (AD) or cognitive decline, the association between copper, iron, and cognition remains poorly investigated. We examined the association between serum copper levels and global cognition measured using the Mini-Mental State Examination (MMSE) in older adults with normal copper levels. We also explored the moderating effect of iron on this association. Methods The study enrolled 99 non-demented adults between 65 and 90 years of age. All the participants underwent comprehensive clinical assessments and serum copper measurements. Global cognitive performance was measured by the MMSE. All copper levels were within the normal range and were stratified into three categories: < 87 (low), 87–98 (medium), and > 98 (high: used as a reference category) μg/dL. Results Serum copper level (as a continuous variable) was significantly associated with MMSE score (B = 0.065, 95% confidence interval = 0.023–0.108, p = 0.003). Low serum copper group showed significantly decreased MMSE score compared to high copper one (B = −2.643, 95% confidence interval = −4.169 to -1.117, p < 0.001), while middle copper category had no difference (B = −1.211, 95% confidence interval = −2.689 to 0.268, p = 0.107). There was a significant low serum copper ×iron interaction effect on the MMSE score (B = 0.065, 95% confidence interval = 0.016–0.114, p = 0.010). Subgroup analyses showed that low serum copper was significantly associated with a low MMSE score in the low-iron (B = −4.174, 95% confidence interval = −6.607 to −1.741, p = 0.001) but not high-iron subgroup (B = −0.721, 95% confidence interval = −2.852 to 1.409, p = 0.495). Conclusion Our findings from non-demented older adults suggest that a low serum copper level within the normal range was associated with AD or cognitive decline and this is moderated by iron. To prevent AD or cognitive decline, clinicians need to pay attention to avoiding low serum copper and iron levels, even within the clinical normal range.
Collapse
Affiliation(s)
- Young Min Choe
- Department of Neuropsychiatry, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, South Korea
- Department of Psychiatry, Hallym University College of Medicine, Chuncheon, South Korea
| | - Guk-Hee Suh
- Department of Neuropsychiatry, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, South Korea
- Department of Psychiatry, Hallym University College of Medicine, Chuncheon, South Korea
| | - Boung Chul Lee
- Department of Psychiatry, Hallym University College of Medicine, Chuncheon, South Korea
- Department of Neuropsychiatry, Hallym University Hangang Sacred Heart Hospital, Seoul, South Korea
| | - Ihn-Geun Choi
- Department of Psychiatry, Hallym University College of Medicine, Chuncheon, South Korea
- Department of Psychiatry, Seoul W Psychiatric Office, Seoul, South Korea
| | - Jun Ho Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
| | - Hyun Soo Kim
- Department of Laboratory Medicine, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, South Korea
| | - Jee Wook Kim
- Department of Neuropsychiatry, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, South Korea
- Department of Psychiatry, Hallym University College of Medicine, Chuncheon, South Korea
- *Correspondence: Jee Wook Kim,
| |
Collapse
|
12
|
Welty S, Thathiah A, Levine AS. DNA Damage Increases Secreted Aβ40 and Aβ42 in Neuronal Progenitor Cells: Relevance to Alzheimer's Disease. J Alzheimers Dis 2022; 88:177-190. [PMID: 35570488 PMCID: PMC9277680 DOI: 10.3233/jad-220030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Recent studies suggest a strong association between neuronal DNA damage, elevated levels of amyloid-β (Aβ), and regions of the brain that degenerate in Alzheimer's disease (AD). OBJECTIVE To investigate the nature of this association, we tested the hypothesis that extensive DNA damage leads to an increase in Aβ40 and Aβ42 generation. METHODS We utilized an immortalized human neuronal progenitor cell line (NPCs), ReN VM GA2. NPCs or 20 day differentiated neurons were treated with hydrogen peroxide or etoposide and allowed to recover for designated times. Sandwich ELISA was used to assess secreted Aβ40 and Aβ42. Western blotting, immunostaining, and neutral comet assay were used to evaluate the DNA damage response and processes indicative of AD pathology. RESULTS We determined that global hydrogen peroxide damage results in increased cellular Aβ40 and Aβ42 secretion 24 h after treatment in ReN GA2 NPCs. Similarly, DNA double strand break (DSB)-specific etoposide damage leads to increased Aβ40 and Aβ42 secretion 2 h and 4 h after treatment in ReN GA2 NPCs. In contrast, etoposide damage does not increase Aβ40 and Aβ42 secretion in post-mitotic ReN GA2 neurons. CONCLUSION These findings provide evidence that in our model, DNA damage is associated with an increase in Aβ secretion in neuronal progenitors, which may contribute to the early stages of neuronal pathology in AD.
Collapse
Affiliation(s)
- Starr Welty
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amantha Thathiah
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
- Pittsburgh Institute of Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Arthur Samuel Levine
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| |
Collapse
|
13
|
Pal A, Rani I, Pawar A, Picozza M, Rongioletti M, Squitti R. Microglia and Astrocytes in Alzheimer's Disease in the Context of the Aberrant Copper Homeostasis Hypothesis. Biomolecules 2021; 11:1598. [PMID: 34827595 PMCID: PMC8615684 DOI: 10.3390/biom11111598] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/09/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022] Open
Abstract
Evidence of copper's (Cu) involvement in Alzheimer's disease (AD) is available, but information on Cu involvement in microglia and astrocytes during the course of AD has yet to be structurally discussed. This review deals with this matter in an attempt to provide an updated discussion on the role of reactive glia challenged by excess labile Cu in a wide picture that embraces all the major processes identified as playing a role in toxicity induced by an imbalance of Cu in AD.
Collapse
Affiliation(s)
- Amit Pal
- Department of Biochemistry, AIIMS, Kalyani 741245, West Bengal, India
| | - Isha Rani
- Department of Biochemistry, Maharishi Markandeshwar Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Mullana, Ambala 133207, Haryana, India;
| | - Anil Pawar
- Department of Zoology, DAV University, Jalandhar 144012, Punjab, India;
| | - Mario Picozza
- Neuroimmunology Unit, IRCSS Fondazione Santa Lucia, 00143 Rome, Italy;
| | - Mauro Rongioletti
- Department of Laboratory Medicine, Research and Development Division, San Giovanni Calibita Fatebenefratelli Hospital, Isola Tiberina, 00186 Rome, Italy;
| | - Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| |
Collapse
|
14
|
Squitti R, Ventriglia M, Granzotto A, Sensi SL, Rongioletti MCA. Non-Ceruloplasmin Copper as a Stratification Biomarker of Alzheimer's Disease Patients: How to Measure and Use It. Curr Alzheimer Res 2021; 18:533-545. [PMID: 34674622 DOI: 10.2174/1567205018666211022085755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/19/2021] [Accepted: 06/30/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is a type of dementia very common in the elderly. A growing body of recent evidence has linked AD pathogenesis to copper (Cu) dysmetabolism in the body. In fact, a subset of patients affected either by AD or by its prodromal form known as Mild Cognitive Impairment (MCI) have been observed to be unable to maintain a proper balance of Cu metabolism and distribution and are characterized by the presence in their serum of increased levels of Cu not bound to ceruloplasmin (non-ceruloplasmin Cu). Since serum non-ceruloplasmin Cu is a biomark- er of Wilson's disease (WD), a well-known condition of Cu-driven toxicosis, in this review, we pro- pose that in close analogy with WD, the assessment of non-ceruloplasmin Cu levels can be exploit- ed as a cost-effective stratification and susceptibility/risk biomarker for the identification of some AD/MCI individuals. The approach can also be used as an eligibility criterion for clinical trials aim- ing at investigating Cu-related interventions against AD/MCI.
Collapse
Affiliation(s)
- Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia. Italy
| | - Mariacarla Ventriglia
- Fatebenefratelli Foundation for Health Research and Education, AFaR Division, San Giovanni Calibita Fatebene-fratelli Hospital, Isola Tiberina, Rome. Italy
| | - Alberto Granzotto
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti. Italy
| | - Stefano L Sensi
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti. Italy
| | - Mauro Ciro Antonio Rongioletti
- Department of Laboratory Medicine, Research and Development Division, San Giovanni Calibita Fatebenefratelli Hospital, Isola Tiberina, Rome. Italy
| |
Collapse
|
15
|
Guo J, Cheng J, Zheng N, Zhang X, Dai X, Zhang L, Hu C, Wu X, Jiang Q, Wu D, Okada H, Pandolfi PP, Wei W. Copper Promotes Tumorigenesis by Activating the PDK1-AKT Oncogenic Pathway in a Copper Transporter 1 Dependent Manner. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004303. [PMID: 34278744 PMCID: PMC8456201 DOI: 10.1002/advs.202004303] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 05/25/2021] [Indexed: 05/13/2023]
Abstract
Copper plays pivotal roles in metabolic homoeostasis, but its potential role in human tumorigenesis is not well defined. Here, it is revealed that copper activates the phosphoinositide 3-kinase (PI3K)-protein kinase B (PKB, also termed AKT) oncogenic signaling pathway to facilitate tumorigenesis. Mechanistically, copper binds 3-phosphoinositide dependent protein kinase 1 (PDK1), in turn promotes PDK1 binding and subsequently activates its downstream substrate AKT to facilitate tumorigenesis. Blocking the copper transporter 1 (CTR1)-copper axis by either depleting CTR1 or through the use of copper chelators diminishes the AKT signaling and reduces tumorigenesis. In support of an oncogenic role for CTR1, the authors find that CTR1 is abnormally elevated in breast cancer, and is subjected by NEDD4 like E3 ubiquitin protein ligase (Nedd4l)-mediated negative regulation through ubiquitination and subsequent degradation. Accordingly, Nedd4l displays a tumor suppressive function by suppressing the CTR1-AKT signaling. Thus, the findings identify a novel regulatory crosstalk between the Nedd4l-CTR1-copper axis and the PDK1-AKT oncogenic signaling, and highlight the therapeutic relevance of targeting the CTR1-copper node for the treatment of hyperactive AKT-driven cancers.
Collapse
Affiliation(s)
- Jianping Guo
- Department of PathologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA02215USA
- Institute of Precision Medicinethe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510275China
| | - Ji Cheng
- Department of PathologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA02215USA
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430022China
| | - Nana Zheng
- National Clinical Research Center for Hematologic DiseasesJiangsu Institute of HematologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu215000China
| | - Xiaomei Zhang
- Institute of Precision Medicinethe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510275China
| | - Xiaoming Dai
- Department of PathologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA02215USA
| | - Linli Zhang
- Department of OncologyTongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Changjiang Hu
- Department of PathologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA02215USA
| | - Xueji Wu
- Institute of Precision Medicinethe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510275China
| | - Qiwei Jiang
- Institute of Precision Medicinethe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510275China
| | - Depei Wu
- National Clinical Research Center for Hematologic DiseasesJiangsu Institute of HematologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu215000China
| | - Hitoshi Okada
- Department of BiochemistryKindai University Faculty of Medicine377‐2 Ohno‐HigashiOsaka‐SayamaOsaka589‐8511Japan
| | - Pier Paolo Pandolfi
- Division of GeneticsDepartment of MedicineBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA02215USA
| | - Wenyi Wei
- Department of PathologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA02215USA
| |
Collapse
|
16
|
Inampudi C, Ciccotosto GD, Cappai R, Crack PJ. Genetic Modulators of Traumatic Brain Injury in Animal Models and the Impact of Sex-Dependent Effects. J Neurotrauma 2021; 37:706-723. [PMID: 32027210 DOI: 10.1089/neu.2019.6955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Traumatic brain injury (TBI) is a major health problem causing disability and death worldwide. There is no effective treatment, due in part to the complexity of the injury pathology and factors affecting its outcome. The extent of brain injury depends on the type of insult, age, sex, lifestyle, genetic risk factors, socioeconomic status, other co-injuries, and underlying health problems. This review discusses the genes that have been directly tested in TBI models, and whether their effects are known to be sex-dependent. Sex differences can affect the incidence, symptom onset, pathology, and clinical outcomes following injury. Adult males are more susceptible at the acute phase and females show greater injury in the chronic phase. TBI is not restricted to a single sex; despite variations in the degree of symptom onset and severity, it is important to consider both female and male animals in TBI pre-clinical research studies.
Collapse
Affiliation(s)
- Chaitanya Inampudi
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Giuseppe D Ciccotosto
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Roberto Cappai
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Peter J Crack
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
17
|
Zhang X, Zhang X, Zhong M, Zhao P, Guo C, Li Y, Xu H, Wang T, Gao H. A Novel Cu(II)-Binding Peptide Identified by Phage Display Inhibits Cu 2+-Mediated Aβ Aggregation. Int J Mol Sci 2021; 22:6842. [PMID: 34202166 PMCID: PMC8269028 DOI: 10.3390/ijms22136842] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/09/2021] [Accepted: 06/23/2021] [Indexed: 01/19/2023] Open
Abstract
Copper (Cu) has been implicated in the progression of Alzheimer's disease (AD), and aggregation of Cu and amyloid β peptide (Aβ) are considered key pathological features of AD. Metal chelators are considered to be potential therapeutic agents for AD because of their capacity to reduce metal ion-induced Aβ aggregation through the regulation of metal ion distribution. Here, we used phage display technology to screen, synthesize, and evaluate a novel Cu(II)-binding peptide that specifically blocked Cu-triggered Aβ aggregation. The Cu(II)-binding peptide (S-A-Q-I-A-P-H, PCu) identified from the phage display heptapeptide library was used to explore the mechanism of PCu inhibition of Cu2+-mediated Aβ aggregation and Aβ production. In vitro experiments revealed that PCu directly inhibited Cu2+-mediated Aβ aggregation and regulated copper levels to reduce biological toxicity. Furthermore, PCu reduced the production of Aβ by inhibiting Cu2+-induced BACE1 expression and improving Cu(II)-mediated cell oxidative damage. Cell culture experiments further demonstrated that PCu had relatively low toxicity. This Cu(II)-binding peptide that we have identified using phage display technology provides a potential therapeutic approach to prevent or treat AD.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; (X.Z.); (X.Z.); (M.Z.); (P.Z.); (C.G.); (Y.L.); (T.W.)
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiancheng Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; (X.Z.); (X.Z.); (M.Z.); (P.Z.); (C.G.); (Y.L.); (T.W.)
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Manli Zhong
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; (X.Z.); (X.Z.); (M.Z.); (P.Z.); (C.G.); (Y.L.); (T.W.)
| | - Pu Zhao
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; (X.Z.); (X.Z.); (M.Z.); (P.Z.); (C.G.); (Y.L.); (T.W.)
| | - Chuang Guo
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; (X.Z.); (X.Z.); (M.Z.); (P.Z.); (C.G.); (Y.L.); (T.W.)
| | - You Li
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; (X.Z.); (X.Z.); (M.Z.); (P.Z.); (C.G.); (Y.L.); (T.W.)
| | - He Xu
- Department of Histology and Embryology, School of Medicine, Shenzhen University, Shenzhen 518060, China;
| | - Tao Wang
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; (X.Z.); (X.Z.); (M.Z.); (P.Z.); (C.G.); (Y.L.); (T.W.)
| | - Huiling Gao
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; (X.Z.); (X.Z.); (M.Z.); (P.Z.); (C.G.); (Y.L.); (T.W.)
| |
Collapse
|
18
|
Witt B, Stiboller M, Raschke S, Friese S, Ebert F, Schwerdtle T. Characterizing effects of excess copper levels in a human astrocytic cell line with focus on oxidative stress markers. J Trace Elem Med Biol 2021; 65:126711. [PMID: 33486291 DOI: 10.1016/j.jtemb.2021.126711] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 12/02/2020] [Accepted: 01/02/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Being an essential trace element, copper is involved in diverse physiological processes. However, excess levels might lead to adverse effects. Disrupted copper homeostasis, particularly in the brain, has been associated with human diseases including the neurodegenerative disorders Wilson and Alzheimer's disease. In this context, astrocytes play an important role in the regulation of the copper homeostasis in the brain and likely in the prevention against neuronal toxicity, consequently pointing them out as a potential target for the neurotoxicity of copper. Major toxic mechanisms are discussed to be directed against mitochondria probably via oxidative stress. However, the toxic potential and mode of action of copper in astrocytes is poorly understood, so far. METHODS In this study, excess copper levels affecting human astrocytic cell model and their involvement in the neurotoxic mode of action of copper, as well as, effects on the homeostasis of other trace elements (Mn, Fe, Ca and Mg) were investigated. RESULTS Copper induced substantial cytotoxic effects in the human astrocytic cell line following 48 h incubation (EC30: 250 μM) and affected mitochondrial function, as observed via reduction of mitochondrial membrane potential and increased ROS production, likely originating from mitochondria. Moreover, cellular GSH metabolism was altered as well. Interestingly, not only cellular copper levels were affected, but also the homeostasis of other elements (Ca, Fe and Mn) were disrupted. CONCLUSION One potential toxic mode of action of copper seems to be effects on the mitochondria along with induction of oxidative stress in the human astrocytic cell model. Moreover, excess copper levels seem to interact with the homeostasis of other essential elements such as Ca, Fe and Mn. Disrupted element homeostasis might also contribute to the induction of oxidative stress, likely involved in the onset and progression of neurodegenerative disorders. These insights in the toxic mechanisms will help to develop ideas and approaches for therapeutic strategies against copper-mediated diseases.
Collapse
Affiliation(s)
- Barbara Witt
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| | - Michael Stiboller
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Stefanie Raschke
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Sharleen Friese
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Franziska Ebert
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Tanja Schwerdtle
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena, Germany; German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| |
Collapse
|
19
|
Wandt VK, Winkelbeiner N, Bornhorst J, Witt B, Raschke S, Simon L, Ebert F, Kipp AP, Schwerdtle T. A matter of concern - Trace element dyshomeostasis and genomic stability in neurons. Redox Biol 2021; 41:101877. [PMID: 33607499 PMCID: PMC7902532 DOI: 10.1016/j.redox.2021.101877] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/18/2020] [Accepted: 01/20/2021] [Indexed: 02/09/2023] Open
Abstract
Neurons are post-mitotic cells in the brain and their integrity is of central importance to avoid neurodegeneration. Yet, the inability of self-replenishment of post-mitotic cells results in the need to withstand challenges from numerous stressors during life. Neurons are exposed to oxidative stress due to high oxygen consumption during metabolic activity in the brain. Accordingly, DNA damage can occur and accumulate, resulting in genome instability. In this context, imbalances in brain trace element homeostasis are a matter of concern, especially regarding iron, copper, manganese, zinc, and selenium. Although trace elements are essential for brain physiology, excess and deficient conditions are considered to impair neuronal maintenance. Besides increasing oxidative stress, DNA damage response and repair of oxidative DNA damage are affected by trace elements. Hence, a balanced trace element homeostasis is of particular importance to safeguard neuronal genome integrity and prevent neuronal loss. This review summarises the current state of knowledge on the impact of deficient, as well as excessive iron, copper, manganese, zinc, and selenium levels on neuronal genome stability. Post-mitotic neurons show an increased vulnerability to oxidative stress. Trace element dyshomeostasis impairs neuronal genome maintenance, affecting DNA damage response as well as DNA repair. The review summarises the effects of excessive and deficient trace element levels neuronal genome stability maintenance.
Collapse
Affiliation(s)
- Viktoria K Wandt
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany.
| | - Nicola Winkelbeiner
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany.
| | - Julia Bornhorst
- TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany; Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstr. 20, 42119, Wuppertal, Germany.
| | - Barbara Witt
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| | - Stefanie Raschke
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| | - Luise Simon
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany.
| | - Franziska Ebert
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany.
| | - Anna P Kipp
- TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany; Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Str. 24, 07743, Jena, Germany.
| | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany; German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| |
Collapse
|
20
|
Gromadzka G, Tarnacka B, Flaga A, Adamczyk A. Copper Dyshomeostasis in Neurodegenerative Diseases-Therapeutic Implications. Int J Mol Sci 2020; 21:E9259. [PMID: 33291628 PMCID: PMC7730516 DOI: 10.3390/ijms21239259] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022] Open
Abstract
Copper is one of the most abundant basic transition metals in the human body. It takes part in oxygen metabolism, collagen synthesis, and skin pigmentation, maintaining the integrity of blood vessels, as well as in iron homeostasis, antioxidant defense, and neurotransmitter synthesis. It may also be involved in cell signaling and may participate in modulation of membrane receptor-ligand interactions, control of kinase and related phosphatase functions, as well as many cellular pathways. Its role is also important in controlling gene expression in the nucleus. In the nervous system in particular, copper is involved in myelination, and by modulating synaptic activity as well as excitotoxic cell death and signaling cascades induced by neurotrophic factors, copper is important for various neuronal functions. Current data suggest that both excess copper levels and copper deficiency can be harmful, and careful homeostatic control is important. This knowledge opens up an important new area for potential therapeutic interventions based on copper supplementation or removal in neurodegenerative diseases including Wilson's disease (WD), Menkes disease (MD), Alzheimer's disease (AD), Parkinson's disease (PD), and others. However, much remains to be discovered, in particular, how to regulate copper homeostasis to prevent neurodegeneration, when to chelate copper, and when to supplement it.
Collapse
Affiliation(s)
- Grażyna Gromadzka
- Collegium Medicum, Faculty of Medicine, Cardinal Stefan Wyszynski University, Wóycickiego 1/3 Street, 01-938 Warsaw, Poland;
| | - Beata Tarnacka
- Department of Rehabilitation, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Rehabilitation Clinic, Medical University of Warsaw, Spartańska 1 Street, 02-637 Warsaw, Poland;
| | - Anna Flaga
- Collegium Medicum, Faculty of Medicine, Cardinal Stefan Wyszynski University, Wóycickiego 1/3 Street, 01-938 Warsaw, Poland;
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland;
| |
Collapse
|
21
|
Lei P, Ayton S, Bush AI. The essential elements of Alzheimer's disease. J Biol Chem 2020; 296:100105. [PMID: 33219130 PMCID: PMC7948403 DOI: 10.1074/jbc.rev120.008207] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 02/05/2023] Open
Abstract
Treatments for Alzheimer’s disease (AD) directed against the prominent amyloid plaque neuropathology are yet to be proved effective despite many phase 3 clinical trials. There are several other neurochemical abnormalities that occur in the AD brain that warrant renewed emphasis as potential therapeutic targets for this disease. Among those are the elementomic signatures of iron, copper, zinc, and selenium. Here, we review these essential elements of AD for their broad potential to contribute to Alzheimer’s pathophysiology, and we also highlight more recent attempts to translate these findings into therapeutics. A reinspection of large bodies of discovery in the AD field, such as this, may inspire new thinking about pathogenesis and therapeutic targets.
Collapse
Affiliation(s)
- Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China; Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
| | - Scott Ayton
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
22
|
Alsiary RA, Alghrably M, Saoudi A, Al-Ghamdi S, Jaremko L, Jaremko M, Emwas AH. Using NMR spectroscopy to investigate the role played by copper in prion diseases. Neurol Sci 2020; 41:2389-2406. [PMID: 32328835 PMCID: PMC7419355 DOI: 10.1007/s10072-020-04321-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/29/2020] [Indexed: 12/31/2022]
Abstract
Prion diseases are a group of rare neurodegenerative disorders that develop as a result of the conformational conversion of normal prion protein (PrPC) to the disease-associated isoform (PrPSc). The mechanism that actually causes disease remains unclear. However, the mechanism underlying the conformational transformation of prion protein is partially understood-in particular, there is strong evidence that copper ions play a significant functional role in prion proteins and in their conformational conversion. Various models of the interaction of copper ions with prion proteins have been proposed for the Cu (II)-binding, cell-surface glycoprotein known as prion protein (PrP). Changes in the concentration of copper ions in the brain have been associated with prion diseases and there is strong evidence that copper plays a significant functional role in the conformational conversion of PrP. Nevertheless, because copper ions have been shown to have both a positive and negative effect on prion disease onset, the role played by Cu (II) ions in these diseases remains a topic of debate. Because of the unique properties of paramagnetic Cu (II) ions in the magnetic field, their interactions with PrP can be tracked even at single atom resolution using nuclear magnetic resonance (NMR) spectroscopy. Various NMR approaches have been utilized to study the kinetic, thermodynamic, and structural properties of Cu (II)-PrP interactions. Here, we highlight the different models of copper interactions with PrP with particular focus on studies that use NMR spectroscopy to investigate the role played by copper ions in prion diseases.
Collapse
Affiliation(s)
- Rawiah A. Alsiary
- King Abdullah International Medical Research Center (KAIMRC), Jeddah, Saudi Arabia/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah, Saudi Arabia
| | - Mawadda Alghrably
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Abdelhamid Saoudi
- Oncology, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia. King Abdullah International Medical Research Center (KAIMRC), Jeddah, Saudi Arabia/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah, Saudi Arabia
| | - Suliman Al-Ghamdi
- Oncology, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia. King Abdullah International Medical Research Center (KAIMRC), Jeddah, Saudi Arabia/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah, Saudi Arabia
| | - Lukasz Jaremko
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Mariusz Jaremko
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Abdul-Hamid Emwas
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
23
|
Iron-responsive-like elements and neurodegenerative ferroptosis. ACTA ACUST UNITED AC 2020; 27:395-413. [PMID: 32817306 PMCID: PMC7433652 DOI: 10.1101/lm.052282.120] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/26/2022]
Abstract
A set of common-acting iron-responsive 5′untranslated region (5′UTR) motifs can fold into RNA stem loops that appear significant to the biology of cognitive declines of Parkinson's disease dementia (PDD), Lewy body dementia (LDD), and Alzheimer's disease (AD). Neurodegenerative diseases exhibit perturbations of iron homeostasis in defined brain subregions over characteristic time intervals of progression. While misfolding of Aβ from the amyloid-precursor-protein (APP), alpha-synuclein, prion protein (PrP) each cause neuropathic protein inclusions in the brain subregions, iron-responsive-like element (IRE-like) RNA stem–loops reside in their transcripts. APP and αsyn have a role in iron transport while gene duplications elevate the expression of their products to cause rare familial cases of AD and PDD. Of note, IRE-like sequences are responsive to excesses of brain iron in a potential feedback loop to accelerate neuronal ferroptosis and cognitive declines as well as amyloidosis. This pathogenic feedback is consistent with the translational control of the iron storage protein ferritin. We discuss how the IRE-like RNA motifs in the 5′UTRs of APP, alpha-synuclein and PrP mRNAs represent uniquely folded drug targets for therapies to prevent perturbed iron homeostasis that accelerates AD, PD, PD dementia (PDD) and Lewy body dementia, thus preventing cognitive deficits. Inhibition of alpha-synuclein translation is an option to block manganese toxicity associated with early childhood cognitive problems and manganism while Pb toxicity is epigenetically associated with attention deficit and later-stage AD. Pathologies of heavy metal toxicity centered on an embargo of iron export may be treated with activators of APP and ferritin and inhibitors of alpha-synuclein translation.
Collapse
|
24
|
Zubčić K, Radovanović V, Vlainić J, Hof PR, Oršolić N, Šimić G, Jazvinšćak Jembrek M. PI3K/Akt and ERK1/2 Signalling Are Involved in Quercetin-Mediated Neuroprotection against Copper-Induced Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9834742. [PMID: 32733640 PMCID: PMC7369662 DOI: 10.1155/2020/9834742] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/12/2020] [Indexed: 01/12/2023]
Abstract
Copper, a transition metal with essential cellular functions, exerts neurotoxic effects when present in excess by promoting production of reactive oxygen species (ROS). The aim of the present study was to investigate potential benefits of flavonoid quercetin against copper-induced toxicity. Results obtained with MTT assay indicate that the effects of quercetin are determined by the severity of the toxic insult. In moderately injured P19 neuronal cells, concomitant treatment with 150 μM quercetin improved viability by preventing ROS formation, caspase-3 activation, and chromatin condensation. Western blot analysis revealed that quercetin reduced copper-induced increase in p53 upregulated modulator of apoptosis (PUMA) expression and promoted upregulation of nucleoside diphosphate kinase NME1. Levels of p53 and Bax proteins were not affected by both copper and quercetin. UO126 and wortmannin, inhibitors of ERK1/2 and PI3K/Akt signalling pathways, respectively, prevented neuroprotective effects of quercetin. In severely injured neurons, 30 μM quercetin exerted strong prooxidative action and exacerbated cytotoxic effects of copper, whereas 150 μM quercetin failed to affect neuronal survival. These results demonstrate the dual nature of quercetin action in copper-related neurodegeneration. Hence, they are relevant in the context of considering quercetin as a possible therapeutic for neuroprotection and imply that detailed pharmacological and toxicological studies must be carried out for natural compounds capable of acting both as antioxidants and prooxidants.
Collapse
Affiliation(s)
- Klara Zubčić
- Department for Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, 10000 Zagreb, Croatia
| | - Vedrana Radovanović
- Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia
| | - Josipa Vlainić
- Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia
| | - Patrick R. Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nada Oršolić
- Department of Animal Physiology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Goran Šimić
- Department for Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, 10000 Zagreb, Croatia
| | - Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia
- Department of Psychology, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
| |
Collapse
|
25
|
Witt B, Schaumlöffel D, Schwerdtle T. Subcellular Localization of Copper-Cellular Bioimaging with Focus on Neurological Disorders. Int J Mol Sci 2020; 21:ijms21072341. [PMID: 32231018 PMCID: PMC7178132 DOI: 10.3390/ijms21072341] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/17/2022] Open
Abstract
As an essential trace element, copper plays a pivotal role in physiological body functions. In fact, dysregulated copper homeostasis has been clearly linked to neurological disorders including Wilson and Alzheimer’s disease. Such neurodegenerative diseases are associated with progressive loss of neurons and thus impaired brain functions. However, the underlying mechanisms are not fully understood. Characterization of the element species and their subcellular localization is of great importance to uncover cellular mechanisms. Recent research activities focus on the question of how copper contributes to the pathological findings. Cellular bioimaging of copper is an essential key to accomplish this objective. Besides information on the spatial distribution and chemical properties of copper, other essential trace elements can be localized in parallel. Highly sensitive and high spatial resolution techniques such as LA-ICP-MS, TEM-EDS, S-XRF and NanoSIMS are required for elemental mapping on subcellular level. This review summarizes state-of-the-art techniques in the field of bioimaging. Their strengths and limitations will be discussed with particular focus on potential applications for the elucidation of copper-related diseases. Based on such investigations, further information on cellular processes and mechanisms can be derived under physiological and pathological conditions. Bioimaging studies might enable the clarification of the role of copper in the context of neurodegenerative diseases and provide an important basis to develop therapeutic strategies for reduction or even prevention of copper-related disorders and their pathological consequences.
Collapse
Affiliation(s)
- Barbara Witt
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114–116, 14558 Nuthetal, Germany;
- Correspondence: ; Tel.: +49-3320-088-5241
| | - Dirk Schaumlöffel
- Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux (IPREM), UMR 5254, CNRS/Université de Pau et des Pays de l’Adour/E2S UPPA, 64000 Pau, France;
| | - Tanja Schwerdtle
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114–116, 14558 Nuthetal, Germany;
- TraceAge—DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Potsdam-Berlin-Jena, Germany
| |
Collapse
|
26
|
Kawahara M, Kato-Negishi M, Tanaka KI. Amyloids: Regulators of Metal Homeostasis in the Synapse. Molecules 2020; 25:molecules25061441. [PMID: 32210005 PMCID: PMC7145306 DOI: 10.3390/molecules25061441] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
Conformational changes in amyloidogenic proteins, such as β-amyloid protein, prion proteins, and α-synuclein, play a critical role in the pathogenesis of numerous neurodegenerative diseases, including Alzheimer’s disease, prion disease, and Lewy body disease. The disease-associated proteins possess several common characteristics, including the ability to form amyloid oligomers with β-pleated sheet structure, as well as cytotoxicity, although they differ in amino acid sequence. Interestingly, these amyloidogenic proteins all possess the ability to bind trace metals, can regulate metal homeostasis, and are co-localized at the synapse, where metals are abundantly present. In this review, we discuss the physiological roles of these amyloidogenic proteins in metal homeostasis, and we propose hypothetical models of their pathogenetic role in the neurodegenerative process as the loss of normal metal regulatory functions of amyloidogenic proteins. Notably, these amyloidogenic proteins have the capacity to form Ca2+-permeable pores in membranes, suggestive of a toxic gain of function. Therefore, we focus on their potential role in the disruption of Ca2+ homeostasis in amyloid-associated neurodegenerative diseases.
Collapse
|
27
|
Pilozzi A, Yu Z, Carreras I, Cormier K, Hartley D, Rogers J, Dedeoglu A, Huang X. A Preliminary Study of Cu Exposure Effects upon Alzheimer's Amyloid Pathology. Biomolecules 2020; 10:E408. [PMID: 32155778 PMCID: PMC7175127 DOI: 10.3390/biom10030408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 01/25/2023] Open
Abstract
A large body of evidence indicates that dysregulation of cerebral biometals (Fe, Cu, Zn) and their interactions with amyloid precursor protein (APP) and Aβ amyloid may contribute to the Alzheimer's disease (AD) Aβ amyloid pathology. However, the molecular underpinnings associated with the interactions are still not fully understood. Herein we have further validated the exacerbation of Aβ oligomerization by Cu and H2O2 in vitro. We have also reported that Cu enhanced APP translations via its 5' untranslated region (5'UTR) of mRNA in SH-SY5Y cells, and increased Aβ amyloidosis and expression of associated pro-inflammatory cytokines such as MCP-5 in Alzheimer's APP/PS1 doubly transgenic mice. This preliminary study may further unravel the pathogenic role of Cu in Alzheimer's Aβ amyloid pathogenesis, warranting further investigation.
Collapse
Affiliation(s)
- Alexander Pilozzi
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA; (A.P.); (J.R.)
| | - Zhanyang Yu
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA;
| | - Isabel Carreras
- Department of Veterans Affairs, VA Medical Center, Bedford, MA 01730, USA; (I.C.); (K.C.); (A.D.)
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Kerry Cormier
- Department of Veterans Affairs, VA Medical Center, Bedford, MA 01730, USA; (I.C.); (K.C.); (A.D.)
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | | | - Jack Rogers
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA; (A.P.); (J.R.)
| | - Alpaslan Dedeoglu
- Department of Veterans Affairs, VA Medical Center, Bedford, MA 01730, USA; (I.C.); (K.C.); (A.D.)
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Xudong Huang
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA; (A.P.); (J.R.)
| |
Collapse
|
28
|
Abolaji AO, Fasae KD, Iwezor CE, Aschner M, Farombi EO. Curcumin attenuates copper-induced oxidative stress and neurotoxicity in Drosophila melanogaster. Toxicol Rep 2020; 7:261-268. [PMID: 32025502 PMCID: PMC6997559 DOI: 10.1016/j.toxrep.2020.01.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/23/2020] [Accepted: 01/26/2020] [Indexed: 01/23/2023] Open
Abstract
Curcumin is a hydrophobic polyphenol derived from the rhizome of the Herb Curcuma longa belonging to the family Zingiberaceae. Curcumin possesses antioxidative, anti-inflammatory and anti-depressant-like properties. In this study, we evaluated the rescue role of Curcumin in Copper2+-induced toxicity in D. melanogaster. Adult, wild type flies were exposed to Cu2+ (1 mM) and/or Curcumin (0.2 and 0.5 mg/kg diet) in the diet for 7 days. The results indicated that Cu2+- fed flies had reduced survival compared to the control group. Copper toxicity was also associated with a marked decrease in total thiol (T-SH), as well as catalase and glutathione S-transferase activities, contemporaneous with increased acetylcholinesterase (AChE) activity, nitric oxide (nitrate and nitrite) and dopamine levels. Co-exposure of flies to Cu2+ and Curcumin prevented mortality, inhibited AChE activity and restored dopamine to normal levels (p < 0.05). Moreover, Curcumin restored eclosion rates, and the cellular antioxidant status, as well as alleviated the accumulation of nitric oxide level in the flies. Curcumin ameliorated oxidative damage in the flies as evidenced by the survival rates, longevity assay as well as the restoration of antioxidant status. Our findings thus suggest that Curcumin ameliorated Cu2+-induced neurotoxicity in D. melanogaster and as such could be considered an effective therapeutic agent in the prevention and treatment of disorders, where oxidative stress is implicated.
Collapse
Affiliation(s)
- Amos O Abolaji
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Kehinde D Fasae
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Chizim E Iwezor
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Ebenezer O Farombi
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria
| |
Collapse
|
29
|
Kosenko E, Tikhonova L, Alilova G, Urios A, Montoliu C. The Erythrocytic Hypothesis of Brain Energy Crisis in Sporadic Alzheimer Disease: Possible Consequences and Supporting Evidence. J Clin Med 2020; 9:jcm9010206. [PMID: 31940879 PMCID: PMC7019250 DOI: 10.3390/jcm9010206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/24/2022] Open
Abstract
Alzheimer’s disease (AD) is a fatal form of dementia of unknown etiology. Although amyloid plaque accumulation in the brain has been the subject of intensive research in disease pathogenesis and anti-amyloid drug development; the continued failures of the clinical trials suggest that amyloids are not a key cause of AD and new approaches to AD investigation and treatment are needed. We propose a new hypothesis of AD development based on metabolic abnormalities in circulating red blood cells (RBCs) that slow down oxygen release from RBCs into brain tissue which in turn leads to hypoxia-induced brain energy crisis; loss of neurons; and progressive atrophy preceding cognitive dysfunction. This review summarizes current evidence for the erythrocytic hypothesis of AD development and provides new insights into the causes of neurodegeneration offering an innovative way to diagnose and treat this systemic disease.
Collapse
Affiliation(s)
- Elena Kosenko
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Pushchino 142290, Russia; (L.T.); (G.A.)
- Correspondence: or ; Tel.: +7-4967-73-91-68
| | - Lyudmila Tikhonova
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Pushchino 142290, Russia; (L.T.); (G.A.)
| | - Gubidat Alilova
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Pushchino 142290, Russia; (L.T.); (G.A.)
| | - Amparo Urios
- Hospital Clinico Research Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain; (A.U.); (C.M.)
| | - Carmina Montoliu
- Hospital Clinico Research Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain; (A.U.); (C.M.)
- Pathology Department, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
30
|
Kepp KP, Squitti R. Copper imbalance in Alzheimer’s disease: Convergence of the chemistry and the clinic. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.06.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
31
|
An urgent need to assess safe levels of inorganic copper in nutritional supplements/parenteral nutrition for subset of Alzheimer’s disease patients. Neurotoxicology 2019; 73:168-174. [DOI: 10.1016/j.neuro.2019.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 02/07/2023]
|
32
|
Wang WT, Tailor BA, Cohen DS, Huang X. Alzheimer's Pathogenesis, Metal-Mediated Redox Stress, and Potential Nanotheranostics. EC PHARMACOLOGY AND TOXICOLOGY 2019; 7:547-558. [PMID: 31565701 PMCID: PMC6764777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Alzheimer's disease (AD) characterized by insoluble amyloid-β (Aβ) deposits, neurofibrillary tangles (NFTs), and neuronal demise. The influence of environmental and genetic factors on AD progression remains elusive, however evidence suggests biometal dyshomeostasis elicits neuronal death, neuroinflammation, and accumulated oxidative damages in AD brain. As such, three pathways have been identified that result from abnormal biometal accumulation and increased levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in AD brain parenchyma: (1) the damage caused by direct oxidation of cellular components such as DNA and proteins; (2) the oligomerization of Aβ and NFTs, and (3) the promotion of apoptosis through NF-κB signaling pathway. Finally, given recent developments in nanotechnology, we have briefly reviewed potential nanotheranostic agents as potential AD theranostics.
Collapse
Affiliation(s)
- Willam T Wang
- Department of Diagnostic Radiology, Singapore General Hospital, Singapore
| | - Breeya A Tailor
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - David S Cohen
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Xudong Huang
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
33
|
Huat TJ, Camats-Perna J, Newcombe EA, Valmas N, Kitazawa M, Medeiros R. Metal Toxicity Links to Alzheimer's Disease and Neuroinflammation. J Mol Biol 2019; 431:1843-1868. [PMID: 30664867 DOI: 10.1016/j.jmb.2019.01.018] [Citation(s) in RCA: 257] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/11/2022]
Abstract
As the median age of the population increases, the number of individuals with Alzheimer's disease (AD) and the associated socio-economic burden are predicted to worsen. While aging and inherent genetic predisposition play major roles in the onset of AD, lifestyle, physical fitness, medical condition, and social environment have emerged as relevant disease modifiers. These environmental risk factors can play a key role in accelerating or decelerating disease onset and progression. Among known environmental risk factors, chronic exposure to various metals has become more common among the public as the aggressive pace of anthropogenic activities releases excess amount of metals into the environment. As a result, we are exposed not only to essential metals, such as iron, copper, zinc and manganese, but also to toxic metals including lead, aluminum, and cadmium, which perturb metal homeostasis at the cellular and organismal levels. Herein, we review how these metals affect brain physiology and immunity, as well as their roles in the accumulation of toxic AD proteinaceous species (i.e., β-amyloid and tau). We also discuss studies that validate the disruption of immune-related pathways as an important mechanism of toxicity by which metals can contribute to AD. Our goal is to increase the awareness of metals as players in the onset and progression of AD.
Collapse
Affiliation(s)
- Tee Jong Huat
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia; Centre for Stem Cell Ageing and Regenerative Engineering, The University of Queensland, Brisbane, Australia.
| | - Judith Camats-Perna
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Estella A Newcombe
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Nicholas Valmas
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Masashi Kitazawa
- Center for Occupational and Environmental Health, Department of Medicine, University of California, Irvine, CA, USA
| | - Rodrigo Medeiros
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
34
|
Sadakane Y, Kawahara M. Implications of Metal Binding and Asparagine Deamidation for Amyloid Formation. Int J Mol Sci 2018; 19:ijms19082449. [PMID: 30126231 PMCID: PMC6121660 DOI: 10.3390/ijms19082449] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/10/2018] [Accepted: 08/14/2018] [Indexed: 12/17/2022] Open
Abstract
Increasing evidence suggests that amyloid formation, i.e., self-assembly of proteins and the resulting conformational changes, is linked with the pathogenesis of various neurodegenerative disorders such as Alzheimer’s disease, prion diseases, and Lewy body diseases. Among the factors that accelerate or inhibit oligomerization, we focus here on two non-genetic and common characteristics of many amyloidogenic proteins: metal binding and asparagine deamidation. Both reflect the aging process and occur in most amyloidogenic proteins. All of the amyloidogenic proteins, such as Alzheimer’s β-amyloid protein, prion protein, and α-synuclein, are metal-binding proteins and are involved in the regulation of metal homeostasis. It is widely accepted that these proteins are susceptible to non-enzymatic posttranslational modifications, and many asparagine residues of these proteins are deamidated. Moreover, these two factors can combine because asparagine residues can bind metals. We review the current understanding of these two common properties and their implications in the pathogenesis of these neurodegenerative diseases.
Collapse
Affiliation(s)
- Yutaka Sadakane
- Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Japan.
| | - Masahiro Kawahara
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan.
| |
Collapse
|
35
|
Kawahara M, Kato-Negishi M, Tanaka K. Cross talk between neurometals and amyloidogenic proteins at the synapse and the pathogenesis of neurodegenerative diseases. Metallomics 2018; 9:619-633. [PMID: 28516990 DOI: 10.1039/c7mt00046d] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Increasing evidence suggests that disruption of metal homeostasis contributes to the pathogenesis of various neurodegenerative diseases, including Alzheimer's disease, prion diseases, Lewy body diseases, and vascular dementia. Conformational changes of disease-related proteins (amyloidogenic proteins), such as β-amyloid protein, prion proteins, and α-synuclein, are well-established contributors to neurotoxicity and to the pathogenesis of these diseases. Recent studies have demonstrated that these amyloidogenic proteins are metalloproteins that bind trace elements, including zinc, iron, copper, and manganese, and play significant roles in the maintenance of metal homeostasis. We present a current review of the role of trace elements in the functions and toxicity of amyloidogenic proteins, and propose a hypothesis integrating metal homeostasis and the pathogenesis of neurodegenerative diseases that is focused on the interactions among metals and between metals and amyloidogenic proteins at the synapse, considering that these amyloidogenic proteins and metals are co-localized at the synapse.
Collapse
Affiliation(s)
- M Kawahara
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| | | | | |
Collapse
|
36
|
Squitti R, Mendez AJ, Simonelli I, Ricordi C. Diabetes and Alzheimer's Disease: Can Elevated Free Copper Predict the Risk of the Disease? J Alzheimers Dis 2018; 56:1055-1064. [PMID: 27983558 PMCID: PMC5302029 DOI: 10.3233/jad-161033] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background: Defective copper regulation, primarily referred to as chelatable redox active Cu(II), has been involved in the etiology of diabetes, and Alzheimer’s disease (AD). Objectives: However, no study has determined levels of labile copper non-bound to ceruloplasmin (non-Cp Cu, also known as ‘free’ copper) in the blood of subjects with diabetes compared with that of AD patients. Methods: To this aim, values of non-Cp Cu were measured in 25 Type 1 (T1D) and 31 Type 2 (T2D) subjects and in28 healthy controls, along with measurements of C-reactive protein, glycated hemoglobin A1c, cholesterol, and triglycerides. Non-Cp Cu levels were compared with those of an AD group previously studied. Results: T2D subjects had significantly higher non-Cp Cu levels than Controls and T1D subjects (both p < 0.001 after adjusting for age, sex, and body mass index). A multinomial logistic model revealed that a one unit standard deviation increase of non-Cp Cu increased the relative risk of having T2D by 9.64 with respect to Controls (95% CI: 2.86–32.47). The comparison of non-Cp Cu levels in T2D with those of an AD population previously studied shows rising blood non-Cp Cu copper levels from Controls to T2D and AD. Conclusion: These results suggest the involvement of catalytically-active Cu(II) and glucose dysregulation in oxidative stress reactions leading to tissue damage in both diseases.
Collapse
Affiliation(s)
- Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli, Brescia, Italy
| | - Armando J Mendez
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ilaria Simonelli
- Fatebenefratelli Foundation, AFaR Division, Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Surgery, Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
37
|
Navarro JA, Schneuwly S. Copper and Zinc Homeostasis: Lessons from Drosophila melanogaster. Front Genet 2017; 8:223. [PMID: 29312444 PMCID: PMC5743009 DOI: 10.3389/fgene.2017.00223] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/11/2017] [Indexed: 01/19/2023] Open
Abstract
Maintenance of metal homeostasis is crucial for many different enzymatic activities and in turn for cell function and survival. In addition, cells display detoxification and protective mechanisms against toxic accumulation of metals. Perturbation of any of these processes normally leads to cellular dysfunction and finally to cell death. In the last years, loss of metal regulation has been described as a common pathological feature in many human neurodegenerative diseases. However, in most cases, it is still a matter of debate whether such dyshomeostasis is a primary or a secondary downstream defect. In this review, we will summarize and critically evaluate the contribution of Drosophila to model human diseases that involve altered metabolism of metals or in which metal dyshomeostasis influence their pathobiology. As a prerequisite to use Drosophila as a model, we will recapitulate and describe the main features of core genes involved in copper and zinc metabolism that are conserved between mammals and flies. Drosophila presents some unique strengths to be at the forefront of neurobiological studies. The number of genetic tools, the possibility to easily test genetic interactions in vivo and the feasibility to perform unbiased genetic and pharmacological screens are some of the most prominent advantages of the fruitfly. In this work, we will pay special attention to the most important results reported in fly models to unveil the role of copper and zinc in cellular degeneration and their influence in the development and progression of human neurodegenerative pathologies such as Parkinson's disease, Alzheimer's disease, Huntington's disease, Friedreich's Ataxia or Menkes, and Wilson's diseases. Finally, we show how these studies performed in the fly have allowed to give further insight into the influence of copper and zinc in the molecular and cellular causes and consequences underlying these diseases as well as the discovery of new therapeutic strategies, which had not yet been described in other model systems.
Collapse
Affiliation(s)
- Juan A. Navarro
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | | |
Collapse
|
38
|
Squitti R, Quattrocchi CC, Forno GD, Antuono P, Wekstein DR, Capo CR, Salustri C, Rossini PM. Ceruloplasmin (2-D PAGE) Pattern and Copper Content in Serum and Brain of Alzheimer Disease Patients. Biomark Insights 2017. [DOI: 10.1177/117727190600100019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A dysfunction in copper homeostasis seems to occur in Alzheimer's disease (AD). We previously evidenced that an excess of non-ceruloplasmin-copper (NCC) correlated with the main functional, anatomical as well as cerebrospinal markers of the disease. Aim of our study was to investigate ceruloplasmin isoforms as potential actors in this AD copper dysfunction. Our data show that AD patients have ceruloplasmin fragments of low molecular weight (<50 kDa) both in their serum and brain, contrary to healthy controls. Ceruloplasmin isoforms of higher molecular weight (115 and 135 kDa in serum and 135 kDa in brain), as well as copper levels in the brain, instead, do not seem to mark a difference between AD and healthy subjects. These data suggest a ceruloplasmin fragmentation in the serum of AD patients. Some clues in this direction have been found also in the AD brain.
Collapse
Affiliation(s)
- Rosanna Squitti
- AFaR, Dept. of Neuroscience, Fatebenefratelli Hospital, Rome, Italy
| | | | | | - Piero Antuono
- Dept. of Neurology, Medical College of Wisconsin, Milwaukee, WI, U.S.A
| | - David R. Wekstein
- University of Kentucky Alzheimer's Disease Research Center, Lexington, KY, U.S.A
| | | | - Carlo Salustri
- Institute of Cognition Sciences and Technologies (CNR), Rome, Italy
| | - Paolo M. Rossini
- AFaR, Dept. of Neuroscience, Fatebenefratelli Hospital, Rome, Italy
- Depts. of Neurology, “Campus Biomedico” University, Rome, Italy
- IRCCS ‘Centro S. Giovanni di Dio-FBF’, Brescia, Italy
| |
Collapse
|
39
|
|
40
|
Li Y, Jiao Q, Xu H, Du X, Shi L, Jia F, Jiang H. Biometal Dyshomeostasis and Toxic Metal Accumulations in the Development of Alzheimer's Disease. Front Mol Neurosci 2017; 10:339. [PMID: 29114205 PMCID: PMC5660707 DOI: 10.3389/fnmol.2017.00339] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/05/2017] [Indexed: 12/14/2022] Open
Abstract
Biometal dyshomeostasis and toxic metal accumulation are common features in many neurodegenerative disorders, including Alzheimer’s disease (AD), Parkinson’s disease, and Huntington’s disease. The neurotoxic effects of metal imbalance are generally associated with reduced enzymatic activities, elevated protein aggregation and oxidative stress in the central nervous system, in which a cascade of events lead to cell death and neurodegeneration. Although the links between biometal imbalance and neurodegenerative disorders remain elusive, a major class of endogenous proteins involved in metal transport has been receiving increasing attention over recent decades. The abnormal expression of these proteins has been linked to biometal imbalance and to the pathogenesis of AD. Here, we present a brief overview of the physiological roles of biometals including iron, zinc, copper, manganese, magnesium and calcium, and provide a detailed description of their transporters and their synergistic involvement in the development of AD. In addition, we also review the published data relating to neurotoxic metals in AD, including aluminum, lead, cadmium, and mercury.
Collapse
Affiliation(s)
- Yong Li
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, Medical College of Qingdao University, Qingdao, China.,Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
| | - Qian Jiao
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, Medical College of Qingdao University, Qingdao, China.,Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
| | - Huamin Xu
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, Medical College of Qingdao University, Qingdao, China.,Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
| | - Xixun Du
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, Medical College of Qingdao University, Qingdao, China.,Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
| | - Limin Shi
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, Medical College of Qingdao University, Qingdao, China.,Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
| | - Fengju Jia
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, Medical College of Qingdao University, Qingdao, China.,Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
| | - Hong Jiang
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, Medical College of Qingdao University, Qingdao, China.,Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
| |
Collapse
|
41
|
The Efficacy and Pharmacological Mechanism of Zn 7MT3 to Protect against Alzheimer's Disease. Sci Rep 2017; 7:13763. [PMID: 29061973 PMCID: PMC5653791 DOI: 10.1038/s41598-017-12800-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/15/2017] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is one of the leading causes of death for people over 65 years. Worse still, no completely effective therapeutic agent is available so far. One important pathological hallmark of AD is accumulated amyloid-β (Aβ) plaques with dysregulated metal homeostasis. Human metallothionin 3 (MT3), a regulator of metal homeostasis, is downregulated at least 30% in AD brain. So far, some in vitro studies demonstrated its multiple functions related to AD. However, it is a great pity that systematic in vivo studies of MT3 on AD model animals are still a blank so far. In this study, we treated APP/PS1 mice with sustained drug release of Zn7MT3 directly to the central nervous system, and investigated the role and molecular mechanism of Zn7MT3 to protect against AD mice systematically. The results demonstrated that Zn7MT3 can significantly ameliorate cognitive deficits, regulate metal homeostasis, abolish Aβ plaque load, and reduce oxidative stress. Additionally, it has been confirmed that MT3 is penetrable to the blood brain barrier of AD mice. All these results support that Zn7MT3 is an effective AD suppressing agent and has potential for applications in Alzheimer’s disease therapy.
Collapse
|
42
|
Mizuno D, Kawahara M. Link Between Metal Homeostasis and Neurodegenerative Diseases: Crosstalk of Metals and Amyloidogenic Proteins at the Synapse. Metallomics 2017. [DOI: 10.1007/978-4-431-56463-8_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
43
|
Siotto M, Simonelli I, Pasqualetti P, Mariani S, Caprara D, Bucossi S, Ventriglia M, Molinario R, Antenucci M, Rongioletti M, Rossini PM, Squitti R. Association Between Serum Ceruloplasmin Specific Activity and Risk of Alzheimer's Disease. J Alzheimers Dis 2016; 50:1181-9. [PMID: 26836154 DOI: 10.3233/jad-150611] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Meta-analyses demonstrate copper involvement in Alzheimer's disease (AD), and the systemic ceruloplasmin status in relation to copper is an emerging issue. To deepen this matter, we evaluated levels of ceruloplasmin concentration, ceruloplasmin activity, ceruloplasmin specific activity (eCp/iCp), copper, non-ceruloplasmin copper iron, transferrin, the ceruloplasmin/transferrin ratio, and the APOE genotype in a sample of 84 AD patients and 58 healthy volunteers. From the univariate logistic analyses we found that ceruloplasmin concentration, eCp/iCp, copper, transferrin, the ceruloplasmin/transferrin ratio, and the APOE genotype were significantly associated with the probability of AD. In the multivariable logistic regression analysis, we selected the best subset of biological predictors by the forward stepwise procedure. The analysis showed a decrease of the risk of having AD for eCp/iCp (p = 0.001) and an increase of this risk for non-ceruloplasmin copper (p = 0.008), age (p = 0.001), and APOE-ɛ4 allele (p < 0.001). The estimated model showed a good power in discriminating AD patients from healthy controls (area under curve: 88% ; sensitivity: 66% ; specificity 93%). These data strength the breakdown of copper homeostasis and propose eCp/iCp as a reliable marker of ceruloplasmin status.
Collapse
Affiliation(s)
| | - Ilaria Simonelli
- Fatebenefratelli Foundation for Health Research and Education, AFaR Division, Rome, Italy
| | - Patrizio Pasqualetti
- Service of Medical Statistics and Information Technology, Fatebenefratelli Foundation for Health Research and Education, AFaR Division, Rome, Italy
| | - Stefania Mariani
- Fatebenefratelli Foundation for Health Research and Education, AFaR Division, Rome, Italy
| | - Deborah Caprara
- Fatebenefratelli Foundation for Health Research and Education, AFaR Division, Rome, Italy
| | - Serena Bucossi
- Institute of Neurology, Department of Geriatrics, Neuroscience and Orthopedics, Catholic University, Policlinic A. Gemelli, Rome, Italy
| | - Mariacarla Ventriglia
- Fatebenefratelli Foundation for Health Research and Education, AFaR Division, Rome, Italy.,Istituto di Scienze e Tecnologie della Cognizione (ISTC) - CNR, Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy
| | - Rossana Molinario
- Department of Diagnostic and Laboratory Medicine, Catholic University, Policlinic A. Gemelli, Rome, Italy
| | - Mirca Antenucci
- Department of Diagnostic and Laboratory Medicine, Catholic University, Policlinic A. Gemelli, Rome, Italy
| | - Mauro Rongioletti
- Molecular Biology Unit, Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy
| | - Paolo Maria Rossini
- Institute of Neurology, Department of Geriatrics, Neuroscience and Orthopedics, Catholic University, Policlinic A. Gemelli, Rome, Italy.,Laboratory of Neurodegeneration, IRCSS "San Raffaele Pisana", Rome, Italy
| | - Rosanna Squitti
- Fatebenefratelli Foundation for Health Research and Education, AFaR Division, Rome, Italy.,Istituto di Scienze e Tecnologie della Cognizione (ISTC) - CNR, Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy
| |
Collapse
|
44
|
Banerjee P, Sahoo A, Anand S, Bir A, Chakrabarti S. The Oral Iron Chelator, Deferasirox, Reverses the Age-Dependent Alterations in Iron and Amyloid-β Homeostasis in Rat Brain: Implications in the Therapy of Alzheimer's Disease. J Alzheimers Dis 2016; 49:681-93. [PMID: 26484920 DOI: 10.3233/jad-150514] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The altered metabolism of iron impacts the brain function in multiple deleterious ways during normal aging as well as in Alzheimer's disease. We have shown in this study that chelatable iron accumulates in the aged rat brain along with overexpression of transferrin receptor 1 (TfR1) and ferritin, accompanied by significant alterations in amyloid-β (Aβ) peptide homeostasis in the aging brain, such as an increased production of the amyloid-β protein precursor, a decreased level of neprilysin, and increased accumulation of Aβ42. When aged rats are given daily the iron chelator, deferasirox, over a period of more than 4 months starting from the 18th month, the age-related accumulation of iron and overexpression of TfR1 and ferritin in the brain are significantly prevented. More interestingly, the chelator treatment also considerably reverses the altered Aβ peptide metabolism in the aging brain implying a significant role of iron in the latter phenomenon. Further, other results indicate that iron accumulation results in oxidative stress and the activation of NF-κB in the aged rat brain, which are also reversed by the deferasirox treatment. The analysis of the results together suggests that iron accumulation and oxidative stress interact at multiple levels that include transcriptional and post-transcriptional mechanisms to bring about changes in the expression levels of TfR1 and ferritin and also alterations in Aβ peptide metabolism in the aging rat brain. The efficacy of deferasirox in preventing age-related changes in iron and Aβ peptide metabolism in the aging brain, as shown here, has obvious therapeutic implications for Alzheimer's disease.
Collapse
Affiliation(s)
- Priyanjalee Banerjee
- Department of Biochemistry, Institute of Post Graduate Medical and Educational Research, Kolkata, India
| | - Arghyadip Sahoo
- Department of Biochemistry, Institute of Post Graduate Medical and Educational Research, Kolkata, India
| | - Shruti Anand
- Department of Biochemistry, Institute of Post Graduate Medical and Educational Research, Kolkata, India
| | - Aritri Bir
- Department of Biochemistry, ICARE Institute of Medical Sciences and Research, Haldia, India
| | - Sasanka Chakrabarti
- Department of Biochemistry, ICARE Institute of Medical Sciences and Research, Haldia, India
| |
Collapse
|
45
|
Ezra A, Rabinovich-Nikitin I, Rabinovich-Toidman P, Solomon B. Multifunctional Effect of Human Serum Albumin Reduces Alzheimer's Disease Related Pathologies in the 3xTg Mouse Model. J Alzheimers Dis 2016; 50:175-88. [PMID: 26682687 DOI: 10.3233/jad-150694] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD), the prevalent dementia in the elderly, involves many related and interdependent pathologies that manifests simultaneously, eventually leading to cognitive impairment and death. No treatment is currently available; however, an agent addressing several key pathologies simultaneously has a better therapeutic potential. Human serum albumin (HSA) is a highly versatile protein, harboring multifunctional properties that are relevant to key pathologies underlying AD. This study provides insight into the mechanism for HSA's therapeutic effect. In vivo, a myriad of beneficial effects were observed by pumps infusing HSA intracerebroventricularly, for the first time in an AD 3xTg mice model. A significant effect on amyloid-β (Aβ) pathology was observed. Aβ1-42, soluble oligomers, and total plaque area were reduced. Neuroblastoma SHSY5Y cell line confirmed that the reduction in Aβ1-42 toxicity was due to direct binding rather than other properties of HSA. Total and hyperphosphorylated tau were reduced along with an increase in tubulin, suggesting increased microtubule stability. HSA treatment also reduced brain inflammation, affecting both astrocytes and microglia markers. Finally, evidence for blood-brain barrier and myelin integrity repair was observed. These multidimensional beneficial effects of intracranial administrated HSA, together or individually, contributed to an improvement in cognitive tests, suggesting a non-immune or Aβ efflux dependent means for treating AD.
Collapse
|
46
|
Greenough MA, Ramírez Munoz A, Bush AI, Opazo CM. Metallo-pathways to Alzheimer's disease: lessons from genetic disorders of copper trafficking. Metallomics 2016; 8:831-9. [PMID: 27397642 DOI: 10.1039/c6mt00095a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Copper is an essential metal ion that provides catalytic function to numerous enzymes and also regulates neurotransmission and intracellular signaling. Conversely, a deficiency or excess of copper can cause chronic disease in humans. Menkes and Wilson disease are two rare heritable disorders of copper transport that are characterized by copper deficiency and copper overload, respectively. Changes to copper status are also a common feature of several neurodegenerative disorders including Alzheimer's disease (AD), Parkinson's disease (PD) and Amyotrophic lateral sclerosis (ALS). In the case of AD, which is characterized by brain copper depletion, changes in the distribution of copper has been linked with various aspects of the disease process; protein aggregation, defective protein degradation, oxidative stress, inflammation and mitochondrial dysfunction. Although AD is a multifactorial disease that is likely caused by a breakdown in multiple cellular pathways, copper and other metal ions such as iron and zinc play a central role in many of these cellular processes. Pioneering work by researchers who have studied relatively rare copper transport diseases has shed light on potential metal ion related disease mechanisms in other forms of neurodegeneration such as AD.
Collapse
Affiliation(s)
- M A Greenough
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria 3010, Australia.
| | | | | | | |
Collapse
|
47
|
Yen CF, Harischandra DS, Kanthasamy A, Sivasankar S. Copper-induced structural conversion templates prion protein oligomerization and neurotoxicity. SCIENCE ADVANCES 2016; 2:e1600014. [PMID: 27419232 PMCID: PMC4942324 DOI: 10.1126/sciadv.1600014] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/27/2016] [Indexed: 05/26/2023]
Abstract
Prion protein (PrP) misfolding and oligomerization are key pathogenic events in prion disease. Copper exposure has been linked to prion pathogenesis; however, its mechanistic basis is unknown. We resolve, with single-molecule precision, the molecular mechanism of Cu(2+)-induced misfolding of PrP under physiological conditions. We also demonstrate that misfolded PrPs serve as seeds for templated formation of aggregates, which mediate inflammation and degeneration of neuronal tissue. Using a single-molecule fluorescence assay, we demonstrate that Cu(2+) induces PrP monomers to misfold before oligomer assembly; the disordered amino-terminal region mediates this structural change. Single-molecule force spectroscopy measurements show that the misfolded monomers have a 900-fold higher binding affinity compared to the native isoform, which promotes their oligomerization. Real-time quaking-induced conversion demonstrates that misfolded PrPs serve as seeds that template amyloid formation. Finally, organotypic slice cultures show that misfolded PrPs mediate inflammation and degeneration of neuronal tissue. Our study establishes a direct link, at the molecular level, between copper exposure and PrP neurotoxicity.
Collapse
Affiliation(s)
- Chi-Fu Yen
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, USA
| | - Dilshan S. Harischandra
- Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Anumantha Kanthasamy
- Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Sanjeevi Sivasankar
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, USA
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
48
|
Kepp KP. Alzheimer's disease due to loss of function: A new synthesis of the available data. Prog Neurobiol 2016; 143:36-60. [PMID: 27327400 DOI: 10.1016/j.pneurobio.2016.06.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/10/2016] [Accepted: 06/11/2016] [Indexed: 12/11/2022]
Abstract
Alzheimer's Disease (AD) is a highly complex disease involving a broad range of clinical, cellular, and biochemical manifestations that are currently not understood in combination. This has led to many views of AD, e.g. the amyloid, tau, presenilin, oxidative stress, and metal hypotheses. The amyloid hypothesis has dominated the field with its assumption that buildup of pathogenic β-amyloid (Aβ) peptide causes disease. This paradigm has been criticized, yet most data suggest that Aβ plays a key role in the disease. Here, a new loss-of-function hypothesis is synthesized that accounts for the anomalies of the amyloid hypothesis, e.g. the curious pathogenicity of the Aβ42/Aβ40 ratio, the loss of Aβ caused by presenilin mutation, the mixed phenotypes of APP mutations, the poor clinical-biochemical correlations for genetic variant carriers, and the failure of Aβ reducing drugs. The amyloid-loss view accounts for recent findings on the structure and chemical features of Aβ variants and their coupling to human patient data. The lost normal function of APP/Aβ is argued to be metal transport across neuronal membranes, a view with no apparent anomalies and substantially more explanatory power than the gain-of-function amyloid hypothesis. In the loss-of-function scenario, the central event of Aβ aggregation is interpreted as a loss of soluble, functional monomer Aβ rather than toxic overload of oligomers. Accordingly, new research models and treatment strategies should focus on remediation of the functional amyloid balance, rather than strict containment of Aβ, which, for reasons rationalized in this review, has failed clinically.
Collapse
Affiliation(s)
- Kasper P Kepp
- Technical University of Denmark, DTU Chemistry, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
49
|
Unzeta M, Esteban G, Bolea I, Fogel WA, Ramsay RR, Youdim MBH, Tipton KF, Marco-Contelles J. Multi-Target Directed Donepezil-Like Ligands for Alzheimer's Disease. Front Neurosci 2016; 10:205. [PMID: 27252617 PMCID: PMC4879129 DOI: 10.3389/fnins.2016.00205] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/25/2016] [Indexed: 12/20/2022] Open
Abstract
HIGHLIGHTS ASS234 is a MTDL compound containing a moiety from Donepezil and the propargyl group from the PF 9601N, a potent and selective MAO B inhibitor. This compound is the most advanced anti-Alzheimer agent for preclinical studies identified in our laboratory.Derived from ASS234 both multipotent donepezil-indolyl (MTDL-1) and donepezil-pyridyl hybrids (MTDL-2) were designed and evaluated as inhibitors of AChE/BuChE and both MAO isoforms. MTDL-2 showed more high affinity toward the four enzymes than MTDL-1.MTDL-3 and MTDL-4, were designed containing the N-benzylpiperidinium moiety from Donepezil, a metal- chelating 8-hydroxyquinoline group and linked to a N-propargyl core and they were pharmacologically evaluated.The presence of the cyano group in MTDL-3, enhanced binding to AChE, BuChE and MAO A. It showed antioxidant behavior and it was able to strongly complex Cu(II), Zn(II) and Fe(III).MTDL-4 showed higher affinity toward AChE, BuChE.MTDL-3 exhibited good brain penetration capacity (ADMET) and less toxicity than Donepezil. Memory deficits in scopolamine-lesioned animals were restored by MTDL-3.MTDL-3 particularly emerged as a ligand showing remarkable potential benefits for its use in AD therapy. Alzheimer's disease (AD), the most common form of adult onset dementia, is an age-related neurodegenerative disorder characterized by progressive memory loss, decline in language skills, and other cognitive impairments. Although its etiology is not completely known, several factors including deficits of acetylcholine, β-amyloid deposits, τ-protein phosphorylation, oxidative stress, and neuroinflammation are considered to play significant roles in the pathophysiology of this disease. For a long time, AD patients have been treated with acetylcholinesterase inhibitors such as donepezil (Aricept®) but with limited therapeutic success. This might be due to the complex multifactorial nature of AD, a fact that has prompted the design of new Multi-Target-Directed Ligands (MTDL) based on the "one molecule, multiple targets" paradigm. Thus, in this context, different series of novel multifunctional molecules with antioxidant, anti-amyloid, anti-inflammatory, and metal-chelating properties able to interact with multiple enzymes of therapeutic interest in AD pathology including acetylcholinesterase, butyrylcholinesterase, and monoamine oxidases A and B have been designed and assessed biologically. This review describes the multiple targets, the design rationale and an in-house MTDL library, bearing the N-benzylpiperidine motif present in donepezil, linked to different heterocyclic ring systems (indole, pyridine, or 8-hydroxyquinoline) with special emphasis on compound ASS234, an N-propargylindole derivative. The description of the in vitro biological properties of the compounds and discussion of the corresponding structure-activity-relationships allows us to highlight new issues for the identification of more efficient MTDL for use in AD therapy.
Collapse
Affiliation(s)
- Mercedes Unzeta
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de BarcelonaBarcelona, Spain
| | - Gerard Esteban
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College DublinDublin, Ireland
| | - Irene Bolea
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de BarcelonaBarcelona, Spain
| | - Wieslawa A. Fogel
- Department of Hormone Biochemistry, Medical University of LodzLodz, Poland
| | - Rona R. Ramsay
- Biomolecular Sciences, Biomedical Sciences Research Complex, University of St AndrewsSt. Andrews, UK
| | - Moussa B. H. Youdim
- Department of Pharmacology, Ruth and Bruce Rappaport Faculty of Medicine, Eve Topf and National Parkinson Foundation Center for Neurodegenerative Diseases ResearchHaifa, Israel
| | - Keith F. Tipton
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College DublinDublin, Ireland
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry, Institute of General Organic Chemistry, Spanish National Research CouncilMadrid, Spain
| |
Collapse
|
50
|
Metals and Neuronal Metal Binding Proteins Implicated in Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9812178. [PMID: 26881049 PMCID: PMC4736980 DOI: 10.1155/2016/9812178] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/17/2015] [Indexed: 11/18/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent age-related dementia affecting millions of people worldwide. Its main pathological hallmark feature is the formation of insoluble protein deposits of amyloid-β and hyperphosphorylated tau protein into extracellular plaques and intracellular neurofibrillary tangles, respectively. Many of the mechanistic details of this process remain unknown, but a well-established consequence of protein aggregation is synapse dysfunction and neuronal loss in the AD brain. Different pathways including mitochondrial dysfunction, oxidative stress, inflammation, and metal metabolism have been suggested to be implicated in this process. In particular, a body of evidence suggests that neuronal metal ions such as copper, zinc, and iron play important roles in brain function in health and disease states and altered homeostasis and distribution as a common feature across different neurodegenerative diseases and aging. In this focused review, we overview neuronal proteins that are involved in AD and whose metal binding properties may underlie important biochemical and regulatory processes occurring in the brain during the AD pathophysiological process.
Collapse
|