1
|
Koschak A, Fernandez-Quintero ML, Heigl T, Ruzza M, Seitter H, Zanetti L. Cav1.4 dysfunction and congenital stationary night blindness type 2. Pflugers Arch 2021; 473:1437-1454. [PMID: 34212239 PMCID: PMC8370969 DOI: 10.1007/s00424-021-02570-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 12/04/2022]
Abstract
Cav1.4 L-type Ca2+ channels are predominantly expressed in retinal neurons, particularly at the photoreceptor terminals where they mediate sustained Ca2+ entry needed for continuous neurotransmitter release at their ribbon synapses. Cav1.4 channel gating properties are controlled by accessory subunits, associated regulatory proteins, and also alternative splicing. In humans, mutations in the CACNA1F gene encoding for Cav1.4 channels are associated with X-linked retinal disorders such as congenital stationary night blindness type 2. Mutations in the Cav1.4 protein result in a spectrum of altered functional channel activity. Several mouse models broadened our understanding of the role of Cav1.4 channels not only as Ca2+ source at retinal synapses but also as synaptic organizers. In this review, we highlight different structural and functional phenotypes of Cav1.4 mutations that might also occur in patients with congenital stationary night blindness type 2. A further important yet mostly neglected aspect that we discuss is the influence of alternative splicing on channel dysfunction. We conclude that currently available functional phenotyping strategies should be refined and summarize potential specific therapeutic options for patients carrying Cav1.4 mutations. Importantly, the development of new therapeutic approaches will permit a deeper understanding of not only the disease pathophysiology but also the physiological function of Cav1.4 channels in the retina.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Animals
- Calcium Channel Agonists/pharmacology
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Eye Diseases, Hereditary/genetics
- Eye Diseases, Hereditary/metabolism
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/metabolism
- Humans
- Mutation/physiology
- Myopia/genetics
- Myopia/metabolism
- Night Blindness/genetics
- Night Blindness/metabolism
- Retina/drug effects
- Retina/metabolism
- Synapses/drug effects
- Synapses/genetics
- Synapses/metabolism
Collapse
Affiliation(s)
- Alexandra Koschak
- Institute of Pharmacy, Pharmacology and Toxicology, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82/III, 6020, Innsbruck, Austria.
| | - Monica L Fernandez-Quintero
- Institute of General, Inorganic and Theoretical Chemistry, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82/III, 6020, Innsbruck, Austria
| | - Thomas Heigl
- Institute of Pharmacy, Pharmacology and Toxicology, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82/III, 6020, Innsbruck, Austria
| | - Marco Ruzza
- Institute of Pharmacy, Pharmacology and Toxicology, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82/III, 6020, Innsbruck, Austria
| | - Hartwig Seitter
- Institute of Pharmacy, Pharmacology and Toxicology, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82/III, 6020, Innsbruck, Austria
| | - Lucia Zanetti
- Institute of Pharmacy, Pharmacology and Toxicology, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82/III, 6020, Innsbruck, Austria
| |
Collapse
|
2
|
Heinbockel T, Straiker A. Cannabinoids Regulate Sensory Processing in Early Olfactory and Visual Neural Circuits. Front Neural Circuits 2021; 15:662349. [PMID: 34305536 PMCID: PMC8294086 DOI: 10.3389/fncir.2021.662349] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/11/2021] [Indexed: 12/25/2022] Open
Abstract
Our sensory systems such as the olfactory and visual systems are the target of neuromodulatory regulation. This neuromodulation starts at the level of sensory receptors and extends into cortical processing. A relatively new group of neuromodulators includes cannabinoids. These form a group of chemical substances that are found in the cannabis plant. Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are the main cannabinoids. THC acts in the brain and nervous system like the chemical substances that our body produces, the endogenous cannabinoids or endocannabinoids, also nicknamed the brain's own cannabis. While the function of the endocannabinoid system is understood fairly well in limbic structures such as the hippocampus and the amygdala, this signaling system is less well understood in the olfactory pathway and the visual system. Here, we describe and compare endocannabinoids as signaling molecules in the early processing centers of the olfactory and visual system, the olfactory bulb, and the retina, and the relevance of the endocannabinoid system for synaptic plasticity.
Collapse
Affiliation(s)
- Thomas Heinbockel
- Department of Anatomy, Howard University College of Medicine, Washington, DC, United States
| | - Alex Straiker
- The Gill Center for Biomolecular Science and the Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| |
Collapse
|
3
|
Somatostatin receptor 5-mediated modulation of outward K+ currents in rat retinal ganglion cells. Neuroreport 2020; 31:131-138. [DOI: 10.1097/wnr.0000000000001402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Van Hook MJ, Nawy S, Thoreson WB. Voltage- and calcium-gated ion channels of neurons in the vertebrate retina. Prog Retin Eye Res 2019; 72:100760. [PMID: 31078724 PMCID: PMC6739185 DOI: 10.1016/j.preteyeres.2019.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/25/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023]
Abstract
In this review, we summarize studies investigating the types and distribution of voltage- and calcium-gated ion channels in the different classes of retinal neurons: rods, cones, horizontal cells, bipolar cells, amacrine cells, interplexiform cells, and ganglion cells. We discuss differences among cell subtypes within these major cell classes, as well as differences among species, and consider how different ion channels shape the responses of different neurons. For example, even though second-order bipolar and horizontal cells do not typically generate fast sodium-dependent action potentials, many of these cells nevertheless possess fast sodium currents that can enhance their kinetic response capabilities. Ca2+ channel activity can also shape response kinetics as well as regulating synaptic release. The L-type Ca2+ channel subtype, CaV1.4, expressed in photoreceptor cells exhibits specific properties matching the particular needs of these cells such as limited inactivation which allows sustained channel activity and maintained synaptic release in darkness. The particular properties of K+ and Cl- channels in different retinal neurons shape resting membrane potentials, response kinetics and spiking behavior. A remaining challenge is to characterize the specific distributions of ion channels in the more than 100 individual cell types that have been identified in the retina and to describe how these particular ion channels sculpt neuronal responses to assist in the processing of visual information by the retina.
Collapse
Affiliation(s)
- Matthew J Van Hook
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Scott Nawy
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department Pharmacology & Experimental Neuroscience(2), University of Nebraska Medical Center, Omaha, NE, USA
| | - Wallace B Thoreson
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department Pharmacology & Experimental Neuroscience(2), University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
5
|
Li Q, Zhang Y, Wu N, Yin N, Sun XH, Wang Z. Activation of somatostatin receptor 5 suppresses T-type Ca 2+ channels through NO/cGMP/PKG signaling pathway in rat retinal ganglion cells. Neurosci Lett 2019; 708:134337. [PMID: 31220522 DOI: 10.1016/j.neulet.2019.134337] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/19/2019] [Accepted: 06/17/2019] [Indexed: 11/16/2022]
Abstract
Somatostatin has been shown to modulate a variety of neuronal functions by activating the five specific G-protein coupled receptors (sst1-sst5). Here, effects of sst5 receptor activation on T-type Ca2+ channels in acutely isolated retinal ganglion cells (RGCs) of rats were investigated using whole-cell patch-clamp techniques. The sst5 receptor specific agonist L-817,818 significantly and reversibly suppressed T-type Ca2+ currents, and shifted inactivation curve of the channels toward hyperpolarization direction. The effect of L-817,818 was in a dose-dependent manner, with an IC50 being 8.8 μM. Pertussis toxin-sensitive Gi/o protein mediated intracellular nitric oxide (NO)/cGMP/protein kinase G (PKG) signaling cascade was involved in the L-817,818 effect on Ca2+ currents because pharmacological interference of each of these signaling molecules abolished the L-817,818 effect. In contrast, neither phospholipase C/protein kinase C nor cAMP/protein kinase A signal pathways seemed likely to be involved because the L-817,818 effect persisted when these signaling pathways were blocked by U73122, bisindolylmaleimide IV, chelerythrine chloride, and Rp-cAMP, respectively. These results suggest that activation of sst5 receptors suppresses T-type Ca2+ currents in rat RGCs through intracellular NO/cGMP/PKG signaling pathway, which may provide a potential mechanism for protecting RGCs against injury.
Collapse
Affiliation(s)
- Qian Li
- Eye Institute, Eye & ENT Hospital, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Key Laboratory of Myopia (Ministry of Health), Fudan University, Shanghai, 200031, China
| | - Yi Zhang
- Eye Institute, Eye & ENT Hospital, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Key Laboratory of Myopia (Ministry of Health), Fudan University, Shanghai, 200031, China
| | - Na Wu
- Eye Institute, Eye & ENT Hospital, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Key Laboratory of Myopia (Ministry of Health), Fudan University, Shanghai, 200031, China
| | - Ning Yin
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xing-Huai Sun
- Eye Institute, Eye & ENT Hospital, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Key Laboratory of Myopia (Ministry of Health), Fudan University, Shanghai, 200031, China.
| | - Zhongfeng Wang
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Molecular and Cellular Mechanisms Underlying Somatostatin-Based Signaling in Two Model Neural Networks, the Retina and the Hippocampus. Int J Mol Sci 2019; 20:ijms20102506. [PMID: 31117258 PMCID: PMC6566141 DOI: 10.3390/ijms20102506] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 02/06/2023] Open
Abstract
Neural inhibition plays a key role in determining the specific computational tasks of different brain circuitries. This functional "braking" activity is provided by inhibitory interneurons that use different neurochemicals for signaling. One of these substances, somatostatin, is found in several neural networks, raising questions about the significance of its widespread occurrence and usage. Here, we address this issue by analyzing the somatostatinergic system in two regions of the central nervous system: the retina and the hippocampus. By comparing the available information on these structures, we identify common motifs in the action of somatostatin that may explain its involvement in such diverse circuitries. The emerging concept is that somatostatin-based signaling, through conserved molecular and cellular mechanisms, allows neural networks to operate correctly.
Collapse
|
7
|
Fonollosa A, Valcarcel M, Salado C, Pereiro X, Vecino E. Effect of somatostatin on human retinal pigment epithelial cells permeability. Exp Eye Res 2019; 184:15-23. [PMID: 30978347 DOI: 10.1016/j.exer.2019.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/05/2019] [Accepted: 04/05/2019] [Indexed: 11/28/2022]
Abstract
PURPOSE To assess the effect of somatostatin (SST) on the permeability of human retinal pigment epithelial cells. METHODS We conducted two experiments, exposing cells from human-fetal retinal pigment epithelium (hfRPE) cultures to vascular endothelial growth factor (VEGF), with or without SST pretreatment, in one, and to hypoxic conditions, again with or without SST pretreatment, in the other. The paracellular permeability of hfRPE was assessed by measuring transepithelial electrical resistance (TER) and fluorescein isothiocyanate-sodium (FITC-sodium) flux. Immunochemistry analysis was used to assess the expression of occludin and Zonula occludens-1(ZO-1). RESULTS Both VEGF and hypoxia increased permeability of the hfRPE, as measured by TER and tracer flux, and decreased occludin and ZO-1staining, as measured by immunochemistry. Pretreatment of cultures with SST partially counteracted these effects. CONCLUSIONS Somatostatin may play a role in the regulation of permeability across retinal pigment epithelium. It may act as an anti-permeability factor in the retina through the enhancement of tight junction function.
Collapse
Affiliation(s)
- Alex Fonollosa
- Begiker-Ophthalmology Research Group, Department of Ophthalmology, Faculty of Medicine and Nursing, BioCruces Health Research Institute, Cruces Hospital, University of the Basque Country UPV/EHU, Bilbao, Spain; Experimental Ophthalmo-Biology Group, Department Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.
| | - Maria Valcarcel
- Innoprot SL, Parque Científico y Tecnológico de Bizkaia, Derio, Spain
| | - Clarisa Salado
- Innoprot SL, Parque Científico y Tecnológico de Bizkaia, Derio, Spain
| | - Xandra Pereiro
- Experimental Ophthalmo-Biology Group, Department Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Elena Vecino
- Experimental Ophthalmo-Biology Group, Department Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| |
Collapse
|
8
|
Pangrsic T, Singer JH, Koschak A. Voltage-Gated Calcium Channels: Key Players in Sensory Coding in the Retina and the Inner Ear. Physiol Rev 2019; 98:2063-2096. [PMID: 30067155 DOI: 10.1152/physrev.00030.2017] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Calcium influx through voltage-gated Ca (CaV) channels is the first step in synaptic transmission. This review concerns CaV channels at ribbon synapses in primary sense organs and their specialization for efficient coding of stimuli in the physical environment. Specifically, we describe molecular, biochemical, and biophysical properties of the CaV channels in sensory receptor cells of the retina, cochlea, and vestibular apparatus, and we consider how such properties might change over the course of development and contribute to synaptic plasticity. We pay particular attention to factors affecting the spatial arrangement of CaV channels at presynaptic, ribbon-type active zones, because the spatial relationship between CaV channels and release sites has been shown to affect synapse function critically in a number of systems. Finally, we review identified synaptopathies affecting sensory systems and arising from dysfunction of L-type, CaV1.3, and CaV1.4 channels or their protein modulatory elements.
Collapse
Affiliation(s)
- Tina Pangrsic
- Synaptic Physiology of Mammalian Vestibular Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen and Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine , Göttingen, Germany ; Department of Biology, University of Maryland , College Park, Maryland ; and Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck , Innsbruck , Austria
| | - Joshua H Singer
- Synaptic Physiology of Mammalian Vestibular Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen and Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine , Göttingen, Germany ; Department of Biology, University of Maryland , College Park, Maryland ; and Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck , Innsbruck , Austria
| | - Alexandra Koschak
- Synaptic Physiology of Mammalian Vestibular Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen and Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine , Göttingen, Germany ; Department of Biology, University of Maryland , College Park, Maryland ; and Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
9
|
Bodmer D, Perkovic A, Sekulic-Jablanovic M, Wright MB, Petkovic V. Pasireotide prevents nuclear factor of activated T cells nuclear translocation and acts as a protective agent in aminoglycoside-induced auditory hair cell loss. J Neurochem 2016; 139:1113-1123. [PMID: 27787949 DOI: 10.1111/jnc.13880] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/18/2016] [Accepted: 10/19/2016] [Indexed: 12/23/2022]
Abstract
Hearing impairment is a global health problem with a high socioeconomic impact. Damage to auditory hair cells (HCs) in the inner ear as a result of aging, disease, trauma, or toxicity, underlies the majority of cases of sensorineural hearing loss. Previously we demonstrated that the Ca2+ -sensitive neuropeptide, somatostatin (SST), and an analog, octreotide, protect HCs from gentamicin-induced cell death in vitro. Aminoglycosides such as gentamicin trigger a calcium ion influx (Ca2+ ) that activates pro-apoptotic signaling cascades in HCs. SST binding to the G-protein-coupled receptors (SSTR1-SSTR5) that are directly linked to voltage-dependent Ca2+ channels inhibits Ca2+ channel activity and associated downstream events. Here, we report that the SST analog pasireotide, a high affinity ligand to SSTRs 1-3, and 5, with a longer half-life than octreotide, prevents gentamicin-induced HC death in the mouse organ of Corti (OC). Explant experiments using OCs derived from SSTR1 and SSTR1and 2 knockout mice, revealed that SSTR2 mediates pasireotide's anti-apoptotic effects. Mechanistically, pasireotide prevented a nuclear translocation of the Ca2+ -sensitive transcription factor, nuclear factor of activated T cells (NFAT), which is ordinarily provoked by gentamicin in OC explants. Direct inhibition of NFAT with 11R-VIVIT also prevented the gentamicin-dependent nuclear translocation of NFAT and apoptosis. Both pasireotide and 11R-VIVIT partially reversed the effects of gentamicin on the expression of downstream survival targets (NMDA receptor and the regulatory subunit of phosphatidylinositol-4,5-bisphosphate 3-kinase, PI3K). These data suggest that SST analogs antagonize aminoglycoside-induced cell death in an NFAT-dependent fashion. SST analogs and NFAT inhibitors may therefore offer new therapeutic possibilities for the treatment of hearing loss.
Collapse
Affiliation(s)
- Daniel Bodmer
- Department of Biomedicine and the Clinic for Otorhinolaryngology, University Hospital Basel, Basel, Switzerland
| | - Adrijana Perkovic
- Department of Biomedicine and the Clinic for Otorhinolaryngology, University Hospital Basel, Basel, Switzerland
| | - Marijana Sekulic-Jablanovic
- Department of Biomedicine and the Clinic for Otorhinolaryngology, University Hospital Basel, Basel, Switzerland
| | | | - Vesna Petkovic
- Department of Biomedicine and the Clinic for Otorhinolaryngology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
10
|
Deng QQ, Sheng WL, Zhang G, Weng SJ, Yang XL, Zhong YM. Signalling mechanism for somatostatin receptor 5-mediated suppression of AMPA responses in rat retinal ganglion cells. Neuropharmacology 2016; 107:215-226. [DOI: 10.1016/j.neuropharm.2016.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 01/25/2016] [Accepted: 03/02/2016] [Indexed: 01/21/2023]
|
11
|
Van Hook MJ, Thoreson WB. Weak endogenous Ca2+ buffering supports sustained synaptic transmission by distinct mechanisms in rod and cone photoreceptors in salamander retina. Physiol Rep 2015; 3:3/9/e12567. [PMID: 26416977 PMCID: PMC4600400 DOI: 10.14814/phy2.12567] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Differences in synaptic transmission between rod and cone photoreceptors contribute to different response kinetics in rod- versus cone-dominated visual pathways. We examined Ca2+ dynamics in synaptic terminals of tiger salamander photoreceptors under conditions that mimicked endogenous buffering to determine the influence on kinetically and mechanistically distinct components of synaptic transmission. Measurements of ICl(Ca) confirmed that endogenous Ca2+ buffering is equivalent to ˜0.05 mmol/L EGTA in rod and cone terminals. Confocal imaging showed that with such buffering, depolarization stimulated large, spatially unconstrained [Ca2+] increases that spread throughout photoreceptor terminals. We calculated immediately releasable pool (IRP) size and release efficiency in rods by deconvolving excitatory postsynaptic currents and presynaptic Ca2+ currents. Peak efficiency of ˜0.2 vesicles/channel was similar to that of cones (˜0.3 vesicles/channel). Efficiency in both cell types was not significantly affected by using weak endogenous Ca2+ buffering. However, weak Ca2+ buffering speeded Ca2+/calmodulin (CaM)-dependent replenishment of vesicles to ribbons in both rods and cones, thereby enhancing sustained release. In rods, weak Ca2+ buffering also amplified sustained release by enhancing CICR and CICR-stimulated release of vesicles at nonribbon sites. By contrast, elevating [Ca2+] at nonribbon sites in cones with weak Ca2+ buffering and by inhibiting Ca2+ extrusion did not trigger additional release, consistent with the notion that exocytosis from cones occurs exclusively at ribbons. The presence of weak endogenous Ca2+ buffering in rods and cones facilitates slow, sustained exocytosis by enhancing Ca2+/CaM-dependent replenishment of ribbons in both rods and cones and by stimulating nonribbon release triggered by CICR in rods.
Collapse
Affiliation(s)
- Matthew J Van Hook
- Truhlsen Eye Institute and Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Wallace B Thoreson
- Truhlsen Eye Institute and Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
12
|
Liu F, Weng SJ, Yang XL, Zhong YM. Orexin-A potentiates L-type calcium/barium currents in rat retinal ganglion cells. Neuroscience 2015; 305:225-37. [PMID: 26259903 DOI: 10.1016/j.neuroscience.2015.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/27/2015] [Accepted: 08/04/2015] [Indexed: 01/07/2023]
Abstract
Two neuropeptides, orexin-A and orexin-B (also called hypocretin-1 and -2), have been implicated in sleep/wake regulation, feeding behaviors via the activation of two subtypes of G-protein-coupled receptors: orexin 1 and orexin 2 receptors (OX1R and OX2R). While the expression of orexins and orexin receptors is immunohistochemically revealed in retinal neurons, the function of these peptides in the retina is largely unknown. Using whole-cell patch-clamp recordings in rat retinal slices, we demonstrated that orexin-A increased L-type-like barium currents (IBa,L) in ganglion cells (GCs), and the effect was blocked by the selective OX1R antagonist SB334867, but not by the OX2R antagonist TCS OX2 29. The orexin-A effect was abolished by intracellular dialysis of GDP-β-S/GPAnt-2A, a Gq protein inhibitor, suggesting the mediation of Gq. Additionally, during internal dialysis of the phosphatidylinositol (PI)-phospholipase C (PLC) inhibitor U73122, orexin-A did not change the IBa,L of GCs, whereas the orexin-A effect persisted in the presence of the phosphatidylcholine (PC)-PLC inhibitor D609. The orexin-A-induced potentiation was not seen with internal infusion of Ca(2+)-free solution or when inositol 1,4,5-trisphosphate (IP3)-sensitive Ca(2+) release from intracellular stores was blocked by heparin/xestospongins-C. Moreover, the orexin-A effect was mimicked by the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate, but was eliminated when PKC was inhibited by bisindolylmaleimide IV (Bis-IV)/Gö6976. Neither adenosine 3',5'-cyclic monophosphate (cAMP)-protein kinase A (PKA) nor guanosine 3',5'-cyclic monophosphate (cGMP)-protein kinase G (PKG) signaling pathway was likely involved, as orexin-A persisted to potentiate the IBa,L of GCs no matter these two pathways were activated or inhibited. These results suggest that, by activating OX1R, orexin-A potentiates the IBa,L of rat GCs through a distinct Gq/PI-PLC/IP3/Ca(2+)/PKC signaling pathway.
Collapse
Affiliation(s)
- F Liu
- Institute of Neurobiology, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - S-J Weng
- Institute of Neurobiology, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - X-L Yang
- Institute of Neurobiology, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Y-M Zhong
- Institute of Neurobiology, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China.
| |
Collapse
|
13
|
Yuan D, Shen J, Yan Y, Wu X, Li A, Guo A, Wu Y, Duan C, Shen J, Tang C, Zhang D, Ji Y. Upregulated expression of SSTR1 is involved in neuronal apoptosis and is coupled to the reduction of bcl-2 following intracerebral hemorrhage in adult rats. Cell Mol Neurobiol 2014; 34:951-61. [PMID: 25035058 DOI: 10.1007/s10571-014-0081-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/29/2014] [Indexed: 10/25/2022]
Abstract
Somatostatins are peptide hormones that regulate diverse cellular processes, such as neurotransmission, cell proliferation, apoptosis, and endocrine signaling as well as inhibiting the release of many hormones and other secretory proteins. SSTR1 is a member of the superfamily of somatostatin receptors possessing seven-transmembrane segments. Aberrant expression of SSTR1 has been implicated in several human diseases, including pseudotumor cerebri, and oncogenic osteomalacia. In this study, we investigated a potential role of SSTR1 in the regulation of neuronal apoptosis in the course of intracerebral hemorrhage (ICH). A rat ICH model in the caudate putamen was established and subjected to behavioral tests. Western blot and immunohistochemistry indicated a remarkable up-regulation of SSTR1 expression surrounding the hematoma after ICH. Double-labeled immunofluorescence showed that SSTR1 was mostly co-localized with neurons, and was rarely distributed in activated astrocytes and microglia. Additionally, SSTR1 co-localized with active-caspase-3 and bcl-2 around the hematoma. The expression of active-caspase-3 was parallel with that of SSTR1 in a time-dependent manner. In addition, SSTR1 knockdown specifically resulted in reduced neuronal apoptosis in PC12 cells. All our findings suggested that up-regulated SSTR1 contributed to neuronal apoptosis after ICH, which was accompanied with reduced expression of bcl-2.
Collapse
Affiliation(s)
- Damin Yuan
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Immunology, Medical College, Nantong University, Nantong, 226001, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Radojevic V, Bodmer D. Expression and localization of somatostatin receptor types 3, 4 and 5 in the wild-type, SSTR1 and SSTR1/SSTR2 knockout mouse cochlea. Cell Tissue Res 2014; 358:717-27. [DOI: 10.1007/s00441-014-1977-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 07/24/2014] [Indexed: 12/23/2022]
|
15
|
Hernández C, Simó-Servat O, Simó R. Somatostatin and diabetic retinopathy: current concepts and new therapeutic perspectives. Endocrine 2014; 46:209-14. [PMID: 24627166 DOI: 10.1007/s12020-014-0232-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/28/2014] [Indexed: 12/15/2022]
Abstract
Somatostatin (SST) is abundantly produced by the human retina, and the main source is the retinal pigment epithelium (RPE). SST exerts relevant functions in the retina (neuromodulation, angiostatic, and anti-permeability actions) by interacting with SST receptors (SSTR) that are also expressed in the retina. In the diabetic retina, a downregulation of SST production does exist. In this article, we give an overview of the mechanisms by which this deficit of SST participates in the main pathogenic mechanisms involved in diabetic retinopathy (DR): neurodegeneration, neovascularization, and vascular leakage. In view of the relevant SST functions in the retina and the reduction of SST production in the diabetic eye, SST replacement has been proposed as a new target for treatment of DR. This could be implemented by intravitreous injections of SST analogs or gene therapy, but this is an aggressive route for the early stages of DR. Since topical administration of SST has been effective in preventing retinal neurodegeneration in STZ-induced diabetic rats, it seems reasonable to test this new approach in humans. In this regard, the results of the ongoing clinical trial EUROCONDOR will provide useful information. In conclusion, SST is a natural neuroprotective and antiangiogenic factor synthesized by the retina which is downregulated in the diabetic eye and, therefore, its replacement seems a rational approach for treating DR. However, clinical trials will be needed to establish the exact position of targeting SST in the treatment of this disabling complication of diabetes.
Collapse
Affiliation(s)
- Cristina Hernández
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Pg. Vall d'Hebron 119-129.08035, Barcelona, Spain
| | | | | |
Collapse
|
16
|
Chen W, Ke JB, Wu HJ, Miao Y, Li F, Yang XL, Wang Z. Somatostatin receptor-mediated suppression of gabaergic synaptic transmission in cultured rat retinal amacrine cells. Neuroscience 2014; 273:118-27. [PMID: 24846611 DOI: 10.1016/j.neuroscience.2014.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 05/05/2014] [Accepted: 05/06/2014] [Indexed: 01/03/2023]
Abstract
Somatostatin (SRIF) modulates neurotransmitter release by activating the specific receptors (sst1-sst5). Our previous study showed that sst5 receptors are expressed in rat retinal GABAergic amacrine cells. Here, we investigated modulation of GABA release by SRIF in cultured amacrine cells, using patch-clamp techniques. The frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) in the amacrine cells was significantly reduced by SRIF, which was partially reversed by BIM 23056, an sst5 receptor antagonist, and was further rescued by addition of CYN-154806, an sst2 receptor antagonist. Both nimodipine, an L-type Ca2+ channel blocker, and ω-conotoxin GVIA, an N-type Ca2+ channel blocker, suppressed the sIPSC frequency, and in the presence of nimodipine and ω-conotoxin GVIA, SRIF failed to further suppress the sIPSC frequency. Extracellular application of forskolin, an activator of adenylate cyclase, increased the sIPSC frequency, while the membrane permeable protein kinase A (PKA) inhibitor Rp-cAMP reduced it, and in the presence of Rp-cAMP, SRIF did not change sIPSCs. However, SRIF persisted to suppress the sIPSCs in the presence of KT5823, a protein kinase G (PKG) inhibitor. Moreover, pre-incubation with Bis IV, a protein kinase C (PKC) inhibitor, or pre-application of xestospongin C, an inositol 1,4,5-trisphosphate receptor (IP3R) inhibitor, SRIF still suppressed the sIPSC frequency. All these results suggest that SRIF suppresses GABA release from the amacrine cells by inhibiting presynaptic Ca2+ channels, in part through activating sst5/sst2 receptors, a process that is mediated by the intracellular cAMP-PKA signaling pathway.
Collapse
Affiliation(s)
- W Chen
- Institutes of Brain Science, Institute of Neurobiology and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - J B Ke
- Institutes of Brain Science, Institute of Neurobiology and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - H J Wu
- Institutes of Brain Science, Institute of Neurobiology and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Y Miao
- Institutes of Brain Science, Institute of Neurobiology and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - F Li
- Institutes of Brain Science, Institute of Neurobiology and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - X L Yang
- Institutes of Brain Science, Institute of Neurobiology and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Z Wang
- Institutes of Brain Science, Institute of Neurobiology and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China.
| |
Collapse
|
17
|
Liu X, Hirano AA, Sun X, Brecha NC, Barnes S. Calcium channels in rat horizontal cells regulate feedback inhibition of photoreceptors through an unconventional GABA- and pH-sensitive mechanism. J Physiol 2013; 591:3309-24. [PMID: 23613534 DOI: 10.1113/jphysiol.2012.248179] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Horizontal cells send inhibitory feedback to photoreceptors, helping form antagonistic receptive fields in the retina, but the neurotransmitter and the mechanisms underlying this signalling are not known. Since the proteins responsible for conventional Ca(2+)-dependent release of GABAergic synaptic vesicles are present in mammalian horizontal cells, we investigated this conventional mechanism as the means by which horizontal cells inhibit photoreceptors. Using Ca(2+) imaging in rat retinal slices, we confirm that horizontal cell depolarization with kainate inhibits and horizontal cell hyperpolarization with NBQX disinhibits the Ca(2+) signals produced by pH-sensitive activation of voltage-gated calcium channels (Ca channels) in photoreceptors. We show that while 100 μm Co(2+) reduces photoreceptor Ca(2+) signals, it disinhibits them at 10 μm, an effect reminiscent of earlier studies where low [Co(2+)] eliminated feedback. The low [Co(2+)] disinhibition is pH sensitive. We localized L-, N- and P/Q-type Ca channels in rat horizontal cells, and showed that both the N-type Ca channel blocker -conotoxin GVIA and the P/Q-type Ca channel blocker -agatoxin IVA increased Ca(2+) signals in photoreceptors in a pH-sensitive manner. Pronounced actions of GABAergic agents on feedback signals to photoreceptors were observed, and are pH sensitive, but are inconsistent with direct inhibition by GABA of photoreceptor [Ca(2+)]. Patch-clamp studies revealed that GABA activates a conductance having high bicarbonate permeability in isolated horizontal cells, suggesting that the commonality of pH sensitivity throughout the results could arise from a GABA autofeedback action in horizontal cells. This could change cleft pH with concomitant inhibitory influences on photoreceptor Ca channels.
Collapse
Affiliation(s)
- Xue Liu
- S. Barnes: Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
18
|
Shin J, Yoo CH, Lee J, Cha M. Cell response induced by internalized bacterial magnetic nanoparticles under an external static magnetic field. Biomaterials 2012; 33:5650-7. [PMID: 22571804 DOI: 10.1016/j.biomaterials.2012.04.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 04/12/2012] [Indexed: 10/28/2022]
Abstract
Magnetic nanoparticles are widely used in bioapplications such as imaging and targeting tool. Their magnetic nature allows for the more efficient bioapplications by an external field gradient. However their combined effects have not yet been extensively characterized. Herein, we first demonstrate the biological effects of the communications between internalized bacterial magnetic nanoparticles (BMPs) and an external static magnetic field (SMF) on a standard human cell line. Combination of the BMPs and SMF act as the key factor leading to the alteration of cell structure and the enhanced cell growth. Also, their interaction reduced the apoptotic efficiency of human tumor cells induced by anticancer drugs. Microarray analysis suggests that these phenomena were caused by the alterations of GPCRs-mediated signal transduction originated in the interaction of internalized BMPs and the external SMF. Our findings may offer new approach for targeted cell therapy with the advantage of controlling cell viability by magnetic stimulation.
Collapse
Affiliation(s)
- Jaeha Shin
- School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea
| | | | | | | |
Collapse
|
19
|
Protective role of somatostatin receptor 2 against retinal degeneration in response to hypoxia. Naunyn Schmiedebergs Arch Pharmacol 2012; 385:481-94. [DOI: 10.1007/s00210-012-0735-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 01/25/2012] [Indexed: 12/20/2022]
|
20
|
Wu XH, Deng QQ, Jiang SX, Yang XL, Zhong YM. Distribution of somatostatin receptor 5 in mouse and bullfrog retinas. Peptides 2012; 33:291-7. [PMID: 22244811 DOI: 10.1016/j.peptides.2011.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 12/30/2011] [Accepted: 12/30/2011] [Indexed: 01/21/2023]
Abstract
Somatostatin (SRIF), as a neuroactive peptide in the CNS, may act as a neuromodulator through activation of five specific receptor subtypes (sst(1)-sst(5)). In this work we conducted a comparative study of the expression of sst(5) in mouse and bullfrog retinas by immunofluorescence double labeling. Basically, the expression profiles of sst(5) in the retinas of the two species were similar. That is, in the inner retina sst(5) was localized to dopaminergic and cholinergic amacrine cells, stained by tyrosine hydroxylase (TH) and choline acetyltransferase (ChAT) respectively, and cells in the ganglion cell layer, whereas in the outer retina immunostaining for sst(5) was observed in horizontal cells. However, a more widespread, abundant distribution of labeling for sst(5), as compared to mouse retina, was seen in bullfrog retina: strong labeling for sst(5) was diffusely distributed in both outer and inner plexiform layers (OPL and IPL) in the bullfrog retina, but the labeling was only observed in the IPL of the mouse retina. In addition, bullfrog photoreceptors, both rods and cones, but not mouse ones, were labeled by sst(5). In combination with the experiments showing that SRIF-immunoreactivity was mainly found in the inner retina, our results suggest that SRIF, released from SRIF-containing cells in the inner retina, may play a neuromodulatory role in both outer and inner retina mediated by volume transmission via sst(5) in bullfrog retina, while the SRIF action may be largely restricted to the mouse inner retina.
Collapse
Affiliation(s)
- Xiao-Hua Wu
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | | | | | | | | |
Collapse
|
21
|
Farrell SR, Raymond ID, Foote M, Brecha NC, Barnes S. Modulation of voltage-gated ion channels in rat retinal ganglion cells mediated by somatostatin receptor subtype 4. J Neurophysiol 2010; 104:1347-54. [PMID: 20573967 DOI: 10.1152/jn.00098.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Somatostatin (somatotropin release-inhibiting factor [SRIF]) is known to modulate the excitability of retinal ganglion cells, but the membrane mechanisms responsible and the extent to which intracellular calcium signaling is affected have not been determined. We show that somatostatin receptor subtype 4 (sst(4)) is expressed specifically in rat ganglion cells and that the generation of repetitive action potentials by isolated ganglion cells is reduced in the presence of L-803,087, a selective sst(4) agonist (10 nM). Under voltage clamp, L-803,087 increased outward K(+) currents by 51.1 ± 13.1% at 0 mV and suppressed Ca(2+) channel currents by 32.5 ± 9.4% at -10 mV in whole cell patch-clamped ganglion cells. The N-type Ca(2+) channel blocker ω-conotoxin GVIA (CTX, 1 μM) reduced L-type Ca(2+) current (I(Ca)) in ganglion cells by 43.5 ± 7.2% at -10 mV, after which addition of L-803,087 further reduced I(Ca) by 28.0 ± 16.0% . In contrast, ganglion cells treated first with nifedipine (NIF, 10 μM), which blocked 46.1 ± 3.5% of the control current at -10 mV, did not undergo any further reduction in I(Ca) in the presence of L-803,087 (-3.5 ± 3.8% vs. NIF), showing that stimulation of sst(4) reduces Ca(2+) influx through L-type Ca(2+) channels. To assess the effects of sst(4) stimulation on intracellular Ca(2+) levels ([Ca(2+)](i)) in ganglion cells, fura-2 was used to measure changes in [Ca(2+)](i) in response to depolarization induced by elevated [K(+)](o). [Ca(2+)](i) was increased to a lesser extent (86%) in the presence of L-803,087 compared with recordings made in the absence of the sst(4) agonist and this effect was blocked by NIF (10 μM). Suppression of spiking and Ca(2+) signaling via sst(4) may contribute to the reported neuroprotective actions of somatostatin and promote ganglion cell survival following ischemia and axonal trauma.
Collapse
Affiliation(s)
- Spring R Farrell
- Dalhousie University, Department of Physiology and Biophysics, Halifax, Nova Scotia B3H 4H7
| | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
- Ujendra Kumar
- Faculty of Pharmaceutical Sciences, Department of Pharmacology and Toxicology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | | |
Collapse
|
23
|
The retinal pigment epithelium: something more than a constituent of the blood-retinal barrier--implications for the pathogenesis of diabetic retinopathy. J Biomed Biotechnol 2010; 2010:190724. [PMID: 20182540 PMCID: PMC2825554 DOI: 10.1155/2010/190724] [Citation(s) in RCA: 311] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 09/28/2009] [Accepted: 11/16/2009] [Indexed: 12/27/2022] Open
Abstract
The retinal pigment epithelium (RPE) is an specialized epithelium lying in the interface between the neural retina and the choriocapillaris where it forms the outer blood-retinal barrier (BRB). The main functions of the RPE are the following: (1) transport of nutrients, ions, and water, (2) absorption of light and protection against photooxidation, (3) reisomerization of all-trans-retinal into 11-cis-retinal, which is crucial for the visual cycle, (4) phagocytosis of shed photoreceptor membranes, and (5) secretion of essential factors for the structural integrity of the retina. An overview of these functions will be given. Most of the research on the physiopathology of diabetic retinopathy has been focused on the impairment of the neuroretina and the breakdown of the inner BRB. By contrast, the effects of diabetes on the RPE and in particular on its secretory activity have received less attention. In this regard, new therapeutic strategies addressed to modulating RPE impairment are warranted.
Collapse
|
24
|
Jin QJ, Sun JJ, Fang XT, Zhang CL, Yang L, Chen DX, Shi XY, Du Y, Lan XY, Chen H. Molecular characterization and polymorphisms of the caprine Somatostatin (SST) and SST Receptor 1 (SSTR1) genes that are linked with growth traits. Mol Biol Rep 2010; 38:3129-35. [DOI: 10.1007/s11033-010-9983-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Accepted: 01/20/2010] [Indexed: 12/18/2022]
|
25
|
Jian K, Barhoumi R, Ko ML, Ko GYP. Inhibitory effect of somatostatin-14 on L-type voltage-gated calcium channels in cultured cone photoreceptors requires intracellular calcium. J Neurophysiol 2009; 102:1801-10. [PMID: 19605612 DOI: 10.1152/jn.00354.2009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The inhibitory effects of somatostatin have been well documented for many physiological processes. The action of somatostatin is through G-protein-coupled receptor-mediated second-messenger signaling, which in turn affects other downstream targets including ion channels. In the retina, somatostatin is released from a specific class of amacrine cells. Here we report that there was a circadian phase-dependent effect of somatostatin-14 (SS14) on the L-type voltage-gated calcium channels (L-VGCCs) in cultured chicken cone photoreceptors, and our study reveals that this process is dependent on intracellular calcium stores. Application of 500 nM SS14 for 2 h caused a decrease in L-VGCC currents only during the subjective night but not the subjective day. We then explored the cellular mechanisms underlying the circadian phase-dependent effect of SS14. The inhibitory effect of SS14 on L-VGCCs was mediated through the pertussis-toxin-sensitive G-protein-dependent somatostatin receptor 2 (sst2). Activation of sst2 by SS14 further activated downstream signaling involving phospholipase C and intracellular calcium stores. Mobilization of intracellular Ca2+ was required for somatostatin induced inhibition of photoreceptor L-VGCCs, suggesting that somatostatin plays an important role in the modulation of photoreceptor physiology.
Collapse
Affiliation(s)
- Kuihuan Jian
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4458 TAMU, College Station, TX 77843-4458, USA
| | | | | | | |
Collapse
|
26
|
Somatostatin analogues as therapeutics in retinal disease. Pharmacol Ther 2009; 122:324-33. [DOI: 10.1016/j.pharmthera.2009.03.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 03/24/2009] [Indexed: 12/30/2022]
|
27
|
Abstract
The active component of the marijuana plant Cannabis sativa, Delta9-tetrahydrocannabinol (THC), produces numerous beneficial effects, including analgesia, appetite stimulation and nausea reduction, in addition to its psychotropic effects. THC mimics the action of endogenous fatty acid derivatives, referred to as endocannabinoids. The effects of THC and the endocannabinoids are mediated largely by metabotropic receptors that are distributed throughout the nervous and peripheral organ systems. There is great interest in endocannabinoids for their role in neuroplasticity as well as for therapeutic use in numerous conditions, including pain, stroke, cancer, obesity, osteoporosis, fertility, neurodegenerative diseases, multiple sclerosis, glaucoma and inflammatory diseases, among others. However, there has been relatively far less research on this topic in the eye and retina compared with the brain and other organ systems. The purpose of this review is to introduce the "cannabinergic" field to the retinal community. All of the fundamental works on cannabinoids have been performed in non-retinal preparations, necessitating extensive dependence on this literature for background. Happily, the retinal cannabinoid system has much in common with other regions of the central nervous system. For example, there is general agreement that cannabinoids suppress dopamine release and presynaptically reduce transmitter release from cones and bipolar cells. How these effects relate to light and dark adaptations, receptive field formation, temporal properties of ganglion cells or visual perception are unknown. The presence of multiple endocannabinoids, degradative enzymes with their bioactive metabolites, and receptors provides a broad spectrum of opportunities for basic research and to identify targets for therapeutic application to retinal diseases.
Collapse
Affiliation(s)
- Stephen Yazulla
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794-5230, United States.
| |
Collapse
|
28
|
Thermos K. Novel signals mediating the functions of somatostatin: the emerging role of NO/cGMP. Mol Cell Endocrinol 2008; 286:49-57. [PMID: 18384933 DOI: 10.1016/j.mce.2008.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 02/11/2008] [Accepted: 02/12/2008] [Indexed: 11/16/2022]
Abstract
The neuropeptide somatostatin is a cyclic tetradecapeptide, which is widely distributed in the peripheral and central nervous system. It mediates a plethora of physiological actions and functions as a neurotransmitter, neuromodulator or trophic factor. Somatostatin activates six receptor subtypes that are expressed differentially in different tissues and are coupled to diverse signalling pathways. In order to elucidate the functional role of the individual receptor subtypes, many investigations focused on the assignment of each receptor to a particular signalling pathway. Signalling pathways involving enzyme (adenylate cyclase, phospholipases, phosphatases) and ion channel systems in native and recombinant receptor systems have been extensively studied. A one to one situation (receptor/pathway) has yet to be established, thus justifying the diverse actions of somatostatin. Recently, a NO/cGMP pathway has been shown to mediate the functions of somatostatin and its receptors. This review will present the findings that support the emerging role of NO/cGMP as a novel signal in SRIF's actions in retinal physiology and somatotroph release.
Collapse
Affiliation(s)
- Kyriaki Thermos
- University of Crete, Faculty of Medicine, Department of Basic Sciences, Laboratory of Pharmacology, Heraklion, Crete, Greece.
| |
Collapse
|
29
|
Ivanova TN, Alonso-Gomez AL, Iuvone PM. Dopamine D4 receptors regulate intracellular calcium concentration in cultured chicken cone photoreceptor cells: relationship to dopamine receptor-mediated inhibition of cAMP formation. Brain Res 2008; 1207:111-9. [PMID: 18371938 DOI: 10.1016/j.brainres.2008.02.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 02/12/2008] [Accepted: 02/13/2008] [Indexed: 10/22/2022]
Abstract
Dopamine is a retinal neuromodulator secreted from amacrine and interplexiform cells. Activation of dopamine D4 receptors on photoreceptor cells reduces a light-sensitive pool of cAMP. The aim of the present study was to evaluate the role of dopamine receptors and cAMP in the regulation of intracellular Ca(2+) concentrations ([Ca(2+)](i)) in photoreceptor cells of chick retina. Retinal cells from 6 day-old chicken embryos were isolated and cultured for 5-7 days prior to experiments. Cone photoreceptors were the predominant cell type in these cultures. Dopamine and agonists of dopamine D4 receptors suppressed K(+)-stimulated uptake of (45)Ca(2+) and [Ca(2+)](i), measured with the Ca(2+)-sensitive fluorescent dye fura-2AM. The effects of the agonists were blocked by dopamine D2/D4 receptor antagonists or by pertussis toxin. 8Br-cAMP, a cell-permeable analog of cAMP, had no effect on inhibition of K(+)-stimulated (45)Ca(2+) influx or [Ca(2+)](i) by dopamine D2/D4 receptor agonists. Quinpirole inhibited the increase in cAMP level elicited by K(+), which requires Ca(2+) influx through voltage-gated Ca(2+) channels, but not that induced by the calcium ionophore A23187. Moreover, dopamine had no effect on either forskolin-stimulated or Ca(2+)/calmodulin-stimulated adenylyl cyclase activity in cell membranes prepared from the cultured cells. These data indicate that the decrease of cAMP elicited by dopamine D4 receptor stimulation may be secondary to decreased [Ca(2+)](i).
Collapse
Affiliation(s)
- Tamara N Ivanova
- Department of Pharmacology, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
30
|
Thoreson WB. Kinetics of synaptic transmission at ribbon synapses of rods and cones. Mol Neurobiol 2007; 36:205-23. [PMID: 17955196 PMCID: PMC2474471 DOI: 10.1007/s12035-007-0019-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 05/18/2007] [Indexed: 11/24/2022]
Abstract
The ribbon synapse is a specialized structure that allows photoreceptors to sustain the continuous release of vesicles for hours upon hours and years upon years but also respond rapidly to momentary changes in illumination. Light responses of cones are faster than those of rods and, mirroring this difference, synaptic transmission from cones is also faster than transmission from rods. This review evaluates the various factors that regulate synaptic kinetics and contribute to kinetic differences between rod and cone synapses. Presynaptically, the release of glutamate-laden synaptic vesicles is regulated by properties of the synaptic proteins involved in exocytosis, influx of calcium through calcium channels, calcium release from intracellular stores, diffusion of calcium to the release site, calcium buffering, and extrusion of calcium from the cytoplasm. The rate of vesicle replenishment also limits the ability of the synapse to follow changes in release. Post-synaptic factors include properties of glutamate receptors, dynamics of glutamate diffusion through the cleft, and glutamate uptake by glutamate transporters. Thus, multiple synaptic mechanisms help to shape the responses of second-order horizontal and bipolar cells.
Collapse
Affiliation(s)
- Wallace B Thoreson
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, 4th floor, Durham Research Center, 985840 Nebraska Medical Center, Omaha, NE 68198-5840, USA.
| |
Collapse
|
31
|
Cervia D, Bagnoli P. An update on somatostatin receptor signaling in native systems and new insights on their pathophysiology. Pharmacol Ther 2007; 116:322-41. [PMID: 17719647 DOI: 10.1016/j.pharmthera.2007.06.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 06/28/2007] [Indexed: 12/20/2022]
Abstract
The peptide somatostatin (SRIF) has important physiological effects, mostly inhibitory, which have formed the basis for the clinical use of SRIF compounds. SRIF binding to its 5 guanine nucleotide-binding proteins-coupled receptors leads to the modulation of multiple transduction pathways. However, our current understanding of signaling exerted by receptors endogenously expressed in different cells/tissues reflects a rather complicated picture. On the other hand, the complexity of SRIF receptor signaling in pathologies, including pituitary and nervous system diseases, may be studied not only as alternative intervention points for the modulation of SRIF function but also to exploit new chemical space for drug-like molecules.
Collapse
Affiliation(s)
- Davide Cervia
- Department of Environmental Sciences, University of Tuscia, largo dell'Università snc, blocco D, 01100 Viterbo, Italy.
| | | |
Collapse
|
32
|
Takeda M, Kadoi J, Takahashi M, Nasu M, Matsumoto S. Somatostatin inhibits the excitability of rat small-diameter trigeminal ganglion neurons that innervate nasal mucosa and project to the upper cervical dorsal horn via activation of somatostatin 2a receptor. Neuroscience 2007; 148:744-56. [PMID: 17706880 DOI: 10.1016/j.neuroscience.2007.06.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 06/25/2007] [Accepted: 07/10/2007] [Indexed: 01/21/2023]
Abstract
This study investigated whether somatostatin (SST) modulates the excitability of nociceptive trigeminal ganglion (TRG) neurons that innervate the nasal mucosa and project to the upper cervical (C(1)) dorsal horn by using perforated-patch clamping, retrograde-labeling, and immunohistochemistry. Fluorogold (FG) retrograde labeling was used to identify the rat TRG neurons innervating the nasal mucosa, while microbeads (MB) were used to label neurons projected onto the superficial layer of the C(1) dorsal horn. FG-labeled small-diameter TRG neurons exhibited SST(2A) receptor immunoreactivity (19%) and half of these neurons were also labeled with MB. In whole-cell current-clamp mode, most (72%) of the dissociated FG-/MB-labeled TRG neurons were hyperpolarized by application of SST. The hyperpolarization was evoked by SST in a concentration-dependent manner (0.1-10 microM) and the responses were associated with a decrease in the cell input resistance. The minimum concentration to elicit a significant hyperpolarization was 1 microM. The repetitive firings during a depolarizing pulse were significantly reduced by SST (1 microM) application. The hyperpolarization and decreased firing evoked by SST were both blocked by the SST(2) receptor antagonist, CYN154806 (1 microM). Under voltage-clamp conditions, SST (1 microM) significantly increased the voltage-gated K(+) transient (I(A)) and sustained (I(K)) currents and these increases were abolished by coapplication of CYN154806 (1 microM). In the presence of both 4-aminopyridine (6 mM) and tetraethylammonium (10 mM), no significant changes in the membrane potential in response to SST application were found. These results suggest that modulation of trigeminal nociceptive transmission in the C(1) dorsal horn by activation of SST(2A) receptors occurs at the level of small-diameter TRG cell bodies and/or their afferent terminals, and that this may be related to regulation of protective upper-airway reflexes.
Collapse
Affiliation(s)
- M Takeda
- Department of Physiology, School of Life Dentistry at Tokyo, Nippon Dental University, 1-9-20, Fujimi-cho, Chiyoda-ku, Tokyo 102-8159, Japan.
| | | | | | | | | |
Collapse
|
33
|
Fan SF, Yazulla S. Retrograde endocannabinoid inhibition of goldfish retinal cones is mediated by 2-arachidonoyl glycerol. Vis Neurosci 2007; 24:257-67. [PMID: 17592669 DOI: 10.1017/s095252380707006x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Accepted: 01/19/2007] [Indexed: 11/07/2022]
Abstract
A functional role for retinal endocannabinoids has not been determined. We characterized retrograde suppression of membrane currents of goldfish cones in a retinal slice. Whole-cell recordings were obtained from cone inner segments under voltage clamp. I(K(V)) was elicited by a depolarizing pulse to +54 mV from a holding potential of -70 mV. A fifty-millisecond puff of saline with 70 mM KCl or Group I mGluR agonist DHPG was applied through a pipette directly at a mixed rod/cone (Mb) bipolar cell body. The amplitude of I(K(V)) decreased 25% compared to the pre-puff control. Retrograde suppression of I(K(V)) was blocked by CB1 receptor antagonist, SR141716A. The FAAH inhibitor URB597 had no effect on the suppression of I(K(V)), whereas nimesulide, a COX-2 inhibitor, prolonged the effects of the K+ puff 10-fold. Orlistat, a blocker of 2-AG synthesis, blocked the effect of the K+ puff. Group I mGluR activation of Gq/11 was demonstrated in that a puff with DHPG decreased I(K(V)) of cones by 32%, an effect blocked by SR141716A. The effect of DHPG was not blocked by the mGluR5 antagonist MPEP, indicating involvement of mGluR1. The suppressive effect of the K+ puff vanished in a Ca2+-free, 2 mM Co2+ saline. TMB-8 or ryanodine, blocked the effect of DHPG, but not that of the K+ puff, showing that calcium influx or release from intracellular stores could mediate retrograde release. We suggest that retrograde suppression of cone I(K(V)) is mediated by Ca2+-dependent release of 2-AG from Mb bipolar cell dendrites by separate mechanisms: (1) voltage-dependent, mimicked by the K+ puff, that may be activated by the depolarizing ON response to light; (2) voltage-independent, occurring under ambient illumination, mediated by tonic mGluR1 activation. The negative feedback of this latter mechanism could regulate tonic glutamate release from cones within narrow limits, regardless of ambient illumination.
Collapse
Affiliation(s)
- Shih-Fang Fan
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794-5230, USA
| | | |
Collapse
|
34
|
Galarraga E, Vilchis C, Tkatch T, Salgado H, Tecuapetla F, Perez-Rosello T, Perez-Garci E, Hernandez-Echeagaray E, Surmeier DJ, Bargas J. Somatostatinergic modulation of firing pattern and calcium-activated potassium currents in medium spiny neostriatal neurons. Neuroscience 2007; 146:537-54. [PMID: 17324523 DOI: 10.1016/j.neuroscience.2007.01.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 12/27/2006] [Accepted: 01/20/2007] [Indexed: 11/24/2022]
Abstract
Somatostatin is synthesized and released by aspiny GABAergic interneurons of the neostriatum, some of them identified as low threshold spike generating neurons (LTS-interneurons). These neurons make synaptic contacts with spiny neostriatal projection neurons. However, very few somatostatin actions on projection neurons have been described. The present work reports that somatostatin modulates the Ca(2+) activated K(+) currents (K(Ca) currents) expressed by projection cells. These actions contribute in designing the firing pattern of the spiny projection neuron; which is the output of the neostriatum. Small conductance (SK) and large conductance (BK) K(Ca) currents represent between 30% and 50% of the sustained outward current in spiny cells. Somatostatin reduces SK-type K(+) currents and at the same time enhances BK-type K(+) currents. This dual effect enhances the fast component of the after hyperpolarizing potential while reducing the slow component. Somatostatin then modifies the firing pattern of spiny neurons which changed from a tonic regular pattern to an interrupted "stuttering"-like pattern. Semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) tissue expression analysis of dorsal striatal somatostatinergic receptors (SSTR) mRNA revealed that all five SSTR mRNAs are present. However, single cell RT-PCR profiling suggests that the most probable receptor in charge of this modulation is the SSTR2 receptor. Interestingly, aspiny interneurons may exhibit a "stuttering"-like firing pattern. Therefore, somatostatin actions appear to be the entrainment of projection neurons to the rhythms generated by some interneurons. Somatostatin is then capable of modifying the processing and output of the neostriatum.
Collapse
Affiliation(s)
- E Galarraga
- Departamento de Biofísica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, PO Box 70-253, México City, DF 04510, Mexico.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ke JB, Zhong YM. Expression of somatostatin receptor subtype 5 in rat retinal amacrine cells. Neuroscience 2007; 144:1025-32. [PMID: 17156933 DOI: 10.1016/j.neuroscience.2006.10.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2006] [Revised: 10/27/2006] [Accepted: 10/27/2006] [Indexed: 01/01/2023]
Abstract
Somatostatin (SRIF), as a neuroactive peptide in the CNS, exerts its actions via five subtypes of specific receptors (ssts). In this work, the localization of sst(5) was studied immunocytochemically in rat retinal amacrine cells (ACs). Labeling for sst(5) was diffusely distributed throughout the full thickness of the inner plexiform layer (IPL) and formed two distinct fluorescence bands in the distal part of the IPL. Double labeling experiments showed that sst(5) was expressed in GABAergic ACs. It was further shown that labeling for sst(5) was observed in both dopaminergic and cholinergic ACs, stained by tyrosine hydroxylase (TH) and choline acetyltransferase (ChAT), respectively. The immunostaining appeared mainly on the cell membranes and somatodendritic compartments of these ACs. For the cholinergic ACs, weak sst(5)-immunoreactivity was also observed in the processes terminating in the IPL. In contrast, no sst(5)-immunoreactivity was found in glycinergic AII ACs, stained by parvalbumin (PV). Furthermore, labeling for SRIF was co-localized with sst(5) in both dopaminergic and cholinergic ACs. These results suggest that sst(5) may serve as an autoreceptor or conventional receptor in retinal ACs.
Collapse
Affiliation(s)
- J-B Ke
- Institute of Neurobiology and Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, PR China
| | | |
Collapse
|
36
|
Kouvidi E, Papadopoulou-Daifoti Z, Thermos K. Somatostatin modulates dopamine release in rat retina. Neurosci Lett 2006; 391:82-6. [PMID: 16183196 DOI: 10.1016/j.neulet.2005.08.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 08/02/2005] [Accepted: 08/04/2005] [Indexed: 11/16/2022]
Abstract
The aim of the present study was to determine the possible role of somatostatin as a modulator of dopamine release in rat retina. Basal release of dopamine, and how this is influenced by somatostatin receptor (sst) selective ligands, was examined ex vivo in rat retinal explants. Dopamine levels were quantified by high-pressure liquid chromatography (HPLC) with electrochemical detection. Basal levels of dopamine were measured over 120 min of tissue incubation and found to be 1.17+/-0.35 ng/ml. Somatostatin (10(-6), 10(-5), 10(-4)M) increased dopamine levels in a concentration-dependent manner, while the sst(2) antagonist CYN154806 (10(-4)M) reversed its actions. BIM23014 (sst(2) agonist) increased dopamine levels in a statistically significant manner only at the concentration of 10(-5)M. The sst(1) agonist L797.591 (10(-5), 10(-4)M) also increased dopamine levels, while activation of the sst(3) receptor (sst(3) agonist, L796.778, 10(-4)M) had no effect. These data substantiate a neuromodulatory role for sst(1) and sst(2) somatostatin receptors in the retina and show for the first time somatostatin's influence on dopamine release.
Collapse
Affiliation(s)
- Evangelia Kouvidi
- University of Crete, Faculty of Medicine, Department of Basic Sciences, Laboratory of Pharmacology, Heraklion, Crete 71110, Greece
| | | | | |
Collapse
|
37
|
Tokita K, Inoue T, Yamazaki S, Wang F, Yamaji T, Matsuoka N, Mutoh S. FK962, a novel enhancer of somatostatin release, exerts cognitive-enhancing actions in rats. Eur J Pharmacol 2005; 527:111-20. [PMID: 16325809 DOI: 10.1016/j.ejphar.2005.10.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 10/11/2005] [Accepted: 10/18/2005] [Indexed: 11/15/2022]
Abstract
FK962 (N-(1-acetylpiperidin-4-yl)-4-fluorobenzamide) is a derivative of FK960 (N-(4-acetyl-1-piperazinyl)-p-fluorobenzamide monohydrate), with putative anti-dementia properties. Here, we wanted to determine whether FK962 retained the ability of the parent compound to both facilitate somatostatinergic nerve activity in hippocampal neurons and to ameliorate cognitive dysfunction in rat models. FK962 (10(-9) - 10(- 6) M) significantly enhanced high K+-evoked somatostatin release from rat hippocampal slices. FK962 also significantly reduced somatostatin-induced inhibition of Ca2+ channels at 10(-9) - 10(-7) M in single rat hippocampal neurons using whole-cell patch-clamp. Furthermore, administration of FK962 (0.032-3.2 mg/kg, i.p.) significantly ameliorated memory deficits in passive avoidance task in animal models: scopolamine-treated rats, nucleus basalis magnocellularis-lesioned rats and aged rats. FK962 (0.01- 1) mg/kg, i.p.) significantly improved spatial memory deficits induced by nucleus basalis magnocellularis-lesion in water maze task. These results suggest that FK962 ameliorates cognitive impairment in rats via activation of the somatostatinergic nervous system in the hippocampus, indicating that FK962 could be a potent cognitive enhancer and therefore might be of therapeutic value for cognitive disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- Kenichi Tokita
- Pharmacology Research Labs., Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan.
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The molecular organization of ribbon synapses in photoreceptors and ON bipolar cells is reviewed in relation to the process of neurotransmitter release. The interactions between ribbon synapse-associated proteins, synaptic vesicle fusion machinery and the voltage-gated calcium channels that gate transmitter release at ribbon synapses are discussed in relation to the process of synaptic vesicle exocytosis. We describe structural and mechanistic specializations that permit the ON bipolar cell to release transmitter at a much higher rate than the photoreceptor does, under in vivo conditions. We also consider the modulation of exocytosis at photoreceptor synapses, with an emphasis on the regulation of calcium channels.
Collapse
Affiliation(s)
- Ruth Heidelberger
- Department of Neurobiology & Anatomy, University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Wallace B. Thoreson
- Department of Ophthalmology & Visual Sciences and Department of Pharmacology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Paul Witkovsky
- Department of Ophthalmology and Department of Physiology & Neuroscience, New York University School of Medicine, New York, NY 10016, USA
- *Corresponding author. Tel: +1 212 263 6488; fax: +1 212 263 7602. E-mail address: (P. Witkovsky)
| |
Collapse
|
39
|
Mastrodimou N, Kiagiadaki F, Hodjarova M, Karagianni E, Thermos K. Somatostatin receptors (sst2) regulate cGMP production in rat retina. ACTA ACUST UNITED AC 2005; 133:41-6. [PMID: 16280179 DOI: 10.1016/j.regpep.2005.09.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Accepted: 09/08/2005] [Indexed: 10/25/2022]
Abstract
The present study investigated the effect of somatostatin in the regulation of cGMP levels in rat retina and the mechanisms involved in this process. Isolated rat retinas were treated alone or in the presence of somatostatin (0.01-10 microM), BIM23014 (sst2 agonist, 0.01-10 microM), L-796,778 (sst3 agonist, 10 microM), somatostatin (0.1 microM) in combination with CYN154806 (sst2 antagonist, 1 microM), N(G)-methyl-L-arginine acetate salt (NMMA, inhibitor of the nitric oxide synthase (NOS), 250 microM), orthovanadate (inhibitor of tyrosine phosphatase, SHP-1, 1 microM), and arginine alone (250 microM). cGMP levels were quantified by ELISA. Immunohistochemistry studies were performed for the detection of cGMP and nNOS, while Western blot analysis was employed for the detection of SHP-1. Somatostatin increased cGMP levels in a concentration-dependent manner. This increase was inhibited by CYN154806. BIM23014 increased cGMP levels only at the concentration of 10 microM, while L-796,778 had no effect. NMMA blocked completely the somatostatin stimulated increase of cGMP levels and nNOS was detected in rat retina. cGMP immunoreactivity was observed primarily in bipolar cells only of nitroprusside-treated retinas. SHP-1 inhibition by orthovanadate reduced the somatostatin effect in a statistically significant manner. These results suggest that a SRIF/SHP-1/NO/cGMP mechanism underlies the actions of somatostatin in the retina and in its influence of retinal circuitry.
Collapse
Affiliation(s)
- Niki Mastrodimou
- Laboratory of Pharmacology, Department Basic Sciences, University of Crete, Faculty of Medicine, Heraklion, Crete, Greece
| | | | | | | | | |
Collapse
|
40
|
Bigiani A, Petrucci C, Ghiaroni V, Dal Monte M, Cozzi A, Kreienkamp HJ, Richter D, Bagnoli P. Functional correlates of somatostatin receptor 2 overexpression in the retina of mice with genetic deletion of somatostatin receptor 1. Brain Res 2005; 1025:177-85. [PMID: 15464758 DOI: 10.1016/j.brainres.2004.07.083] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2004] [Indexed: 01/26/2023]
Abstract
Somatostatin-14 (SRIF) and its receptors (sst(1-5)) are found in the mammalian retina. However, scarce information is available on the role of the somatostatinergic system in retinal physiology. We have recently used gene-knockout technology to gain insights into the function of sst(1) and sst(2) receptors in the mouse retina. The sst(1) receptor localizes to SRIF-containing amacrine cells, whereas the sst(2) receptor localizes to several retinal cell populations including rod bipolar cells (RBCs). Molecular data indicate that, in retinas with deletion of the sst(1) receptor (sst(1) KO), sst(2) receptors become overexpressed in concomitance with an increased level of retinal SRIF. To test whether this up-regulation of sst(2) receptors correlates with altered sst(2) receptor physiology, we studied the effect of sst(2) receptor activation on potassium current (I(K)) in isolated RBCs and glutamate release in retina explants. Both I(K) and glutamate release are known to be negatively modulated by sst(2) receptors in the mammalian retina. We used octreotide, a SRIF analogue, to activate selectively sst(2) receptors. Patch-clamp recordings from isolated RBCs indicated that the sst(2) receptor-mediated inhibition of I(K) was significantly larger in sst(1) KO than in control retinas. In addition, HPLC measurements of glutamate release in sst(1) KO retinal explants demonstrated that the sst(2) receptor-mediated inhibition of K(+)-evoked glutamate release was also significantly larger than in control retinas. As a whole, these findings indicate that the overexpression of sst(2) receptors in sst(1) KO retinas can be correlated to an enhanced function of sst(2) receptors. The level of expression of sst(2) receptors may therefore represent a key step in the regulation of sst(2) receptor-mediated responses, at least in the retina.
Collapse
Affiliation(s)
- Albertino Bigiani
- Dipartimento di Scienze Biomediche, Sezione di Fisiologia, Università di Modena e Reggio Emilia via Campi 287, 41100 Modena, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Fan SF, Yazulla S. Inhibitory interaction of cannabinoid CB1 receptor and dopamine D2 receptor agonists on voltage-gated currents of goldfish cones. Vis Neurosci 2004; 21:69-77. [PMID: 15137583 DOI: 10.1017/s0952523804041070] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Dopamine is a light-adaptive signal that desensitizes the retina, while cannabinoids reportedly increase photosensitivity. The presynaptic membrane of goldfish retinal cones has dopamine D2 receptors and cannabinoid CB1 receptors. This work focused on whether dopamine D2 receptor agonist quinpirole and cannabinoid CB1 receptor agonist WIN 55212-2 (WIN) interacted to modulate voltage-dependent membrane currents of cones. A conventional patch-clamp method was used to record depolarization evoked whole-cell outward currents (Iout) and an inward calcium current (ICa) from the inner segment of cones in goldfish retinal slices. WIN had biphasic actions: low concentrations (<1 μM) increased the currentsviaGs, while higher concentrations (>1 μM) decreased the currentsviaGi/Go. Neither dopamine nor the D2 agonist quinpirole (1–20 μM) had a significant effect on eitherIoutorICa. Quinpirole at 50 μM had a mild suppressive (∼20%) effect onIout. However, quinpirole (<10 μM) completely blocked the enhancement of both currents seen with 0.7 μM WIN. The effect of quinpirole was blocked by sulpiride and by pertussis toxin, indicating that quinpirole was actingviaa D2 receptor-Gi/o coupled mechanism. The suppressive action of 50 μM quinpirole (∼20%) was not additive with the suppressive effect of 3 μM WIN (∼40%). D2 agonistsviaGi/o oppose the action of low concentrations of CB1 agonists actingviaGs to modulate cone membrane currents, suggesting a role in shaping the cone light response and/or sensitivity to changes in ambient light conditions. The nonadditive effect of high concentrations of WIN and quinpirole suggests that both decrease membrane currentsviathe same transduction pathway, Gi/Go protein kinase A (PKA).
Collapse
Affiliation(s)
- Shih-Fang Fan
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794-5230, USA
| | | |
Collapse
|
42
|
Nunn C, Cervia D, Langenegger D, Tenaillon L, Bouhelal R, Hoyer D. Comparison of functional profiles at human recombinant somatostatin sst2 receptor: simultaneous determination of intracellular Ca2+ and luciferase expression in CHO-K1 cells. Br J Pharmacol 2004; 142:150-60. [PMID: 15037513 PMCID: PMC1574925 DOI: 10.1038/sj.bjp.0705735] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. Somatostatin (somatotropin release inhibiting factor; SRIF) acts via five G protein-coupled receptors (sst(1)-sst(5)) that modulate multiple cellular effectors. The aim of this study was to compare two functional effects of the human sst(2) receptor stably expressed in CHO-K1 cells in a single experiment using a duplex assay for intracellular calcium and serum response element (SRE)-driven luciferase expression. 2. Intracellular calcium was measured using a fluorometric imaging plate reader II (FLIPR II). SRIF-14 rapidly and transiently increased intracellular calcium with a pEC(50) of 8.74+/-0.03 (n=52). At 5 h after FLIPR II measurements, luciferase expression was determined. SRIF-14 concentration-dependently increased luciferase expression (pEC(50)=9.06+/-0.03, n=52). 3. Natural and synthetic agonist/antagonist ligands for SRIF receptors were tested in the duplex assay. Correlation of agonist potencies and efficacies between the two responses were significant (r(2)=0.83 and 0.90, pEC(50) and E(max), respectively). 4. Pertussis toxin pretreatment reduced SRIF-14/octreotide-mediated intracellular calcium increases by 45-47% and luciferase expression by 95-98%. 5. Thapsigargin pretreatment abolished the SRIF-14/octreotide-mediated intracellular calcium increase but had no effect on luciferase expression. 6. In conclusion, SRIF stimulates an increase in intracellular calcium and SRE-luciferase expression via human sst(2) receptors in CHO-K1 cells. The increase in luciferase is mediated via G(i)/G(o) while intracellular calcium increase is mediated by both G(i)/G(o) proteins and pertussis toxin-insensitive G proteins, and is mainly via release of calcium from intracellular stores. SRIF ligands display a similar recognition profile suggesting that the ligand/receptor/G protein/effector interaction is similar for the two parameters.
Collapse
Affiliation(s)
- Caroline Nunn
- Neuroscience Research, Novartis Institutes for Biomedical Research, Novartis Pharma AG, CH-4002, Basel, Switzerland
| | - Davide Cervia
- Neuroscience Research, Novartis Institutes for Biomedical Research, Novartis Pharma AG, CH-4002, Basel, Switzerland
| | - Daniel Langenegger
- Neuroscience Research, Novartis Institutes for Biomedical Research, Novartis Pharma AG, CH-4002, Basel, Switzerland
| | - Laurent Tenaillon
- Novartis Lead Discovery Centre, Novartis Institutes for Biomedical Research, Novartis Pharma AG, CH-4002, Basel, Switzerland
| | - Rochdi Bouhelal
- Novartis Lead Discovery Centre, Novartis Institutes for Biomedical Research, Novartis Pharma AG, CH-4002, Basel, Switzerland
| | - Daniel Hoyer
- Neuroscience Research, Novartis Institutes for Biomedical Research, Novartis Pharma AG, CH-4002, Basel, Switzerland
- Author for correspondence:
| |
Collapse
|
43
|
Thoreson WB, Tranchina D, Witkovsky P. Kinetics of synaptic transfer from rods and cones to horizontal cells in the salamander retina. Neuroscience 2004; 122:785-98. [PMID: 14622921 DOI: 10.1016/j.neuroscience.2003.08.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We examined synaptic transmission between rods or cones and horizontal cells, using perforated patch recording techniques in salamander retinal slices. Experimental conditions were established under which horizontal cells received nearly pure rod or pure cone input. The response-intensity relation for both photoreceptors and horizontal cells was described by a Michaelis-Menten function with an exponent close to 1. A dynamic model was developed for the transduction from photoreceptor voltage to postsynaptic current. The basic model assumes that: (i) photoreceptor light-evoked voltage controls Ca2+ entry according to a Boltzmann relation; (ii) the rate of glutamate release depends linearly on the voltage-gated Ca2+ current (ICa) in the synaptic terminal; (iii) glutamate concentration in the synaptic cleft reflects the balance of release and reuptake in which reuptake obeys first order kinetics; (iv) the binding of glutamate to its receptor and channel gating are fast compared with glutamate kinetics in the synaptic cleft. The good fit to the model confirms that these are the key features of synaptic transmission from rods and cones. The model accommodated changes in kinetics induced by the glutamate uptake blocker, dihydrokainate. The match between model and response was not improved by including an estimate of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor desensitization or by making glutamate uptake voltage dependent.
Collapse
Affiliation(s)
- W B Thoreson
- Department of Ophthalmology, 985540 University of Nebraska Medical Center, Omaha, NE 68198-5540, USA.
| | | | | |
Collapse
|
44
|
Møller LN, Stidsen CE, Hartmann B, Holst JJ. Somatostatin receptors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2003; 1616:1-84. [PMID: 14507421 DOI: 10.1016/s0005-2736(03)00235-9] [Citation(s) in RCA: 255] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In 1972, Brazeau et al. isolated somatostatin (somatotropin release-inhibiting factor, SRIF), a cyclic polypeptide with two biologically active isoforms (SRIF-14 and SRIF-28). This event prompted the successful quest for SRIF receptors. Then, nearly a quarter of a century later, it was announced that a neuropeptide, to be named cortistatin (CST), had been cloned, bearing strong resemblance to SRIF. Evidence of special CST receptors never emerged, however. CST rather competed with both SRIF isoforms for specific receptor binding. And binding to the known subtypes with affinities in the nanomolar range, it has therefore been acknowledged to be a third endogenous ligand at SRIF receptors. This review goes through mechanisms of signal transduction, pharmacology, and anatomical distribution of SRIF receptors. Structurally, SRIF receptors belong to the superfamily of G protein-coupled (GPC) receptors, sharing the characteristic seven-transmembrane-segment (STMS) topography. Years of intensive research have resulted in cloning of five receptor subtypes (sst(1)-sst(5)), one of which is represented by two splice variants (sst(2A) and sst(2B)). The individual subtypes, functionally coupled to the effectors of signal transduction, are differentially expressed throughout the mammalian organism, with corresponding differences in physiological impact. It is evident that receptor function, from a physiological point of view, cannot simply be reduced to the accumulated operations of individual receptors. Far from being isolated functional units, receptors co-operate. The total receptor apparatus of individual cell types is composed of different-ligand receptors (e.g. SRIF and non-SRIF receptors) and co-expressed receptor subtypes (e.g. sst(2) and sst(5) receptors) in characteristic proportions. In other words, levels of individual receptor subtypes are highly cell-specific and vary with the co-expression of different-ligand receptors. However, the question is how to quantify the relative contributions of individual receptor subtypes to the integration of transduced signals, ultimately the result of collective receptor activity. The generation of knock-out (KO) mice, intended as a means to define the contributions made by individual receptor subtypes, necessarily marks but an approximation. Furthermore, we must now take into account the stunning complexity of receptor co-operation indicated by the observation of receptor homo- and heterodimerisation, let alone oligomerisation. Theoretically, this phenomenon adds a novel series of functional megareceptors/super-receptors, with varied pharmacological profiles, to the catalogue of monomeric receptor subtypes isolated and cloned in the past. SRIF analogues include both peptides and non-peptides, receptor agonists and antagonists. Relatively long half lives, as compared to those of the endogenous ligands, have been paramount from the outset. Motivated by theoretical puzzles or the shortcomings of present-day diagnostics and therapy, investigators have also aimed to produce subtype-selective analogues. Several have become available.
Collapse
Affiliation(s)
- Lars Neisig Møller
- Department of Medical Physiology, The Panum Institute, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | | | | | | |
Collapse
|
45
|
Abstract
The peptide somatostatin is one of many neuroactive agents that influence retinal physiology. It is synthesized primarily in a subclass of amacrine cells and believed to function as a neurotransmitter, neuromodulator or trophic factor. The cloning of the somatostatin receptors (sst1-5) in the early nineties provided the appropriate tools for the study of ssts in many tissues, including the retina. In this review, emphasis is given to recent studies that have provided significant information on the functional role of somatostatin in retinal circuitry and the retinal pigment epithelium. The important role of somatostatin in retinal disease therapeutics is also discussed.
Collapse
Affiliation(s)
- Kyriaki Thermos
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Laboratory of Pharmacology, Heraclion, Crete 71 110, Greece.
| |
Collapse
|
46
|
Stella SL, Bryson EJ, Cadetti L, Thoreson WB. Endogenous adenosine reduces glutamatergic output from rods through activation of A2-like adenosine receptors. J Neurophysiol 2003; 90:165-74. [PMID: 12843308 DOI: 10.1152/jn.00671.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adenosine is released from retina in darkness; photoreceptors possess A2 adenosine receptors, and A2 agonists inhibit L-type Ca2+ currents (ICa) in rods. We therefore investigated whether A2 agonists inhibit rod inputs into second-order neurons and whether selective antagonists to A1, A2A, or A3 receptors prevent Ca2+ influx through rod ICa. [Ca2+]i changes in rods were assessed with fura-2. ICa in rods and light responses of rods and second-order neurons were recorded using perforated patch-clamp techniques in the aquatic tiger salamander retinal slice preparation. Consistent with earlier results using the A2 agonist N6-[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)-ethyl]adenosine (DPMA), the A2A agonist CGS-21680 significantly inhibited ICa and depolarization-evoked [Ca2+]i increases in rods. The A1 antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), and A2A antagonist, ZM-241385, but not the A3 antagonist, VUF-5574, inhibited effects of adenosine on Ca2+ influx in rods. DPCPX and ZM-241385 also inhibited effects of CGS-21680, suggesting they both act at A2A receptors. Both A2 agonists, CGS-21680 and DPMA, reduced light-evoked currents in second-order neurons but not light-evoked voltage responses of rods, suggesting that activation of A2 receptors inhibits transmitter release from rods. The inhibitory effects of CGS-21680 on both depolarization-evoked Ca2+ influx and light-evoked currents in second-order neurons were antagonized by ZM-241385. By itself, ZM-241385 enhanced the light-evoked currents in second-order neurons, suggesting that endogenous levels of adenosine inhibit transmitter release from rods. The effects of these drugs suggest that endogenous adenosine activates an A2-like adenosine receptor on rods leading to inhibition of ICa, which in turn inhibits l-glutamate release from rod photoreceptors.
Collapse
Affiliation(s)
- Salvatore L Stella
- Department of Pharmacology and Department of Ophthalmology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5540, USA.
| | | | | | | |
Collapse
|
47
|
Straiker A, Sullivan JM. Cannabinoid receptor activation differentially modulates ion channels in photoreceptors of the tiger salamander. J Neurophysiol 2003; 89:2647-54. [PMID: 12740409 DOI: 10.1152/jn.00268.2002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cannabinoid CB1 receptors have been detected in retinas of numerous species, with prominent labeling in photoreceptor terminals of the chick and monkey. CB1 labeling is well-conserved across species, suggesting that CB1 receptors might also be present in photoreceptors of the tiger salamander. Synaptic transmission in vertebrate photoreceptors is mediated by L-type calcium currents-currents that are modulated by CB1 receptors in bipolar cells of the tiger salamander. Presence of CB1 receptors in photoreceptor terminals would therefore be consistent with presynaptic modulation of synaptic transmission, a role seen for cannabinoids in other parts of the brain. Here we report immunohistochemical and electrophysiological evidence for the presence of functional CB1 receptors in rod and cone photoreceptors of the tiger salamander. The cannabinoid receptor agonist WIN 55212-2 enhances calcium currents of rod photoreceptors by 39% but decreases calcium currents of large single cones by 50%. In addition, WIN 55212-2 suppresses potassium currents of rods and large single cones by 44 and 48%, respectively. Thus functional CB1 receptors, present in the terminals of rod and cone photoreceptors, differentially modulate calcium and potassium currents in rods and large single cones. CB1 receptors are therefore well positioned to modulate neurotransmitter release at the first synapse of the visual system.
Collapse
Affiliation(s)
- Alex Straiker
- The Salk Institute and the University of California, San Diego, La Jolla 92037, USA.
| | | |
Collapse
|
48
|
Grigoryan EN, Vasilaki A, Mastrodimou N, Thermos K. Somatostatin receptor immunoreactivity in the eye of the adult newt (Pleurodeles waltlii Michan). Neurosci Lett 2003; 337:143-6. [PMID: 12536044 DOI: 10.1016/s0304-3940(02)01326-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The neuropeptide somatostatin is found in the retina of many species, yet its role in the visual process remains to be elucidated. The aim of the present study was to examine the expression and cellular localization of somatostatin receptor subtypes (sst; sst(2A), sst(2B) and sst(3)) in the eye of the adult newt Pleurodeles waltlii using immunohistochemistry. sst(2A) immunoreactivity was observed in bipolar cells, in the inner segments of cone photoreceptors, as well as in the region corresponding to connecting cilia of rods. sst(2B) immunoreactivity was not detected. sst(3) immunostaining was localized most intensely in the inner segments of cones, and in cilia of rods. These results suggest that somatostatin acting via sst(2A) and sst(3) receptors may play an important role in retinal physiology of the lower vertebrates.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow 117808, Russia
| | | | | | | |
Collapse
|
49
|
Dal Monte M, Petrucci C, Cozzi A, Allen JP, Bagnoli P. Somatostatin inhibits potassium-evoked glutamate release by activation of the sst(2) somatostatin receptor in the mouse retina. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2003; 367:188-92. [PMID: 12595961 DOI: 10.1007/s00210-002-0662-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2002] [Accepted: 10/21/2002] [Indexed: 03/01/2023]
Abstract
In the mammalian retina, somatostatin (SRIF-14) acts through distinct receptor subtypes (sst(1-5)). Among them, sst(2) has been localized to numerous retinal cells, including photoreceptors and rod bipolar cells (RBCs). The specific role of sst(2) in the retina is largely undetermined. In this study, we characterized retinas of mice with targeted deletion of sst(2) (sst(2) KO) and we investigated functions of sst(2) in respect to its possible modulation of glutamate (GLU) release, as measured by HPLC. In contrast with wild-type (WT) mice, sst(2) mRNA and sst(2A) immunoreactivity were no longer detectable in the retina of sst(2) KO mice. In retinal explants of WT mice, SRIF and its analogue octreotide that displays high selectivity for sst(2), similarly reduced the evoked release of GLU without affecting its basal level. In sst(2) KO retinas, SRIF or octreotide did not affect GLU release indicating that they act at sst(2). Unexpectedly, the compound CYN-154806, although introduced as the first potent sst(2) antagonist, reduced the evoked release of GLU with equipotency to SRIF and octreotide. Its inhibitory effect was no longer observed in sst(2) KO retinas, indicating that this substance acts at sst(2) receptors as an agonist. In conclusion, SRIF controls evoked release of GLU through sst(2) receptors and this control may represent part of a mechanism by which SRIF regulates GLU concentration in the retina.
Collapse
Affiliation(s)
- Massimo Dal Monte
- Dipartimento di Fisiologia e Biochimica "G Moruzzi", Università di Pisa, Via San Zeno 31, 56127, Pisa, Italy
| | | | | | | | | |
Collapse
|
50
|
Vasilaki A, Georgoussi Z, Thermos K. Somatostatin receptors (sst2) are coupled to Go and modulate GTPase activity in the rabbit retina. J Neurochem 2003; 84:625-32. [PMID: 12562507 DOI: 10.1046/j.1471-4159.2003.01570.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The role of somatostatin and its mechanism of action in the retina remains an important target for investigation. Biochemical and pharmacological studies were engaged to characterize the somatostatin receptors in the rabbit retina, and their coupling to G-proteins. The ability of selective ligands to inhibit [125I]Tyr11-somatostatin-14 binding to rabbit retinal membranes was examined. The sst2 analogues SMS201-995, MK678, and BIM23014, displayed IC50 values of 0.28 +/- 0.12, 0.04 +/- 0.01 and 1.57 +/- 0.39 nm, respectively. The sst1 analogue CH275 moderately displaced the [125I]Tyr11-somatostatin-14 binding, while selective analogues for sst3, sst4 and sst5 had minimal effect. Immunoblotting and/or immunohistochemistry studies revealed the presence of the pertussis toxin sensitive Gi1/2, and Go proteins, as well as Gs. Somatostatin-14 and MK678 stimulated GTPase activity in a concentration-dependent manner with EC50 values of 42.8 +/- 16.8 and 70.0 +/- 16.5 nm, respectively, thus supporting the functional coupling between the receptor and the G-proteins. CH275 stimulated the GTPase activity moderately, in agreement with its binding profile. The antisera raised against Goalpha and Gi1/2alpha inhibited the somatostatin-induced high-affinity GTPase activity, but only anti-Goalpha inhibited the MK678 stimulation of the enzyme. These results suggest that somatostatin mediates its actions in the rabbit retina by interacting mainly with sst2 receptors that couple to Goalpha.
Collapse
Affiliation(s)
- Anna Vasilaki
- Laboratory of Pharmacology, Department of Basic Science, Faculty of Medicine, University of Crete, Heraklion, Crete 71110, Greece
| | | | | |
Collapse
|