1
|
Scolz A, Vezzoli E, Villa M, Talpo F, Cazzola J, Raffin F, Cordiglieri C, Falqui A, Pepe G, Maglione V, Besusso D, Biella G, Zuccato C. Neuroprotection by ADAM10 inhibition requires TrkB signaling in the Huntington's disease hippocampus. Cell Mol Life Sci 2024; 81:333. [PMID: 39112663 PMCID: PMC11335257 DOI: 10.1007/s00018-024-05382-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024]
Abstract
Synaptic dysfunction is an early pathogenic event leading to cognitive decline in Huntington's disease (HD). We previously reported that the active ADAM10 level is increased in the HD cortex and striatum, causing excessive proteolysis of the synaptic cell adhesion protein N-Cadherin. Conversely, ADAM10 inhibition is neuroprotective and prevents cognitive decline in HD mice. Although the breakdown of cortico-striatal connection has been historically linked to cognitive deterioration in HD, dendritic spine loss and long-term potentiation (LTP) defects identified in the HD hippocampus are also thought to contribute to the cognitive symptoms of the disease. The aim of this study is to investigate the contribution of ADAM10 to spine pathology and LTP defects of the HD hippocampus. We provide evidence that active ADAM10 is increased in the hippocampus of two mouse models of HD, leading to extensive proteolysis of N-Cadherin, which has a widely recognized role in spine morphology and synaptic plasticity. Importantly, the conditional heterozygous deletion of ADAM10 in the forebrain of HD mice resulted in the recovery of spine loss and ultrastructural synaptic defects in CA1 pyramidal neurons. Meanwhile, normalization of the active ADAM10 level increased the pool of synaptic BDNF protein and activated ERK neuroprotective signaling in the HD hippocampus. We also show that the ADAM10 inhibitor GI254023X restored LTP defects and increased the density of mushroom spines enriched with GluA1-AMPA receptors in HD hippocampal neurons. Notably, we report that administration of the TrkB antagonist ANA12 to HD hippocampal neurons reduced the beneficial effect of GI254023X, indicating that the BDNF receptor TrkB contributes to mediate the neuroprotective activity exerted by ADAM10 inhibition in HD. Collectively, these findings indicate that ADAM10 inhibition coupled with TrkB signaling represents an efficacious strategy to prevent hippocampal synaptic plasticity defects and cognitive dysfunction in HD.
Collapse
Affiliation(s)
- Andrea Scolz
- Department of Biosciences, University of Milan, Milan, Italy
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Elena Vezzoli
- Department of Biosciences, University of Milan, Milan, Italy
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
- Advanced Light and Electron Microscopy BioImaging Centre (ALEMBIC), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Michela Villa
- Department of Biosciences, University of Milan, Milan, Italy
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Francesca Talpo
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Jessica Cazzola
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Francesca Raffin
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Chiara Cordiglieri
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Andrea Falqui
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMaINa), Department of Physics, University of Milan, Milan, Italy
| | | | | | - Dario Besusso
- Department of Biosciences, University of Milan, Milan, Italy
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Gerardo Biella
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Chiara Zuccato
- Department of Biosciences, University of Milan, Milan, Italy.
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy.
| |
Collapse
|
2
|
Gu Y, Pope A, Smith C, Carmona C, Johnstone A, Shi L, Chen X, Santos S, Bacon-Brenes CC, Shoff T, Kleczko KM, Frydman J, Thompson LM, Mobley WC, Wu C. BDNF and TRiC-inspired reagent rescue cortical synaptic deficits in a mouse model of Huntington's disease. Neurobiol Dis 2024; 195:106502. [PMID: 38608784 DOI: 10.1016/j.nbd.2024.106502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024] Open
Abstract
Synaptic changes are early manifestations of neuronal dysfunction in Huntington's disease (HD). However, the mechanisms by which mutant HTT protein impacts synaptogenesis and function are not well understood. Herein we explored HD pathogenesis in the BACHD mouse model by examining synaptogenesis and function in long term primary cortical cultures. At DIV14 (days in vitro), BACHD cortical neurons showed no difference from WT neurons in synaptogenesis as revealed by colocalization of a pre-synaptic (Synapsin I) and a post-synaptic (PSD95) marker. From DIV21 to DIV35, BACHD neurons showed progressively reduced colocalization of Synapsin I and PSD95 relative to WT neurons. The deficits were effectively rescued by treatment of BACHD neurons with BDNF. The recombinant apical domain of CCT1 (ApiCCT1) yielded a partial rescuing effect. BACHD neurons also showed culture age-related significant functional deficits as revealed by multielectrode arrays (MEAs). These deficits were prevented by BDNF, whereas ApiCCT1 showed a less potent effect. These findings are evidence that deficits in BACHD synapse and function can be replicated in vitro and that BDNF or a TRiC-inspired reagent can potentially be protective against these changes in BACHD neurons. Our findings support the use of cellular models to further explicate HD pathogenesis and potential treatments.
Collapse
Affiliation(s)
- Yingli Gu
- Department of Neurology, The Fourth Hospital of Harbin Medical University, 150001, China; Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America
| | - Alexander Pope
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America
| | - Charlene Smith
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, United States of America
| | - Christopher Carmona
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America; Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, United States of America; Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, United States of America; Beckman Laser Institute & Medical Clinic, University of California, Irvine, Irvine, CA, United States; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Aaron Johnstone
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America
| | - Linda Shi
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, United States of America; Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, United States of America; Beckman Laser Institute & Medical Clinic, University of California, Irvine, Irvine, CA, United States; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Xuqiao Chen
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America
| | - Sarai Santos
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America
| | | | - Thomas Shoff
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America
| | - Korbin M Kleczko
- Department of Biology and Genetics, Stanford University, Stanford, CA 94305-5430, United States of America
| | - Judith Frydman
- Department of Biology and Genetics, Stanford University, Stanford, CA 94305-5430, United States of America
| | - Leslie M Thompson
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, United States of America; Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, United States of America; Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, United States of America; Sue and Bill Gross Stem Cell Center, University of California, Irvine, CA 92697, United States of America
| | - William C Mobley
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America.
| | - Chengbiao Wu
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America.
| |
Collapse
|
3
|
Li X, Hernandez I, Koyuncu S, Kis B, Häggblad M, Lidemalm L, Abbas AA, Bendegúz S, Göblös A, Brautigam L, Lucas JJ, Carreras-Puigvert J, Hühn D, Pircs K, Vilchez D, Fernandez-Capetillo O. The anti-leprosy drug clofazimine reduces polyQ toxicity through activation of PPARγ. EBioMedicine 2024; 103:105124. [PMID: 38701619 PMCID: PMC11088276 DOI: 10.1016/j.ebiom.2024.105124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND PolyQ diseases are autosomal dominant neurodegenerative disorders caused by the expansion of CAG repeats. While of slow progression, these diseases are ultimately fatal and lack effective therapies. METHODS A high-throughput chemical screen was conducted to identify drugs that lower the toxicity of a protein containing the first exon of Huntington's disease (HD) protein huntingtin (HTT) harbouring 94 glutamines (Htt-Q94). Candidate drugs were tested in a wide range of in vitro and in vivo models of polyQ toxicity. FINDINGS The chemical screen identified the anti-leprosy drug clofazimine as a hit, which was subsequently validated in several in vitro models. Computational analyses of transcriptional signatures revealed that the effect of clofazimine was due to the stimulation of mitochondrial biogenesis by peroxisome proliferator-activated receptor gamma (PPARγ). In agreement with this, clofazimine rescued mitochondrial dysfunction triggered by Htt-Q94 expression. Importantly, clofazimine also limited polyQ toxicity in developing zebrafish and neuron-specific worm models of polyQ disease. INTERPRETATION Our results support the potential of repurposing the antimicrobial drug clofazimine for the treatment of polyQ diseases. FUNDING A full list of funding sources can be found in the acknowledgments section.
Collapse
Affiliation(s)
- Xuexin Li
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 21, Stockholm, Sweden
| | - Ivó Hernandez
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Seda Koyuncu
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Balázs Kis
- HCEMM-SU, Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary; Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Maria Häggblad
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 21, Stockholm, Sweden
| | - Louise Lidemalm
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 21, Stockholm, Sweden
| | - Anna A Abbas
- HCEMM-SU, Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary; Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Sramkó Bendegúz
- HCEMM-SU, Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary; Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Anikó Göblös
- Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, H-6720, Szeged, Hungary
| | - Lars Brautigam
- Zebrafish Core Facility, Karolinska Institute, S-171 21, Stockholm, Sweden
| | - Jose J Lucas
- Center for Molecular Biology, "Severo Ochoa" (CBMSO) CSIC/UAM, Madrid, 28049, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Carreras-Puigvert
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 21, Stockholm, Sweden
| | - Daniela Hühn
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 21, Stockholm, Sweden
| | - Karolina Pircs
- HCEMM-SU, Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary; Institute of Translational Medicine, Semmelweis University, Budapest, Hungary; Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, Lund, Sweden
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Oscar Fernandez-Capetillo
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 21, Stockholm, Sweden; Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain.
| |
Collapse
|
4
|
Gentenaar M, Meulmeester FL, van der Burg XR, Hoekstra AT, Hunt H, Kroon J, van Roon-Mom WMC, Meijer OC. Glucocorticoid receptor antagonist CORT113176 attenuates motor and neuropathological symptoms of Huntington's disease in R6/2 mice. Exp Neurol 2024; 374:114675. [PMID: 38216109 DOI: 10.1016/j.expneurol.2024.114675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/17/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024]
Abstract
Huntington's Disease (HD) is a progressive neurodegenerative disease caused by a mutation in the huntingtin gene. The mutation leads to a toxic gain of function of the mutant huntingtin (mHtt) protein resulting in cellular malfunction, aberrant huntingtin aggregation and eventually neuronal cell death. Patients with HD show impaired motor functions and cognitive decline. Elevated levels of glucocorticoids have been found in HD patients and in HD mouse models, and there is a positive correlation between increased glucocorticoid levels and the progression of HD. Therefore, antagonism of the glucocorticoid receptor (GR) may be an interesting strategy for the treatment of HD. In this study, we evaluated the efficacy of the selective GR antagonist CORT113176 in the commonly used R6/2 mouse model. In male mice, CORT113176 treatment significantly delayed the loss of grip strength, the development of hindlimb clasping, gait abnormalities, and the occurrence of epileptic seizures. CORT113176 treatment delayed loss of DARPP-32 immunoreactivity in the dorsolateral striatum. It also restored HD-related parameters including astrocyte markers in both the dorsolateral striatum and the hippocampus, and microglia markers in the hippocampus. This suggests that CORT113176 has both cell-type and brain region-specific effects. CORT113176 delayed the formation of mHtt aggregates in the striatum and the hippocampus. In female mice, we did not observe major effects of CORT113176 treatment on HD-related symptoms, with the exception of the anti-epileptic effects. We conclude that CORT113176 effectively delays several key symptoms related to the HD phenotype in male R6/2 mice and believe that GR antagonism may be a possible treatment option.
Collapse
Affiliation(s)
- Max Gentenaar
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Fleur L Meulmeester
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ximaine R van der Burg
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
| | - Anna T Hoekstra
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Hazel Hunt
- Corcept Therapeutics, Menlo Park, CA, USA
| | - Jan Kroon
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Corcept Therapeutics, Menlo Park, CA, USA
| | | | - Onno C Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
5
|
Chen JH, Xu N, Qi L, Yan HH, Wan FY, Gao F, Fu C, Cang C, Lu B, Bi GQ, Tang AH. Reduced lysosomal density in neuronal dendrites mediates deficits in synaptic plasticity in Huntington's disease. Cell Rep 2023; 42:113573. [PMID: 38096054 DOI: 10.1016/j.celrep.2023.113573] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/15/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
Huntington's disease (HD) usually causes cognitive disorders, including learning difficulties, that emerge before motor symptoms. Mutations related to lysosomal trafficking are linked to the pathogenesis of neurological diseases, whereas the cellular mechanisms remain elusive. Here, we discover a reduction in the dendritic density of lysosomes in the hippocampus that correlates with deficits in synaptic plasticity and spatial learning in early CAG-140 HD model mice. We directly manipulate intraneuronal lysosomal positioning with light-induced CRY2:CIB1 dimerization and demonstrate that lysosomal abundance in dendrites positively modulates long-term potentiation of glutamatergic synapses onto the neuron. This modulation depends on lysosomal Ca2+ release, which further promotes endoplasmic reticulum (ER) entry into spines. Importantly, optogenetically restoring lysosomal density in dendrites rescues the synaptic plasticity deficit in hippocampal slices of CAG-140 mice. Our data reveal dendritic lysosomal density as a modulator of synaptic plasticity and suggest a role of lysosomal mispositioning in cognitive decline in HD.
Collapse
Affiliation(s)
- Jia-Hui Chen
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China; CAS Key Laboratory of Brain Function and Disease, MOE Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Neurodegenerative Disorder Research Center and Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China.
| | - Na Xu
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Brain Function and Disease, MOE Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Neurodegenerative Disorder Research Center and Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Lei Qi
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
| | - Hao-Hao Yan
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Brain Function and Disease, MOE Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Neurodegenerative Disorder Research Center and Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Fang-Yan Wan
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Brain Function and Disease, MOE Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Neurodegenerative Disorder Research Center and Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Feng Gao
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Chuanhai Fu
- CAS Key Laboratory of Brain Function and Disease, MOE Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Neurodegenerative Disorder Research Center and Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Chunlei Cang
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Brain Function and Disease, MOE Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Neurodegenerative Disorder Research Center and Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Boxun Lu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Guo-Qiang Bi
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China; CAS Key Laboratory of Brain Function and Disease, MOE Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Neurodegenerative Disorder Research Center and Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China; Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Guangdong 518055, China
| | - Ai-Hui Tang
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China; CAS Key Laboratory of Brain Function and Disease, MOE Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Neurodegenerative Disorder Research Center and Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
6
|
Marzola P, Melzer T, Pavesi E, Gil-Mohapel J, Brocardo PS. Exploring the Role of Neuroplasticity in Development, Aging, and Neurodegeneration. Brain Sci 2023; 13:1610. [PMID: 38137058 PMCID: PMC10741468 DOI: 10.3390/brainsci13121610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 12/24/2023] Open
Abstract
Neuroplasticity refers to the ability of the brain to reorganize and modify its neural connections in response to environmental stimuli, experience, learning, injury, and disease processes. It encompasses a range of mechanisms, including changes in synaptic strength and connectivity, the formation of new synapses, alterations in the structure and function of neurons, and the generation of new neurons. Neuroplasticity plays a crucial role in developing and maintaining brain function, including learning and memory, as well as in recovery from brain injury and adaptation to environmental changes. In this review, we explore the vast potential of neuroplasticity in various aspects of brain function across the lifespan and in the context of disease. Changes in the aging brain and the significance of neuroplasticity in maintaining cognitive function later in life will also be reviewed. Finally, we will discuss common mechanisms associated with age-related neurodegenerative processes (including protein aggregation and accumulation, mitochondrial dysfunction, oxidative stress, and neuroinflammation) and how these processes can be mitigated, at least partially, by non-invasive and non-pharmacologic lifestyle interventions aimed at promoting and harnessing neuroplasticity.
Collapse
Affiliation(s)
- Patrícia Marzola
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| | - Thayza Melzer
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| | - Eloisa Pavesi
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| | - Joana Gil-Mohapel
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada
| | - Patricia S. Brocardo
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| |
Collapse
|
7
|
Exploration of the Shared Molecular Mechanisms between COVID-19 and Neurodegenerative Diseases through Bioinformatic Analysis. Int J Mol Sci 2023; 24:ijms24054839. [PMID: 36902271 PMCID: PMC10002862 DOI: 10.3390/ijms24054839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
The COVID-19 pandemic has caused millions of deaths and remains a major public health burden worldwide. Previous studies found that a large number of COVID-19 patients and survivors developed neurological symptoms and might be at high risk of neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). We aimed to explore the shared pathways between COVID-19, AD, and PD by using bioinformatic analysis to reveal potential mechanisms, which may explain the neurological symptoms and degeneration of brain that occur in COVID-19 patients, and to provide early intervention. In this study, gene expression datasets of the frontal cortex were employed to detect common differentially expressed genes (DEGs) of COVID-19, AD, and PD. A total of 52 common DEGs were then examined using functional annotation, protein-protein interaction (PPI) construction, candidate drug identification, and regulatory network analysis. We found that the involvement of the synaptic vesicle cycle and down-regulation of synapses were shared by these three diseases, suggesting that synaptic dysfunction might contribute to the onset and progress of neurodegenerative diseases caused by COVID-19. Five hub genes and one key module were obtained from the PPI network. Moreover, 5 drugs and 42 transcription factors (TFs) were also identified on the datasets. In conclusion, the results of our study provide new insights and directions for follow-up studies of the relationship between COVID-19 and neurodegenerative diseases. The hub genes and potential drugs we identified may provide promising treatment strategies to prevent COVID-19 patients from developing these disorders.
Collapse
|
8
|
Chen X, He E, Su C, Zeng Y, Xu J. Huntingtin-associated protein 1-associated intracellular trafficking in neurodegenerative diseases. Front Aging Neurosci 2023; 15:1100395. [PMID: 36824265 PMCID: PMC9941194 DOI: 10.3389/fnagi.2023.1100395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
Huntingtin-associated protein 1 (HAP1), the first identified HTT-binding partner, is highly expressed in the central nervous system, and has been found to associated with neurological diseases. Mounting evidence suggests that HAP1 functions as a component of cargo-motor molecules to bind various proteins and participates in intracellular trafficking. It is known that the failure of intracellular transport is a key contributor to the progression of neurodegenerative disorders (NDs) including Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), spinal and bulbar muscular atrophy (SBMA) and spinocerebellar ataxia (SCA). The link between HAP1 and various NDs is supported by growing evidence. This review aims to provide a comprehensive overview of the intracellular trafficking function of HAP1 and its involvement in NDs.
Collapse
Affiliation(s)
- Xingxing Chen
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China,Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China,*Correspondence: Xingxing Chen, ✉
| | - Enhao He
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Chonglin Su
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Yan Zeng
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China,Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jiang Xu
- Hubei Key Laboratory of Nerve Injury and Functional Reconstruction, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,Jiang Xu, ✉
| |
Collapse
|
9
|
Farzana F, McConville MJ, Renoir T, Li S, Nie S, Tran H, Hannan AJ, Hatters DM, Boughton BA. Longitudinal spatial mapping of lipid metabolites reveals pre-symptomatic changes in the hippocampi of Huntington's disease transgenic mice. Neurobiol Dis 2023; 176:105933. [PMID: 36436748 DOI: 10.1016/j.nbd.2022.105933] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022] Open
Abstract
In Huntington's disease (HD), a key pathological feature includes the development of inclusion-bodies of fragments of the mutant huntingtin protein in the neurons of the striatum and hippocampus. To examine the molecular changes associated with inclusion-body formation, we applied MALDI-mass spectrometry imaging and deuterium pulse labelling to determine lipid levels and synthesis rates in the hippocampus of a transgenic mouse model of HD (R6/1 line). The R6/1 HD mice lacked inclusions in the hippocampus at 6 weeks of age (pre-symptomatic), whereas inclusions were pervasive by 16 weeks of age (symptomatic). Hippocampal subfields (CA1, CA3 and DG), which formed the highest density of inclusion formation in the mouse brain showed a reduction in the relative abundance of neuron-enriched lipids that have roles in neurotransmission, synaptic plasticity, neurogenesis, and ER-stress protection. Lipids involved in the adaptive response to ER stress (phosphatidylinositol, phosphatidic acid, and ganglioside classes) displayed increased rates of synthesis in HD mice relative to WT mice at all the ages examined, including prior to the formation of the inclusion bodies. Our findings, therefore, support a role for ER stress occurring pre-symptomatically and potentially contributing to pathological mechanisms underlying HD.
Collapse
Affiliation(s)
- Farheen Farzana
- Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Victoria 3010, Australia; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Malcolm J McConville
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia; Metabolomics Australia, The University of Melbourne, Victoria 3010, Australia
| | - Thibault Renoir
- Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Shanshan Li
- Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Shuai Nie
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Harvey Tran
- Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Victoria 3010, Australia.
| | - Danny M Hatters
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia.
| | - Berin A Boughton
- School of Biosciences, The University of Melbourne, Victoria 3010, Australia; Australian National Phenome Centre, Murdoch University, Murdoch 6150, Western Australia, Australia.
| |
Collapse
|
10
|
Jia Q, Li S, Li XJ, Yin P. Neuroinflammation in Huntington's disease: From animal models to clinical therapeutics. Front Immunol 2022; 13:1088124. [PMID: 36618375 PMCID: PMC9815700 DOI: 10.3389/fimmu.2022.1088124] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disease characterized by preferential loss of neurons in the striatum in patients, which leads to motor and cognitive impairments and death that often occurs 10-15 years after the onset of symptoms. The expansion of a glutamine repeat (>36 glutamines) in the N-terminal region of huntingtin (HTT) has been defined as the cause of HD, but the mechanism underlying neuronal death remains unclear. Multiple mechanisms, including inflammation, may jointly contribute to HD pathogenesis. Altered inflammation response is evident even before the onset of classical symptoms of HD. In this review, we summarize the current evidence on immune and inflammatory changes, from HD animal models to clinical phenomenon of patients with HD. The understanding of the impact of inflammation on HD would help develop novel strategies to treat HD.
Collapse
Affiliation(s)
| | | | | | - Peng Yin
- *Correspondence: Xiao-Jiang Li, ; Peng Yin,
| |
Collapse
|
11
|
Lee HN, Hyeon SJ, Kim H, Sim KM, Kim Y, Ju J, Lee J, Wang Y, Ryu H, Seong J. Decreased FAK activity and focal adhesion dynamics impair proper neurite formation of medium spiny neurons in Huntington's disease. Acta Neuropathol 2022; 144:521-536. [PMID: 35857122 DOI: 10.1007/s00401-022-02462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/11/2022] [Accepted: 06/25/2022] [Indexed: 11/29/2022]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a polyglutamine expansion in the protein huntingtin (HTT) [55]. While the final pathological consequence of HD is the neuronal cell death in the striatum region of the brain, it is still unclear how mutant HTT (mHTT) causes synaptic dysfunctions at the early stage and during the progression of HD. Here, we discovered that the basal activity of focal adhesion kinase (FAK) is severely reduced in a striatal HD cell line, a mouse model of HD, and the human post-mortem brains of HD patients. In addition, we observed with a FRET-based FAK biosensor [59] that neurotransmitter-induced FAK activation is decreased in HD striatal neurons. Total internal reflection fluorescence (TIRF) imaging revealed that the reduced FAK activity causes the impairment of focal adhesion (FA) dynamics, which further leads to the defect in filopodial dynamics causing the abnormally increased number of immature neurites in HD striatal neurons. Therefore, our results suggest that the decreased FAK and FA dynamics in HD impair the proper formation of neurites, which is crucial for normal synaptic functions [52]. We further investigated the molecular mechanism of FAK inhibition in HD and surprisingly discovered that mHTT strongly associates with phosphatidylinositol 4,5-biphosphate, altering its normal distribution at the plasma membrane, which is crucial for FAK activation [14, 60]. Therefore, our results provide a novel molecular mechanism of FAK inhibition in HD along with its pathological mechanism for synaptic dysfunctions during the progression of HD.
Collapse
Affiliation(s)
- Hae Nim Lee
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Converging Science and Technology, Kyung Hee University, Seoul, 02453, Republic of Korea
| | - Seung Jae Hyeon
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Heejung Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Converging Science and Technology, Kyung Hee University, Seoul, 02453, Republic of Korea
| | - Kyoung Mi Sim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yunha Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jeongmin Ju
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Junghee Lee
- Department of Neurology, Boston University Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Yingxiao Wang
- Department of Bioengineering, University of California, San Diego, CA, 92093, USA
| | - Hoon Ryu
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
| | - Jihye Seong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- Department of Converging Science and Technology, Kyung Hee University, Seoul, 02453, Republic of Korea.
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
12
|
Weerasinghe-Mudiyanselage PDE, Ang MJ, Kang S, Kim JS, Moon C. Structural Plasticity of the Hippocampus in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:3349. [PMID: 35328770 PMCID: PMC8955928 DOI: 10.3390/ijms23063349] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/10/2022] Open
Abstract
Neuroplasticity is the capacity of neural networks in the brain to alter through development and rearrangement. It can be classified as structural and functional plasticity. The hippocampus is more susceptible to neuroplasticity as compared to other brain regions. Structural modifications in the hippocampus underpin several neurodegenerative diseases that exhibit cognitive and emotional dysregulation. This article reviews the findings of several preclinical and clinical studies about the role of structural plasticity in the hippocampus in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. In this study, literature was surveyed using Google Scholar, PubMed, Web of Science, and Scopus, to review the mechanisms that underlie the alterations in the structural plasticity of the hippocampus in neurodegenerative diseases. This review summarizes the role of structural plasticity in the hippocampus for the etiopathogenesis of neurodegenerative diseases and identifies the current focus and gaps in knowledge about hippocampal dysfunctions. Ultimately, this information will be useful to propel future mechanistic and therapeutic research in neurodegenerative diseases.
Collapse
Affiliation(s)
- Poornima D. E. Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| | - Mary Jasmin Ang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
- College of Veterinary Medicine, University of the Philippines Los Baños, Los Baños 4031, Philippines
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| |
Collapse
|
13
|
Harris KL, Mason SL, Vallin B, Barker RA. Reduced expression of dopamine D2 receptors on astrocytes in R6/1 HD mice and HD post-mortem tissue. Neurosci Lett 2022; 767:136289. [PMID: 34637857 PMCID: PMC9188264 DOI: 10.1016/j.neulet.2021.136289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022]
Abstract
Dysfunction of the central dopaminergic system is thought to contribute to some of the clinical features of Huntington's disease (HD), and dopamine (DA) receptor antagonists are commonly used to good effect in its treatment. It is well established that there is an early significant reduction in neuronal D2 receptors in HD, considered to be a compensatory response to increased dopaminergic activity. However, no studies have examined the expression of D2 receptors on astrocytes which is important given that these cells have been shown to play a role in the pathogenesis of HD, as well as express dopamine receptors and modulate DA homeostasis in the normal brain. We therefore sought to investigate the expression of D2 receptors on astrocytes in HD, and found them to be reduced in both the R6/1 HD mouse model, and in human post-mortem brain in comparison to controls, suggesting that astrocytes may be important in DA-dependent aspects of HD. Further studies are needed to determine the functional significance of this finding.
Collapse
Affiliation(s)
- Kate L Harris
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Trumpington, Cambridge CB2 0QH, UK.
| | - Sarah L Mason
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | - Benjamin Vallin
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | - Roger A Barker
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK; MRC-WT Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
14
|
Klonarakis M, De Vos M, Woo E, Ralph L, Thacker JS, Gil-Mohapel J. The three sisters of fate: Genetics, pathophysiology and outcomes of animal models of neurodegenerative diseases. Neurosci Biobehav Rev 2022; 135:104541. [DOI: 10.1016/j.neubiorev.2022.104541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/28/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023]
|
15
|
Love CJ, Masson BA, Gubert C, Hannan AJ. The microbiota-gut-brain axis in Huntington's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 167:141-184. [DOI: 10.1016/bs.irn.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Pérez-Sisqués L, Solana-Balaguer J, Campoy-Campos G, Martín-Flores N, Sancho-Balsells A, Vives-Isern M, Soler-Palazón F, Garcia-Forn M, Masana M, Alberch J, Pérez-Navarro E, Giralt A, Malagelada C. RTP801/REDD1 Is Involved in Neuroinflammation and Modulates Cognitive Dysfunction in Huntington's Disease. Biomolecules 2021; 12:34. [PMID: 35053183 PMCID: PMC8773874 DOI: 10.3390/biom12010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/03/2022] Open
Abstract
RTP801/REDD1 is a stress-regulated protein whose levels are increased in several neurodegenerative diseases such as Parkinson's, Alzheimer's, and Huntington's diseases (HD). RTP801 downregulation ameliorates behavioral abnormalities in several mouse models of these disorders. In HD, RTP801 mediates mutant huntingtin (mhtt) toxicity in in vitro models and its levels are increased in human iPSCs, human postmortem putamen samples, and in striatal synaptosomes from mouse models of the disease. Here, we investigated the role of RTP801 in the hippocampal pathophysiology of HD. We found that RTP801 levels are increased in the hippocampus of HD patients in correlation with gliosis markers. Although RTP801 expression is not altered in the hippocampus of the R6/1 mouse model of HD, neuronal RTP801 silencing in the dorsal hippocampus with shRNA containing AAV particles ameliorates cognitive alterations. This recovery is associated with a partial rescue of synaptic markers and with a reduction in inflammatory events, especially microgliosis. Altogether, our results indicate that RTP801 could be a marker of hippocampal neuroinflammation in HD patients and a promising therapeutic target of the disease.
Collapse
Affiliation(s)
- Leticia Pérez-Sisqués
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain; (L.P.-S.); (J.S.-B.); (G.C.-C.); (N.M.-F.); (A.S.-B.); (M.V.-I.); (F.S.-P.); (M.G.-F.); (M.M.); (J.A.); (E.P.-N.)
| | - Júlia Solana-Balaguer
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain; (L.P.-S.); (J.S.-B.); (G.C.-C.); (N.M.-F.); (A.S.-B.); (M.V.-I.); (F.S.-P.); (M.G.-F.); (M.M.); (J.A.); (E.P.-N.)
| | - Genís Campoy-Campos
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain; (L.P.-S.); (J.S.-B.); (G.C.-C.); (N.M.-F.); (A.S.-B.); (M.V.-I.); (F.S.-P.); (M.G.-F.); (M.M.); (J.A.); (E.P.-N.)
| | - Núria Martín-Flores
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain; (L.P.-S.); (J.S.-B.); (G.C.-C.); (N.M.-F.); (A.S.-B.); (M.V.-I.); (F.S.-P.); (M.G.-F.); (M.M.); (J.A.); (E.P.-N.)
| | - Anna Sancho-Balsells
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain; (L.P.-S.); (J.S.-B.); (G.C.-C.); (N.M.-F.); (A.S.-B.); (M.V.-I.); (F.S.-P.); (M.G.-F.); (M.M.); (J.A.); (E.P.-N.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Marcel Vives-Isern
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain; (L.P.-S.); (J.S.-B.); (G.C.-C.); (N.M.-F.); (A.S.-B.); (M.V.-I.); (F.S.-P.); (M.G.-F.); (M.M.); (J.A.); (E.P.-N.)
| | - Ferran Soler-Palazón
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain; (L.P.-S.); (J.S.-B.); (G.C.-C.); (N.M.-F.); (A.S.-B.); (M.V.-I.); (F.S.-P.); (M.G.-F.); (M.M.); (J.A.); (E.P.-N.)
| | - Marta Garcia-Forn
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain; (L.P.-S.); (J.S.-B.); (G.C.-C.); (N.M.-F.); (A.S.-B.); (M.V.-I.); (F.S.-P.); (M.G.-F.); (M.M.); (J.A.); (E.P.-N.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Mercè Masana
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain; (L.P.-S.); (J.S.-B.); (G.C.-C.); (N.M.-F.); (A.S.-B.); (M.V.-I.); (F.S.-P.); (M.G.-F.); (M.M.); (J.A.); (E.P.-N.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Jordi Alberch
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain; (L.P.-S.); (J.S.-B.); (G.C.-C.); (N.M.-F.); (A.S.-B.); (M.V.-I.); (F.S.-P.); (M.G.-F.); (M.M.); (J.A.); (E.P.-N.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Esther Pérez-Navarro
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain; (L.P.-S.); (J.S.-B.); (G.C.-C.); (N.M.-F.); (A.S.-B.); (M.V.-I.); (F.S.-P.); (M.G.-F.); (M.M.); (J.A.); (E.P.-N.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Albert Giralt
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain; (L.P.-S.); (J.S.-B.); (G.C.-C.); (N.M.-F.); (A.S.-B.); (M.V.-I.); (F.S.-P.); (M.G.-F.); (M.M.); (J.A.); (E.P.-N.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Cristina Malagelada
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain; (L.P.-S.); (J.S.-B.); (G.C.-C.); (N.M.-F.); (A.S.-B.); (M.V.-I.); (F.S.-P.); (M.G.-F.); (M.M.); (J.A.); (E.P.-N.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| |
Collapse
|
17
|
Kraskovskaya NA, Erofeev AI, Grishina ED, Pushkareva SA, Gerasimov EI, Vlasova OL, Bezprozvanny IB. Development of Hippocampus-Associated Cognitive Dysfunction in Huntington’s Disease Mouse Model. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021060211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Villegas L, Nørremølle A, Freude K, Vilhardt F. Nicotinamide Adenine Dinucleotide Phosphate Oxidases Are Everywhere in Brain Disease, but Not in Huntington's Disease? Front Aging Neurosci 2021; 13:736734. [PMID: 34803655 PMCID: PMC8602359 DOI: 10.3389/fnagi.2021.736734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder characterized by neuronal loss and tissue atrophy mainly in the striatum and cortex. In the early stages of the disease, impairment of neuronal function, synaptic dysfunction and white matter loss precedes neuronal death itself. Relative to other neurodegenerative diseases such as Alzheimer's and Parkinson's disease and Amyotrophic Lateral Sclerosis, where the effects of either microglia or NADPH oxidases (NOXs) are recognized as important contributors to disease pathogenesis and progression, there is a pronounced lack of information in HD. This information void contrasts with evidence from human HD patients where blood monocytes and microglia are activated well before HD clinical symptoms (PET scans), and the clear signs of oxidative stress and inflammation in post mortem HD brain. Habitually, NOX activity and oxidative stress in the central nervous system (CNS) are equated with microglia, but research of the last two decades has carved out important roles for NOX enzyme function in neurons. Here, we will convey recent information about the function of NOX enzymes in neurons, and contemplate on putative roles of neuronal NOX in HD. We will focus on NOX-produced reactive oxygen species (ROS) as redox signaling molecules in/among neurons, and the specific roles of NOXs in important processes such as neurogenesis and lineage specification, neurite outgrowth and growth cone dynamics, and synaptic plasticity where NMDAR-dependent signaling, and long-term depression/potentiation are redox-regulated phenomena. HD animal models and induced pluripotent stem cell (iPSC) studies have made it clear that the very same physiological processes are also affected in HD, and we will speculate on possible roles for NOX in the pathogenesis and development of disease. Finally, we also take into account the limited information on microglia in HD and relate this to any contribution of NOX enzymes.
Collapse
Affiliation(s)
- Luisana Villegas
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anne Nørremølle
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kristine Freude
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Frederik Vilhardt
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Querfurth H, Lee HK. Mammalian/mechanistic target of rapamycin (mTOR) complexes in neurodegeneration. Mol Neurodegener 2021; 16:44. [PMID: 34215308 PMCID: PMC8252260 DOI: 10.1186/s13024-021-00428-5] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Novel targets to arrest neurodegeneration in several dementing conditions involving misfolded protein accumulations may be found in the diverse signaling pathways of the Mammalian/mechanistic target of rapamycin (mTOR). As a nutrient sensor, mTOR has important homeostatic functions to regulate energy metabolism and support neuronal growth and plasticity. However, in Alzheimer's disease (AD), mTOR alternately plays important pathogenic roles by inhibiting both insulin signaling and autophagic removal of β-amyloid (Aβ) and phospho-tau (ptau) aggregates. It also plays a role in the cerebrovascular dysfunction of AD. mTOR is a serine/threonine kinase residing at the core in either of two multiprotein complexes termed mTORC1 and mTORC2. Recent data suggest that their balanced actions also have implications for Parkinson's disease (PD) and Huntington's disease (HD), Frontotemporal dementia (FTD) and Amyotrophic Lateral Sclerosis (ALS). Beyond rapamycin; an mTOR inhibitor, there are rapalogs having greater tolerability and micro delivery modes, that hold promise in arresting these age dependent conditions.
Collapse
Affiliation(s)
- Henry Querfurth
- Department of Neurology, Tufts Medical Center, Boston, Massachusetts, USA.
| | - Han-Kyu Lee
- Department of Neurology, Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Diociaiuti M, Bonanni R, Cariati I, Frank C, D’Arcangelo G. Amyloid Prefibrillar Oligomers: The Surprising Commonalities in Their Structure and Activity. Int J Mol Sci 2021; 22:ijms22126435. [PMID: 34208561 PMCID: PMC8235680 DOI: 10.3390/ijms22126435] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
It has been proposed that a “common core” of pathologic pathways exists for the large family of amyloid-associated neurodegenerations, including Alzheimer’s, Parkinson’s, type II diabetes and Creutzfeldt–Jacob’s Disease. Aggregates of the involved proteins, independently from their primary sequence, induced neuron membrane permeabilization able to trigger an abnormal Ca2+ influx leading to synaptotoxicity, resulting in reduced expression of synaptic proteins and impaired synaptic transmission. Emerging evidence is now focusing on low-molecular-weight prefibrillar oligomers (PFOs), which mimic bacterial pore-forming toxins that form well-ordered oligomeric membrane-spanning pores. At the same time, the neuron membrane composition and its chemical microenvironment seem to play a pivotal role. In fact, the brain of AD patients contains increased fractions of anionic lipids able to favor cationic influx. However, up to now the existence of a specific “common structure” of the toxic aggregate, and a “common mechanism” by which it induces neuronal damage, synaptotoxicity and impaired synaptic transmission, is still an open hypothesis. In this review, we gathered information concerning this hypothesis, focusing on the proteins linked to several amyloid diseases. We noted commonalities in their structure and membrane activity, and their ability to induce Ca2+ influx, neurotoxicity, synaptotoxicity and impaired synaptic transmission.
Collapse
Affiliation(s)
- Marco Diociaiuti
- Centro Nazionale Malattie Rare, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
- Correspondence:
| | - Roberto Bonanni
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (G.D.)
| | - Ida Cariati
- PhD in Medical-Surgical Biotechnologies and Translational Medicine, Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
| | - Claudio Frank
- UniCamillus-Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy;
| | - Giovanna D’Arcangelo
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (G.D.)
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
21
|
Barron JC, Hurley EP, Parsons MP. Huntingtin and the Synapse. Front Cell Neurosci 2021; 15:689332. [PMID: 34211373 PMCID: PMC8239291 DOI: 10.3389/fncel.2021.689332] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022] Open
Abstract
Huntington disease (HD) is a monogenic disease that results in a combination of motor, psychiatric and cognitive symptoms. HD is caused by a CAG trinucleotide repeat expansion in the huntingtin (HTT) gene, which results in the production of a pathogenic mutant HTT protein (mHTT). Although there is no cure at present for HD, a number of RNA-targeting therapies have recently entered clinical trials which aim to lower mHTT production through the use of antisense oligonucleotides (ASOs) and RNAi. However, many of these treatment strategies are non-selective in that they cannot differentiate between non-pathogenic wild type HTT (wtHTT) and the mHTT variant. As HD patients are already born with decreased levels of wtHTT, these genetic therapies may result in critically low levels of wtHTT. The consequence of wtHTT reduction in the adult brain is currently under debate, and here we argue that wtHTT loss is not well-tolerated at the synaptic level. Synaptic dysfunction is an extremely sensitive measure of subsequent cell death, and is known to precede neurodegeneration in numerous brain diseases including HD. The present review focuses on the prominent role of wtHTT at the synapse and considers the consequences of wtHTT loss on both pre- and postsynaptic function. We discuss how wtHTT is implicated in virtually all major facets of synaptic neurotransmission including anterograde and retrograde transport of proteins to/from terminal buttons and dendrites, neurotransmitter release, endocytic vesicle recycling, and postsynaptic receptor localization and recycling. We conclude that wtHTT presence is essential for proper synaptic function.
Collapse
Affiliation(s)
- Jessica C Barron
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL, Canada
| | - Emily P Hurley
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL, Canada
| | - Matthew P Parsons
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL, Canada
| |
Collapse
|
22
|
Grosso Jasutkar H, Yamamoto A. Do Changes in Synaptic Autophagy Underlie the Cognitive Impairments in Huntington's Disease? J Huntingtons Dis 2021; 10:227-238. [PMID: 33780373 PMCID: PMC8293641 DOI: 10.3233/jhd-200466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Although Huntington's disease (HD) is classically considered from the perspective of the motor syndrome, the cognitive changes in HD are prominent and often an early manifestation of disease. As such, investigating the underlying pathophysiology of cognitive changes may give insight into important and early neurodegenerative events. In this review, we first discuss evidence from both HD patients and animal models that cognitive changes correlate with early pathological changes at the synapse, an observation that is similarly made in other neurodegenerative conditions that primarily affect cognition. We then describe how autophagy plays a critical role supporting synaptic maintenance in the healthy brain, and how autophagy dysfunction in HD may thereby lead to impaired synaptic maintenance and thus early manifestations of disease.
Collapse
Affiliation(s)
| | - Ai Yamamoto
- Department of Neurology, Columbia University, New York, NY, USA.,Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|
23
|
Martinez NW, Gómez FE, Matus S. The Potential Role of Protein Kinase R as a Regulator of Age-Related Neurodegeneration. Front Aging Neurosci 2021; 13:638208. [PMID: 33994991 PMCID: PMC8113420 DOI: 10.3389/fnagi.2021.638208] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/10/2021] [Indexed: 01/25/2023] Open
Abstract
There is a growing evidence describing a decline in adaptive homeostasis in aging-related diseases affecting the central nervous system (CNS), many of which are characterized by the appearance of non-native protein aggregates. One signaling pathway that allows cell adaptation is the integrated stress response (ISR), which senses stress stimuli through four kinases. ISR activation promotes translational arrest through the phosphorylation of the eukaryotic translation initiation factor 2 alpha (eIF2α) and the induction of a gene expression program to restore cellular homeostasis. However, depending on the stimulus, ISR can also induce cell death. One of the ISR sensors is the double-stranded RNA-dependent protein kinase [protein kinase R (PKR)], initially described as a viral infection sensor, and now a growing evidence supports a role for PKR on CNS physiology. PKR has been largely involved in the Alzheimer’s disease (AD) pathological process. Here, we reviewed the antecedents supporting the role of PKR on the efficiency of synaptic transmission and cognition. Then, we review PKR’s contribution to AD and discuss the possible participation of PKR as a player in the neurodegenerative process involved in aging-related pathologies affecting the CNS.
Collapse
Affiliation(s)
- Nicolás W Martinez
- Fundación Ciencia & Vida, Santiago, Chile.,Departamento de Ciencias Básicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | | | - Soledad Matus
- Fundación Ciencia & Vida, Santiago, Chile.,Departamento de Ciencias Básicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| |
Collapse
|
24
|
Alcalá‐Vida R, Garcia‐Forn M, Castany‐Pladevall C, Creus‐Muncunill J, Ito Y, Blanco E, Golbano A, Crespí‐Vázquez K, Parry A, Slater G, Samarajiwa S, Peiró S, Di Croce L, Narita M, Pérez‐Navarro E. Neuron type-specific increase in lamin B1 contributes to nuclear dysfunction in Huntington's disease. EMBO Mol Med 2021; 13:e12105. [PMID: 33369245 PMCID: PMC7863407 DOI: 10.15252/emmm.202012105] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 01/08/2023] Open
Abstract
Lamins are crucial proteins for nuclear functionality. Here, we provide new evidence showing that increased lamin B1 levels contribute to the pathophysiology of Huntington's disease (HD), a CAG repeat-associated neurodegenerative disorder. Through fluorescence-activated nuclear suspension imaging, we show that nucleus from striatal medium-sized spiny and CA1 hippocampal neurons display increased lamin B1 levels, in correlation with altered nuclear morphology and nucleocytoplasmic transport disruption. Moreover, ChIP-sequencing analysis shows an alteration of lamin-associated chromatin domains in hippocampal nuclei, accompanied by changes in chromatin accessibility and transcriptional dysregulation. Supporting lamin B1 alterations as a causal role in mutant huntingtin-mediated neurodegeneration, pharmacological normalization of lamin B1 levels in the hippocampus of the R6/1 mouse model of HD by betulinic acid administration restored nuclear homeostasis and prevented motor and cognitive dysfunction. Collectively, our work points increased lamin B1 levels as a new pathogenic mechanism in HD and provides a novel target for its intervention.
Collapse
Affiliation(s)
- Rafael Alcalá‐Vida
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutInstitut de NeurociènciesUniversitat de BarcelonaBarcelonaCatalonia
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaCatalonia
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Present address:
Laboratory of Cognitive and Adaptive NeuroscienceUMR 7364 (CNRS/Strasbourg University)StrasbourgFrance
| | - Marta Garcia‐Forn
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutInstitut de NeurociènciesUniversitat de BarcelonaBarcelonaCatalonia
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaCatalonia
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Present address:
Seaver Autism Center for Research and TreatmentIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Carla Castany‐Pladevall
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutInstitut de NeurociènciesUniversitat de BarcelonaBarcelonaCatalonia
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaCatalonia
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Jordi Creus‐Muncunill
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutInstitut de NeurociènciesUniversitat de BarcelonaBarcelonaCatalonia
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaCatalonia
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Yoko Ito
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
| | - Enrique Blanco
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Arantxa Golbano
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutInstitut de NeurociènciesUniversitat de BarcelonaBarcelonaCatalonia
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaCatalonia
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Kilian Crespí‐Vázquez
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutInstitut de NeurociènciesUniversitat de BarcelonaBarcelonaCatalonia
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaCatalonia
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Aled Parry
- Epigenetics ProgrammeThe Babraham InstituteCambridgeUK
| | - Guy Slater
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
| | - Shamith Samarajiwa
- MRC Cancer UnitHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
| | - Sandra Peiró
- Vall d'Hebron Institute of OncologyBarcelonaSpain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- ICREABarcelonaSpain
| | - Masashi Narita
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
| | - Esther Pérez‐Navarro
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutInstitut de NeurociènciesUniversitat de BarcelonaBarcelonaCatalonia
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaCatalonia
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| |
Collapse
|
25
|
Ravalia AS, Lau J, Barron JC, Purchase SLM, Southwell AL, Hayden MR, Nafar F, Parsons MP. Super-resolution imaging reveals extrastriatal synaptic dysfunction in presymptomatic Huntington disease mice. Neurobiol Dis 2021; 152:105293. [PMID: 33556538 DOI: 10.1016/j.nbd.2021.105293] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/14/2021] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Synaptic structure and function are compromised prior to cell death and symptom onset in a variety of neurodegenerative diseases. In Huntington disease (HD), a CAG repeat expansion in the gene encoding the huntingtin protein results in a presymptomatic stage that typically spans multiple decades and is followed by striking degeneration of striatal tissue and the progression of debilitating motor symptoms. Many lines of evidence demonstrate that the HD presymptomatic window is associated with injurious effects to striatal synapses, many of which appear to be prerequisites to subsequent cell death. While the striatum is the most vulnerable region in the HD brain, it is widely recognized that HD is a brain-wide disease, affecting numerous extrastriatal regions that contribute to debilitating non-motor symptoms including cognitive dysfunction. Currently, we have a poor understanding of the synaptic integrity, or lack thereof, in extrastriatal regions in the presymptomatic HD brain. If early therapeutic intervention seeks to maintain healthy synaptic function, it is important to understand early HD-associated synaptopathy at a brain-wide, rather than striatal-exclusive, level. Here, we focused on the hippocampus as this structure is generally thought to be affected only in manifest HD despite the subtle cognitive deficits known to emerge in prodromal HD. We used super-resolution microscopy and multi-electrode array electrophysiology as sensitive measures of excitatory synapse structure and function, respectively, in the hippocampus of presymptomatic heterozygous HD mice (Q175FDN model). We found clear evidence for enhanced AMPA receptor subunit clustering and hyperexcitability well before the onset of a detectable HD-like behavioral phenotype. In addition, activity-dependent re-organization of synaptic protein nanostructure, and functional measures of synaptic plasticity were impaired in presymptomatic HD mice. These data demonstrate that synaptic abnormalities in the presymptomatic HD brain are not exclusive to the striatum, and highlight the need to better understand the region-dependent complexities of early synaptopathy in the HD brain.
Collapse
Affiliation(s)
- Adam S Ravalia
- Division of Biomedical Science, Faculty of Medicine, Memorial University, St. John's, NL A1B 3V6, Canada
| | - James Lau
- Division of Biomedical Science, Faculty of Medicine, Memorial University, St. John's, NL A1B 3V6, Canada
| | - Jessica C Barron
- Division of Biomedical Science, Faculty of Medicine, Memorial University, St. John's, NL A1B 3V6, Canada
| | - Stephanie L M Purchase
- Division of Biomedical Science, Faculty of Medicine, Memorial University, St. John's, NL A1B 3V6, Canada
| | - Amber L Southwell
- University of Central Florida, College of Medicine, Burnett School of Biomedical Sciences, Orlando, FL, USA
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Firoozeh Nafar
- Division of Biomedical Science, Faculty of Medicine, Memorial University, St. John's, NL A1B 3V6, Canada
| | - Matthew P Parsons
- Division of Biomedical Science, Faculty of Medicine, Memorial University, St. John's, NL A1B 3V6, Canada.
| |
Collapse
|
26
|
A Mechanistic Model of NMDA and AMPA Receptor-Mediated Synaptic Transmission in Individual Hippocampal CA3-CA1 Synapses: A Computational Multiscale Approach. Int J Mol Sci 2021; 22:ijms22041536. [PMID: 33546429 PMCID: PMC7913719 DOI: 10.3390/ijms22041536] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/05/2022] Open
Abstract
Inside hippocampal circuits, neuroplasticity events that individual cells may undergo during synaptic transmissions occur in the form of Long-Term Potentiation (LTP) and Long-Term Depression (LTD). The high density of NMDA receptors expressed on the surface of the dendritic CA1 spines confers to hippocampal CA3-CA1 synapses the ability to easily undergo NMDA-mediated LTP and LTD, which is essential for some forms of explicit learning in mammals. Providing a comprehensive kinetic model that can be used for running computer simulations of the synaptic transmission process is currently a major challenge. Here, we propose a compartmentalized kinetic model for CA3-CA1 synaptic transmission. Our major goal was to tune our model in order to predict the functional impact caused by disease associated variants of NMDA receptors related to severe cognitive impairment. Indeed, for variants Glu413Gly and Cys461Phe, our model predicts negative shifts in the glutamate affinity and changes in the kinetic behavior, consistent with experimental data. These results point to the predictive power of this multiscale viewpoint, which aims to integrate the quantitative kinetic description of large interaction networks typical of system biology approaches with a focus on the quality of a few, key, molecular interactions typical of structural biology ones.
Collapse
|
27
|
Martín-Flores N, Pérez-Sisqués L, Creus-Muncunill J, Masana M, Ginés S, Alberch J, Pérez-Navarro E, Malagelada C. Synaptic RTP801 contributes to motor-learning dysfunction in Huntington's disease. Cell Death Dis 2020; 11:569. [PMID: 32732871 PMCID: PMC7392897 DOI: 10.1038/s41419-020-02775-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/20/2022]
Abstract
RTP801/REDD1 is a stress-responsive protein that mediates mutant huntingtin (mhtt) toxicity in cellular models and is up regulated in Huntington's disease (HD) patients' putamen. Here, we investigated whether RTP801 is involved in motor impairment in HD by affecting striatal synaptic plasticity. To explore this hypothesis, ectopic mhtt was over expressed in cultured rat primary neurons. Moreover, the protein levels of RTP801 were assessed in homogenates and crude synaptic fractions from human postmortem HD brains and mouse models of HD. Finally, striatal RTP801 expression was knocked down with adeno-associated viral particles containing a shRNA in the R6/1 mouse model of HD and motor learning was then tested. Ectopic mhtt elevated RTP801 in synapses of cultured neurons. RTP801 was also up regulated in striatal synapses from HD patients and mouse models. Knocking down RTP801 in the R6/1 mouse striatum prevented motor-learning impairment. RTP801 silencing normalized the Ser473 Akt hyperphosphorylation by downregulating Rictor and it induced synaptic elevation of calcium permeable GluA1 subunit and TrkB receptor levels, suggesting an enhancement in synaptic plasticity. These results indicate that mhtt-induced RTP801 mediates motor dysfunction in a HD murine model, revealing a potential role in the human disease. These findings open a new therapeutic framework focused on the RTP801/Akt/mTOR axis.
Collapse
Affiliation(s)
- Núria Martín-Flores
- Department of Biomedicine, Faculty of Medicine, University of Barcelona, 08036, Barcelona, Catalonia, Spain.
- Institut de Neurociències, University of Barcelona, 08036, Barcelona, Catalonia, Spain.
| | - Leticia Pérez-Sisqués
- Department of Biomedicine, Faculty of Medicine, University of Barcelona, 08036, Barcelona, Catalonia, Spain
- Institut de Neurociències, University of Barcelona, 08036, Barcelona, Catalonia, Spain
| | - Jordi Creus-Muncunill
- Department of Biomedicine, Faculty of Medicine, University of Barcelona, 08036, Barcelona, Catalonia, Spain
- Institut de Neurociències, University of Barcelona, 08036, Barcelona, Catalonia, Spain
- IDIBAPS-Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08036, Barcelona, Spain
| | - Mercè Masana
- Department of Biomedicine, Faculty of Medicine, University of Barcelona, 08036, Barcelona, Catalonia, Spain
- Institut de Neurociències, University of Barcelona, 08036, Barcelona, Catalonia, Spain
- IDIBAPS-Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08036, Barcelona, Spain
| | - Sílvia Ginés
- Department of Biomedicine, Faculty of Medicine, University of Barcelona, 08036, Barcelona, Catalonia, Spain
- Institut de Neurociències, University of Barcelona, 08036, Barcelona, Catalonia, Spain
- IDIBAPS-Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08036, Barcelona, Spain
| | - Jordi Alberch
- Department of Biomedicine, Faculty of Medicine, University of Barcelona, 08036, Barcelona, Catalonia, Spain
- Institut de Neurociències, University of Barcelona, 08036, Barcelona, Catalonia, Spain
- IDIBAPS-Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08036, Barcelona, Spain
| | - Esther Pérez-Navarro
- Department of Biomedicine, Faculty of Medicine, University of Barcelona, 08036, Barcelona, Catalonia, Spain
- Institut de Neurociències, University of Barcelona, 08036, Barcelona, Catalonia, Spain
- IDIBAPS-Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08036, Barcelona, Spain
| | - Cristina Malagelada
- Department of Biomedicine, Faculty of Medicine, University of Barcelona, 08036, Barcelona, Catalonia, Spain.
- Institut de Neurociències, University of Barcelona, 08036, Barcelona, Catalonia, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08036, Barcelona, Spain.
| |
Collapse
|
28
|
Rolfes S, Munro DAD, Lyras EM, Matute E, Ouk K, Harms C, Böttcher C, Priller J. Lentiviral delivery of human erythropoietin attenuates hippocampal atrophy and improves cognition in the R6/2 mouse model of Huntington's disease. Neurobiol Dis 2020; 144:105024. [PMID: 32702387 DOI: 10.1016/j.nbd.2020.105024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/04/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022] Open
Abstract
Huntington's disease (HD) is an incurable neurodegenerative disorder caused by a trinucleotide (CAG) repeat expansion in the huntingtin gene (HTT). The R6/2 transgenic mouse model of HD expresses exon 1 of the human HTT gene with approximately 150 CAG repeats. R6/2 mice develop progressive behavioural abnormalities, impaired neurogenesis, and atrophy of several brain regions. In recent years, erythropoietin (EPO) has been shown to confer neuroprotection and enhance neurogenesis, rendering it a promising molecule to attenuate HD symptoms. In this study, the therapeutic potential of EPO was evaluated in female R6/2 transgenic mice. A single bilateral injection of a lentivirus encoding human EPO (LV-hEPO) was performed into the lateral ventricles of R6/2 mice at disease onset (8 weeks of age). Control groups were either untreated or injected with a lentivirus encoding green fluorescent protein (LV-GFP). Thirty days after virus administration, hEPO mRNA and protein were present in injected R6/2 brains. Compared to control R6/2 mice, LV-hEPO-treated R6/2 mice exhibited reduced hippocampal atrophy, increased neuroblast branching towards the dentate granular cell layer, and improved spatial cognition. Our results suggest that LV-hEPO administration may be a promising strategy to reduce cognitive impairment in HD.
Collapse
Affiliation(s)
- Simone Rolfes
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité -Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - David A D Munro
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh EH16 4SA, UK
| | - Ekaterini-Maria Lyras
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité -Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Eduardo Matute
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité -Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Koliane Ouk
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité -Universitätsmedizin Berlin, 10117 Berlin, Germany; DZNE Berlin, 10117 Berlin, Germany
| | - Christoph Harms
- Department of Experimental Neurology and Center for Stroke Research, Charité -Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Chotima Böttcher
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité -Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Josef Priller
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité -Universitätsmedizin Berlin, 10117 Berlin, Germany; UK Dementia Research Institute at the University of Edinburgh, Edinburgh EH16 4SA, UK; DZNE Berlin, 10117 Berlin, Germany.
| |
Collapse
|
29
|
Zhang H, Bramham CR. Bidirectional Dysregulation of AMPA Receptor-Mediated Synaptic Transmission and Plasticity in Brain Disorders. Front Synaptic Neurosci 2020; 12:26. [PMID: 32754026 PMCID: PMC7366028 DOI: 10.3389/fnsyn.2020.00026] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
AMPA receptors (AMPARs) are glutamate-gated ion channels that mediate the majority of fast excitatory synaptic transmission throughout the brain. Changes in the properties and postsynaptic abundance of AMPARs are pivotal mechanisms in synaptic plasticity, such as long-term potentiation (LTP) and long-term depression (LTD) of synaptic transmission. A wide range of neurodegenerative, neurodevelopmental and neuropsychiatric disorders, despite their extremely diverse etiology, pathogenesis and symptoms, exhibit brain region-specific and AMPAR subunit-specific aberrations in synaptic transmission or plasticity. These include abnormally enhanced or reduced AMPAR-mediated synaptic transmission or plasticity. Bidirectional reversal of these changes by targeting AMPAR subunits or trafficking ameliorates drug-seeking behavior, chronic pain, epileptic seizures, or cognitive deficits. This indicates that bidirectional dysregulation of AMPAR-mediated synaptic transmission or plasticity may contribute to the expression of many brain disorders and therefore serve as a therapeutic target. Here, we provide a synopsis of bidirectional AMPAR dysregulation in animal models of brain disorders and review the preclinical evidence on the therapeutic targeting of AMPARs.
Collapse
Affiliation(s)
- Hongyu Zhang
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Clive R Bramham
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
30
|
Gubert C, Renoir T, Hannan AJ. Why Woody got the blues: The neurobiology of depression in Huntington's disease. Neurobiol Dis 2020; 142:104958. [PMID: 32526274 DOI: 10.1016/j.nbd.2020.104958] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/02/2020] [Accepted: 06/03/2020] [Indexed: 02/03/2023] Open
Abstract
Huntington's disease (HD) is an extraordinary disorder that usually strikes when individuals are in the prime of their lives, as was the case for the influential 20th century musician Woody Guthrie. HD demonstrates the exceptionally fine line between life and death in such 'genetic diseases', as the only difference between those who suffer horribly and die slowly of this disease is often just a handful of extra tandem repeats (beyond the normal polymorphic range) in a genome that constitutes over 3 billion paired nucleotides of DNA. Furthermore, HD presents as a complex and heterogenous combination of psychiatric, cognitive and motor symptoms, so can appear as an unholy trinity of 'three disorders in one'. The autosomal dominant nature of the disorder is also extremely challenging for affected families, as a 'flip of a coin' dictates which children inherit the mutation from their affected parent, and the gene-negative family members bear the burden of caring for the other half of the family that is affected. In this review, we will focus on one of the earliest, and most devastating, symptoms associated with HD, depression, which has been reported to affect approximately half of gene-positive HD family members. We will discuss the pathogenesis of HD, and depressive symptoms in particular, including molecular and cellular mechanisms, and potential genetic and environmental modifiers. This expanding understanding of HD pathogenesis may not only lead to novel therapeutic options for HD families, but may also provide insights into depression in the wider population, which has the greatest burden of disease of any disorder and an enormous unmet need for new therapies.
Collapse
Affiliation(s)
- Carolina Gubert
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Thibault Renoir
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
31
|
Ponzi A, Barton SJ, Bunner KD, Rangel-Barajas C, Zhang ES, Miller BR, Rebec GV, Kozloski J. Striatal network modeling in Huntington's Disease. PLoS Comput Biol 2020; 16:e1007648. [PMID: 32302302 PMCID: PMC7197869 DOI: 10.1371/journal.pcbi.1007648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 05/04/2020] [Accepted: 01/09/2020] [Indexed: 12/26/2022] Open
Abstract
Medium spiny neurons (MSNs) comprise over 90% of cells in the striatum. In vivo MSNs display coherent burst firing cell assembly activity patterns, even though isolated MSNs do not burst fire intrinsically. This activity is important for the learning and execution of action sequences and is characteristically dysregulated in Huntington's Disease (HD). However, how dysregulation is caused by the various neural pathologies affecting MSNs in HD is unknown. Previous modeling work using simple cell models has shown that cell assembly activity patterns can emerge as a result of MSN inhibitory network interactions. Here, by directly estimating MSN network model parameters from single unit spiking data, we show that a network composed of much more physiologically detailed MSNs provides an excellent quantitative fit to wild type (WT) mouse spiking data, but only when network parameters are appropriate for the striatum. We find the WT MSN network is situated in a regime close to a transition from stable to strongly fluctuating network dynamics. This regime facilitates the generation of low-dimensional slowly varying coherent activity patterns and confers high sensitivity to variations in cortical driving. By re-estimating the model on HD spiking data we discover network parameter modifications are consistent across three very different types of HD mutant mouse models (YAC128, Q175, R6/2). In striking agreement with the known pathophysiology we find feedforward excitatory drive is reduced in HD compared to WT mice, while recurrent inhibition also shows phenotype dependency. We show that these modifications shift the HD MSN network to a sub-optimal regime where higher dimensional incoherent rapidly fluctuating activity predominates. Our results provide insight into a diverse range of experimental findings in HD, including cognitive and motor symptoms, and may suggest new avenues for treatment.
Collapse
Affiliation(s)
- Adam Ponzi
- IBM Research, Computational Biology Center, Thomas J. Watson Research Laboratories, Yorktown Heights, New York, United States of America
- * E-mail:
| | - Scott J. Barton
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Kendra D. Bunner
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Claudia Rangel-Barajas
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Emily S. Zhang
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Benjamin R. Miller
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - George V. Rebec
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - James Kozloski
- IBM Research, Computational Biology Center, Thomas J. Watson Research Laboratories, Yorktown Heights, New York, United States of America
| |
Collapse
|
32
|
Swier VJ, White KA, Meyerholz DK, Chefdeville A, Khanna R, Sieren JC, Quelle DE, Weimer JM. Validating indicators of CNS disorders in a swine model of neurological disease. PLoS One 2020; 15:e0228222. [PMID: 32074109 PMCID: PMC7029865 DOI: 10.1371/journal.pone.0228222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/09/2020] [Indexed: 11/18/2022] Open
Abstract
Genetically modified swine disease models are becoming increasingly important for studying molecular, physiological and pathological characteristics of human disorders. Given the limited history of these model systems, there remains a great need for proven molecular reagents in swine tissue. Here, to provide a resource for neurological models of disease, we validated antibodies by immunohistochemistry for use in examining central nervous system (CNS) markers in a recently developed miniswine model of neurofibromatosis type 1 (NF1). NF1 is an autosomal dominant tumor predisposition disorder stemming from mutations in NF1, a gene that encodes the Ras-GTPase activating protein neurofibromin. Patients classically present with benign neurofibromas throughout their bodies and can also present with neurological associated symptoms such as chronic pain, cognitive impairment, and behavioral abnormalities. As validated antibodies for immunohistochemistry applications are particularly difficult to find for swine models of neurological disease, we present immunostaining validation of antibodies implicated in glial inflammation (CD68), oligodendrocyte development (NG2, O4 and Olig2), and neuron differentiation and neurotransmission (doublecortin, GAD67, and tyrosine hydroxylase) by examining cellular localization and brain region specificity. Additionally, we confirm the utility of anti-GFAP, anti-Iba1, and anti-MBP antibodies, previously validated in swine, by testing their immunoreactivity across multiple brain regions in mutant NF1 samples. These immunostaining protocols for CNS markers provide a useful resource to the scientific community, furthering the utility of genetically modified miniswine for translational and clinical applications.
Collapse
Affiliation(s)
- Vicki J. Swier
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Katherine A. White
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - David K. Meyerholz
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Aude Chefdeville
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, United States of America
- Graduate Interdisciplinary Program in Neuroscience; College of Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Jessica C. Sieren
- Department of Radiology and Biomedical Engineering, University of Iowa, Iowa City, Iowa, United States of America
| | - Dawn E. Quelle
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa, United States of America
| | - Jill M. Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, United States of America
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, United States of America
- * E-mail:
| |
Collapse
|
33
|
Estrada-Sánchez AM, Blake CL, Barton SJ, Howe AG, Rebec GV. Lack of mutant huntingtin in cortical efferents improves behavioral inflexibility and corticostriatal dynamics in Huntington's disease mice. J Neurophysiol 2019; 122:2621-2629. [PMID: 31693428 DOI: 10.1152/jn.00777.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Abnormal communication between cerebral cortex and striatum plays a major role in the motor symptoms of Huntington's disease (HD), a neurodegenerative disorder caused by a mutation of the huntingtin gene (mHTT). Because cortex is the main driver of striatal processing, we recorded local field potential (LFP) activity simultaneously in primary motor cortex (M1) and dorsal striatum (DS) in BACHD mice, a full-length HD gene model, and in a conditional BACHD/Emx-1 Cre (BE) model in which mHTT is suppressed in cortical efferents, while mice freely explored a plus-shaped maze beginning at 20 wk of age. Relative to wild-type (WT) controls, BACHD mice were just as active across >40 wk of testing but became progressively less likely to turn into a perpendicular arm as they approached the choice point of the maze, a sign of HD motor inflexibility. BE mice, in contrast, turned as freely as WT throughout testing. Although BE mice did not exactly match WT in LFP activity, the reduction in alpha (8-13 Hz), beta (13-30 Hz), and low-gamma (30-50 Hz) power that occurred in M1 of turning-impaired BACHD mice was reversed. No reversal occurred in DS. In fact, BE mice showed further reductions in DS theta (4-8 Hz), beta, and low-gamma power relative to the BACHD model. Coherence analysis indicated a dysregulation of corticostriatal information flow in both BACHD and BE mice. Collectively, our results suggest that mHTT in cortical outputs drives the dysregulation of select cortical frequencies that accompany the loss of behavioral flexibility in HD.NEW & NOTEWORTHY BACHD mice, a full-length genetic model of Huntington's disease (HD), express aberrant local field potential (LFP) activity in primary motor cortex (M1) along with decreased probability of turning into a perpendicular arm of a plus-shaped maze, a motor inflexibility phenotype. Suppression of the mutant huntingtin gene in cortical output neurons prevents decline in turning and improves alpha, beta, and low-gamma activity in M1. Our results implicate cortical networks in the search for therapeutic strategies to alleviate HD motor signs.
Collapse
Affiliation(s)
- Ana María Estrada-Sánchez
- Program in Neuroscience and Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana.,Departmento de Biología Molecular, Instituto Potosino De Investigación Científica y Tecnológica, San Luis Potosí, Mexico
| | - Courtney L Blake
- Program in Neuroscience and Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | - Scott J Barton
- Program in Neuroscience and Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | - Andrew G Howe
- Neuroscience Interdepartmental Program, University of California, Los Angeles, California.,Department of Psychology, University of California, Los Angeles, California
| | - George V Rebec
- Program in Neuroscience and Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| |
Collapse
|
34
|
FGF2 and dual agonist of NCAM and FGF receptor 1, Enreptin, rescue neurite outgrowth loss in hippocampal neurons expressing mutated huntingtin proteins. J Neural Transm (Vienna) 2019; 126:1493-1500. [PMID: 31501979 DOI: 10.1007/s00702-019-02073-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/30/2019] [Indexed: 10/26/2022]
Abstract
In the present study, we developed an in vitro model of Huntington disease (HD) by transfecting primary rat hippocampal neurons with plasmids coding for m-htt exon 1 with different number of CAG repeats (18, 50 and 115) and demonstrated the influence of the length of polyQ sequence on neurite elongation. We found that exogenously applied FGF2 significantly rescued the m-htt-induced loss of neurite outgrowth. Moreover, the Enreptin peptide, an FGFR1 and NCAM dual agonist, had a similar neuritogenic effect to FGF2 in clinically relevant m-htt 50Q-expressing neurons. This study has developed an in vitro model of primary hippocampal neurons transfected with m-htt-coding vectors that is a powerful tool to study m-htt-related effects on neuronal placticity.
Collapse
|
35
|
Ambroziak W, Fourie C, Montgomery JM. SAP97-mediated rescue of NMDA receptor surface distribution in a neuronal model of Huntington's disease. Hippocampus 2019; 28:707-723. [PMID: 30067285 DOI: 10.1002/hipo.22995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/22/2018] [Accepted: 05/29/2018] [Indexed: 01/10/2023]
Abstract
Huntington's disease (HD) is a genetic neurodegenerative disorder caused by an expansion of the CAG repeat tract in the HTT gene, leading to motor, cognitive, and psychiatric symptoms. At the cellular level, NMDA-type glutamate receptors are upregulated at glutamatergic extrasynaptic sites in HD, triggering cell death signaling pathways and driving HD neurodegeneration. Extrasynaptic and synaptic glutamate receptor trafficking and surface distribution are regulated by the α and β N-terminal isoforms of SAP97, a postsynaptic density protein localized at glutamatergic synapses. Here we examined the surface distribution of NMDARs and AMPARs in a cellular model of HD, and whether the manipulation of individual SAP97 isoforms can regulate receptor distribution in diseased neurons. Using dSTORM super-resolution imaging, we reveal that mutant HTT drives the elevation of extrasynaptic NMDAR clusters located 100-500 nm from the postsynaptic density. This was accompanied by a decline in synaptic NMDAR-mediated currents while surface NMDAR-mediated currents remained unchanged. These effects were induced within 3 days of mutant HTT expression in rat hippocampal neurons in vitro, and were specific for NMDARs and not observed with AMPARs. Intriguingly, upregulation of either α- or βSAP97 expression increased synaptic and/or perisynaptic NMDAR localization and prevented the shift of NMDARs to extrasynaptic sites in mutant HTT neurons. This was accompanied by the rescue of normal synaptic NMDAR-mediated currents. Taken together, our high-resolution data reveals plasticity in surface NMDAR localization driven by mutant HTT and identifies the similar but independent roles of SAP97 N-terminal isoforms in maintaining normal synaptic function in pathological states.
Collapse
Affiliation(s)
- Wojciech Ambroziak
- Department of Physiology and Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Chantelle Fourie
- Department of Physiology and Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Johanna M Montgomery
- Department of Physiology and Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
36
|
Harris KL, Armstrong M, Swain R, Erzinclioglu S, Das T, Burgess N, Barker RA, Mason SL. Huntington's disease patients display progressive deficits in hippocampal-dependent cognition during a task of spatial memory. Cortex 2019; 119:417-427. [PMID: 31499434 DOI: 10.1016/j.cortex.2019.07.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/24/2019] [Accepted: 07/17/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Cognitive disturbances occur early in Huntington's disease (HD) and place a significant burden on the lives of patients and family members. Whilst these impairments are typically attributed to deterioration of the frontal-striatal pathways, accumulating evidence suggests that hippocampal dysfunction may also contribute to such impairments. Here, we employ a novel spatial memory task that has previously been shown to elicit impairments in individuals with focal hippocampal lesions, as a means to further investigate the role of hippocampal dysfunction in HD. METHOD Sixty-four individuals participated in the study, including 32 healthy controls, 11 patients with diagnosed HD and 16 premanifest HD gene carriers. We also included an additional control group of 5 individuals with focal unilateral basal ganglia lesions. Participants undertook a task that measured perception and short-term spatial memory using computer-generated visual scenes. RESULTS HD patients experienced significant impairments in spatial perception and memory, which strongly correlated with disease burden score (DBS). Premanifest gene carriers performed at a similar level to healthy controls throughout all aspects of the task indicating that the effects seen in the HD patients represent a deterioration in function. Interestingly, basal ganglia lesion patients were not impaired in any aspects of the task. CONCLUSION There is evidence of significant deficits in hippocampal-dependent spatial cognition in HD that cannot be explained as a function of degeneration to the basal ganglia. The impairments were greatest in individuals with higher DBSs, suggesting that deficits relate to the disease process in HD.
Collapse
Affiliation(s)
- Kate L Harris
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK.
| | - Matthew Armstrong
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Rachel Swain
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Sharon Erzinclioglu
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Tilak Das
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| | - Neil Burgess
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Roger A Barker
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK; Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, MRC-WT Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Sarah L Mason
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| |
Collapse
|
37
|
Quirion JG, Parsons MP. The Onset and Progression of Hippocampal Synaptic Plasticity Deficits in the Q175FDN Mouse Model of Huntington Disease. Front Cell Neurosci 2019; 13:326. [PMID: 31379510 PMCID: PMC6650530 DOI: 10.3389/fncel.2019.00326] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/03/2019] [Indexed: 12/22/2022] Open
Abstract
Huntington disease (HD) is an inherited neurodegenerative disease characterized by a clinical triad of motor, psychiatric and cognitive symptoms. HD is caused by a CAG repeat expansion in the gene encoding the huntingtin protein. Homozygosity for the HD-causing mutation is extremely rare; thus, the majority of HD patients express the mutant huntingtin protein in addition to reduced levels of the non-pathogenic huntingtin protein. Deficits in synaptic plasticity, including hippocampal long-term potentiation (LTP), have been identified in various mouse models of HD and are thought to contribute to the debilitating cognitive symptoms associated with the disease. However, the bulk of these studies used N-terminal fragment or homozygous knock-in mouse models of HD at symptomatic ages, and our understanding of the onset and progression of synaptic plasticity deficits in the HD brain is lacking. To better understand the time-course of synaptic plasticity deficits in HD, as well as the impact of heterozygous and homozygous huntingtin mutations, we quantified basal synaptic connectivity, presynaptic release probability, presynaptically mediated post-tetanic potentiation (PTP) and postsynaptically mediated LTP at presymptomatic, early symptomatic and late symptomatic ages in heterozygous and homozygous Q175FDN knock-in HD mice. Our results demonstrate clear age-dependent effects of the HD-causing mutation on both short and long-term plasticity that generally emerge earlier in homozygous mice. Interestingly, deficits in presynaptic short-term plasticity were more closely linked to disease progression than deficits in postsynaptic LTP, and heterozygous mice were more susceptible to an LTP deficit when induced by high frequency stimulation compared to theta burst stimulation. To the best of our knowledge, the present study represents the most thorough characterization to date of the onset and progression of hippocampal synaptic plasticity deficits in a mouse model of HD, and should prove valuable to future studies exploring cellular mechanisms underlying the debilitating cognitive decline in HD.
Collapse
Affiliation(s)
- Jade G Quirion
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Matthew P Parsons
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
38
|
Galts CP, Bettio LE, Jewett DC, Yang CC, Brocardo PS, Rodrigues ALS, Thacker JS, Gil-Mohapel J. Depression in neurodegenerative diseases: Common mechanisms and current treatment options. Neurosci Biobehav Rev 2019; 102:56-84. [DOI: 10.1016/j.neubiorev.2019.04.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/22/2019] [Accepted: 04/02/2019] [Indexed: 12/19/2022]
|
39
|
Smith‐Dijak AI, Sepers MD, Raymond LA. Alterations in synaptic function and plasticity in Huntington disease. J Neurochem 2019; 150:346-365. [DOI: 10.1111/jnc.14723] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/28/2019] [Accepted: 05/08/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Amy I. Smith‐Dijak
- Graduate Program in Neuroscience the University of British Columbia Vancouver British Columbia Canada
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health the University of British Columbia Vancouver British Columbia Canada
| | - Marja D. Sepers
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health the University of British Columbia Vancouver British Columbia Canada
| | - Lynn A. Raymond
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health the University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
40
|
Bliss T, Collingridge GL. Persistent memories of long-term potentiation and the N-methyl-d-aspartate receptor. Brain Neurosci Adv 2019; 3:2398212819848213. [PMID: 32166182 PMCID: PMC7058229 DOI: 10.1177/2398212819848213] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Indexed: 11/17/2022] Open
Abstract
In this article, we describe our involvement in the early days of research into long-term potentiation. We start with a description of the early experiments conducted in Oslo and London where long-term potentiation was first characterised. We discuss the ways in which the molecular pharmacology of glutamate receptors control the induction and expression of long-term potentiation and its counterpart, long-term depression. We then go on to summarise the extraordinary advances in understanding the cellular mechanisms of synaptic plasticity that have taken place in the subsequent half century. Finally, the increasing evidence that impaired long-term potentiation is a core feature of many brain disorders (LToPathies) is addressed by way of a few selected examples.
Collapse
Affiliation(s)
- Tvp Bliss
- The Francis Crick Institute, London, UK.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - G L Collingridge
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases and Department of Physiology, University of Toronto, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
41
|
Irmak D, Fatima A, Gutiérrez-Garcia R, Rinschen MM, Wagle P, Altmüller J, Arrigoni L, Hummel B, Klein C, Frese CK, Sawarkar R, Rada-Iglesias A, Vilchez D. Mechanism suppressing H3K9 trimethylation in pluripotent stem cells and its demise by polyQ-expanded huntingtin mutations. Hum Mol Genet 2019; 27:4117-4134. [PMID: 30452683 DOI: 10.1093/hmg/ddy304] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/10/2018] [Indexed: 02/06/2023] Open
Abstract
Pluripotent stem cells are invaluable resources to study development and disease, holding a great promise for regenerative medicine. Here we use human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) from patients with Huntington's disease (HD-iPSCs) to shed light into the normal function of huntingtin (HTT) and its demise in disease. We find that HTT binds ATF7IP, a regulator of the histone H3 methyltransferase SETDB1. HTT inhibits the interaction of the ATF7IP-SETDB1 complex with other heterochromatin regulators and transcriptional repressors, maintaining low levels of H3K9 trimethylation (H3K9me3) in hESCs. Loss of HTT promotes global increased H3K9me3 levels and enrichment of H3K9me3 marks at distinct genes, including transcriptional regulators of neuronal differentiation. Although these genes are normally expressed at low amounts in hESCs, HTT knockdown (KD) reduces their induction during neural differentiation. Notably, mutant expanded polyglutamine repeats in HTT diminish its interaction with ATF7IP-SETDB1 complex and trigger H3K9me3 in HD-iPSCs. Conversely, KD of ATF7IP in HD-iPSCs reduces H3K9me3 alterations and ameliorates gene expression changes in their neural counterparts. Taken together, our results indicate ATF7IP as a potential target to correct aberrant H3K9me3 levels induced by mutant HTT.
Collapse
Affiliation(s)
- Dilber Irmak
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne, Germany
| | - Azra Fatima
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne, Germany
| | - Ricardo Gutiérrez-Garcia
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne, Germany
| | - Markus M Rinschen
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne, Germany
| | - Prerana Wagle
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne, Germany
| | - Janine Altmüller
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Strasse 21, Cologne, Germany.,Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Laura Arrigoni
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Barbara Hummel
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Corinna Klein
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne, Germany
| | - Christian K Frese
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne, Germany
| | - Ritwick Sawarkar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Alvaro Rada-Iglesias
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Strasse 21, Cologne, Germany
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne, Germany
| |
Collapse
|
42
|
Targeting the neuronal calcium sensor DREAM with small-molecules for Huntington's disease treatment. Sci Rep 2019; 9:7260. [PMID: 31086218 PMCID: PMC6514012 DOI: 10.1038/s41598-019-43677-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 04/27/2019] [Indexed: 02/04/2023] Open
Abstract
DREAM, a neuronal calcium sensor protein, has multiple cellular roles including the regulation of Ca2+ and protein homeostasis. We recently showed that reduced DREAM expression or blockade of DREAM activity by repaglinide is neuroprotective in Huntington’s disease (HD). Here we used structure-based drug design to guide the identification of IQM-PC330, which was more potent and had longer lasting effects than repaglinide to inhibit DREAM in cellular and in vivo HD models. We disclosed and validated an unexplored ligand binding site, showing Tyr118 and Tyr130 as critical residues for binding and modulation of DREAM activity. IQM-PC330 binding de-repressed c-fos gene expression, silenced the DREAM effect on KV4.3 channel gating and blocked the ATF6/DREAM interaction. Our results validate DREAM as a valuable target and propose more effective molecules for HD treatment.
Collapse
|
43
|
Couly S, Paucard A, Bonneaud N, Maurice T, Benigno L, Jourdan C, Cohen-Solal C, Vignes M, Maschat F. Improvement of BDNF signalling by P42 peptide in Huntington's disease. Hum Mol Genet 2019; 27:3012-3028. [PMID: 29860423 DOI: 10.1093/hmg/ddy207] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/23/2018] [Indexed: 12/21/2022] Open
Abstract
Huntington's disease (HD) is caused by a mutation in the Huntingtin (HTT) protein. We previously reported that the 23aa peptide of HTT protein, P42, is preventing HD pathological phenotypes, such as aggregation, reduction of motor performances and neurodegeneration. A systemic treatment with P42 during the pre-symptomatic phase of the disease showed therapeutic potential in R6/2 mice. We here tested P42 effects when administered during the post-symptomatic phase. The P42 treatment alleviated deficits in motor performances, even when symptoms have already started. Because changes in the level and activity of brain-derived neurotrophic factor (BDNF) have been shown to play a central role in HD, we analysed the influence of P42 on BDNF deficit and associated phenotypes. Our data suggest that P42 is involved in the spatio-temporal control of bdnf and trkB mRNA and their protein levels. Related to this enhancement of BDNF-TrkB signalling, R6/2 mice treated with P42, exhibit reduced anxiety, better learning and memory performances, and better long-term potentiation (LTP) response. Finally we identified a direct influence of P42 peptide on neuronal plasticity and activity. These results suggest that P42 offers an efficient therapeutic potential not only by preventing aggregation of mutant HTT at early stages of the disease, but also by favouring some physiological functions of normal HTT, as P42 is naturally part of it, at the different stages of the disease. This makes P42 peptide potentially suitable not only to prevent, but also to treat HD.
Collapse
Affiliation(s)
- Simon Couly
- MMDN, Univ-Montpellier, EPHE, INSERM, UMR-S1198, Montpellier F-34095, France
| | - Alexia Paucard
- MMDN, Univ-Montpellier, EPHE, INSERM, UMR-S1198, Montpellier F-34095, France
| | - Nathalie Bonneaud
- MMDN, Univ-Montpellier, EPHE, INSERM, UMR-S1198, Montpellier F-34095, France
| | - Tangui Maurice
- MMDN, Univ-Montpellier, EPHE, INSERM, UMR-S1198, Montpellier F-34095, France
| | | | - Christophe Jourdan
- MMDN, Univ-Montpellier, EPHE, INSERM, UMR-S1198, Montpellier F-34095, France
| | | | - Michel Vignes
- IBMM-UMR5247, Univ-Montpellier, Montpellier F-34095, France
| | - Florence Maschat
- MMDN, Univ-Montpellier, EPHE, INSERM, UMR-S1198, Montpellier F-34095, France
| |
Collapse
|
44
|
Spatial memory in Huntington’s disease: A comparative review of human and animal data. Neurosci Biobehav Rev 2019; 98:194-207. [DOI: 10.1016/j.neubiorev.2019.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 11/26/2018] [Accepted: 01/14/2019] [Indexed: 12/24/2022]
|
45
|
Dargaei Z, Liang X, Serranilla M, Santos J, Woodin MA. Alterations in Hippocampal Inhibitory Synaptic Transmission in the R6/2 Mouse Model of Huntington's Disease. Neuroscience 2019; 404:130-140. [PMID: 30797895 DOI: 10.1016/j.neuroscience.2019.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 01/05/2023]
Abstract
Huntington's disease (HD) is a genetic neurodegenerative disorder of the central nervous system characterized by choreatic movements, behavioral and psychiatric disturbances and cognitive impairments. Deficits in learning and memory are often the first signs of disease onset in both HD patients and mouse models of HD and are in part regulated by the hippocampus. In the R6/2 mouse model of HD, GABAergic transmission can be excitatory in the hippocampus and restoring inhibition can rescue the associated memory deficits. In the present study we determine that hippocampal GABAergic neurotransmission in the R6/2 mouse is disrupted as early as 4 weeks of age and is accompanied by alterations in the expression of key inhibitory proteins. Specifically, spontaneous inhibitory postsynaptic currents were initially increased in frequency at 4 postnatal weeks and subsequently decreased after the mice displayed the typical R6/2 behavioral phenotype at 10 weeks of age. Symptomatic mice also exhibited a change in the probability of GABA release and changes in the basic membrane properties including neuronal excitability and input resistance. These electrophysiological changes in presymptomatic and symptomatic R6/2 mice were further accompanied by alterations in the protein expression level of pre- and postsynaptic inhibitory markers. Taken together, the present findings demonstrate profound alterations in the inhibitory neurotransmission in the hippocampus across the lifespan of the disease, including prior to neuronal degeneration, which suggests that the inhibitory hippocampal synapses may prove useful as a target for future therapeutic design.
Collapse
Affiliation(s)
- Zahra Dargaei
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, M5S 3G5, Canada
| | - Xinyi Liang
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, M5S 3G5, Canada
| | - Melissa Serranilla
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, M5S 3G5, Canada
| | - Janeane Santos
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, M5S 3G5, Canada
| | - Melanie A Woodin
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, M5S 3G5, Canada.
| |
Collapse
|
46
|
Modulation of Phospho-CREB by Systemically Administered Recombinant BDNF in the Hippocampus of the R6/2 Mouse Model of Huntington's Disease. NEUROSCIENCE JOURNAL 2019; 2019:8363274. [PMID: 30881980 PMCID: PMC6381568 DOI: 10.1155/2019/8363274] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/02/2018] [Accepted: 12/13/2018] [Indexed: 01/07/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease due to an expansion of a trinucleotide repeats in IT15 gene encoding for the protein huntingtin. Motor dysfunction, cognitive decline, and psychiatric disorder are typical clinical signs of HD. In HD, mutated huntingtin causes a major loss of brain derived neurotrophic factor (BDNF), causing striatal atrophy. Moreover, a key involvement of BDNF was observed in the synaptic plasticity that controls the acquisition and/or consolidation of certain forms of memory. We studied changes in hippocampal BDNF and in CREB in the R6/2 mouse model of HD. Moreover, we investigated if the beneficial effects of systemically administered recombinant BDNF observed in the striatum and cortex had an effect also on the hippocampus. Osmotic minipumps that chronically released recombinant BDNF or saline solution from 4 weeks of age until euthanasia were implanted into R6/2 and wild type mice. Our data show that BDNF is severely decreased in the hippocampus of R6/2 mice, while BDNF treatment restored its physiological levels. Moreover, the chronic administration of recombinant BDNF promoted the increment of phosphorylated CREB protein. Our study demonstrates the involvement of hippocampus in the pathology of R6/2 model of HD and correlates the beneficial effects of BDNF administration with increased hippocampal levels of BDNF and pCREB.
Collapse
|
47
|
Essa MM, Moghadas M, Ba-Omar T, Walid Qoronfleh M, Guillemin GJ, Manivasagam T, Justin-Thenmozhi A, Ray B, Bhat A, Chidambaram SB, Fernandes AJ, Song BJ, Akbar M. Protective Effects of Antioxidants in Huntington’s Disease: an Extensive Review. Neurotox Res 2019; 35:739-774. [DOI: 10.1007/s12640-018-9989-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 12/09/2018] [Accepted: 12/11/2018] [Indexed: 01/18/2023]
|
48
|
Zhang H, Zhang C, Vincent J, Zala D, Benstaali C, Sainlos M, Grillo-Bosch D, Daburon S, Coussen F, Cho Y, David DJ, Saudou F, Humeau Y, Choquet D. Modulation of AMPA receptor surface diffusion restores hippocampal plasticity and memory in Huntington's disease models. Nat Commun 2018; 9:4272. [PMID: 30323233 PMCID: PMC6189172 DOI: 10.1038/s41467-018-06675-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/19/2018] [Indexed: 11/10/2022] Open
Abstract
Impaired hippocampal synaptic plasticity contributes to cognitive impairment in Huntington’s disease (HD). However, the molecular basis of such synaptic plasticity defects is not fully understood. Combining live-cell nanoparticle tracking and super-resolution imaging, we show that AMPAR surface diffusion, a key player in synaptic plasticity, is disturbed in various rodent models of HD. We demonstrate that defects in the brain-derived neurotrophic factor (BDNF)–tyrosine receptor kinase B (TrkB) signaling pathway contribute to the deregulated AMPAR trafficking by reducing the interaction between transmembrane AMPA receptor regulatory proteins (TARPs) and the PDZ-domain scaffold protein PSD95. The disturbed AMPAR surface diffusion is rescued by the antidepressant drug tianeptine via the BDNF signaling pathway. Tianeptine also restores the impaired LTP and hippocampus-dependent memory in different HD mouse models. These findings unravel a mechanism underlying hippocampal synaptic and memory dysfunction in HD, and highlight AMPAR surface diffusion as a promising therapeutic target. Cognitive decline in Huntington’s disease (HD) may be due to impaired hippocampal synaptic plasticity. In this study the authors show that AMPA receptor surface diffusion, a key player in synaptic plasticity, is deregulated in multiple HD mouse models as a result of impaired BDNF signalling that underlies the memory deficits, and can be pharmacologically rescued.
Collapse
Affiliation(s)
- Hongyu Zhang
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, 33076, France. .,Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique (CNRS) UMR 5297, Bordeaux, 33076, France. .,Department of Biomedicine, KG Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Jonas Lies vei 91, N-5009, Bergen, Norway.
| | - Chunlei Zhang
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, 33076, France.,Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique (CNRS) UMR 5297, Bordeaux, 33076, France
| | - Jean Vincent
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, 33076, France.,Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique (CNRS) UMR 5297, Bordeaux, 33076, France
| | - Diana Zala
- Institut Curie, CNRS, UMR3306, Inserm, U1005, F-91405, Orsay, France.,INSERM U894, Center of Psychiatry and Neuroscience, Paris, France, University Paris-Descartes, Paris, 75006, France
| | - Caroline Benstaali
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000, Grenoble, France.,INSERM, U1216, F-38000, Grenoble, France
| | - Matthieu Sainlos
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, 33076, France.,Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique (CNRS) UMR 5297, Bordeaux, 33076, France
| | - Dolors Grillo-Bosch
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, 33076, France.,Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique (CNRS) UMR 5297, Bordeaux, 33076, France
| | - Sophie Daburon
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, 33076, France.,Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique (CNRS) UMR 5297, Bordeaux, 33076, France
| | - Françoise Coussen
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, 33076, France.,Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique (CNRS) UMR 5297, Bordeaux, 33076, France
| | - Yoon Cho
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux, Bordeaux, 33000, France
| | - Denis J David
- Université Paris-Saclay, Univ. Paris-Sud, Faculté de Pharmacie, CESP, INSERM UMRS1178, Chatenay-Malabry, 92296, France
| | - Frederic Saudou
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000, Grenoble, France. .,INSERM, U1216, F-38000, Grenoble, France. .,CHU Grenoble Alpes, F-38000, Grenoble, France.
| | - Yann Humeau
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, 33076, France.,Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique (CNRS) UMR 5297, Bordeaux, 33076, France
| | - Daniel Choquet
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, 33076, France. .,Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique (CNRS) UMR 5297, Bordeaux, 33076, France. .,Bordeaux Imaging Center, CNRS UMS 3420, University of Bordeaux, INSERM US04, 33076, Bordeaux, France.
| |
Collapse
|
49
|
García-Forn M, Martínez-Torres S, García-Díaz Barriga G, Alberch J, Milà M, Azkona G, Pérez-Navarro E. Pharmacogenetic modulation of STEP improves motor and cognitive function in a mouse model of Huntington's disease. Neurobiol Dis 2018; 120:88-97. [PMID: 30176350 DOI: 10.1016/j.nbd.2018.08.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/31/2018] [Accepted: 08/30/2018] [Indexed: 12/27/2022] Open
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative disorder caused by an expansion of a CAG repeat in the huntingtin (htt) gene, which results in an aberrant form of the protein (mhtt). This leads to motor and cognitive deficits associated with corticostriatal and hippocampal alterations. The levels of STriatal-Enriched protein tyrosine Phosphatase (STEP), a neural-specific tyrosine phosphatase that opposes the development of synaptic strengthening, are decreased in the striatum of HD patients and also in R6/1 mice, thereby contributing to the resistance to excitotoxicity described in this HD mouse model. Here, we aimed to analyze whether STEP inactivation plays a role in the pathophysiology of HD by investigating its effect on motor and cognitive impairment in the R6/1 mouse model of HD. We found that genetic deletion of STEP delayed the onset of motor dysfunction and prevented the appearance of cognitive deficits in R6/1 mice. This phenotype was accompanied by an increase in pERK1/2 levels, a delay in the decrease of striatal DARPP-32 levels and a reduction in the size of mhtt aggregates, both in the striatum and CA1 hippocampal region. We also found that acute pharmacological inhibition of STEP with TC-2153 improved cognitive function in R6/1 mice. In conclusion, our results show that deletion of STEP has a beneficial effect on motor coordination and cognition in a mouse model of HD suggesting that STEP inhibition could be a good therapeutic strategy in HD patients.
Collapse
Affiliation(s)
- Marta García-Forn
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Sara Martínez-Torres
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Gerardo García-Díaz Barriga
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Jordi Alberch
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Montse Milà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain; Departament de Genètica, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain
| | - Garikoitz Azkona
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Esther Pérez-Navarro
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.
| |
Collapse
|
50
|
Antidepressant Effects of Probucol on Early-Symptomatic YAC128 Transgenic Mice for Huntington's Disease. Neural Plast 2018; 2018:4056383. [PMID: 30186318 PMCID: PMC6112232 DOI: 10.1155/2018/4056383] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/28/2018] [Accepted: 07/26/2018] [Indexed: 11/17/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by a trinucleotide expansion in the HD gene, resulting in an extended polyglutamine tract in the protein huntingtin. HD is traditionally viewed as a movement disorder, but cognitive and neuropsychiatric symptoms also contribute to the clinical presentation. Depression is one of the most common psychiatric disturbances in HD, present even before manifestation of motor symptoms. Diagnosis and treatment of depression in HD-affected individuals are essential aspects of clinical management in this population, especially owing to the high risk of suicide. This study investigated whether chronic administration of the antioxidant probucol improved motor and affective symptoms as well as hippocampal neurogenic function in the YAC128 transgenic mouse model of HD during the early- to mild-symptomatic stages of disease progression. The motor performance and affective symptoms were monitored using well-validated behavioral tests in YAC128 mice and age-matched wild-type littermates at 2, 4, and 6 months of age, after 1, 3, or 5 months of treatment with probucol (30 mg/kg/day via water supplementation, starting on postnatal day 30). Endogenous markers were used to assess the effect of probucol on cell proliferation (Ki-67 and proliferation cell nuclear antigen (PCNA)) and neuronal differentiation (doublecortin (DCX)) in the hippocampal dentate gyrus (DG). Chronic treatment with probucol reduced the occurrence of depressive-like behaviors in early- and mild-symptomatic YAC128 mice. Functional improvements were not accompanied by increased progenitor cell proliferation and neuronal differentiation. Our findings provide evidence that administration of probucol may be of clinical benefit in the management of early- to mild-symptomatic HD.
Collapse
|