1
|
Méndez P, de la Vega-Ruiz R, Montes-Mellado A. Estrogenic regulation of hippocampal inhibitory system across lifespan. J Neuroendocrinol 2024:e13441. [PMID: 39143852 DOI: 10.1111/jne.13441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/08/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024]
Abstract
Estrogens produced in peripheral tissues and locally in the brain are potent neuromodulators. The function of the hippocampus, a brain region essential for episodic memory and spatial navigation, relies on the activity of ensembles of excitatory neurons whose activity is temporally and spatially coordinated by a wide diversity of inhibitory neurons (INs) types. Over the last years, we have accumulated evidence that indicates that estrogens regulate the function of hippocampal INs through different mechanisms, including transcriptional regulation and rapid nongenomic signaling. Here, we argue that the well-documented influence of estrogens on episodic memory may be related to the actions of local and peripheral estrogens on the heterogenous populations of hippocampal INs. We discuss how physiological changes in peripheral sex hormone levels throughout lifespan may interact with local brain sources to regulate IN function at different stages of life, from early hippocampal development to the aging brain. We conclude that considering INs as mediators of sex hormone actions in the hippocampus across the healthy life span will benefit our understanding of sex-biased neurodevelopmental disorders and physiological aging.
Collapse
|
2
|
Riddle A, Srivastava T, Wang K, Tellez E, O'Neill H, Gong X, O'Niel A, Bell JA, Raber J, Lattal M, Maylie J, Back SA. Mild neonatal hypoxia disrupts adult hippocampal learning and memory and is associated with CK2-mediated dysregulation of synaptic calcium-activated potassium channel KCNN2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602558. [PMID: 39071376 PMCID: PMC11275740 DOI: 10.1101/2024.07.10.602558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Objective Although nearly half of preterm survivors display persistent neurobehavioral dysfunction including memory impairment without overt gray matter injury, the underlying mechanisms of neuronal or glial dysfunction, and their relationship to commonly observed cerebral white matter injury are unclear. We developed a mouse model to test the hypothesis that mild hypoxia during preterm equivalence is sufficient to persistently disrupt hippocampal neuronal maturation related to adult cellular mechanisms of learning and memory. Methods: Neonatal (P2) mice were exposed to mild hypoxia (8%O 2 ) for 30 min and evaluated for acute injury responses or survived until adulthood for assessment of learning and memory and hippocampal neurodevelopment. Results Neonatal mild hypoxia resulted in clinically relevant oxygen desaturation and tachycardia without bradycardia and was not accompanied by cerebral gray or white matter injury. Neonatal hypoxia exposure was sufficient to cause hippocampal learning and memory deficits and abnormal maturation of CA1 neurons that persisted into adulthood. This was accompanied by reduced hippocampal CA3-CA1 synaptic strength and LTP and reduced synaptic activity of calcium-sensitive SK2 channels, key regulators of spike timing dependent neuroplasticity, including LTP. Structural illumination microscopy revealed reduced synaptic density, but intact SK2 localization at the synapse. Persistent loss of SK2 activity was mediated by altered casein kinase 2 (CK2) signaling. Interpretation Clinically relevant mild hypoxic exposure in the neonatal mouse is sufficient to produce morphometric and functional disturbances in hippocampal neuronal maturation independently of white matter injury. Additionally, we describe a novel persistent mechanism of potassium channel dysregulation after neonatal hypoxia. Collectively our findings suggest an unexplored explanation for the broad spectrum of neurobehavioral, cognitive and learning disabilities that paradoxically persist into adulthood without overt gray matter injury after preterm birth.
Collapse
|
3
|
Nagata A, Oishi S, Kirishita N, Onoda K, Kobayashi T, Terada Y, Minami A, Senoo N, Yoshioka Y, Uchida K, Ito K, Miura S, Miyoshi N. Allyl Isothiocyanate Maintains DHA-Containing Glycerophospholipids and Ameliorates the Cognitive Function Decline in OVX Mice. ACS OMEGA 2023; 8:43118-43129. [PMID: 38024702 PMCID: PMC10652735 DOI: 10.1021/acsomega.3c06622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Low-temperature-induced fatty acid desaturation is highly conserved in animals, plants, and bacteria. Allyl isothiocyanate (AITC) is an agonist of the transient receptor potential ankyrin 1 (TRPA1), which is activated by various chemophysiological stimuli, including low temperature. However, whether AITC induces fatty acid desaturation remains unknown. We showed here that AITC increased levels of glycerophospholipids (GP) esterified with unsaturated fatty acids, especially docosahexaenoic acid (DHA) in TRPA1-expressing HEK cells. Additionally, GP-DHA including phosphatidylcholine (18:0/22:6) and phosphatidylethanolamine (18:0/22:6) was increased in the brain and liver of AITC-administered mice. Moreover, intragastrical injection of AITC in ovariectomized (OVX) female C57BL/6J mice dose-dependently shortened the Δlatency time determined by the Morris water maze test, indicating AITC ameliorated the cognitive function decline in these mice. Thus, the oral administration of AITC maintains GP-DHA in the liver and brain, proving to be a potential strategy for preventing cognitive decline.
Collapse
Affiliation(s)
- Akika Nagata
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Shiori Oishi
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Nanako Kirishita
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Keita Onoda
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Takuma Kobayashi
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Yuko Terada
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Akira Minami
- Department
of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Nanami Senoo
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Yasukiyo Yoshioka
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Kunitoshi Uchida
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Keisuke Ito
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Shinji Miura
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Noriyuki Miyoshi
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| |
Collapse
|
4
|
Balczon R, Pittet JF, Wagener BM, Moser SA, Voth S, Vorhees CV, Williams MT, Bridges JP, Alvarez DF, Koloteva A, Xu Y, Zha XM, Audia JP, Stevens T, Lin MT. Infection-induced endothelial amyloids impair memory. FASEB J 2019; 33:10300-10314. [PMID: 31211919 PMCID: PMC6704457 DOI: 10.1096/fj.201900322r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/21/2019] [Indexed: 01/14/2023]
Abstract
Patients with nosocomial pneumonia exhibit elevated levels of neurotoxic amyloid and tau proteins in the cerebrospinal fluid (CSF). In vitro studies indicate that pulmonary endothelium infected with clinical isolates of either Pseudomonas aeruginosa, Klebsiella pneumoniae, or Staphylococcus aureus produces and releases cytotoxic amyloid and tau proteins. However, the effects of the pulmonary endothelium-derived amyloid and tau proteins on brain function have not been elucidated. Here, we show that P. aeruginosa infection elicits accumulation of detergent insoluble tau protein in the mouse brain and inhibits synaptic plasticity. Mice receiving endothelium-derived amyloid and tau proteins via intracerebroventricular injection exhibit a learning and memory deficit in object recognition, fear conditioning, and Morris water maze studies. We compared endothelial supernatants obtained after the endothelia were infected with P. aeruginosa possessing an intact [P. aeruginosa isolated from patient 103 (PA103) supernatant] or defective [mutant strain of P. aeruginosa lacking a functional type 3 secretion system needle tip complex (ΔPcrV) supernatant] type 3 secretion system. Whereas the PA103 supernatant impaired working memory, the ΔPcrV supernatant had no effect. Immunodepleting amyloid or tau proteins from the PA103 supernatant with the A11 or T22 antibodies, respectively, overtly rescued working memory. Recordings from hippocampal slices treated with endothelial supernatants or CSF from patients with or without nosocomial pneumonia indicated that endothelium-derived neurotoxins disrupted the postsynaptic synaptic response. Taken together, these results establish a plausible mechanism for the neurologic sequelae consequent to nosocomial bacterial pneumonia.-Balczon, R., Pittet, J.-F., Wagener, B. M., Moser, S. A., Voth, S., Vorhees, C. V., Williams, M. T., Bridges, J. P., Alvarez, D. F., Koloteva, A., Xu, Y., Zha, X.-M., Audia, J. P., Stevens, T., Lin, M. T. Infection-induced endothelial amyloids impair memory.
Collapse
Affiliation(s)
- Ron Balczon
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Brant M. Wagener
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Stephen A. Moser
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Sarah Voth
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, USA
| | - Charles V. Vorhees
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, USA
| | | | - James P. Bridges
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Diego F. Alvarez
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, USA
| | - Anna Koloteva
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, USA
| | - Yuanyuan Xu
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, USA
| | - Xiang-Ming Zha
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, USA
| | - Jonathon P. Audia
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama, USA
| | - Troy Stevens
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, USA
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Mike T. Lin
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
5
|
Kelley MH, Wu WW, Lei J, McLane M, Xie H, Hart KD, Pereira L, Burd I, Maylie J. Functional changes in hippocampal synaptic signaling in offspring survivors of a mouse model of intrauterine inflammation. J Neuroinflammation 2017; 14:180. [PMID: 28874190 PMCID: PMC5583754 DOI: 10.1186/s12974-017-0951-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/27/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Recent evidence suggests that exposure to intrauterine inflammation causes acute fetal brain injury and is linked to a spectrum of neurobehavioral disorders. In a rodent model of intrauterine inflammation induced by lipopolysaccharide (LPS) exposure in utero, activated microglia can be detected in the hippocampus of offspring survivors, as late as 60 days postnatal (DPN). Given that the hippocampus is important for learning and memory, these results suggest that in utero inflammation underlies long-term cognitive deficits observed in children/survivors. METHODS An established mouse model of LPS-induced intrauterine inflammation was used to study hippocampal function from offspring at 44-59 DPN. Microgliosis was examined at 45 DPN. Extracellular field recordings of synaptic transmission were performed on acute hippocampal slices. RESULTS LPS offspring mice displayed persistent microglial activation and increased CA3-CA1 excitatory synaptic strength, which can be explained in part by an increase in the probability of glutamate release, and reduced long-term synaptic potentiation compared to control mice. CONCLUSIONS These results offer a mechanistic explanation for the cognitive and behavioral deficits observed in survivors of preterm birth caused by intrauterine inflammation.
Collapse
Affiliation(s)
- Melissa H Kelley
- Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Wendy W Wu
- Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, 97239, USA.,Present address: US Food and Drug Administration, Silver Spring, USA
| | - Jun Lei
- Integrated Research Center for Fetal Medicine, Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Michael McLane
- Integrated Research Center for Fetal Medicine, Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Han Xie
- Integrated Research Center for Fetal Medicine, Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Kyle D Hart
- Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Leonardo Pereira
- Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Irina Burd
- Integrated Research Center for Fetal Medicine, Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, 21287, USA.
| | - James Maylie
- Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
6
|
Underwood EL, Thompson LT. High-fat diet impairs spatial memory and hippocampal intrinsic excitability and sex-dependently alters circulating insulin and hippocampal insulin sensitivity. Biol Sex Differ 2016; 7:9. [PMID: 26823968 PMCID: PMC4730722 DOI: 10.1186/s13293-016-0060-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/18/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High-fat diets promoting obesity/type-2 diabetes can impair physiology and cognitive performance, although sex-dependent comparisons of these impairments are rarely made. Transient reductions in Ca(2+)-dependent afterhyperpolarizations (AHPs) occur during memory consolidation, enhancing intrinsic excitability of hippocampal CA1 pyramidal neurons. In rats fed standard diets, insulin can enhance memory and reduce amplitude and duration of AHPs. METHODS Effects of chronic high-fat diet (HFD) on memory, circulating insulin, and neuronal physiology were compared between young adult male and female Long-Evans rats. Rats fed for 12 weeks (from weaning) a HFD or a control diet (CD) were then tested in vivo prior to in vitro recordings from CA1 pyramidal neurons. RESULTS The HFD significantly impaired spatial memory in both males and females. Significant sex differences occurred in circulating insulin and in the insulin sensitivity of hippocampal neurons. Circulating insulin significantly increased in HFD males but decreased in HFD females. While the HFD significantly reduced hippocampal intrinsic excitability in both sexes, CA1 neurons from HFD females remained insulin-sensitive but those from HFD males became insulin-insensitive. CONCLUSIONS Findings consistent with these have been characterized previously in HFD or senescent males, but the effects observed here in young females are unique. Loss of CA1 neuronal excitability, and sex-dependent loss of insulin sensitivity, can have significant cognitive consequences, over both the short term and the life span. These findings highlight needs for more research into sex-dependent differences, relating systemic and neural plasticity mechanisms in metabolic disorders.
Collapse
Affiliation(s)
- Erica L. Underwood
- Cognition & Neuroscience Program, School of Behavioral & Brain Sciences, University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX 75080 USA
| | - Lucien T. Thompson
- Cognition & Neuroscience Program, School of Behavioral & Brain Sciences, University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX 75080 USA
| |
Collapse
|
7
|
Bastos CP, Pereira LM, Ferreira-Vieira TH, Drumond LE, Massensini AR, Moraes MFD, Pereira GS. Object recognition memory deficit and depressive-like behavior caused by chronic ovariectomy can be transitorialy recovered by the acute activation of hippocampal estrogen receptors. Psychoneuroendocrinology 2015; 57:14-25. [PMID: 25867995 DOI: 10.1016/j.psyneuen.2015.03.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/18/2015] [Accepted: 03/21/2015] [Indexed: 01/29/2023]
Abstract
It is well known that estradiol (E2) replacement therapy is effective on restoring memory deficits and mood disorders that may occur during natural menopause or after surgical ovarian removal (ovariectomy, OVX). However, it is still unknown the effectiveness of acute and localized E2 administration on the effects of chronic OVX. Here we tested the hypothesis that the intra-hippocampal E2 infusion, as well as specific agonists of estrogen receptors (ERs) alpha (ERα) and beta (ERβ), are able to mend novel object recognition (NOR) memory deficit and depressive-like behavior caused by 12 weeks of OVX. We found that both ERα and ERβ activation, at earlier stages of consolidation, recovered the NOR memory deficit caused by 12 w of OVX. Conversely, only the ERβ activation was effective in decreasing the depressive-like behavior caused by 12 w of OVX. Furthermore, we investigated the effect of OVX on hippocampal volume and ERs expression. The structural MRI showed no alteration in the hippocampus volume of 12 w OVX animals. Interestingly, ERα expression in the hippocampus decreased after one week of OVX, but increased in 12 w OVX animals. Overall, we may conclude that the chronic estrogen deprivation, induced by 12 weeks of OVX, modulates the hippocampal ERα expression and induces NOR memory deficit and depressive-like behaviors. Nonetheless, it is noteworthy that the acute effects of E2 on NOR memory and depressive-like behavior are still apparent even after 12 weeks of OVX.
Collapse
Affiliation(s)
- Cristiane P Bastos
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Brazil
| | - Luciana M Pereira
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Brazil
| | - Talita H Ferreira-Vieira
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Brazil
| | - Luciana E Drumond
- Centro de Tecnologia e Pesquisa em Magneto-Ressonância, CTPMAG, Universidade Federal de Minas Gerais, Brazil; Universidade Federal de São João Del Rey, Brazil
| | - André R Massensini
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Brazil
| | - Márcio F D Moraes
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Brazil; Centro de Tecnologia e Pesquisa em Magneto-Ressonância, CTPMAG, Universidade Federal de Minas Gerais, Brazil
| | - Grace S Pereira
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Brazil.
| |
Collapse
|
8
|
Takeuchi K, Yang Y, Takayasu Y, Gertner M, Hwang JY, Aromolaran K, Bennett MVL, Zukin RS. Estradiol pretreatment ameliorates impaired synaptic plasticity at synapses of insulted CA1 neurons after transient global ischemia. Brain Res 2014; 1621:222-30. [PMID: 25463028 DOI: 10.1016/j.brainres.2014.11.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 11/06/2014] [Indexed: 02/06/2023]
Abstract
Global ischemia in humans or induced experimentally in animals causes selective and delayed neuronal death in pyramidal neurons of the hippocampal CA1. The ovarian hormone estradiol administered before or immediately after insult affords histological protection in experimental models of focal and global ischemia and ameliorates the cognitive deficits associated with ischemic cell death. However, the impact of estradiol on the functional integrity of Schaffer collateral to CA1 (Sch-CA1) pyramidal cell synapses following global ischemia is not clear. Here we show that long term estradiol treatment initiated 14 days prior to global ischemia in ovariectomized female rats acts via the IGF-1 receptor to protect the functional integrity of CA1 neurons. Global ischemia impairs basal synaptic transmission, assessed by the input/output relation at Sch-CA1 synapses, and NMDA receptor (NMDAR)-dependent long term potentiation (LTP), assessed at 3 days after surgery. Presynaptic function, assessed by fiber volley and paired pulse facilitation, is unchanged. To our knowledge, our results are the first to demonstrate that estradiol at near physiological concentrations enhances basal excitatory synaptic transmission and ameliorates deficits in LTP at synapses onto CA1 neurons in a clinically-relevant model of global ischemia. Estradiol-induced rescue of LTP requires the IGF-1 receptor, but not the classical estrogen receptors (ER)-α or β. These findings support a model whereby estradiol acts via the IGF-1 receptor to maintain the functional integrity of hippocampal CA1 synapses in the face of global ischemia. This article is part of a Special Issue entitled SI: Brain and Memory.
Collapse
Affiliation(s)
- Koichi Takeuchi
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Center for Research in Mental Retardation and Developmental Disabilities, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Yupeng Yang
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Center for Research in Mental Retardation and Developmental Disabilities, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Yukihiro Takayasu
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Center for Research in Mental Retardation and Developmental Disabilities, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Michael Gertner
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Center for Research in Mental Retardation and Developmental Disabilities, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Jee-Yeon Hwang
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Center for Research in Mental Retardation and Developmental Disabilities, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Kelly Aromolaran
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Center for Research in Mental Retardation and Developmental Disabilities, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Michael V L Bennett
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Center for Research in Mental Retardation and Developmental Disabilities, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - R Suzanne Zukin
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Center for Research in Mental Retardation and Developmental Disabilities, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
9
|
Abstract
Estradiol effects on memory depend on hormone levels and the interaction of different estrogen receptors within neural circuits. Estradiol induces gene transcription and rapid membrane signaling mediated by estrogen receptor-alpha (ERα), estrogen receptor-beta (ERβ), and a recently characterized G-protein coupled estrogen receptor, each with distinct distributions and ability to influence estradiol-dependent signaling. Investigations using receptor specific agonists suggest that all three receptors rapidly activate kinase-signaling and have complex dose-dependent influences on memory. Research employing receptor knockout mice demonstrate that ERα maintains transcription and memory as estradiol levels decline. This work indicates a regulatory role of ERβ in transcription and cognition, which depends on estradiol levels and the function of ERα. The regulatory role of ERβ is due in part to ERβ acting as a negative regulator of ERα-mediated transcription. Vector-mediated expression of estrogen receptors in the hippocampus provides an innovative research approach and suggests that memory depends on the relative expression of ERα and ERβ interacting with estradiol levels. Notably, the ability of estradiol to improve cognition declines with advanced age along with decreased expression of estrogen receptors. Thus, it will be important for future research to determine the mechanisms that regulate estrogen receptor expression during aging.
Collapse
Affiliation(s)
- Linda A Bean
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Lara Ianov
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA Genetics and Genomics Program, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Thomas C Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA Genetics and Genomics Program, Genetics Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
10
|
Wang F, Song YF, Yin J, Liu ZH, Mo XD, Wang DG, Gao LP, Jing YH. Spatial memory impairment is associated with hippocampal insulin signals in ovariectomized rats. PLoS One 2014; 9:e104450. [PMID: 25099767 PMCID: PMC4123983 DOI: 10.1371/journal.pone.0104450] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 07/09/2014] [Indexed: 01/17/2023] Open
Abstract
Estrogen influences memory formation and insulin sensitivity. Meanwhile, glucose utilization directly affects learning and memory, which are modulated by insulin signals. Therefore, this study investigated whether or not the effect of estrogen on memory is associated with the regulatory effect of this hormone on glucose metabolism. The relative expression of estrogen receptor β (ERβ) and glucose transporter type 4 (GLUT4) in the hippocampus of rats were evaluated by western blot. Insulin level was assessed by ELISA and quantitative RT-PCR, and spatial memory was tested by the Morris water maze. Glucose utilization in the hippocampus was measured by 2-NBDG uptake analysis. Results showed that ovariectomy impaired the spatial memory of rats. These impairments are similar as the female rats treated with the ERβ antagonist tamoxifen (TAM). Estrogen blockade by ovariectomy or TAM treatment obviously decreased glucose utilization. This phenomenon was accompanied by decreased insulin level and GLUT4 expression in the hippocampus. The female rats were neutralized with hippocampal insulin with insulin antibody, which also impaired memory and local glucose consumption. These results indicated that estrogen blockade impaired the spatial memory of the female rats. The mechanisms by which estrogen blockade impaired memory partially contributed to the decline in hippocampal insulin signals, which diminished glucose consumption.
Collapse
Affiliation(s)
- Fang Wang
- Institute of Anatomy and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Maternal and Child Health Hospital of Gansu Province, Lanzhou, China
| | - Yan-Feng Song
- Institute of Anatomy and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jie Yin
- Institute of Anatomy and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Zi-Hua Liu
- Institute of Anatomy and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiao-Dan Mo
- Institute of Anatomy and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - De-Gui Wang
- Institute of Anatomy and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Li-Ping Gao
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, China
| | - Yu-Hong Jing
- Institute of Anatomy and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, China
- * E-mail:
| |
Collapse
|
11
|
Vedder LC, Bredemann TM, McMahon LL. Estradiol replacement extends the window of opportunity for hippocampal function. Neurobiol Aging 2014; 35:2183-92. [PMID: 24813636 DOI: 10.1016/j.neurobiolaging.2014.04.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 01/27/2023]
Abstract
We previously reported that treating aged female rats, ovariectomized (OVX) as young adults, with acute proestrous levels of 17β estradiol (E2) increases CA1 spine density, NMDAR to AMPAR ratio, GluN2B-mediated NMDAR current, and long-term potentiation at CA3-CA1 synapses if administered by 15, but not at 19-month post-OVX, defining the critical window of opportunity. Importantly, when rats are aged with ovaries intact until OVX at 20 months, hippocampal E2 responsiveness is maintained, indicating the deficit at 19-month post-OVX is a consequence of the duration of hormone deprivation and not chronological age. Here, we find the beneficial effect of E2 on novel object recognition in OVX rats was constrained by the same critical window. Furthermore, chronic low-level E2 replacement, commenced by 11-month post-OVX using subcutaneous capsules removed 2 weeks before acute proestrous E2 treatment, prevents the loss of hippocampal responsiveness at 19-month post-OVX. These data define the dynamic nature of the critical window showing that chronic replacement with physiological E2 levels within a certain period post-OVX can lengthen the window.
Collapse
Affiliation(s)
- Lindsey C Vedder
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Teruko M Bredemann
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lori L McMahon
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
12
|
Li LH, Wang ZC, Yu J, Zhang YQ. Ovariectomy results in variable changes in nociception, mood and depression in adult female rats. PLoS One 2014; 9:e94312. [PMID: 24710472 PMCID: PMC3978042 DOI: 10.1371/journal.pone.0094312] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/15/2014] [Indexed: 01/08/2023] Open
Abstract
Decline in the ovarian hormones with menopause may influence somatosensory, cognitive, and affective processing. The present study investigated whether hormonal depletion alters the nociceptive, depressive-like and learning behaviors in experimental rats after ovariectomy (OVX), a common method to deplete animals of their gonadal hormones. OVX rats developed thermal hyperalgesia in proximal and distal tail that was established 2 weeks after OVX and lasted the 7 weeks of the experiment. A robust mechanical allodynia was also occurred at 5 weeks after OVX. In the 5th week after OVX, dilute formalin (5%)-induced nociceptive responses (such as elevating and licking or biting) during the second phase were significantly increased as compared to intact and sham-OVX females. However, chronic constriction injury (CCI) of the sciatic nerve-induced mechanical allodynia did not differ as hormonal status (e.g. OVX and ovarian intact). Using formalin-induced conditioned place avoidance (F-CPA), which is believed to reflect the pain-related negative emotion, we further found that OVX significantly attenuated F-CPA scores but did not alter electric foot-shock-induced CPA (S-CPA). In the open field and forced swimming test, there was an increase in depressive-like behaviors in OVX rats. There was no detectable impairment of spatial performance by Morris water maze task in OVX rats up to 5 weeks after surgery. Estrogen replacement retrieved OVX-induced nociceptive hypersensitivity and depressive-like behaviors. This is the first study to investigate the impacts of ovarian removal on nociceptive perception, negative emotion, depressive-like behaviors and spatial learning in adult female rats in a uniform and standard way.
Collapse
Affiliation(s)
- Li-Hong Li
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Zhe-Chen Wang
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Jin Yu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Shanghai Medical Colloge, Fudan University, Shanghai, China
| | - Yu-Qiu Zhang
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
13
|
Ovariectomy and subsequent treatment with estrogen receptor agonists tune the innate immune system of the hippocampus in middle-aged female rats. PLoS One 2014; 9:e88540. [PMID: 24551115 PMCID: PMC3923802 DOI: 10.1371/journal.pone.0088540] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/07/2014] [Indexed: 01/23/2023] Open
Abstract
The innate immune system including microglia has a major contribution to maintenance of the physiological functions of the hippocampus by permanent monitoring of the neural milieu and elimination of tissue-damaging threats. The hippocampus is vulnerable to age-related changes ranging from gene expression to network connectivity. The risk of hippocampal deterioration increases with the decline of gonadal hormone supply. To explore the impact of hormone milieu on the function of the innate immune system in middle-aged female rats, we compared mRNA expression in the hippocampus after gonadal hormone withdrawal, with or without subsequent estrogen replacement using estradiol and isotype-selective estrogen receptor (ER) agonists. Targeted profiling assessed the status of the innate immune system (macrophage-associated receptors, complement, inhibitory neuronal ligands), local estradiol synthesis (P450 aromatase) and estrogen reception (ER). Results established upregulation of macrophage-associated (Cd45, Iba1, Cd68, Cd11b, Cd18, Fcgr1a, Fcgr2b) and complement (C3, factor B, properdin) genes in response to ovariectomy. Ovariectomy upregulated Cd22 and downregulated semaphorin3A (Sema3a) expression, indicating altered neuronal regulation of microglia. Ovariectomy also led to downregulation of aromatase and upregulation of ERα gene. Of note, analogous changes were observed in the hippocampus of postmenopausal women. In ovariectomized rats, estradiol replacement attenuated Iba1, Cd11b, Fcgr1a, C3, increased mannose receptor Mrc1, Cd163 and reversed Sema3a expression. In contrast, reduced expression of aromatase was not reversed by estradiol. While the effects of ERα agonist closely resembled those of estradiol, ERβ agonist was also capable of attenuating the expression of several macrophage-associated and complement genes. These data together indicate that the innate immune system of the aging hippocampus is highly responsive to the gonadal hormone milieu. In ovariectomized female rats, estradiol replacement exerts potent immunomodulatory effects including attenuation of microglia sensitization, initiation of M2-like activation and modulation of complement expression by targeting hippocampal neurons and glial cells through ERα and ERβ.
Collapse
|