1
|
Coffeen U, Ramírez-Rodríguez GB, Simón-Arceo K, Mercado F, Almanza A, Jaimes O, Parra-Vitela D, Vázquez-Barreto M, Pellicer F. The Role of the Insular Cortex and Serotonergic System in the Modulation of Long-Lasting Nociception. Cells 2024; 13:1718. [PMID: 39451236 PMCID: PMC11506361 DOI: 10.3390/cells13201718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 10/26/2024] Open
Abstract
The insular cortex (IC) is a brain region that both receives relevant sensory information and is responsible for emotional and cognitive processes, allowing the perception of sensory information. The IC has connections with multiple sites of the pain matrix, including cortico-cortical interactions with the anterior cingulate cortex (ACC) and top-down connections with sites of descending pain inhibition. We explored the changes in the extracellular release of serotonin (5HT) and its major metabolite, 5-hydroxyindoleacetic acid (5HIAA), after inflammation was induced by carrageenan injection. Additionally, we explored the role of 5HT receptors (the 5HT1A, 5HT2A, and 5HT3 receptors) in the IC after inflammatory insult. The results showed an increase in the extracellular levels of 5HT and 5-HIAA during the inflammatory process compared to physiological levels. Additionally, the 5HT1A receptor was overexpressed. Finally, the 5HT1A, 5HT2A, and 5HT3 receptor blockade in the IC had antinociceptive effects. Our results highlight the role of serotonergic neurotransmission in long-lasting inflammatory nociception within the IC.
Collapse
Affiliation(s)
- Ulises Coffeen
- Laboratorio de Neurofisiología Integrativa, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (U.C.); (K.S.-A.); (O.J.)
| | - Gerardo B. Ramírez-Rodríguez
- Laboratorio de Neurogénesis, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico;
| | - Karina Simón-Arceo
- Laboratorio de Neurofisiología Integrativa, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (U.C.); (K.S.-A.); (O.J.)
| | - Francisco Mercado
- Laboratorio de Fisiología Celular, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (F.M.); (A.A.)
| | - Angélica Almanza
- Laboratorio de Fisiología Celular, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (F.M.); (A.A.)
| | - Orlando Jaimes
- Laboratorio de Neurofisiología Integrativa, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (U.C.); (K.S.-A.); (O.J.)
| | - Doris Parra-Vitela
- CIANyD Centro Integral Para la Atención de Neuropatía y Dolor, Toluca 50110, Mexico;
| | | | - Francisco Pellicer
- Laboratorio de Neurofisiología Integrativa, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (U.C.); (K.S.-A.); (O.J.)
| |
Collapse
|
2
|
DeVuono MV, Venkatesan T, Hillard CJ. Endocannabinoid signaling in stress, nausea, and vomiting. Neurogastroenterol Motil 2024:e14911. [PMID: 39223918 DOI: 10.1111/nmo.14911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Classical antiemetics that target the serotonin system may not be effective in treating certain nausea and vomiting conditions like cyclic vomiting syndrome (CVS) and cannabinoid hyperemesis syndrome (CHS). As a result, there is a need for better therapies to manage the symptoms of these disorders, including nausea, vomiting, and anxiety. Cannabis is often used for its purported antiemetic and anxiolytic effects, given regulation of these processes by the endocannabinoid system (ECS). However, there is considerable evidence that cannabinoids can also produce nausea and vomiting and increase anxiety in certain instances, especially at higher doses. This paradoxical effect of cannabinoids on nausea, vomiting, and anxiety may be due to the dysregulation of the ECS, altering how it maintains these processes and contributing to the pathophysiology of CVS or CHS. PURPOSE The purpose of this review is to highlight the involvement of the ECS in the regulation of stress, nausea, and vomiting. We discuss how prolonged cannabis use, such as in the case of CHS or heightened stress, can dysregulate the ECS and affect its modulation of these functions. The review also examines the evidence for the roles of ECS and stress systems' dysfunction in CVS and CHS to better understand the underlying mechanisms of these conditions.
Collapse
Affiliation(s)
- Marieka V DeVuono
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Thangam Venkatesan
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
3
|
Tolchinsky A, Ellis GFR, Levin M, Kaňková Š, Burgdorf JS. Disgust as a primary emotional system and its clinical relevance. Front Psychol 2024; 15:1454774. [PMID: 39295749 PMCID: PMC11409098 DOI: 10.3389/fpsyg.2024.1454774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/16/2024] [Indexed: 09/21/2024] Open
Abstract
This paper advocates for considering disgust as a primary emotional system within Panksepp's Affective Neuroscience framework, which has the potential to improve the efficacy of psychotherapy with obsessive-compulsive disorder, hypochondriasis, and emetophobia. In 2007, Toronchuk and Ellis provided comprehensive evidence that DISGUST system, as they defined it, matched all Panksepp's criteria for a primary emotional system. A debate ensued and was not unambiguously resolved. This paper is an attempt to resume this discussion and supplement it with the data that accumulated since then on DISGUST's relationship with the immune system and the role of DISGUST dysregulation in psychopathology. We hope that renewed research interest in DISGUST has the potential to improve clinical efficacy with hard-to-treat conditions.
Collapse
Affiliation(s)
- Alexey Tolchinsky
- Professional Psychology Program, George Washington University, Washington, DC, United States
| | - George F R Ellis
- Department of Mathematics, University of Cape Town, Cape Town, South Africa
| | - Michael Levin
- Allen Discovery Center at Tufts University, Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Šárka Kaňková
- Department of Philosophy and History of Science, Faculty of Science, Charles University, Prague, Czechia
| | - Jeffrey S Burgdorf
- Department of Biomedical Engineering, The Falk Center for Molecular Therapeutics, Northwestern University, Evanston, IL, United States
| |
Collapse
|
4
|
Bishnoi IR, Kavaliers M, Ossenkopp KP. Lipopolysaccharide (LPS) attenuates the primary conditioning of lithium chloride (LiCl)-induced context aversion but not the secondary conditioning of context aversion or taste avoidance. Behav Brain Res 2024; 459:114800. [PMID: 38061669 DOI: 10.1016/j.bbr.2023.114800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/20/2023] [Accepted: 12/03/2023] [Indexed: 12/25/2023]
Abstract
A first-order association can be formed between toxin-induced nausea and a context, as well as nausea and a taste cue. However, comparatively little is understood about second-order associations. The present study examined if the bacterial endotoxin, LPS, could impair the first- and second-order conditioning of context aversion (anticipatory nausea paradigm) and subsequent conditioned taste avoidance (two-bottle task). Adult male Long Evans rats were treated with LiCl (127 mg/kg, intraperitoneal [i.p.]) or vehicle control (NaCl) and then exposed to a distinct context for 4 first-order conditioning trials. LPS (200 μg/kg, i.p.) or NaCl were administered 24 h after each trial. Seventy-two h after the final first-order conditioning trial, rats underwent 2 second-order conditioning trials where they were treated with 2% saccharin (i.p.) and then exposed to the same context. Twenty-four h after the final second-order conditioning trial, rats were tested in a two-bottle task (2 trials), where they were given a choice between water and a palatable 0.2% saccharin solution. LiCl-treated rats demonstrated a context aversion by the 3rd conditioning trial in the anticipatory nausea paradigm. Rats previously exposed to LiCl also displayed a conditioned taste avoidance of saccharin within the two-bottle task. LPS attenuated first-order context aversion but did not alter either second-order context aversion or conditioned taste avoidance in the two-bottle task. This study demonstrated that a secondary association formed within an aversive context could result in a conditioned taste avoidance. Further, LPS may be able to attenuate primary conditioning, but not secondary conditioning.
Collapse
Affiliation(s)
- Indra R Bishnoi
- Graduate Program in Neuroscience, University of Western Ontario, London, Canada; Department of Psychology, University of Western Ontario, London, Canada.
| | - Martin Kavaliers
- Graduate Program in Neuroscience, University of Western Ontario, London, Canada; Department of Psychology, University of Western Ontario, London, Canada; Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Canada
| | - Klaus-Peter Ossenkopp
- Graduate Program in Neuroscience, University of Western Ontario, London, Canada; Department of Psychology, University of Western Ontario, London, Canada
| |
Collapse
|
5
|
Kobayashi S, Kajiwara M, Cui Y, Sako T, Sasabe T, Hayashinaka E, Wada Y, Kobayashi M. Activation of multiple neuromodulatory systems in alert rats acquiring conditioned taste aversion revealed by positron emission tomography. Brain Res 2024; 1822:148617. [PMID: 37805008 DOI: 10.1016/j.brainres.2023.148617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/02/2023] [Accepted: 10/01/2023] [Indexed: 10/09/2023]
Abstract
Conditioned taste aversion (CTA) is an essential ability for animals to consume food safely and is regulated by neuromodulatory systems including the dopamine, noradrenaline, serotonin, and acetylcholine systems. However, because few studies focused on a comprehensive understanding of whole-brain activities, how these neuromodulators contribute to the process of CTA remains an open issue. 18F-fluorodeoxyglucose (FDG)-positron emission tomography (PET) can visualize activated regions within the whole brain simultaneously and noninvasively. This study aimed to understand the mechanisms of CTA, especially focusing on the retrieval process after CTA acquisition by FDG-PET imaging. CTA was established in rats who received an intraoral application of saccharin solution (IOAS) on the first day (Day 1), a LiCl i.p. injection after an IOAS on Day 2, and an IOAS on Day 3 (CTA group). The subtraction images of Day 3 of the SHAM group, which received a 0.9 % NaCl (saline) injection instead of a LiCl on Day 2, from those of Day 3 of the CTA group revealed increases in FDG signals in multiple brain regions including the substantia nigra, ventral tegmental area, locus coeruleus, dorsal raphe, and nucleus basalis magnocellularis, in addition to the hippocampus and nociception-related regions, including the parabrachial nucleus and solitary nucleus. On the other hand, the visceral pain induced by the LiCl injection increased FDG signals in the primary and secondary somatosensory and insular cortices in addition to the parabrachial nucleus and solitary nucleus. These results suggest that the retrieval process of CTA induces brain regions producing neuromodulators and pain-related brainstem.
Collapse
Affiliation(s)
- Satomi Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Department of Biology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Mie Kajiwara
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Department of Anesthesiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Yilong Cui
- RIKEN Center for Molecular Imaging Science, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Takeo Sako
- RIKEN Center for Molecular Imaging Science, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Tetsuya Sasabe
- RIKEN Center for Molecular Imaging Science, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Emi Hayashinaka
- RIKEN Center for Molecular Imaging Science, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Yasuhiro Wada
- RIKEN Center for Molecular Imaging Science, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Masayuki Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; RIKEN Center for Molecular Imaging Science, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan; Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| |
Collapse
|
6
|
Beheshti M, Rabiei N, Taghizadieh M, Eskandari P, Mollazadeh S, Dadgostar E, Hamblin MR, Salmaninejad A, Emadi R, Mohammadi AH, Mirazei H. Correlations between single nucleotide polymorphisms in obsessive-compulsive disorder with the clinical features or response to therapy. J Psychiatr Res 2023; 157:223-238. [PMID: 36508934 DOI: 10.1016/j.jpsychires.2022.11.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
Obsessive-compulsive disorder (OCD) is a debilitating neuropsychiatric disorder, in which the patient endures intrusive thoughts or is compelled to perform repetitive or ritualized actions. Many cases of OCD are considered to be familial or heritable in nature. It has been shown that a variety of internal and external risk factors are involved in the pathogenesis of OCD. Among the internal factors, genetic modifications play a critical role in the pathophysiological process. Despite many investigations performed to determine the candidate genes, the precise genetic factors involved in the disease remain largely undetermined. The present review summarizes the single nucleotide polymorphisms that have been proposed to be associated with OCD symptoms, early onset disease, neuroimaging results, and response to therapy. This information could help us to draw connections between genetics and OCD symptoms, better characterize OCD in individual patients, understand OCD prognosis, and design more targeted personalized treatment approaches.
Collapse
Affiliation(s)
- Masoumeh Beheshti
- Pathophysiology Laboratory, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Nikta Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women's Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pariya Eskandari
- Department of Biology, School of Basic Sciences, University of Guilan, Rasht, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Arash Salmaninejad
- Regenerative Medicine, Organ Procurement and Transplantation Multi Disciplinary Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Raziye Emadi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | - Amir Hossein Mohammadi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamed Mirazei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
7
|
Infection, Learning, and Memory: Focus on Immune Activation and Aversive Conditioning. Neurosci Biobehav Rev 2022; 142:104898. [PMID: 36183862 DOI: 10.1016/j.neubiorev.2022.104898] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
Abstract
Here we review the effects of immune activation primarily via lipopolysaccharide (LPS), a cell wall component of Gram-negative bacteria, on hippocampal and non-hippocampal-dependent learning and memory. Rodent studies have found that LPS alters both the acquisition and consolidation of aversive learning and memory, such as those evoking evolutionarily adaptive responses like fear and disgust. The inhibitory effects of LPS on the acquisition and consolidation of contextual fear memory are discussed. LPS-induced alterations in the acquisition of taste and place-related conditioned disgust memory within bottle preference tasks and taste reactivity tests (taste-related), in addition to conditioned context avoidance tasks and the anticipatory nausea paradigm (place-related), are highlighted. Further, conditioned disgust memory consolidation may also be influenced by LPS-induced effects. Growing evidence suggests a central role of immune activation, especially pro-inflammatory cytokine activity, in eliciting the effects described here. Understanding how infection-induced immune activation alters learning and memory is increasingly important as bacterial and viral infections are found to present a risk of learning and memory impairment.
Collapse
|
8
|
Ghobadian A, Mokhtari S, Shariati B, Kamalzadeh L, Shati M, Eftekhar Ardebili M, Yarahmadi M, Shalbafan M. Granisetron-mediated augmentation of sertraline therapeutic effect in obsessive-compulsive disorder: a double-blind placebo-controlled, randomized clinical trial. BMC Pharmacol Toxicol 2022; 23:73. [PMID: 36167636 PMCID: PMC9516841 DOI: 10.1186/s40360-022-00610-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 09/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Medications currently recommended for the treatment of Obsessive-Compulsive Disorder (OCD) usually relieve the severity of symptoms by as much as 20-30%, and satisfactory treatment is obtained in 40-60% of patients with OCD. Nevertheless, the remaining symptoms continue to impair the patients' function. Therefore, it is necessary to investigate possible strategies to improve the mitigation of symptoms. In this study, the main objective was to examine and investigate the effectiveness of granisetron, which is a serotonin 5-hydroxytryptamine receptor type 3 (5-HT3) antagonist, as an adjunct therapy to selective serotonin reuptake inhibitors, for the purpose of ameliorating OCD symptoms. METHODS fifty-eight patients diagnosed with OCD, based on Diagnostic and Statistical Manual of Mental Disorders (DSM-5) criteria, who had a Yale-Brown obsessive-compulsive scale (Y-BOCS) score of more than 21 were recruited in a double-blinded, parallel-group, placebo-controlled, clinical trial of 10 weeks to receive either granisetron (1 mg twice daily) and sertraline (100 mg daily initially followed by 200 mg daily after week 4) or placebo and sertraline. The primary outcome was OCD symptoms measured by the Y-BOCS. RESULTS Y-BOCS total score significantly dropped in both groups (28.9 to 17.7 for granisetron plus sertraline and 27.5 to 19.3 for placebo plus sertraline group with a slightly greater drop for granisetron plus sertraline group), while the granisetron plus sertraline group experienced a significantly greater reduction in obsession scores (Greenhouse-Geisser F(2.32,97.57) = 4.52,p-value = 0.01). Moreover, in comparison with the placebo plus sertraline group, the proportion of the patients showing complete response was considerably higher among the granisetron plus sertraline group (P-value < 0.01). No major adverse effects were observed in any of the groups. CONCLUSION The results suggest that granisetron augmentation of sertraline may increase the rate of response in patients with moderate to severe non-refractory OCD. Further studies are suggested in this regard.
Collapse
Affiliation(s)
- Ala Ghobadian
- Mental Health Research Center, Psychosocial Health Research Institute (PHRI), Department of Psychiatry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saba Mokhtari
- Department of Psychiatry, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Behnam Shariati
- Mental Health Research Center, Psychosocial Health Research Institute (PHRI), Department of Psychiatry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Kamalzadeh
- Mental Health Research Center, Psychosocial Health Research Institute (PHRI), Department of Psychiatry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Shati
- Mental Health Research Center (MHRC), School of Behavioral Sciences and Mental Health, Tehran Institute of Psychiatry, Iran University of Medical Sciences, Tehran, Iran.,Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Eftekhar Ardebili
- Mental Health Research Center, Psychosocial Health Research Institute (PHRI), Department of Psychiatry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoomeh Yarahmadi
- Mental Health Research Center, Psychosocial Health Research Institute (PHRI), Department of Psychiatry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Shalbafan
- Mental Health Research Center, Psychosocial Health Research Institute (PHRI), Department of Psychiatry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran. .,Brain and Cognition Clinic, Institute for Cognitive Sciences Studies, Tehran, Iran.
| |
Collapse
|
9
|
Kavaliers M, Ossenkopp KP, Tyson CD, Bishnoi IR, Choleris E. Social factors and the neurobiology of pathogen avoidance. Biol Lett 2022; 18:20210371. [PMID: 35193366 PMCID: PMC8864371 DOI: 10.1098/rsbl.2021.0371] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/24/2022] [Indexed: 12/21/2022] Open
Abstract
Although the evolutionary causes and consequences of pathogen avoidance have been gaining increasing interest, there has been less attention paid to the proximate neurobiological mechanisms. Animals gauge the infection status of conspecifics and the threat they represent on the basis of various sensory and social cues. Here, we consider the neurobiology of pathogen detection and avoidance from a cognitive, motivational and affective state (disgust) perspective, focusing on the mechanisms associated with activating and directing parasite/pathogen avoidance. Drawing upon studies with laboratory rodents, we briefly discuss aspects of (i) olfactory-mediated recognition and avoidance of infected conspecifics; (ii) relationships between pathogen avoidance and various social factors (e.g. social vigilance, social distancing (approach/avoidance), social salience and social reward); (iii) the roles of various brain regions (in particular the amygdala and insular cortex) and neuromodulators (neurotransmitters, neuropeptides, steroidal hormones and immune components) in the regulation of pathogen avoidance. We propose that understanding the proximate neurobiological mechanisms can provide insights into the ecological and evolutionary consequences of the non-consumptive effects of pathogens and how, when and why females and males engage in pathogen avoidance.
Collapse
Affiliation(s)
- Martin Kavaliers
- Department of Psychology and Neuroscience Program, University of Western Ontario, London, Ontario, Canada N6A 5C1
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Klaus-Peter Ossenkopp
- Department of Psychology and Neuroscience Program, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Cashmeira-Dove Tyson
- Department of Psychology and Neuroscience Program, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Indra R. Bishnoi
- Department of Psychology and Neuroscience Program, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
10
|
Brewer R, Murphy J, Bird G. Atypical interoception as a common risk factor for psychopathology: A review. Neurosci Biobehav Rev 2021; 130:470-508. [PMID: 34358578 PMCID: PMC8522807 DOI: 10.1016/j.neubiorev.2021.07.036] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 07/09/2021] [Accepted: 07/31/2021] [Indexed: 02/06/2023]
Abstract
The inadequacy of a categorial approach to mental health diagnosis is now well-recognised, with many authors, diagnostic manuals and funding bodies advocating a dimensional, trans-diagnostic approach to mental health research. Variance in interoception, the ability to perceive one's internal bodily state, is reported across diagnostic boundaries, and is associated with atypical functioning across symptom categories. Drawing on behavioural and neuroscientific evidence, we outline current research on the contribution of interoception to numerous cognitive and affective abilities (in both typical and clinical populations), and describe the interoceptive atypicalities seen in a range of psychiatric conditions. We discuss the role that interoception may play in the development and maintenance of psychopathology, as well as the ways in which interoception may differ across clinical presentations. A number of important areas for further research on the role of interoception in psychopathology are highlighted.
Collapse
Affiliation(s)
- Rebecca Brewer
- Department of Psychology, Royal Holloway, University of London, United Kingdom
| | - Jennifer Murphy
- Department of Psychology, Royal Holloway, University of London, United Kingdom.
| | - Geoffrey Bird
- Department of Experimental Psychology, University of Oxford, United Kingdom; Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| |
Collapse
|
11
|
Kavaliers M, Ossenkopp KP, Choleris E. Pathogens, odors, and disgust in rodents. Neurosci Biobehav Rev 2020; 119:281-293. [PMID: 33031813 PMCID: PMC7536123 DOI: 10.1016/j.neubiorev.2020.09.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/11/2020] [Accepted: 09/24/2020] [Indexed: 01/04/2023]
Abstract
All animals are under the constant threat of attack by parasites. The mere presence of parasite threat can alter behavior before infection takes place. These effects involve pathogen disgust, an evolutionarily conserved affective/emotional system that functions to detect cues associated with parasites and infection and facilitate avoidance behaviors. Animals gauge the infection status of conspecific and the salience of the threat they represent on the basis of various sensory cues. Odors in particular are a major source of social information about conspecifics and the infection threat they present. Here we briefly consider the origins, expression, and regulation of the fundamental features of odor mediated pathogen disgust in rodents. We briefly review aspects of: (1) the expression of affective states and emotions and in particular, disgust, in rodents; (2) olfactory mediated recognition and avoidance of potentially infected conspecifics and the impact of pathogen disgust and its' fundamental features on behavior; (3) pathogen disgust associated trade-offs; (4) the neurobiological mechanisms, and in particular the roles of the nonapeptide, oxytocin, and steroidal hormones, in the expression of pathogen disgust and the regulation of avoidance behaviors and concomitant trade-offs. Understanding the roles of pathogen disgust in rodents can provide insights into the regulation and expression of responses to pathogens and infection in humans.
Collapse
Affiliation(s)
- Martin Kavaliers
- Department of Psychology and Neuroscience Program, University of Western Ontario, London, Canada; Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Klaus-Peter Ossenkopp
- Department of Psychology and Neuroscience Program, University of Western Ontario, London, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
12
|
Yao JQ, Liu C, Jin ZL, Liu YQ, Yin YY, Fang XX, Ran YH, Zhang LM, Li YF. Serotonergic transmission is required for the anxiolytic-like behavioral effects of YL-IPA08, a selective ligand targeting TSPO. Neuropharmacology 2020; 178:108230. [PMID: 32693005 DOI: 10.1016/j.neuropharm.2020.108230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/24/2020] [Accepted: 07/03/2020] [Indexed: 01/04/2023]
Abstract
Anxiety disorders are the most prevalent group of mental disorders globally, leading to considerable losses in health, functioning and increase of medical costs. Till now, the search for novel pharmacological treatments is driven by the growing medical need to improve on the effectiveness and the side effect profile of existing drugs. In central nervous system, the mitochondrially located translocator protein (18 kDa, TSPO) serves as the rate-limiting step for neurosteroidogenesis and influences GABAergic transmission. Since 5-HT is one of the most comprehensively studied neurotransmitter systems in the anxiety field, in the present study, we want to investigate whether 5-HT system is involved in the anxiolytic-like effects of YL-IPA08, a novel TSPO ligand designed and synthesized at our institute. Our data showed that YL-IPA08 could potentiate the 5-HTP-induced head-twitch response, and the anxiolytic-like effect of YL-IPA08 was abolished by pCPA or 5,7-DHT pretreatment in mice. Furthermore, we found that YL-IPA08 increased the extracellular levels of 5-HT in the rat ventral hippocampus in freely moving rat using the rapid and validated HPLC coupled with microdialysis. In addition, 5-HT level was positively correlated with the level of allopregnanolone. The above results suggest that 5-HT neurotransmission may play a critical role in the anxiolytic-like effects of YL-IPA08.
Collapse
Affiliation(s)
- Jun-Qi Yao
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Chang Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China; Nanlou Pharmacy, Chinese PLA General Hospital, Beijing, 100853, China
| | - Zeng-Liang Jin
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China; School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yan-Qin Liu
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Yong-Yu Yin
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Xin-Xin Fang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563003, China
| | - Yu-Hua Ran
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Li-Ming Zhang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China.
| | - Yun-Feng Li
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China.
| |
Collapse
|
13
|
Ayoub SM, Smoum R, Farag M, Atwal H, Collins SA, Rock EM, Limebeer CL, Piscitelli F, Iannotti FA, Lichtman AH, Leri F, Di Marzo V, Mechoulam R, Parker LA. Oleoyl alanine (HU595): a stable monomethylated oleoyl glycine interferes with acute naloxone precipitated morphine withdrawal in male rats. Psychopharmacology (Berl) 2020; 237:2753-2765. [PMID: 32556401 DOI: 10.1007/s00213-020-05570-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/25/2020] [Indexed: 10/24/2022]
Abstract
RATIONALE Oleoyl glycine, a little studied fatty acid amide similar in structure to anandamide, interferes with nicotine addiction in mice and acute naloxone-precipitated morphine withdrawal (MWD) in rats. Because endogenous oleoyl glycine is subject to rapid enzymatic deactivation, we evaluated the potential of more stable analogs to interfere with opiate withdrawal. OBJECTIVES The potential of monomethylated oleoyl glycine (oleoyl alanine, HU595) to interfere with somatic and aversive effects of acute naloxone-precipitated MWD, its duration, and mechanism of action was assessed in male Sprague Dawley rats. The potential of dimethylated oleoyl glycine (HU596) to interfere with the aversive effects of naloxone-precipitated MWD was also investigated. RESULTS Oleoyl alanine (HU595) interfered with somatic and aversive effects produced by naloxone-precipitated MWD at equivalent doses (1 and 5 mg/kg, i.p.) as we have reported for oleoyl glycine; however, oleoyl alanine produced a longer lasting (60 min) interference, yet did not produce rewarding or aversive effects on its own and did not modify locomotor activity. HU596 was not effective. The interference with aversive effects of naloxone-precipitated MWD by oleoyl alanine was prevented by both a PPARα antagonist and a CB1 receptor antagonist. Accordingly, the compound was found to inhibit FAAH and activate PPARα in vitro. Finally, oleoyl alanine also reduced acute naloxone-precipitated MWD anhedonia, as measured by decreased saccharin preference. CONCLUSIONS Oleoyl alanine (also an endogenous fatty acid) may be a more stable and effective treatment for opiate withdrawal than oleoyl glycine.
Collapse
Affiliation(s)
- Samantha M Ayoub
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Reem Smoum
- Institute of Drug Research, Medical Faculty, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mathew Farag
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Harkirat Atwal
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Stephen A Collins
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Erin M Rock
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Cheryl L Limebeer
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Fabiana Piscitelli
- Institute of Biomolecular Chemistry, Endocannabinoid Research Group, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy
| | - Fabio Arturo Iannotti
- Institute of Biomolecular Chemistry, Endocannabinoid Research Group, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Francesco Leri
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Vincenzo Di Marzo
- Institute of Biomolecular Chemistry, Endocannabinoid Research Group, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy.,Canada Excellence Research Chair on the Microbiome/Endocannabinoid Axis in Metabolomic Health, Université Laval, Quebec City, Canada
| | - Raphael Mechoulam
- Institute of Drug Research, Medical Faculty, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Linda A Parker
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
14
|
Taste association capabilities differ in high- and low-yawning rats versus outbred Sprague-Dawley rats after prolonged sugar consumption. Anim Cogn 2020; 24:41-52. [PMID: 32681199 DOI: 10.1007/s10071-020-01415-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 06/03/2020] [Accepted: 07/10/2020] [Indexed: 10/23/2022]
Abstract
Yawning is a stereotypical behavior pattern commonly associated with other behaviors such as grooming, sleepiness, and arousal. Several differences in behavioral and neurochemical characteristics have been described in high-yawning (HY) and low-yawning (LY) sublines from Sprague-Dawley (SD) rats that support they had changes in the neural mechanism between sublines. Differences in behavior and neurochemistry observed in yawning sublines could also overlap in processes needed during taste learning, particularly during conditioned taste aversion (CTA) and its latent inhibition. Therefore, the aim of this study was to analyze taste memory differences, after familiarization to novel or highly sweet stimuli, between yawning sublines and compare them with outbred SD rats. First, we evaluated changes in appetitive response during long-term sugar consumption for 14 days. Then, we evaluated the latent inhibition of CTA strength induced by this long pre-exposure, and we also measured aversive memory extinction rate. The results showed that SD rats and the two sublines developed similar CTA for novel sugar and significantly stronger appetitive memory after long-term sugar exposure. However, after 14 days of sugar exposure, HY and LY sublines were unable to develop latent inhibition of CTA after two acquisition trials and had a slower aversive memory extinction rate than outbreed rats. Thus, the inability of the HY and LY sublines to develop latent inhibition of CTA after long-term sugar exposure could be related to the time/context processes involved in long-term appetitive re-learning, and in the strong inbreeding that characterizes the behavioral traits of these sublines, suggesting that inbreeding affects associative learning, particularly after long-term exposure to sweet stimuli which reflects high familiarization.
Collapse
|
15
|
DeVuono MV, La Caprara O, Sullivan MT, Bath A, Petrie GN, Limebeer CL, Rock EM, Hill MN, Parker LA. Role of the stress response and the endocannabinoid system in Δ 9-tetrahydrocannabinol (THC)-induced nausea. Psychopharmacology (Berl) 2020; 237:2187-2199. [PMID: 32399633 DOI: 10.1007/s00213-020-05529-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/16/2020] [Indexed: 12/20/2022]
Abstract
RATIONALE Dysregulation of the endocannabinoid (eCB) system by high doses of Δ9-tetrahydrocannabinol (THC) is hypothesized to generate a dysfunctional hypothalamic-pituitary-adrenal (HPA) axis contributing to cannabinoid hyperemesis syndrome (CHS). OBJECTIVES AND METHODS Using the conditioned gaping model of nausea, we aimed to determine if pre-treatments that interfere with stress, or an anti-emetic drug, interfere with THC-induced nausea in male rats. The corticotropin-releasing hormone (CRH) antagonist, antalarmin, was given to inhibit the HPA axis during conditioning. Since eCBs inhibit stress, MJN110 (which elevates 2-arachidonylglycerol (2-AG)) and URB597 (which elevates anandamide (AEA)) were also tested. Propranolol (β-adrenergic antagonist) and WAY-100635 (5-HT1A antagonist) attenuate HPA activation by cannabinoids and, therefore, were assessed. In humans, CHS symptoms are not alleviated by anti-emetic drugs, such as ondansetron (5-HT3 antagonist); however, benzodiazepines are effective. Therefore, ondansetron and chlordiazepoxide were tested. To determine if HPA activation by THC is dose-dependent, corticosterone (CORT) was analyzed from serum of rats treated with 0.0, 0.5, or 10 mg/kg THC. RESULTS Antalarmin (10 and 20 mg/kg), MJN110 (10 mg/kg), URB597 (0.3 mg/kg), propranolol (2.5 and 5 mg/kg), WAY-100635 (0.5 mg/kg), and chlordiazepoxide (5 mg/kg) interfered with THC-induced conditioned gaping, but the anti-emetic ondansetron (0.1 and 0.01 mg/kg) did not. THC produced significantly higher CORT levels at 10 mg/kg than at 0.0 and 0.5 mg/kg THC. CONCLUSIONS Treatments that interfere with the stress response also inhibit THC-induced conditioned gaping, but a typical anti-emetic drug does not, supporting the hypothesis that THC-induced nausea, and CHS, is a result of a dysregulated stress response.
Collapse
Affiliation(s)
- Marieka V DeVuono
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Olivia La Caprara
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Megan T Sullivan
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Alexandra Bath
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Gavin N Petrie
- Departments of Cell Biology and, Anatomy and Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Cheryl L Limebeer
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Erin M Rock
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Matthew N Hill
- Departments of Cell Biology and, Anatomy and Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Linda A Parker
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
16
|
Osorio-Gómez D, Bermúdez-Rattoni F, Guzmán-Ramos K. Artificial taste avoidance memory induced by coactivation of NMDA and β-adrenergic receptors in the amygdala. Behav Brain Res 2019; 376:112193. [PMID: 31473281 DOI: 10.1016/j.bbr.2019.112193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/07/2019] [Accepted: 08/28/2019] [Indexed: 11/18/2022]
Abstract
The association between a taste and gastric malaise allows animals to avoid the ingestion of potentially toxic food. This association has been termed conditioned taste aversion (CTA) and relies on the activity of key brain structures such as the amygdala and the insular cortex. The establishment of this gustatory-avoidance memory is related to glutamatergic and noradrenergic activity within the amygdala during two crucial events: gastric malaise (unconditioned stimulus, US) and the post-acquisition spontaneous activity related to the association of both stimuli. To understand the functional implications of these neurochemical changes on avoidance memory formation, we assessed the effects of pharmacological stimulation of β-adrenergic and glutamatergic NMDA receptors through the administration of a mixture of L-homocysteic acid and isoproterenol into the amygdala after saccharin exposure on specific times to emulate the US and post-acquisition local signals that would be occurring naturally under CTA training. Our results show that activation of NMDA and β-adrenergic receptors generated a long-term avoidance response to saccharin, like a naturally induced rejection with LiCl. Moreover, the behavioral outcome was accompanied by changes in glutamate, norepinephrine and dopamine levels within the insular cortex, analogous to those displayed during memory retrieval of taste aversion memory. Therefore, we suggest that taste avoidance memory can be induced artificially through the emulation of specific amygdalar neurochemical signals, promoting changes in the amygdala-insular cortex circuit enabling memory establishment.
Collapse
Affiliation(s)
- Daniel Osorio-Gómez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Federico Bermúdez-Rattoni
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Kioko Guzmán-Ramos
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud Universidad Autónoma Metropolitana, Unidad Lerma Av. de las Garzas No. 10, Col. El Panteón, Lerma de Villada, Estado de México, C.P. 52005, Mexico.
| |
Collapse
|
17
|
Fakhfouri G, Rahimian R, Dyhrfjeld-Johnsen J, Zirak MR, Beaulieu JM. 5-HT 3 Receptor Antagonists in Neurologic and Neuropsychiatric Disorders: The Iceberg Still Lies beneath the Surface. Pharmacol Rev 2019; 71:383-412. [PMID: 31243157 DOI: 10.1124/pr.118.015487] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
5-HT3 receptor antagonists, first introduced to the market in the mid-1980s, are proven efficient agents to counteract chemotherapy-induced emesis. Nonetheless, recent investigations have shed light on unappreciated dimensions of this class of compounds in conditions with an immunoinflammatory component as well as in neurologic and psychiatric disorders. The promising findings from multiple studies have unveiled several beneficial effects of these compounds in multiple sclerosis, stroke, Alzheimer disease, and Parkinson disease. Reports continue to uncover important roles for 5-HT3 receptors in the physiopathology of neuropsychiatric disorders, including depression, anxiety, drug abuse, and schizophrenia. This review addresses the potential of 5-HT3 receptor antagonists in neurology- and neuropsychiatry-related disorders. The broad therapeutic window and high compliance observed with these agents position them as suitable prototypes for the development of novel pharmacotherapeutics with higher efficacy and fewer adverse effects.
Collapse
Affiliation(s)
- Gohar Fakhfouri
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| | - Reza Rahimian
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| | - Jonas Dyhrfjeld-Johnsen
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| | - Mohammad Reza Zirak
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| | - Jean-Martin Beaulieu
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| |
Collapse
|
18
|
Nolden A, Joseph PV, Kober KM, Cooper BA, Paul SM, Hammer MJ, Dunn LB, Conley YP, Levine JD, Miaskowski C. Co-occurring Gastrointestinal Symptoms Are Associated With Taste Changes in Oncology Patients Receiving Chemotherapy. J Pain Symptom Manage 2019; 58:756-765. [PMID: 31349034 PMCID: PMC6823134 DOI: 10.1016/j.jpainsymman.2019.07.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/13/2019] [Accepted: 07/15/2019] [Indexed: 12/24/2022]
Abstract
CONTEXT Over 80% of patients with cancer report taste changes. Despite the high prevalence of this symptom and its negative effects on health, few studies have assessed its association with other gastrointestinal (GI) symptoms. OBJECTIVES Determine the occurrence, frequency, severity, and distress of patient-reported "change in the way food tastes" (CFT) and identify phenotypic and GI symptoms characteristics associated with its occurrence. METHODS Patients receiving chemotherapy for breast, GI, gynecological, or lung cancer completed demographic and symptom questionnaires prior to their second or third cycle of chemotherapy. CFT was assessed using the Memorial Symptom Assessment Scale. Differences in demographic, clinical, and GI symptom characteristics were evaluated using parametric and nonparametric tests. RESULTS Of the 1329 patients, 49.4% reported experiencing CFT in the week prior to their second or third cycle of chemotherapy. In the univariate analysis, patients who reported CFT had fewer years of education; were more likely to be black or Hispanic, mixed race, or other; and had a lower annual household income. A higher percentage of patients with CFT reported the occurrence of 13 GI symptoms (e.g., constipation, diarrhea, abdominal cramps, feeling bloated). In a multivariable logistic regression analysis, compared with patients with breast cancer, patients with lung cancer (odds ratio = 0.55; P = 0.004) had a decrease in the odds of being in the CFT group. Patients who received a neurokinin-1 receptor antagonist and two other antiemetics were at an increased odds of being in the CFT group (odds ratio = 2.51; P = 0.001). Eight of the 13 GI symptoms evaluated were associated with an increased odds of being in the CFT group. CONCLUSIONS This study provides new evidence on the frequency, severity, and distress of CFT in oncology patients undergoing chemotherapy. These findings suggest that CFT is an important problem that warrants ongoing assessments and nutritional interventions.
Collapse
Affiliation(s)
- Alissa Nolden
- Food Science Department, College of Natural Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Paule V Joseph
- Sensory Science & Metabolism Unit, Biobehavioral Branch, Division of Intramural Research, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Kord M Kober
- Department of Physiological Nursing, School of Nursing, University of California San Francisco, San Francisco, California, USA
| | - Bruce A Cooper
- Department of Physiological Nursing, School of Nursing, University of California San Francisco, San Francisco, California, USA
| | - Steven M Paul
- Department of Physiological Nursing, School of Nursing, University of California San Francisco, San Francisco, California, USA
| | - Marilyn J Hammer
- Department of Nursing, Mount Sinai Medical Center, New York, New York, USA
| | - Laura B Dunn
- School of Medicine, Stanford University, Stanford, California, USA
| | - Yvette P Conley
- School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jon D Levine
- School of Medicine, University of California, San Francisco, California, USA
| | - Christine Miaskowski
- Department of Physiological Nursing, School of Nursing, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
19
|
Pittaras E, Callebert J, Dorey R, Chennaoui M, Granon S, Rabat A. Mouse Gambling Task reveals differential effects of acute sleep debt on decision-making and associated neurochemical changes. Sleep 2019; 41:5126120. [PMID: 30304537 PMCID: PMC6231521 DOI: 10.1093/sleep/zsy168] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Indexed: 01/19/2023] Open
Abstract
Sleep loss is associated with sleepiness, sustained attention, and memory deficits. However, vulnerability of higher cognitive processes (i.e. decision making) to sleep debt is less understood. Therefore, a major challenge is to understand why and how higher cognitive processes are affected by sleep debt. We had established in mice correlations between individual decision-making strategies, prefrontal activity, and regional monoaminergic levels. Now, we show that acute sleep debt (ASD) disturbs decision-making processes and provokes brain regional modifications of serotonin and dopamine that could explain why ASD promotes inflexible and more risk-prone behaviors. Finally, we highlight, for the first time, that in a large group of healthy inbred mice some of them are more sensitive to ASD by showing inflexible behavior and decision-making deficits. We were also able to predict mice that would be the most vulnerable to ASD depending of their behavior before ASD exposure.
Collapse
Affiliation(s)
- Elsa Pittaras
- Unité Fatigue et Vigilance, Département Environnements Opérationnels, Institut de Recherche Biomédicale des armées, Brétigny-sur-Orge cedex, France.,Equipe 'Neurobiologie de la prise de décision', Neuro-PSI, CNRS UMR 9197, Orsay, France.,Equipe d'accueil VIgilance FAtigue et SOMmeil (VIFASOM) EA 7330 - Université Paris 5 Descartes, Paris, France.,Biology Department, Stanford University, Stanford, CA
| | - Jacques Callebert
- Service de Biochimie et Biologie Moléculaire, Hôpital Lariboisière, Paris, France
| | - Rodolphe Dorey
- Unité Fatigue et Vigilance, Département Environnements Opérationnels, Institut de Recherche Biomédicale des armées, Brétigny-sur-Orge cedex, France.,Equipe d'accueil VIgilance FAtigue et SOMmeil (VIFASOM) EA 7330 - Université Paris 5 Descartes, Paris, France
| | - Mounir Chennaoui
- Unité Fatigue et Vigilance, Département Environnements Opérationnels, Institut de Recherche Biomédicale des armées, Brétigny-sur-Orge cedex, France.,Equipe d'accueil VIgilance FAtigue et SOMmeil (VIFASOM) EA 7330 - Université Paris 5 Descartes, Paris, France
| | - Sylvie Granon
- Equipe 'Neurobiologie de la prise de décision', Neuro-PSI, CNRS UMR 9197, Orsay, France
| | - Arnaud Rabat
- Unité Fatigue et Vigilance, Département Environnements Opérationnels, Institut de Recherche Biomédicale des armées, Brétigny-sur-Orge cedex, France.,Equipe d'accueil VIgilance FAtigue et SOMmeil (VIFASOM) EA 7330 - Université Paris 5 Descartes, Paris, France
| |
Collapse
|
20
|
Asarian L, Geary N. RYGB and flavor-consequence learning. Appetite 2019; 146:104467. [PMID: 31557496 DOI: 10.1016/j.appet.2019.104467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023]
Abstract
Flavor-consequence learning refers to learned associations between flavor stimuli and post-oral consequences of food that affect food selection, amount eaten and affect. Forms of flavor-consequence learning include flavor aversions, flavor avoidance, conditioned satiety, expected satiety and appetition. Roux-en-Y gastric bypass surgery (RYGB) and other bariatric procedures alter gastrointestinal processing of food in a number of ways. Thus, it is plausible that these procedures alter post-oral unconditioned stimuli that support flavor-consequence learning, leading to altered food selection, amount eaten, and affect. Surprisingly, however, there is almost no research on the role of flavor-consequence learning in the effects of bariatric surgery on appetite. This issue urgently warrants investigation.
Collapse
Affiliation(s)
- Lori Asarian
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA.
| | - Nori Geary
- Department of Psychiatry, Weill Medical College of Cornell University, New York, NY, 10025, USA
| |
Collapse
|
21
|
Tanaka DH, Li S, Mukae S, Tanabe T. Genetic Access to Gustatory Disgust-Associated Neurons in the Interstitial Nucleus of the Posterior Limb of the Anterior Commissure in Male Mice. Neuroscience 2019; 413:45-63. [PMID: 31229633 DOI: 10.1016/j.neuroscience.2019.06.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 12/18/2022]
Abstract
Orofacial and somatic disgust reactions are observed in rats following intraoral infusion of not only bitter quinine (innate disgust) but also sweet saccharin previously paired with illness (learned disgust). It remains unclear, however, whether these innate and learned disgust reactions share a common neural basis and which brain regions, if any, host it. In addition, there is no established method to genetically access neurons whose firing is associated with disgust (disgust-associated neurons). Here, we examined the expression of cFos and Arc, two markers of neuronal activity, in the interstitial nucleus of the posterior limb of the anterior commissure (IPAC) of male mice that showed innate disgust and mice that showed learned disgust. Furthermore, we used a targeted recombination in active populations (TRAP) method to genetically label the disgust-associated neurons in the IPAC with YFP. We found a significant increase of both cFos-positive neurons and Arc-positive neurons in the IPAC of mice that showed innate disgust and mice that showed learned disgust. In addition, TRAP following quinine infusion (Quinine-TRAP) resulted in significantly more YFP-positive neurons in the IPAC, compared to TRAP following water infusion. A significant number of the YFP-positive neurons following Quinine-TRAP were co-labeled with Arc following the second quinine infusion, confirming that Quinine-TRAP preferentially labeled quinine-activated neurons in the IPAC. Our results suggest that the IPAC activity is associated with both innate and learned disgust and that disgust-associated neurons in the IPAC are genetically accessible by TRAP.
Collapse
Affiliation(s)
- Daisuke H Tanaka
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Shusheng Li
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Shiori Mukae
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Tsutomu Tanabe
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| |
Collapse
|
22
|
Schier LA, Hyde KM, Spector AC. Conditioned taste aversion versus avoidance: A re-examination of the separate processes hypothesis. PLoS One 2019; 14:e0217458. [PMID: 31216290 PMCID: PMC6583984 DOI: 10.1371/journal.pone.0217458] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 05/13/2019] [Indexed: 11/21/2022] Open
Abstract
Rats not only avoid ingesting a substance associated with LiCl toxicosis, but they display rejection reflexes (e.g., gapes) to its taste; this latter response is thought to reflect disgust or taste aversion. Prior work has shown that rats also avoid consuming foods/fluids associated with other adverse gastrointestinal (GI) effects like lactose indigestion but without the concomitant change in oromotor responses (taste reactivity; TR) indicative of aversion. Because of interpretive limitations of the methods used in those studies, we revisited the taste aversion-avoidance distinction with a design that minimized non-treatment differences among groups. Effects on intake and preference (Experiments 1a, 1b, and 2), as well as consummatory (TR, Experiment 1a and 1b) and appetitive (Progressive Ratio, Experiment 2) behaviors to the taste stimulus were assessed after training. In both experiments, rats were trained to associate 0.2% saccharin (CS) with intraduodenal infusions of LiCl, Lactose, or NaCl control. Rats trained with 18% lactose, 0.3 and 1.5 mEq/kg dose of LiCl subsequently avoided the taste CS in post-training single-bottle intake tests and two-bottle choice tests. However, only those trained with 1.5 mEq/kg LiCl displayed post-conditioning increases in taste CS-elicited aversive TR (Experiment 1a and 1b). This dose of LiCl also led to reductions in breakpoint for saccharin. The fact that conditioned avoidance is not always accompanied by changes in other common appetitive and/or consummatory indices of ingestive motivation further supports a functional dissociation between these processes, and highlights the intricacies of visceral influences on taste-guided ingestive motivation.
Collapse
Affiliation(s)
- Lindsey A. Schier
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Kellie M. Hyde
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, Florida, United States of America
| | - Alan C. Spector
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, Florida, United States of America
- * E-mail:
| |
Collapse
|
23
|
Kavaliers M, Choleris E. The role of social cognition in parasite and pathogen avoidance. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0206. [PMID: 29866919 DOI: 10.1098/rstb.2017.0206] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2017] [Indexed: 12/22/2022] Open
Abstract
The acquisition and use of social information are integral to social behaviour and parasite/pathogen avoidance. This involves social cognition which encompasses mechanisms for acquiring, processing, retaining and acting on social information. Social cognition entails the acquisition of social information about others (i.e. social recognition) and from others (i.e. social learning). Social cognition involves assessing other individuals and their infection status and the pathogen and parasite threat they pose and deciding about when and how to interact with them. Social cognition provides a framework for examining pathogen and parasite avoidance behaviours and their associated neurobiological mechanisms. Here, we briefly consider the relationships between social cognition and olfactory-mediated pathogen and parasite avoidance behaviours. We briefly discuss aspects of (i) social recognition of actual and potentially infected individuals and the impact of parasite/pathogen threat on mate and social partner choice; (ii) the roles of 'out-groups' (strangers, unfamiliar individuals) and 'in-groups' (familiar individuals) in the expression of parasite/pathogen avoidance behaviours; (iii) individual and social learning, i.e. the utilization of the pathogen recognition and avoidance responses of others; and (iv) the neurobiological mechanisms, in particular the roles of the nonapeptide, oxytocin and steroid hormones (oestrogens) associated with social cognition and parasite/pathogen avoidance.This article is part of the Theo Murphy meeting issue 'Evolution of pathogen and parasite avoidance behaviours'.
Collapse
Affiliation(s)
- Martin Kavaliers
- Department of Psychology and Neuroscience Program, Social Science Centre, University of Western Ontario, London, Ontario, Canada N6A 5C2 .,Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
24
|
Stern ER, Shahab R, Grimaldi SJ, Leibu E, Murrough JW, Fleysher L, Parides MK, Coffey BJ, Burdick KE, Goodman WK. High-dose ondansetron reduces activation of interoceptive and sensorimotor brain regions. Neuropsychopharmacology 2019; 44:390-398. [PMID: 30116006 PMCID: PMC6300545 DOI: 10.1038/s41386-018-0174-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 07/22/2018] [Accepted: 07/29/2018] [Indexed: 01/16/2023]
Abstract
Several psychiatric disorders involve abnormalities of interoception and associated neural circuitry centered on the insula. The development of interventions modulating interoceptive circuits could lead to novel treatment approaches for these disorders. The 5-HT3 receptor antagonist ondansetron is a good candidate for the modulation of interoceptive circuits, as 5-HT3 receptors are located abundantly on sensory pathways and ondansetron has shown some clinical utility in disorders characterized by sensory and interoceptive abnormalities. The present study tested the ability of three different doses of ondansetron to engage neural regions involved in interoception to determine the drug's utility as a therapeutic agent to target circuit abnormalities in patients. Fifty-three healthy subjects were randomized to receive a single 8-mg (n = 18), 16-mg (n = 17), or 24-mg (n = 18) dose of ondansetron and placebo before MRI scanning on separate days. Subjects performed an fMRI task previously shown to engage interoceptive circuitry in which they viewed videos depicting body movements/sensation and control videos. The results revealed a highly significant relationship between dosage and activation in bilateral insula, somatosensory and premotor regions, cingulate cortex, and temporal cortex for control but not body-focused videos. These effects were driven by a robust reduction in activation for ondansetron compared to placebo for the 24-mg group, with weaker effects for the 16-mg and 8-mg groups. In conclusion, high-dose ondansetron reduces activation of several areas important for interoception, including insula and sensorimotor cortical regions. This study reveals the potential utility of this drug in modulating hyperactivity in these regions in patients.
Collapse
Affiliation(s)
- Emily R Stern
- Department of Psychiatry, The New York University School of Medicine, New York, NY, USA.
- The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
| | - Rebbia Shahab
- Department of Psychiatry, The New York University School of Medicine, New York, NY, USA
- The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | | | - Evan Leibu
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James W Murrough
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lazar Fleysher
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael K Parides
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Barbara J Coffey
- Department of Psychiatry, University of Miami Medical School, Miami, FL, USA
| | | | - Wayne K Goodman
- Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
25
|
Schier LA, Spector AC. The Functional and Neurobiological Properties of Bad Taste. Physiol Rev 2019; 99:605-663. [PMID: 30475657 PMCID: PMC6442928 DOI: 10.1152/physrev.00044.2017] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 05/18/2018] [Accepted: 06/30/2018] [Indexed: 12/12/2022] Open
Abstract
The gustatory system serves as a critical line of defense against ingesting harmful substances. Technological advances have fostered the characterization of peripheral receptors and have created opportunities for more selective manipulations of the nervous system, yet the neurobiological mechanisms underlying taste-based avoidance and aversion remain poorly understood. One conceptual obstacle stems from a lack of recognition that taste signals subserve several behavioral and physiological functions which likely engage partially segregated neural circuits. Moreover, although the gustatory system evolved to respond expediently to broad classes of biologically relevant chemicals, innate repertoires are often not in register with the actual consequences of a food. The mammalian brain exhibits tremendous flexibility; responses to taste can be modified in a specific manner according to bodily needs and the learned consequences of ingestion. Therefore, experimental strategies that distinguish between the functional properties of various taste-guided behaviors and link them to specific neural circuits need to be applied. Given the close relationship between the gustatory and visceroceptive systems, a full reckoning of the neural architecture of bad taste requires an understanding of how these respective sensory signals are integrated in the brain.
Collapse
Affiliation(s)
- Lindsey A Schier
- Department of Biological Sciences, University of Southern California , Los Angeles, California ; and Department of Psychology and Program in Neuroscience, Florida State University , Tallahassee, Florida
| | - Alan C Spector
- Department of Biological Sciences, University of Southern California , Los Angeles, California ; and Department of Psychology and Program in Neuroscience, Florida State University , Tallahassee, Florida
| |
Collapse
|
26
|
DeVuono MV, Hrelja KM, Sabaziotis L, Rajna A, Rock EM, Limebeer CL, Mutch DM, Parker LA. Conditioned gaping produced by high dose Δ 9-tetrahydracannabinol: Dysregulation of the hypothalamic endocannabinoid system. Neuropharmacology 2018; 141:272-282. [PMID: 30195587 DOI: 10.1016/j.neuropharm.2018.08.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 11/17/2022]
Abstract
Δ9-tetrahydracannabinol (THC) is recognized as an effective treatment for nausea and vomiting via its action on the cannabinoid 1 (CB1) receptor. Paradoxically, there is evidence that THC can also produce nausea and vomiting. Using the conditioned gaping model of nausea in rats, we evaluated the ability of several doses of THC (0.0, 0.5, 5 and 10 mg/kg, i.p.) to produced conditioned gaping reactions. We then investigated the ability of the CB1 receptor antagonist, rimonabant, to block the establishment of THC-induced conditioned gaping. Real-time polymerase chain reaction (RT-PCR) was then used to investigate changes in endocannabinoid related genes in various brain regions in rats chronically treated with vehicle (VEH), 0.5 or 10 mg/kg THC. THC produced dose-dependent gaping, with 5 and 10 mg/kg producing significantly more gaping reactions than VEH or 0.5 mg/kg THC, a dose known to have anti-emetic properties. Pre-treatment with rimonabant reversed this effect, indicating that THC-induced conditioned gaping was CB1 receptor mediated. The RT-PCR analysis revealed an upregulation of genes for the degrading enzyme, monoacylglycerol lipase (MAGL), of the endocannabinoid, 2-arachidolyl glycerol (2-AG), in the hypothalamus of rats treated with 10 mg/kg THC. No changes in the expression of relevant genes were found in nausea (interoceptive insular cortex) or vomiting (dorsal vagal complex) related brain regions. These findings support the hypothesis that THC-induced nausea is a result of a dysregulated hypothalamic-pituitary-adrenal axis leading to an overactive stress response.
Collapse
Affiliation(s)
- Marieka V DeVuono
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, N1G 2W1, ON, Canada
| | - Kelly M Hrelja
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, N1G 2W1, ON, Canada
| | - Lauren Sabaziotis
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, N1G 2W1, ON, Canada
| | - Alex Rajna
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, N1G 2W1, ON, Canada
| | - Erin M Rock
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, N1G 2W1, ON, Canada
| | - Cheryl L Limebeer
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, N1G 2W1, ON, Canada
| | - David M Mutch
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, N1G 2W1, ON, Canada
| | - Linda A Parker
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, N1G 2W1, ON, Canada.
| |
Collapse
|
27
|
Kavaliers M, Ossenkopp KP, Choleris E. Social neuroscience of disgust. GENES BRAIN AND BEHAVIOR 2018; 18:e12508. [DOI: 10.1111/gbb.12508] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/13/2018] [Accepted: 07/26/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Martin Kavaliers
- Department of Psychology and Neuroscience Program; University of Western Ontario; London Ontario Canada
- Department of Psychology and Neuroscience Program; University of Guelph; Guelph Ontario Canada
| | - Klaus-Peter Ossenkopp
- Department of Psychology and Neuroscience Program; University of Western Ontario; London Ontario Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program; University of Guelph; Guelph Ontario Canada
| |
Collapse
|
28
|
Nausea-Induced 5-HT Release in the Interoceptive Insular Cortex and Regulation by Monoacylglycerol Lipase (MAGL) Inhibition and Cannabidiol. eNeuro 2018; 5:eN-NWR-0256-18. [PMID: 30073198 PMCID: PMC6071201 DOI: 10.1523/eneuro.0256-18.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 11/21/2022] Open
Abstract
Using the rat conditioned gaping model of nausea, the interoceptive insular cortex (IIC) has been identified as a critical site for the regulation of lithium chloride (LiCl)-induced nausea. Indirect evidence supports a model where serotonin (5-HT) acts on postsynaptic 5-HT3 receptors and its release is suppressed by elevating 2-arachidonylglycerol (2-AG) by monoacylglycerol lipase (MAGL) inhibition to suppress nausea. Here, we directly test the hypothesis that systemic LiCl elevates 5-HT in the IIC, and this is prevented by pretreatments that reduce 5-HT release. Using male Sprague Dawley rats, LiCl (but not saline), elevated 5-HT selectively in the IIC, for 20 min after LiCl administration (127.2 mg/kg, i.p.). Systemic pretreatment with the MAGL inhibitor, MJN110, prevented the LiCl-induced elevation of 5-HT in the IIC. Systemic cannabidiol (CBD), which reduces LiCl-induced nausea by acting at 5-HT1A somatodendritic autoreceptors, also prevented LiCl-induced elevation of 5-HT in the IIC. Since 5-HT3 receptor agonists delivered to the IIC produce nausea, we tested and confirmed the hypothesis that the intra-IIC administration of 5-HT3 receptor antagonist, ondansetron, but not MJN110, would prevent LiCl-induced conditioned gaping reactions produced by intra-IIC administration of the 5-HT3 receptor agonist, m-chlorophenylbiguanide (mCPBG). Finally, we demonstrate that exposure to a LiCl-paired flavor (but not a saline-paired flavor) produces elevated 5-HT release in the IIC, while rats display conditioned gaping reactions. These results confirm that LiCl-induced nausea is triggered by elevated 5-HT release in the IIC and is attenuated by treatments that reduce 5-HT availability in this region.
Collapse
|
29
|
Oxytocin, social factors, and the expression of conditioned disgust (anticipatory nausea) in male rats. Behav Pharmacol 2018; 27:718-725. [PMID: 27740965 DOI: 10.1097/fbp.0000000000000271] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Disgust has been proposed to have evolved as a means to rid the body and mouth of noxious substances and toxins, as well as to motivate and facilitate avoidance of contact with disease-causing organisms and infectious materials. Nonemetic species, such as the rat, show distinctive facial expressions, including the gaping reaction, indicative of nausea-based disgust. These conditioned disgust responses can be used to model anticipatory nausea in humans, which is a learned response observed following chemotherapy treatment. As social factors play a role in the modulation and expression of conditioned disgust responses in rats, and the nonapeptide, oxytocin (OT), is involved in the modulation of social behavior, the present study examined the effects of an OT antagonist, L-368 899, on the development and expression of socially mediated conditioned disgust in male rats. When administered 10 min before testing in a distinct context (different from the original conditioning context), L-368 899 (5 mg/kg) significantly decreased gaping behavior in rats that were conditioned with a social partner. LiCl-treated rats administered L-368 899 before testing also showed decreased social initiations toward their social partner. These findings suggest that OT may play a role in the modulation and expression of socially mediated conditioned disgust in rats.
Collapse
|
30
|
Yawning-Its anatomy, chemistry, role, and pathological considerations. Prog Neurobiol 2017; 161:61-78. [PMID: 29197651 DOI: 10.1016/j.pneurobio.2017.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 10/29/2017] [Accepted: 11/28/2017] [Indexed: 12/11/2022]
Abstract
Yawning is a clinical sign of the activity of various supra- and infratentorial brain regions including the putative brainstem motor pattern, hypothalamic paraventricular nucleus, probably the insula and limbic structures that are interconnected via a fiber network. This interaction can be seen in analogy to other cerebral functions arising from a network or zone such as language. Within this network, yawning fulfills its function in a stereotype, reflex-like manner; a phylogenetically old function, preserved across species barriers, with the purpose of arousal, communication, and maybe other functions including respiration. Abnormal yawning with ≥3 yawns/15min without obvious cause arises from lesions of brain areas involved in the yawning zone, its trajectories causing a disconnection syndrome, or from alteration of network activity by physical or metabolic etiologies including medication.
Collapse
|
31
|
Zapata A, Hwang EK, Lupica CR. Lateral Habenula Involvement in Impulsive Cocaine Seeking. Neuropsychopharmacology 2017; 42:1103-1112. [PMID: 28025973 PMCID: PMC5506796 DOI: 10.1038/npp.2016.286] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/13/2016] [Accepted: 12/19/2016] [Indexed: 12/23/2022]
Abstract
The lateral habenula (LHb) is a brain structure receiving inputs from limbic forebrain areas and innervating major midbrain monoaminergic nuclei. Evidence indicates LHb involvement in sleep control, reward-based decision making, avoidance of punishment, and responses to stress. Additional work has established that the LHb mediates negative feedback in response to aversive events. As a hallmark of drug addiction is the inability to limit drug use despite negative consequences, we hypothesize that LHb dysfunction may have a role in the lack of control over drug seeking. Here we examine the effects of LHb inactivation in control over drug seeking in several cocaine self-administration (SA) paradigms in rats. We find that inhibition of the LHb with GABAergic agonists did not alter cocaine SA under progressive ratio or seeking/taking chained reinforcement schedules, or during punishment-induced suppression of cocaine-reinforced responding. In contrast, LHb inhibition increased cocaine seeking when the drug was not available in rats trained to discriminate its presence using an environmental cue. This effect of LHb inhibition was selective for cocaine, as it did not impair responding for sucrose reinforcement. The effect of LHb injection of GABA agonists was mimicked by intra-LHb muscarinic cholinergic (mACh) antagonist injection, and activation of mACh receptors excited a majority of LHb neurons in in vitro electrophysiology experiments. These results indicate that the LHb participates in the suppression of impulsive responding for cocaine through the activation of a cholinergic circuit, and they suggest that LHb dysfunction may contribute to impaired impulse control associated with drug addiction.
Collapse
Affiliation(s)
- Agustin Zapata
- Electrophysiology Research Section, Cellular Neurobiology Branch, National Institutes of Health, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Eun-Kyung Hwang
- Electrophysiology Research Section, Cellular Neurobiology Branch, National Institutes of Health, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Carl R Lupica
- Electrophysiology Research Section, Cellular Neurobiology Branch, National Institutes of Health, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA,Electrophysiology Research Section, Cellular Neurobiology Branch, National Institutes of Health, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD 21224, USA, Tel: +1 443 740 2824, E-mail:
| |
Collapse
|
32
|
Soto A, Gasalla P, Begega A, López M. c-Fos activity in the insular cortex, nucleus accumbens and basolateral amygdala following the intraperitoneal injection of saccharin and lithium chloride. Neurosci Lett 2017; 647:32-37. [PMID: 28323090 DOI: 10.1016/j.neulet.2017.03.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/23/2017] [Accepted: 03/15/2017] [Indexed: 11/18/2022]
Abstract
This study examined c-Fos expression in selected brain areas consequent to intraperitoneal (IP) administration of saccharin and lithium chloride. Rats were tested for aversion to the saccharin as measured by flavor consumption and orofacial reactions in the taste reactivity (TR) test. It was found that intraperitoneal conditioning resulted in the reduction in voluntary consumption but not in the production of aversive orofacial responses to the saccharin. The immunohistochemistry quantification revealed increased c-Fos activity in the insular cortex, the shell and core regions of the nucleus accumbens, and the basolateral nucleus of the amygdala. These results show that a conditioned taste aversion can be induced without direct oropharyngeal gustatory stimulation at the time of conditioning. In addition, this study provide evidence of increased neural activity in response to intraperitoneal saccharin injections.
Collapse
Affiliation(s)
- Alberto Soto
- Department of Psychology, University of Oviedo, Oviedo, Spain
| | | | - Azucena Begega
- Department of Psychology, University of Oviedo, Oviedo, Spain
| | - Matías López
- Department of Psychology, University of Oviedo, Oviedo, Spain.
| |
Collapse
|
33
|
Tu L, Poppi L, Rudd J, Cresswell ET, Smith DW, Brichta A, Nalivaiko E. Alpha-9 nicotinic acetylcholine receptors mediate hypothermic responses elicited by provocative motion in mice. Physiol Behav 2017; 174:114-119. [PMID: 28302571 DOI: 10.1016/j.physbeh.2017.03.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/06/2017] [Accepted: 03/10/2017] [Indexed: 11/25/2022]
Abstract
Hypothermic responses accompany motion sickness in humans and can be elicited by provocative motion in rats. We aimed to determine the potential role in these responses of the efferent cholinergic vestibular innervation. To this end, we used knockout (KO) mice lacking α9 cholinoreceptor subunit predominantly expressed in the vestibular hair cells and CBA strain as a wild-type (WT) control. In WT mice, circular horizontal motion (1Hz, 4cm radius, 20min) caused rapid and dramatic falls in core body temperature and surface head temperature associated with a transient rise in the tail temperature; these responses were substantially attenuated in KO mice; changes were (WT vs. KO): for the core body temperature-5.2±0.3 vs. -2.9±0.3°C; for the head skin temperature-3.3±0.2 vs. -1.7±0.2°C; for the tail skin temperature+3.9±1.1 vs+1.1±1.2°C. There was a close correlation in the time course of cooling the body and the surface of the head. KO mice also required 25% more time to complete a balance test. We conclude: i) that the integrity of cholinergic efferent vestibular system is essential for the full expression of motion-induced hypothermia in mice, and that the role of this system is likely facilitatory; ii) that the system is involvement in control of balance, but the involvement is not major; iii) that in mice, motion-induced body cooling is mediated via increased heat flow through vasodilated tail vasculature and (likely) via reduced thermogenesis. Our results support the idea that hypothermia is a biological correlate of a nausea-like state in animals.
Collapse
Affiliation(s)
- Longlong Tu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Lauren Poppi
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
| | - John Rudd
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Ethan T Cresswell
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
| | - Doug W Smith
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
| | - Alan Brichta
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
| | - Eugene Nalivaiko
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia.
| |
Collapse
|
34
|
Limebeer CL, Rock EM, Puvanenthirarajah N, Niphakis MJ, Cravatt BF, Parker LA. Elevation of 2-AG by monoacylglycerol lipase inhibition in the visceral insular cortex interferes with anticipatory nausea in a rat model. Behav Neurosci 2016; 130:261-6. [PMID: 26974857 DOI: 10.1037/bne0000132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Anticipatory nausea (AN) is a conditioned nausea reaction experienced by chemotherapy patients upon returning to the clinic. Currently, there are no specific treatments for this phenomenon, with the classic antiemetic treatments (e.g., ondansetron) providing no relief. The rat model of AN, contextually elicited conditioned gaping reactions in rats, provides a tool for assessing potential treatments for this difficult to treat disorder. Systemically administered drugs which elevate the endocannabinoids, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG), by interfering with their respective degrading enzymes, fatty acid amide hydrolase (FAAH) and monoacyl glycerol lipase (MAGL) interfere with AN in the rat model. We have shown that MAGL inhibition within the visceral insular cortex (VIC) interferes with acute nausea in the gaping model (Sticht et al., 2015). Here we report that bilateral infusion of the MAGL inhibitor, MJN110 (but neither the FAAH inhibitor, PF3845, nor ondansetron) into the VIC suppressed contextually elicited conditioned gaping, and this effect was reversed by coadministration of the CB1 antagonist, AM251. These findings suggest that 2-AG within the VIC plays a critical role in the regulation of both acute nausea and AN. Because there are currently no specific therapeutics for chemotherapy patients that develop anticipatory nausea, MAGL inhibition by MJN110 may be a candidate treatment. (PsycINFO Database Record
Collapse
Affiliation(s)
| | - Erin M Rock
- Department of Psychology, University of Guelph
| | | | - Micah J Niphakis
- Skaggs Institute for Chemical Biology, Scripps Research Institute
| | | | | |
Collapse
|
35
|
Kim HW, Kang JI, Lee SH, An SK, Sohn SY, Hwang EH, Lee SY, Kim SJ. Common variants of HTR3 genes are associated with obsessive-compulsive disorder and its phenotypic expression. Sci Rep 2016; 6:32564. [PMID: 27616601 PMCID: PMC5018838 DOI: 10.1038/srep32564] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/09/2016] [Indexed: 12/24/2022] Open
Abstract
Evidence from literature supports the existence of associations between serotonin-related genetic variants and obsessive-compulsive disorder (OCD), but few studies have explored the involvement of serotonin receptor type 3 genes (HTR3) in OCD. To identify whether HTR3 variability affects an individual’s susceptibility to OCD, we examined 10 HTR3 variants in 596 individuals with OCD and 599 controls. A significant difference existed in the genotypic distribution of the HTR3B variant rs1176744 between individuals with OCD and controls (odds ratio [OR] = 0.74, 95% confidence interval [CI] = 0.60–0.91, P = 0.0043). A protective haplotype in HTR3B was also associated with OCD (OR = 0.77, CI = 0.63–0.95, permutated P = 0.0179). Analyses of OCD sub-phenotypes demonstrated significant associations between rs3758987 and early onset OCD in male subjects (OR = 0.49, CI = 0.31–0.79, P = 0.0031) and among rs6766410, rs6443930, and the cleaning dimension in female subjects (OR = 0.36, CI = 0.18–0.69, P = 0.0016 and OR = 0.47, CI = 0.29–0.79, P = 0.0030, respectively). Additionally, rs6766410 was related to contamination-based disgust in OCD (P = 0.0044). These results support that common HTR3 variants are involved in OCD and some of its clinical phenotypes.
Collapse
Affiliation(s)
- Hae Won Kim
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea.,Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jee In Kang
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea.,Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang-Hyuk Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Suk Kyoon An
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea.,Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung Yun Sohn
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea.,Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Hee Hwang
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su Young Lee
- Department of Psychiatry, Cheil General Hospital &Women's Healthcare Center, Dankook University College of Medicine, Seoul, Republic of Korea
| | - Se Joo Kim
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea.,Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
36
|
Rock EM, Boulet N, Limebeer CL, Mechoulam R, Parker LA. Cannabinoid 2 (CB2) receptor agonism reduces lithium chloride-induced vomiting in Suncus murinus and nausea-induced conditioned gaping in rats. Eur J Pharmacol 2016; 786:94-99. [PMID: 27263826 DOI: 10.1016/j.ejphar.2016.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 05/20/2016] [Accepted: 06/01/2016] [Indexed: 12/20/2022]
Abstract
We aimed to investigate the potential anti-emetic and anti-nausea properties of targeting the cannabinoid 2 (CB2) receptor. We investigated the effect of the selective CB2 agonist, HU-308, on lithium chloride- (LiCl) induced vomiting in Suncus murinus (S. murinus) and conditioned gaping (nausea-induced behaviour) in rats. Additionally, we determined whether these effects could be prevented by pretreatment with AM630 (a selective CB2 receptor antagonist/inverse agonist). In S. murinus, HU-308 (2.5, 5mg/kg, i.p.) reduced, but did not completely block, LiCl-induced vomiting; an effect that was prevented with AM630. In rats, HU-308 (5mg/kg, i.p.) suppressed, but did not completely block, LiCl-induced conditioned gaping to a flavour; an effect that was prevented by AM630. These findings are the first to demonstrate the ability of a selective CB2 receptor agonist to reduce nausea in animal models, indicating that targeting the CB2 receptor may be an effective strategy, devoid of psychoactive effects, for managing toxin-induced nausea and vomiting.
Collapse
Affiliation(s)
- Erin M Rock
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Nathalie Boulet
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Cheryl L Limebeer
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Raphael Mechoulam
- Institute of Drug Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Linda A Parker
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
37
|
Parker LA, Limebeer CL, Rock EM, Sticht MA, Ward J, Turvey G, Benchama O, Rajarshi G, Wood JT, Alapafuja SO, Makriyannis A. A comparison of novel, selective fatty acid amide hydrolase (FAAH), monoacyglycerol lipase (MAGL) or dual FAAH/MAGL inhibitors to suppress acute and anticipatory nausea in rat models. Psychopharmacology (Berl) 2016; 233:2265-75. [PMID: 27048155 PMCID: PMC5531749 DOI: 10.1007/s00213-016-4277-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 03/14/2016] [Indexed: 10/22/2022]
Abstract
RATIONALE Drugs that block fatty acid amide hydrolase (FAAH, which elevates anandamide [AEA]) and drugs which block monoacylglycerol (MAGL, which elevates 2-arachidonyl glycerol [2-AG]) have promise in treating both acute and anticipatory nausea in human patients. OBJECTIVE This study aims to evaluate the relative effectiveness of dual MAGL/FAAH inhibition with either alone to reduce acute and anticipatory nausea in rat models. MATERIALS AND METHODS AM4302, a new dual MAGL/FAAH inhibitor, was compared with a new selective MAGL inhibitor, AM4301, and new selective FAAH inhibitor, AM4303, for their potential to reduce acute nausea (gaping in taste reactivity) and anticipatory nausea (contextually elicited conditioned gaping) in two rat models. RESULTS Our in vitro studies indicate that AM4302 blocks human and rat FAAH: IC50 60 and 31 nM, respectively, with comparable potencies against human MAGL (IC50 41 nM) and rat MAGL (IC50 200 nM). AM4301 selectively blocks human and rat MAGL (IC50 8.9 and 36 nM, respectively), while AM4303 selectively inhibits human and rat FAAH (IC50 2 and 1.9 nM), respectively. Our in vivo studies show that the MAGL inhibitor, AM4301, suppressed acute nausea in a CB1-mediated manner, when delivered systemically or into the interoceptive insular cortex. Although the dual FAAH/MAGL inhibitor, AM4302, was equally effective as the FAAH inhibitor or MAGL inhibitor in reducing acute nausea, it was more effective than both in suppressing anticipatory nausea. CONCLUSIONS Dual FAAH and MAGL inhibition with AM4302 may be an especially effective treatment for the very difficult to treat symptom of anticipatory nausea.
Collapse
Affiliation(s)
- Linda A Parker
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G2W1, Canada.
| | - Cheryl L Limebeer
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Erin M Rock
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Martin A Sticht
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Jordan Ward
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Greig Turvey
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Othman Benchama
- Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Girija Rajarshi
- Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - JodiAnne T Wood
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - Shakiru O Alapafuja
- Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
- Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
- MAK Scientific LLC, Northeastern University, 432 Mugar Building, Boston, MA, USA
| |
Collapse
|
38
|
Villain H, Benkahoul A, Drougard A, Lafragette M, Muzotte E, Pech S, Bui E, Brunet A, Birmes P, Roullet P. Effects of Propranolol, a β-noradrenergic Antagonist, on Memory Consolidation and Reconsolidation in Mice. Front Behav Neurosci 2016; 10:49. [PMID: 27014009 PMCID: PMC4789536 DOI: 10.3389/fnbeh.2016.00049] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/29/2016] [Indexed: 12/20/2022] Open
Abstract
Memory reconsolidation impairment using the β-noradrenergic receptor blocker propranolol is a promising novel treatment avenue for patients suffering from pathogenic memories, such as post-traumatic stress disorder (PTSD). However, in order to better inform targeted treatment development, the effects of this compound on memory need to be better characterized via translational research. We examined the effects of systemic propranolol administration in mice undergoing a wide range of behavioral tests to determine more specifically which aspects of the memory consolidation and reconsolidation are impaired by propranolol. We found that propranolol (10 mg/kg) affected memory consolidation in non-aversive tasks (object recognition and object location) but not in moderately (Morris water maze (MWM) to highly (passive avoidance, conditioned taste aversion) aversive tasks. Further, propranolol impaired memory reconsolidation in the most and in the least aversive tasks, but not in the moderately aversive task, suggesting its amnesic effect was not related to task aversion. Moreover, in aquatic object recognition and location tasks in which animals were forced to behave (contrary to the classic versions of the tasks); propranolol did not impair memory reconsolidation. Taken together our results suggest that the memory impairment observed after propranolol administration may result from a modification of the emotional valence of the memory rather than a disruption of the contextual component of the memory trace. This is relevant to the use of propranolol to block memory reconsolidation in individuals with PTSD, as such a treatment would not erase the traumatic memory but only reduce the emotional valence associated with this event.
Collapse
Affiliation(s)
- Hélène Villain
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS) Toulouse, France
| | - Aïcha Benkahoul
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS) Toulouse, France
| | - Anne Drougard
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS) Toulouse, France
| | - Marie Lafragette
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS) Toulouse, France
| | - Elodie Muzotte
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS) Toulouse, France
| | - Stéphane Pech
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS) Toulouse, France
| | - Eric Bui
- Department of Psychiatry, Massachusetts General Hospital & Harvard Medical School Boston, MA, USA
| | - Alain Brunet
- Department of Psychiatry, Douglas Mental Health University Institute and McGill University Montréal, QC, Canada
| | - Philippe Birmes
- Toulouse NeuroImaging Center, Université de Toulouse, Institut national de la santé et de la recherche médicale (INSERM), Université Paul Sabatier (UPS) Toulouse, France
| | - Pascal Roullet
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS) Toulouse, France
| |
Collapse
|
39
|
Abstract
One of the first recognized medical uses of Δ(9)-tetrahydrocannabinol was treatment of chemotherapy-induced nausea and vomiting. Although vomiting is well controlled with the currently available non-cannabinoid antiemetics, nausea continues to be a distressing side effect of chemotherapy and other disorders. Indeed, when nausea becomes conditionally elicited by the cues associated with chemotherapy treatment, known as anticipatory nausea (AN), currently available antiemetics are largely ineffective. Considerable evidence demonstrates that the endocannabinoid system regulates nausea in humans and other animals. In this review, we describe recent evidence suggesting that cannabinoids and manipulations that enhance the functioning of the natural endocannabinoid system are promising treatments for both acute nausea and AN.
Collapse
|
40
|
Sticht MA, Limebeer CL, Rafla BR, Abdullah RA, Poklis JL, Ho W, Niphakis MJ, Cravatt BF, Sharkey KA, Lichtman AH, Parker LA. Endocannabinoid regulation of nausea is mediated by 2-arachidonoylglycerol (2-AG) in the rat visceral insular cortex. Neuropharmacology 2015; 102:92-102. [PMID: 26541329 DOI: 10.1016/j.neuropharm.2015.10.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/25/2015] [Accepted: 10/26/2015] [Indexed: 12/20/2022]
Abstract
Cannabinoid (CB) agonists suppress nausea in humans and animal models; yet, their underlying neural substrates remain largely unknown. Evidence suggests that the visceral insular cortex (VIC) plays a critical role in nausea. Given the expression of CB1 receptors and the presence of endocannabinoids in this brain region, we hypothesized that the VIC endocannabinoid system regulates nausea. In the present study, we assessed whether inhibiting the primary endocannabinoid hydrolytic enzymes in the VIC reduces acute lithium chloride (LiCl)-induced conditioned gaping, a rat model of nausea. We also quantified endocannabinoid levels during an episode of nausea, and assessed VIC neuronal activation using the marker, c-Fos. Local inhibition of monoacylglycerol lipase (MAGL), the main hydrolytic enzyme of 2-arachidonylglycerol (2-AG), reduced acute nausea through a CB1 receptor mechanism, whereas inhibition of fatty acid amide hydrolase (FAAH), the primary catabolic enzyme of anandamide (AEA), was without effect. Levels of 2-AG were also selectively elevated in the VIC during an episode of nausea. Inhibition of MAGL robustly increased 2-AG in the VIC, while FAAH inhibition had no effect on AEA. Finally, we demonstrated that inhibition of MAGL reduced VIC Fos immunoreactivity in response to LiCl treatment. Taken together, these findings provide compelling evidence that acute nausea selectively increases 2-AG in the VIC, and suggests that 2-AG signaling within the VIC regulates nausea by reducing neuronal activity in this forebrain region.
Collapse
Affiliation(s)
- Martin A Sticht
- Dept. of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, Ontario, Canada; Hotchkiss Brain Institute, Dept. of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.
| | - Cheryl L Limebeer
- Dept. of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, Ontario, Canada
| | - Benjamin R Rafla
- Dept. of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, Ontario, Canada
| | - Rehab A Abdullah
- Dept. of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Justin L Poklis
- Dept. of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Winnie Ho
- Hotchkiss Brain Institute, Dept. of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Micah J Niphakis
- The Skaggs Institute for Chemical Biology and Dept. of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Benjamin F Cravatt
- The Skaggs Institute for Chemical Biology and Dept. of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Dept. of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Aron H Lichtman
- Dept. of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Linda A Parker
- Dept. of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
41
|
Guimaraes DD, Andrews PLR, Rudd JA, Braga VA, Nalivaiko E. Ondansetron and promethazine have differential effects on hypothermic responses to lithium chloride administration and to provocative motion in rats. Temperature (Austin) 2015; 2:543-53. [PMID: 27227074 PMCID: PMC4843929 DOI: 10.1080/23328940.2015.1071700] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 12/05/2022] Open
Abstract
We recently reported that provocative motion (rotation in a home cage) causes hypothermic responses in rats, similar to the hypothermic responses associated with motion sickness in humans. Many stimuli inducing emesis in species with an emetic reflex also provoke hypothermia in the rat, therefore we hypothesized that a fall in body temperature may reflect a “nausea-like” state in these animals. As rats do not possess an emetic reflex, we employed a pharmacological approach to test this hypothesis. In humans, motion- and chemically-induced nausea have differential sensitivity to anti-emetics. We thus tested whether the hypothermia induced in rats by provocative motion (rotation at 0.7 Hz) and by the emetic LiCl (63 mg/kg i.p.) have a similar differential pharmacological sensitivity. Both provocations caused a comparable robust fall in core body temperature (−1.9 ± 0.3°C and −2.0 ± 0.2°C for chemical and motion provocations, respectively). LiCl−induced hypothermia was completely prevented by ondansetron (2mg/kg, i.p., a 5-HT3 receptor antagonist that reduces cancer chemotherapy-induced nausea and vomiting), but was insensitive to promethazine (10 mg/kg, i.p., a predominantly histamine-H1 and muscarinic receptor antagonist that is commonly used to treat motion sickness). Conversely, motion-induced hypothermia was unaffected by ondansetron but promethazine reduced the rate of temperature decline from 0.20 ± 0.02 to 0.11 ± 0.03°C/min (P < 0.05) with a trend to decrease the magnitude. We conclude that this differential pharmacological sensitivity of the hypothermic responses of vestibular vs. chemical etiology in rats mirrors the observations in other pre-clinical models and humans, and thus supports the idea that a “nausea-like” state in rodents is associated with disturbances in thermoregulation.
Collapse
Affiliation(s)
- Drielle D Guimaraes
- Centre for Biotechnology; Federal University of Paraiba ; Joao Pessoa, Brazil
| | - Paul L R Andrews
- Division of Biomedical Sciences; St George's University of London ; London, UK
| | - John A Rudd
- School of Biomedical Sciences and Brain and Mind Institue; Chinese University of Hong Kong ; Hong Kong, China
| | - Valdir A Braga
- Centre for Biotechnology; Federal University of Paraiba ; Joao Pessoa, Brazil
| | - Eugene Nalivaiko
- School of Biomedical Sciences and Pharmacy; University of Newcastle ; NSW Australia
| |
Collapse
|
42
|
Parker LA, Rock EM, Sticht MA, Wills KL, Limebeer CL. Cannabinoids suppress acute and anticipatory nausea in preclinical rat models of conditioned gaping. Clin Pharmacol Ther 2015; 97:559-61. [PMID: 25691302 DOI: 10.1002/cpt.98] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/27/2014] [Indexed: 11/08/2022]
Abstract
The sensation of nausea is one of the most debilitating human experiences. Current antiemetic therapies are effective in reducing vomiting, but are less effective in reducing acute and delayed nausea and are completely ineffective in reducing anticipatory nausea. Recent preclinical evidence using a selective rat model of nausea (conditioned gaping reactions) has revealed that cannabinoids have great promise as treatments for nausea and that their antinausea effects may be mediated by the interoceptive insular cortex.
Collapse
Affiliation(s)
- L A Parker
- Department of Psychology and Collaborative Neuroscience Graduate Program, University of Guelph, Guelph, Ontario, Canada
| | - E M Rock
- Department of Psychology and Collaborative Neuroscience Graduate Program, University of Guelph, Guelph, Ontario, Canada
| | - M A Sticht
- Department of Psychology and Collaborative Neuroscience Graduate Program, University of Guelph, Guelph, Ontario, Canada
| | - K L Wills
- Department of Psychology and Collaborative Neuroscience Graduate Program, University of Guelph, Guelph, Ontario, Canada
| | - C L Limebeer
- Department of Psychology and Collaborative Neuroscience Graduate Program, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
43
|
Krestel H, Weisstanner C, Hess CW, Bassetti CL, Nirkko A, Wiest R. Insular and caudate lesions release abnormal yawning in stroke patients. Brain Struct Funct 2015; 220:803-12. [PMID: 24337237 PMCID: PMC4341028 DOI: 10.1007/s00429-013-0684-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 12/02/2013] [Indexed: 12/15/2022]
Abstract
Abnormal yawning is an underappreciated phenomenon in patients with ischemic stroke. We aimed at identifying frequently affected core regions in the supratentorial brain of stroke patients with abnormal yawning and contributing to the anatomical network concept of yawning control. Ten patients with acute anterior circulation stroke and ≥3 yawns/15 min without obvious cause were analyzed. The NIH stroke scale (NIHSS), Glasgow Coma Scale (GCS), symptom onset, period with abnormal yawning, blood oxygen saturation, glucose, body temperature, blood pressure, heart rate, and modified Rankin scale (mRS) were assessed for all patients. MRI lesion maps were segmented on diffusion-weighted images, spatially normalized, and the extent of overlap between the different stroke patterns was determined. Correlations between the period with abnormal yawning and the apparent diffusion coefficient (ADC) in the overlapping regions, total stroke volume, NIHSS and mRS were performed. Periods in which patients presented with episodes of abnormal yawning lasted on average for 58 h. Average GCS, NIHSS, and mRS scores were 12.6, 11.6, and 3.5, respectively. Clinical parameters were within normal limits. Ischemic brain lesions overlapped in nine out of ten patients: in seven patients in the insula and in seven in the caudate nucleus. The decrease of the ADC within the lesions correlated with the period with abnormal yawing (r = -0.76, Bonferroni-corrected p = 0.02). The stroke lesion intensity of the common overlapping regions in the insula and the caudate nucleus correlates with the period with abnormal yawning. The insula might be the long sought-after brain region for serotonin-mediated yawning.
Collapse
Affiliation(s)
- Heinz Krestel
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland,
| | | | | | | | | | | |
Collapse
|
44
|
Parker LA, Niphakis MJ, Downey R, Limebeer CL, Rock EM, Sticht MA, Morris H, Abdullah RA, Lichtman AH, Cravatt BF. Effect of selective inhibition of monoacylglycerol lipase (MAGL) on acute nausea, anticipatory nausea, and vomiting in rats and Suncus murinus. Psychopharmacology (Berl) 2015; 232:583-93. [PMID: 25085768 DOI: 10.1007/s00213-014-3696-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/12/2014] [Indexed: 02/07/2023]
Abstract
RATIONALE To determine the role of the endocannabinoid, 2-arachodonyl glycerol (2-AG), in the regulation of nausea and vomiting. OBJECTIVE We evaluated the effectiveness of the potent selective monoacylglycerol lipase (MAGL) inhibitor, MJN110, which selectively elevates the endocannabinoid 2-AG, to suppress acute nausea and vomiting, as well as anticipatory nausea in rat and shrew models. METHODS The rat gaping models were used to evaluate the potential of MJN110 (5, 10, and 20 mg/kg, intraperitoneally [IP]) to suppress acute nausea produced by LiCl and of MJN110 (10 and 20 mg/kg, IP) to suppress anticipatory nausea elicited by a LiCl-paired context. The potential as well of MJN110 (10 and 20 mg/kg, IP) to suppress vomiting and contextually elicited gaping in the Suncus murinus was evaluated. RESULTS MJN110 suppressed acute nausea in rats, LiCl-induced vomiting in shrews and contextually-elicited anticipatory nausea in both rats (accompanied by elevation of 2-AG in the visceral insular cortex) and shrews. These effects were reversed by the CB1 antagonist/inverse agonist, SR141716. The MAGL inhibitor did not modify locomotion at any dose. An activity-based protein profiling analysis of samples of tissue collected from the visceral insular cortex in rats and whole brain tissues in shrews revealed that MJN110 selectively inhibited MAGL and the alternative 2-AG hydrolase, ABHD6. CONCLUSIONS MAGL inhibition by MJN110 which selectively elevates endogenous 2-AG has therapeutic potential in the treatment of acute nausea and vomiting as well as anticipatory nausea, a distressful symptom that is resistant to currently available treatments.
Collapse
Affiliation(s)
- Linda A Parker
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G2W1, Canada,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sticht MA, Limebeer CL, Rafla BR, Parker LA. Intra-visceral insular cortex 2-arachidonoylglycerol, but not N-arachidonoylethanolamide, suppresses acute nausea-induced conditioned gaping in rats. Neuroscience 2014; 286:338-44. [PMID: 25499318 DOI: 10.1016/j.neuroscience.2014.11.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/10/2014] [Accepted: 11/30/2014] [Indexed: 01/09/2023]
Abstract
The visceral insular cortex (VIC) has previously been shown to play a critical role during acute nausea-induced conditioned gaping in rats. Specifically, localized administration of the conventional anti-emetic, ondansetron or the synthetic cannabinoid, HU210, interferes with the establishment of conditioned gaping, likely by reducing the effects of an illness-inducing treatment. However the precise role of the VIC in endocannabinoid-suppression of nausea remains unknown; thus we investigated the potential of localized intra-VIC endocannabinoid administration to interfere with acute nausea-induced conditioned gaping behavior in male Sprague-Dawley rats. Animals received an intraoral infusion of saccharin (0.1%) followed by intra-VIC exogenous N-arachidonoylethanolamide (AEA; 0.4, 4 μg) or 2-arachidonoylglycerol (2-AG; 0.5, 1 μg), and were subsequently injected with nausea-inducing LiCl (0.15M) 15 min later. Bilateral intra-VIC infusions of 2-AG (1 μg, but not 0.5 μg) dose-dependently suppressed conditioned gaping, whereas exogenous AEA was without effect. Interestingly, 2-AG reduced conditioned gaping despite additional pretreatment with the selective cannabinoid receptor type 1 (CB1) antagonist, AM-251; however, concomitant pretreatment with the cyclooxygenase inhibitor, indomethacin (0.5 μg), blocked the suppressive effects of intra-VIC 2-AG. These findings suggest that the modulatory role of the endocannabinoid system during nausea is driven largely by the endocannabinoid, 2-AG, and that its anti-nausea effects may be partly independent of CB1-receptor signaling through metabolic products of the endocannabinoid system.
Collapse
Affiliation(s)
- M A Sticht
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, Ontario, Canada
| | - C L Limebeer
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, Ontario, Canada
| | - B R Rafla
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, Ontario, Canada
| | - L A Parker
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
46
|
Rock EM, Parker LA. Effect of low doses of cannabidiolic acid and ondansetron on LiCl-induced conditioned gaping (a model of nausea-induced behaviour) in rats. Br J Pharmacol 2014; 169:685-92. [PMID: 23488964 DOI: 10.1111/bph.12162] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 01/18/2013] [Accepted: 02/07/2013] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND AND PURPOSE To determine the minimally effective dose of cannabidiolic acid (CBDA) that effectively reduces lithium chloride (LiCl)-induced conditioned gaping reactions (nausea-induced behaviour) in rats and to determine if these low systemic doses of CBDA (5-0.1 μg·kg⁻¹) relative to those of CBD could potentiate the anti-nausea effects of the classic 5-hydroxytryptamine 3 (5-HT₃) receptor antagonist, ondansetron (OND). EXPERIMENTAL APPROACH We investigated the efficacy of low doses of CBDA to suppress acute nausea, assessed by the establishment of conditioned gaping to a LiCl-paired flavour in rats. The potential of threshold and subthreshold doses of CBDA to enhance the reduction of nausea-induced conditioned gaping by OND were then determined. KEY RESULTS CBDA (at doses as low as 0.5 μg·kg⁻¹) suppressed nausea-induced conditioned gaping to a flavour. A low dose of OND (1.0 μg·kg⁻¹) alone reduced nausea-induced conditioned gaping, but when it was combined with a subthreshold dose of CBDA (0.1 μg·kg⁻¹) there was an enhancement in the suppression of LiCl-induced conditioned gaping. CONCLUSIONS AND IMPLICATIONS CBDA potently reduced conditioned gaping in rats, even at low doses and enhanced the anti-nausea effect of a low dose of OND. These findings suggest that combining low doses of CBDA and OND will more effectively treat acute nausea in chemotherapy patients.
Collapse
Affiliation(s)
- E M Rock
- Department of Psychology, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
47
|
Michl J, Scharinger C, Zauner M, Kasper S, Freissmuth M, Sitte HH, Ecker GF, Pezawas L. A multivariate approach linking reported side effects of clinical antidepressant and antipsychotic trials to in vitro binding affinities. Eur Neuropsychopharmacol 2014; 24:1463-74. [PMID: 25044049 PMCID: PMC4502613 DOI: 10.1016/j.euroneuro.2014.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/23/2014] [Accepted: 06/26/2014] [Indexed: 01/01/2023]
Abstract
The vast majority of approved antidepressants and antipsychotics exhibit a complex pharmacology. The mechanistic understanding of how these psychotropic medications are related to adverse drug reactions (ADRs) is crucial for the development of novel drug candidates and patient adherence. This study aims to associate in vitro assessed binding affinity profiles (39 compounds, 24 molecular drug targets) and ADRs (n=22) reported in clinical trials of antidepressants and antipsychotics (n>59.000 patients) by the use of robust multivariate statistics. Orthogonal projection to latent structures (O-PLS) regression models with reasonable predictability were found for several frequent ADRs such as nausea, diarrhea, hypotension, dizziness, headache, insomnia, sedation, sleepiness, increased sweating, and weight gain. Results of the present study support many well-known pharmacological principles such as the association of hypotension and dizziness with α1-receptor or sedation with H1-receptor antagonism. Moreover, the analyses revealed novel or hardly investigated mechanisms for common ADRs including the potential involvement of 5-HT6-antagonism in weight gain, muscarinic receptor antagonism in dizziness, or 5-HT7-antagonism in sedation. To summarize, the presented study underlines the feasibility and value of a multivariate data mining approach in psychopharmacological development of antidepressants and antipsychotics.
Collapse
Affiliation(s)
- Johanna Michl
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Christian Scharinger
- Department of Psychiatry and Psychotherapy, Medical University Vienna, Vienna, Austria
| | - Miriam Zauner
- Department of Psychiatry and Psychotherapy, Medical University Vienna, Vienna, Austria
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University Vienna, Vienna, Austria
| | | | - Harald H Sitte
- Department of Pharmacology, Medical University Vienna, Vienna, Austria
| | - Gerhard F Ecker
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria.
| | - Lukas Pezawas
- Department of Psychiatry and Psychotherapy, Medical University Vienna, Vienna, Austria
| |
Collapse
|
48
|
Rock EM, Limebeer CL, Parker LA. Anticipatory nausea in animal models: a review of potential novel therapeutic treatments. Exp Brain Res 2014; 232:2511-34. [DOI: 10.1007/s00221-014-3942-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/31/2014] [Indexed: 11/24/2022]
|
49
|
Sharkey KA, Darmani NA, Parker LA. Regulation of nausea and vomiting by cannabinoids and the endocannabinoid system. Eur J Pharmacol 2014; 722:134-46. [PMID: 24184696 PMCID: PMC3883513 DOI: 10.1016/j.ejphar.2013.09.068] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/22/2013] [Accepted: 09/27/2013] [Indexed: 12/13/2022]
Abstract
Nausea and vomiting (emesis) are important elements in defensive or protective responses that animals use to avoid ingestion or digestion of potentially harmful substances. However, these neurally-mediated responses are at times manifested as symptoms of disease and they are frequently observed as side-effects of a variety of medications, notably those used to treat cancer. Cannabis has long been known to limit or prevent nausea and vomiting from a variety of causes. This has led to extensive investigations that have revealed an important role for cannabinoids and their receptors in the regulation of nausea and emesis. With the discovery of the endocannabinoid system, novel ways to regulate both nausea and vomiting have been discovered that involve the production of endogenous cannabinoids acting centrally. Here we review recent progress in understanding the regulation of nausea and vomiting by cannabinoids and the endocannabinoid system, and we discuss the potential to utilize the endocannabinoid system in the treatment of these frequently debilitating conditions.
Collapse
Affiliation(s)
- Keith A Sharkey
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1.
| | - Nissar A Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | - Linda A Parker
- Department of Psychology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
50
|
Andrews PL, Sanger GJ. Nausea and the quest for the perfect anti-emetic. Eur J Pharmacol 2014; 722:108-21. [DOI: 10.1016/j.ejphar.2013.09.072] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 09/18/2013] [Accepted: 09/22/2013] [Indexed: 02/06/2023]
|