1
|
Kim HJ, Phan TT, Lee K, Kim JS, Lee SY, Lee JM, Do J, Lee D, Kim SP, Lee KP, Park J, Lee CJ, Park JM. Long-lasting forms of plasticity through patterned ultrasound-induced brainwave entrainment. SCIENCE ADVANCES 2024; 10:eadk3198. [PMID: 38394205 PMCID: PMC10889366 DOI: 10.1126/sciadv.adk3198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
Achieving long-lasting neuronal modulation with low-intensity, low-frequency ultrasound is challenging. Here, we devised theta burst ultrasound stimulation (TBUS) with gamma bursts for brain entrainment and modulation of neuronal plasticity in the mouse motor cortex. We demonstrate that two types of TBUS, intermittent and continuous TBUS, induce bidirectional long-term potentiation or depression-like plasticity, respectively, as evidenced by changes in motor-evoked potentials. These effects depended on molecular pathways associated with long-term plasticity, including N-methyl-d-aspartate receptor and brain-derived neurotrophic factor/tropomyosin receptor kinase B activation, as well as de novo protein synthesis. Notably, bestrophin-1 and transient receptor potential ankyrin 1 play important roles in these enduring effects. Moreover, pretraining TBUS enhances the acquisition of previously unidentified motor skills. Our study unveils a promising protocol for ultrasound neuromodulation, enabling noninvasive and sustained modulation of brain function.
Collapse
Affiliation(s)
- Ho-Jeong Kim
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Tien Thuy Phan
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
- University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Keunhyung Lee
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jeong Sook Kim
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Sang-Yeong Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
- University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Jung Moo Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Jongrok Do
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Doyun Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Sung-Phil Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Kyu Pil Lee
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jinhyoung Park
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - C. Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Joo Min Park
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
2
|
Keifer J. Synaptic Mechanisms of Delay Eyeblink Classical Conditioning: AMPAR Trafficking and Gene Regulation in an In Vitro Model. Mol Neurobiol 2023; 60:7088-7103. [PMID: 37531025 DOI: 10.1007/s12035-023-03528-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023]
Abstract
An in vitro model of delay eyeblink classical conditioning was developed to investigate synaptic plasticity mechanisms underlying acquisition of associative learning. This was achieved by replacing real stimuli, such as an airpuff and tone, with patterned stimulation of the cranial nerves using an isolated brainstem preparation from turtle. Here, our primary findings regarding cellular and molecular mechanisms for learning acquisition using this unique approach are reviewed. The neural correlate of the in vitro eyeblink response is a replica of the actual behavior, and features of conditioned responses (CRs) resemble those observed in behavioral studies. Importantly, it was shown that acquisition of CRs did not require the intact cerebellum, but the appropriate timing did. Studies of synaptic mechanisms indicate that conditioning involves two stages of AMPA receptor (AMPAR) trafficking. Initially, GluA1-containing AMPARs are targeted to synapses followed later by replacement by GluA4 subunits that support CR expression. This two-stage process is regulated by specific signal transduction cascades involving PKA and PKC and is guided by distinct protein chaperones. The expression of the brain-derived neurotrophic factor (BDNF) protein is central to AMPAR trafficking and conditioning. BDNF gene expression is regulated by coordinated epigenetic mechanisms involving DNA methylation/demethylation and chromatin modifications that control access of promoters to transcription factors. Finally, a hypothesis is proposed that learning genes like BDNF are poised by dual chromatin features that allow rapid activation or repression in response to environmental stimuli. These in vitro studies have advanced our understanding of the cellular and molecular mechanisms that underlie associative learning.
Collapse
Affiliation(s)
- Joyce Keifer
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA.
| |
Collapse
|
3
|
Keifer J. Emergence of In Vitro Preparations and Their Contribution to Understanding the Neural Control of Behavior in Vertebrates. J Neurophysiol 2022; 128:511-526. [PMID: 35946803 DOI: 10.1152/jn.00142.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
One of the longstanding goals of the field of neuroscience is to understand the neural control of behavior in both invertebrate and vertebrate species. A series of early discoveries showed that certain motor patterns like locomotion could be generated by neuronal circuits without sensory feedback or descending control systems. These were called fictitious, or "fictive", motor programs because they could be expressed by neurons in the absence of movement. This finding lead investigators to isolate central nervous system tissue and maintain it in a dish in vitro to better study mechanisms of motor pattern generation. A period of rapid development of in vitro preparations from invertebrate species that could generate fictive motor programs from the activity of central pattern generating circuits (CPGs) emerged that was gradually followed by the introduction of such preparations from vertebrates. Here, I will review some of the notable in vitropreparations from both mammalian and non-mammalian vertebrate species developed to study the neural circuits underlying a variety of complex behaviors. This approach has been instrumental in delineating not only the cellular substrates underlying locomotion, respiration, scratching, and other behaviors, but also mechanisms underlying the modifiability of motor pathways through synaptic plasticity. In vitro preparations have had a significant impact on the field of motor systems neuroscience and the expansion of our understanding of how nervous systems control behavior. The field is ready for further advancement of this approach to explore neural substrates for variations in behavior generated by social and seasonal context, and the environment.
Collapse
Affiliation(s)
- Joyce Keifer
- Neuroscience Group, Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD, United States
| |
Collapse
|
4
|
Keifer J. Regulation of AMPAR trafficking in synaptic plasticity by BDNF and the impact of neurodegenerative disease. J Neurosci Res 2022; 100:979-991. [PMID: 35128708 DOI: 10.1002/jnr.25022] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 02/06/2023]
Abstract
Research demonstrates that the neural mechanisms underlying synaptic plasticity and learning and memory involve mobilization of AMPA-type neurotransmitter receptors at glutamatergic synaptic contacts, and that these mechanisms are targeted during neurodegenerative disease. Strengthening neural transmission occurs with insertion of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) into synapses while weakening results from receptor withdrawal. A key player in the trafficking of AMPARs during plasticity and learning is the brain-derived neurotrophic factor (BDNF) signaling system. BDNF is a neurotrophic factor that supports neuronal growth and is required for learning and memory. Significantly, a primary feature of many neurodegenerative diseases is a reduction in BDNF protein as well as disrupted neuronal surface expression of synaptic AMPARs. The resulting weakening of synaptic contacts leads to synapse loss and neuronal degeneration that underlies the cognitive impairment and dementia observed in patients with progressive neurodegenerative disease such as Alzheimer's. In the face of these data, one therapeutic approach is to increase BDNF bioavailability in brain. While this has been met with significant challenges, the results of the research have been promising. In spite of this, there are currently no clinical trials to test many of these findings on patients. Here, research showing that BDNF drives AMPARs to synapses, AMPAR trafficking is essential for synaptic plasticity and learning, and that neurodegenerative disease results in a significant decline in BDNF will be reviewed. The aim is to draw attention to the need for increasing patient-directed clinical studies to test the possible benefits of increasing levels of neurotrophins, specifically BDNF, to treat brain disorders. Much is known about the cellular mechanisms that underlie learning and memory in brain. It can be concluded that signaling by neurotrophins like BDNF and AMPA-type glutamate receptor synaptic trafficking are fundamental to these processes. Data from animal models and patients reveal that these mechanisms are adversely targeted during neurodegenerative disease and results in memory loss and cognitive decline. A brief summary of our understanding of these mechanisms indicates that it is time to apply this knowledge base directly to development of therapeutic treatments that enhance neurotrophins for brain disorders in patient populations.
Collapse
Affiliation(s)
- Joyce Keifer
- Neuroscience Group, Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, USA
| |
Collapse
|
5
|
Zheng Z, Sabirzhanov B, Keifer J. Oligomeric amyloid-{beta} inhibits the proteolytic conversion of brain-derived neurotrophic factor (BDNF), AMPA receptor trafficking, and classical conditioning. J Biol Chem 2010; 285:34708-17. [PMID: 20807770 DOI: 10.1074/jbc.m110.150821] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Amyloid-β (Aβ) peptide is thought to have a significant role in the progressive memory loss observed in patients with Alzheimer disease and inhibits synaptic plasticity in animal models of learning. We previously demonstrated that brain-derived neurotrophic factor (BDNF) is critical for synaptic AMPA receptor delivery in an in vitro model of eyeblink classical conditioning. Here, we report that acquisition of conditioned responses was significantly attenuated by bath application of oligomeric (200 nm), but not fibrillar, Aβ peptide. Western blotting revealed that BDNF protein expression during conditioning is significantly reduced by treatment with oligomeric Aβ, as were phosphorylation levels of cAMP-response element-binding protein (CREB), Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), Ca(2+)/calmodulin-dependent protein kinase IV (CaMKIV), and ERK. However, levels of PKA and PKCζ/λ were unaffected, as was PDK-1. Protein localization studies using confocal imaging indicate that oligomeric Aβ, but not fibrillar or scrambled forms, suppresses colocalization of GluR1 and GluR4 AMPA receptor subunits with synaptophysin, indicating that trafficking of these subunits to synapses during the conditioning procedure is blocked. In contrast, coapplication of BDNF with oligomeric Aβ significantly reversed these findings. Interestingly, a tolloid-like metalloproteinase in turtle, tTLLs (turtle tolloid-like protein), which normally processes the precursor proBDNF into mature BDNF, was found to degrade oligomeric Aβ into small fragments. These data suggest that an Aβ-induced reduction in BDNF, perhaps due to interference in the proteolytic conversion of proBDNF to BDNF, results in inhibition of synaptic AMPA receptor delivery and suppression of the acquisition of conditioning.
Collapse
Affiliation(s)
- Zhaoqing Zheng
- From the Neuroscience Group, Division of Basic Biomedical Sciences, University of South Dakota, Sanford School of Medicine, Vermillion, South Dakota 57069
| | | | | |
Collapse
|
6
|
Abstract
In the last few years it has become clear that AMPA-type glutamate neurotransmitter receptors are rapidly transported into and out of synapses to strengthen or weaken their function. The remarkable dynamics of AMPA receptor (AMPAR) synaptic localization provides a compelling mechanism for understanding the cellular basis of learning and memory, as well as disease states involving cognitive dysfunction. Here, we summarize the evidence for AMPAR trafficking as a mechanism underlying a variety of learned responses derived from both behavioral and cellular studies. Evidence is also reviewed supporting synaptic dysfunction related to impaired AMPAR trafficking as a mechanism underlying learning and memory deficits in Alzheimer's disease. We conclude that emerging data support the concept of multistage AMPAR trafficking during learning and that a broad approach to include examination of all of the AMPAR subunits will provide a more complete view of the mechanisms underlying multiple forms of learning.
Collapse
Affiliation(s)
- J Keifer
- Neuroscience Group, Division of Basic Biomedical Sciences, University of South Dakota, Sanford School of Medicine, Vermillion, SD 57069, USA.
| | | |
Collapse
|
7
|
Sabirzhanov B, Keifer J. Cloning and characterization of glutamate receptor subunit 4 (GLUA4) and its alternatively spliced isoforms in turtle brain. J Mol Neurosci 2010; 44:159-72. [PMID: 20549383 DOI: 10.1007/s12031-010-9405-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 06/04/2010] [Indexed: 11/24/2022]
Abstract
Ionotropic glutamate receptors sensitive to α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), GluAs, play an important role in neural development, synaptic plasticity, and neurodegeneration. Previous studies using an in vitro model of eyeblink classical conditioning in pond turtles suggested that acquisition of conditioning is associated with synaptic delivery of AMPA receptors containing GluA4 subunits. However, sequences of the GluA4 subunit, expression profile, and its alternatively spliced isoforms in turtle brain have not been previously determined. The sequence and domain structure of turtle GluA4 (tGluA4) and its splice variants was characterized. We found ten isoforms of tGluA4 including several previously unidentified truncated variants. Analysis of the nucleotide sequences of tGluA4 flip/flop, tGluA4c flip/flop, and tGluA4s showed they are highly similar to known isoforms of the GluA4 subunit identified in chick. Examination of the relative abundance of mRNA expression for the tGluA4 variants showed that the flip and flop versions of tGluA4 and tGluA4c, and a novel truncated variant, tGluA4trc1, which is also expressed as protein, are major forms in the adult turtle brain. Identification of these alternatively spliced isoforms of tGluA4 will provide a unique opportunity to assess their role in synaptic plasticity through the application of short interfering RNAs.
Collapse
Affiliation(s)
- Boris Sabirzhanov
- Neuroscience Group, Division of Basic Biomedical Sciences, University of South Dakota School of Medicine, Vermillion, SD 57069, USA.
| | | |
Collapse
|
8
|
Zheng Z, Keifer J. PKA has a critical role in synaptic delivery of GluR1- and GluR4-containing AMPARs during initial stages of acquisition of in vitro classical conditioning. J Neurophysiol 2009; 101:2539-49. [PMID: 19261706 DOI: 10.1152/jn.91282.2008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The cyclic AMP-dependent protein kinase (PKA) signaling pathway has been shown to be important in mechanisms of synaptic plasticity, although its direct and downstream signaling effects are not well understood. Using an in vitro model of eyeblink classical conditioning, we report that PKA has a critical role in initiating a signaling cascade that results in synaptic delivery of glutamate receptor 1 (GluR1)- and GluR4-containing alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) in abducens motor neurons during conditioning. PKA and the Ca(2+)-calmodulin-dependent protein kinases (CaMKs) II and IV are activated early in conditioning and are required for acquisition and expression of conditioned responses (CRs). cAMP-response-element-binding protein (CREB) is also activated early in conditioning but is blocked by coapplication of inhibitors to PKA and the CaMKs, suggesting that CREB is downstream of those signaling cascades. Moreover, evidence suggests that PKA activates extracellular signal-regulated kinase, which is also required for conditioning. Imaging studies after conditioning further indicate that colocalization of GluR1 AMPAR subunits with the synaptic marker synaptophysin requires PKA, but is insensitive to the N-methyl-d-aspartate receptor (NMDAR) inhibitor d,l-AP5. PKA activation also leads to synaptic localization of GluR4 subunits that, unlike GluR1, is dependent on NMDARs and is mediated by CaMKII. Together with previous studies, our findings support a two-stage model of AMPAR synaptic delivery during acquisition of classical conditioning. The first stage involves synaptic incorporation of GluR1-containing AMPARs that serves to activate silent synapses. This allows a second stage of NMDAR- and protein kinase C-dependent delivery of GluR4 AMPAR subunits that supports the acquisition of CRs.
Collapse
Affiliation(s)
- Zhaoqing Zheng
- Neuroscience Group, Division of Basic Biomedical Sciences, University of South Dakota School of Medicine, 414 E. Clark St., Vermillion, SD 57069, USA
| | | |
Collapse
|
9
|
Freudenburg ZV, Ghosh BK, Ulinski PS. Synaptic adaptation and sustained generation of waves in a model of turtle visual cortex. IEEE Trans Biomed Eng 2009; 56:1277-86. [PMID: 19150779 DOI: 10.1109/tbme.2008.2010134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Both single and repeated visual stimuli produce waves of activity in the visual cortex of freshwater turtles. Large-scale, biophysically realistic models of the visual cortex capture the basic features of the waves produced by single stimuli. However, these models do not respond to repetitive stimuli due to the presence of a long-lasting hyperpolarization that follows the initial wave. This paper modifies the large-scale model so that it responds to repetitive stimuli by incorporating Hebbian and anti-Hebbian learning rules in synapses in the model. The resulting adaptive model responds to repetitive stimuli with repetitive waves. However, repeated presentation of a stimulus to a restricted region of visual space produces a habituation in the model in the same way it does in the real cortex.
Collapse
Affiliation(s)
- Zachary V Freudenburg
- Department of Computer Science and Engineering, Washington University, St. Louis, MO 63130, USA.
| | | | | |
Collapse
|
10
|
Lukkes JL, Summers CH, Scholl JL, Renner KJ, Forster GL. Early life social isolation alters corticotropin-releasing factor responses in adult rats. Neuroscience 2008; 158:845-55. [PMID: 19010398 DOI: 10.1016/j.neuroscience.2008.10.036] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 10/10/2008] [Accepted: 10/20/2008] [Indexed: 11/18/2022]
Abstract
Stress induced by early life social isolation leads to long-lasting alterations in stress responses and serotonergic activity. Corticotropin-releasing factor (CRF) is a neurotransmitter that mediates stress responses and alters serotonergic activity. We tested the hypothesis that the stress of early life isolation enhances responses to CRF in adulthood by determining the effect of CRF infusions into the dorsal raphe nucleus (dRN) on 5-HT release in the nucleus accumbens (NAc) of adult rats using in vivo microdialysis. Juvenile male rats were either isolated or housed in groups of three for a 3-week period beginning on postnatal day 21 after which, all rats were group-reared for an additional 2 weeks. Following the isolation/re-socialization procedure, infusion of 100 ng CRF into the dRN decreased 5-HT release in the NAc of group-reared rats. This treatment did not significantly affect 5-HT release in the NAc of isolation-reared animals. In contrast, infusion of 500 ng CRF into the dRN transiently increased 5-HT release in the NAc of both group-reared and isolated animals with isolated animals showing a more prolonged serotonergic response. Western blot and immunofluorescent staining for CRF receptors in the dRN showed that CRF(2) receptor levels were increased in the dRN of isolation-reared animals when compared with group-reared rats. Taken together, the results suggest that isolation during the early part of development causes alterations in both CRF receptor levels and CRF-mediated serotonergic activity. These effects may underlie the increased sensitivity to stress observed in isolates.
Collapse
Affiliation(s)
- J L Lukkes
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 East Clark Street, Vermillion, SD 57069-2390, USA
| | | | | | | | | |
Collapse
|
11
|
Zheng Z, Keifer J. Protein kinase C-dependent and independent signaling pathways regulate synaptic GluR1 and GluR4 AMPAR subunits during in vitro classical conditioning. Neuroscience 2008; 156:872-84. [PMID: 18809472 DOI: 10.1016/j.neuroscience.2008.08.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 08/19/2008] [Accepted: 08/19/2008] [Indexed: 11/19/2022]
Abstract
Protein kinase C (PKC) signal transduction pathways have been implicated in mechanisms of synaptic plasticity and learning, however, the roles of the different PKC family isoforms remain to be clarified. Previous studies showed that NMDAR-mediated trafficking of GluR4-containing AMPARs supports conditioning and that the mitogen-activated protein kinases (MAPKs) have a central role in the synaptic delivery of GluR4 subunits. Here, an in vitro model of classical conditioning in pond turtles, Pseudemys scripta elegans, was used to assess the role of PKC isoforms in mechanisms underlying this form of learning. We show that the PKC antagonists chelerythrine and bisindolylmaleimide I attenuated conditioned response (CR) acquisition and expression, as did the PKCzeta pseudosubstrate peptide inhibitor ZIP. Analysis of protein expression revealed that PKCzeta is activated in early stages of conditioning followed shortly afterward by increased levels of PKCalpha/beta and activation of ERK MAPK. Data also suggest that PKCzeta is upstream from and activates ERK. Finally, protein localization studies using confocal imaging indicate that inhibitors of ERK, but not PKC, suppress colocalization of GluR1 with synaptophysin while inhibitors of PKC and ERK attenuate colocalization of GluR4 with synaptophysin. Together, these data suggest that acquisition of conditioning proceeds by two stages of AMPAR trafficking. The first is PKC-independent and ERK-dependent synaptic delivery of GluR1 subunits to activate silent synapses. This is followed by PKC-dependent and ERK-dependent synthesis and delivery of GluR4 subunits that supports the acquisition of CRs. Therefore, there is a selective role for PKC and MAPK signaling pathways in multistep AMPAR trafficking that mediates acquisition of classical conditioning.
Collapse
Affiliation(s)
- Z Zheng
- Neuroscience Group, Division of Basic Biomedical Sciences, University of South Dakota School of Medicine, Vermillion, SD 57069, USA
| | | |
Collapse
|
12
|
Li W, Keifer J. Coordinate action of pre- and postsynaptic brain-derived neurotrophic factor is required for AMPAR trafficking and acquisition of in vitro classical conditioning. Neuroscience 2008; 155:686-97. [PMID: 18639615 DOI: 10.1016/j.neuroscience.2008.06.043] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 05/23/2008] [Accepted: 06/11/2008] [Indexed: 01/07/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) has been implicated in mechanisms of synaptic plasticity such as long-term potentiation (LTP), but its role in associative learning remains largely unknown. In the present study, we investigated the function of BDNF and its receptor tropomyosin-related kinase B (TrkB) in an in vitro model of classical conditioning using pond turtles, Pseudemys scripta elegans. Conditioning resulted in a significant increase in BDNF and phospho (p)-Trk expression. Bath application of antibodies directed against TrkB, but not TrkA or TrkC, abolished acquisition of conditioning, as did a receptor tyrosine kinase inhibitor K252a and an inhibitor of nitric oxide synthase 7-nitroindazole. Significantly, injections of BDNF Ab into the nerve roots of presynaptic axonal projections or postsynaptic motor neurons prevented acquisition of conditioning, suggesting that BDNF is required on both sides of the synapse for modification to occur. The presynaptic proteins synaptophysin and synapsin I were increased upon conditioning or BDNF application. Furthermore, BDNF application alone mimicked conditioning-induced synaptic insertion of GluR1 and GluR4 AMPAR subunits into synapses, which was inhibited by co-application of BDNF and K252a. Data also show that extracellular signal-regulated kinase (ERK) was activated in BDNF-treated preparations. We conclude that coordinate pre- and postsynaptic actions of BDNF are required for acquisition of in vitro classical conditioning.
Collapse
Affiliation(s)
- W Li
- Neuroscience Group, Division of Basic Biomedical Sciences, University of South Dakota School of Medicine, 414 East Clark Street, Vermillion, SD 57069, USA
| | | |
Collapse
|
13
|
Kim M, Chiego DJ, Bradley RM. Ionotropic glutamate receptor expression in preganglionic neurons of the rat inferior salivatory nucleus. Auton Neurosci 2007; 138:83-90. [PMID: 18096442 DOI: 10.1016/j.autneu.2007.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 11/12/2007] [Accepted: 11/13/2007] [Indexed: 12/31/2022]
Abstract
Glutamate receptor (GluR) subunit composition of inferior salivatory nucleus (ISN) neurons was studied by immunohistochemical staining of retrogradely labeled neurons. Preganglionic ISN neurons innervating the von Ebner or parotid salivary glands were labeled by application of a fluorescent tracer to the lingual-tonsilar branch of the glossopharyngeal nerve or the otic ganglion respectively. We used polyclonal antibodies to glutamate receptor subunits NR1, NR2A, NR2B, (NMDA receptor subunits) GluR1, GluR2, GluR3, GluR4 (AMPA receptor subunits), and GluR5-7, KA2 (kainate receptor subunits) to determine their expression in ISN neurons. The distribution of the NMDA, AMPA and kainate receptor subunits in retrogradely labeled ISN neurons innervating the von Ebner and parotid glands was qualitatively similar. The percentage of retrogradley labeled ISN neurons innervating the parotid gland expressing the GluR subunits was always greater than those innervating the von Ebner gland. For both von Ebner and parotid ISN neurons, NR2A subunit staining had the highest expression and the lowest expression of GluR subunit staining was NR2B for von Ebner ISN neurons and GluR1 for parotid ISN neurons. The percentage of NR2B and GluR4 expressing ISN neurons was significantly different between the two glands. The percentage of ISN neurons that expressed GluR receptor subunits ranged widely indicating that the distribution of GluR subunit expression differs amongst the ISN neurons. While ISN preganglionic neurons express all the GluR subunits, differences in the percentage of ISN neurons expression between neurons innervating the von Ebner and parotid glands may relate to the different functional roles of these glands.
Collapse
Affiliation(s)
- M Kim
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, United States
| | | | | |
Collapse
|
14
|
Mokin M, Zheng Z, Keifer J. Conversion of silent synapses into the active pool by selective GluR1-3 and GluR4 AMPAR trafficking during in vitro classical conditioning. J Neurophysiol 2007; 98:1278-86. [PMID: 17596423 DOI: 10.1152/jn.00212.2007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The conversion of silent synapses into active sites is hypothesized to be a primary mechanism underlying learning and memory processes. Here we used an in vitro model of classical conditioning from turtles that demonstrates a neural correlate of eyeblink conditioning to examine whether the conversion of silent synapses has a role in this form of associative learning. This was accomplished by direct visualization of AMPA receptor (AMPAR) and N-methyl-d-aspartate receptor (NMDAR) subunits colocalized with synaptophysin (Syn) using immunofluorescence and confocal microscopy. In naive preparations, there was a relatively high level of synapses immunopositive for NR1-Syn alone interpreted to be silent synapses. After early stages of conditioning during acquisition of conditioned responses (CRs), there was a significant increase in the colocalization of GluR1-3 AMPAR subunits at NR1-immunopositive synaptic sites. Later in conditioning, levels of GluR1-3 declined and enhanced colocalization of GluR4-containing AMPAR subunits at synapses was observed. The trafficking of these subunits during conditioning was NMDAR mediated and was accompanied by protein synthesis of GluR4 subunits. Examination of the postsynaptic density fraction confirmed the early and late synaptic insertion of GluR1-3 and GluR4, respectively, during conditioning. These findings suggest that there is differential trafficking of synaptic AMPARs during classical conditioning. Existing GluR1-3 AMPAR subunits are initially delivered to silent synapses early in conditioning to unsilence them followed by synthesis and insertion of GluR4 AMPAR subunits that are required for acquisition and expression of CRs.
Collapse
Affiliation(s)
- Maxim Mokin
- Neuroscience Group, Division of Basic Biomedical Sciences, University of South Dakota School of Medicine, 414 E. Clark St., Vermillion, SD 57069, USA
| | | | | |
Collapse
|
15
|
Keifer J, Zheng ZQ, Zhu D. MAPK signaling pathways mediate AMPA receptor trafficking in an in vitro model of classical conditioning. J Neurophysiol 2007; 97:2067-74. [PMID: 17202235 DOI: 10.1152/jn.01154.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) signal transduction pathways have been implicated in underlying mechanisms of synaptic plasticity and learning. However, the differential roles of the MAPK family members extracellular signal-regulated kinase (ERK) and p38 in learning remain to be clarified. Here, an in vitro model of classical conditioning was examined to assess the roles of ERK and p38 MAPK in this form of learning. Previous studies showed that NMDA-mediated trafficking of synaptic glutamate receptor 4 (GluR4)-containing AMPA receptors (AMPARs) underlies conditioning in this preparation and that this is accomplished through GluR4 interactions with the immediate-early gene protein Arc and the actin cytoskeleton. Here, it is shown that attenuation of conditioned responses (CRs) by ERK and p38 MAPK antagonists is associated with significantly reduced synaptic localization of GluR4 subunits. Western blotting reveals that p38 MAPK significantly increases its activation levels during late stages of conditioning during CR expression. In contrast, ERK MAPK activation is enhanced in early conditioning during CR acquisition. The results suggest that MAPKs have a central role in the synaptic delivery of GluR4-containing AMPARs during in vitro classical conditioning.
Collapse
Affiliation(s)
- Joyce Keifer
- Neuroscience Group, Division of Basic Biomedical Sciences, University of South Dakota School of Medicine, 414 E. Clark St., Vermillion, SD 57069, USA.
| | | | | |
Collapse
|
16
|
Mokin M, Lindahl JS, Keifer J. Immediate-early gene-encoded protein Arc is associated with synaptic delivery of GluR4-containing AMPA receptors during in vitro classical conditioning. J Neurophysiol 2006; 95:215-24. [PMID: 16339507 DOI: 10.1152/jn.00737.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The immediate-early gene Arc is rapidly expressed in response to neuronal activity and is thought to be involved in mechanisms of synaptic plasticity. The function of Arc in these processes remains unknown. The present study demonstrates that during an in vitro neural correlate of eyeblink classical conditioning, there is a rapid and transient increase in levels of Arc protein that require activation of N-methyl-d-aspartate receptors. In the early phase of conditioning during conditioned response (CR) acquisition, there is significantly greater colocalization of Arc protein and GluR4-containing AMPA receptors at synaptic sites, however, colocalization of Arc and GluR4 was not observed after later stages of conditioning during CR expression. There was also significantly enhanced coimmunoprecipitation of Arc with GluR4 subunits and actin early in conditioning but not of Arc with NR1 subunits, and these associations declined to control levels in later stages of conditioning. These data suggest a role for Arc protein in the synaptic delivery of GluR4-containing AMPA receptors by interactions with cytoskeletal protein complexes during the acquisition phase of in vitro classical conditioning.
Collapse
Affiliation(s)
- Maxim Mokin
- Neuroscience Group, Division of Basic Biomedical Sciences, University of South Dakota School of Medicine, 414 E. Clark St., Vermillion, SD 57069, USA
| | | | | |
Collapse
|
17
|
Zhu D, Lustig KH, Bifulco K, Keifer J. Thalamocortical Connections in the Pond Turtle Pseudemys scripta elegans. BRAIN, BEHAVIOR AND EVOLUTION 2005; 65:278-92. [PMID: 15761219 DOI: 10.1159/000084317] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Indexed: 11/19/2022]
Abstract
Thalamocortical connections are a neuroanatomical feature shared among vertebrates, although the extent and organization of these connections vary among species. From an evolutionary standpoint, reptiles represent early stages of the pattern of connectivity between the thalamus and cortex, and elucidation of these pathways may help to reveal the biological significance of these projections. The present tract tracing study was performed to examine the organization of thalamocortical projections in the pond turtle, Pseudemys scripta elegans. All experiments were carried out using in vitro brain preparations. Injections of neurobiotin into the medial cortex resulted in labeled neurons in the ipsilateral dorsomedial anterior nucleus of the thalamus, those in the dorsomedial cortex labeled neurons in the dorsolateral anterior nucleus, and injections into the dorsal cortex resulted in labeled neurons in the dorsal lateral geniculate nucleus of the thalamus. Injections of neurobiotin into these thalamic nuclei confirmed the projections to the cortex. Finally, neurobiotin injections primarily into the medial cortex resulted in bilateral label of axons and terminals in the suprapeduncular nucleus of the hypothalamus. The results of the neurobiotin injections revealed a topographic pattern of thalamocortical connections such that medial cortical regions connect with medial thalamic nuclei and lateral cortical regions connect with lateral nuclei. These findings suggest that the presence of functionally segregated thalamocortical projections is a conserved feature of brain organization among amniotes. Moreover, this work describes a descending pathway linking cortical regions with the red nucleus via the hypothalamus thereby providing indirect cortical control of the reptilian rubrospinal system.
Collapse
Affiliation(s)
- Dantong Zhu
- Neuroscience Group, Division of Basic Biomedical Sciences, University of South Dakota School of Medicine, 414 E. Clark St., Vermillion, SD 57069, USA
| | | | | | | |
Collapse
|
18
|
Mokin M, Keifer J. Expression of the immediate-early gene-encoded protein Egr-1 (zif268) during in vitro classical conditioning. Learn Mem 2005; 12:144-9. [PMID: 15805312 PMCID: PMC1074332 DOI: 10.1101/lm.87305] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Accepted: 02/16/2005] [Indexed: 11/24/2022]
Abstract
Expression of the immediate-early genes (IEGs) has been shown to be induced by activity-dependent synaptic plasticity or behavioral training and is thought to play an important role in long-term memory. In the present study, we examined the induction and expression of the IEG-encoded protein Egr-1 during an in vitro neural correlate of eyeblink classical conditioning. The results showed that Egr-1 protein expression as determined by immunocytochemistry and Western blot analysis rapidly increased during the early stages of conditioning and remained elevated during the later stages. Further, expression of Egr-1 protein required NMDA receptor activation as it was blocked by bath application of AP-5. These findings suggest that the IEG-encoded proteins such as Egr-1 are activated during relatively simple forms of learning in vertebrates. In this case, Egr-1 may have a functional role in the acquisition phase of conditioning as well as in maintaining expression of conditioned responses.
Collapse
Affiliation(s)
- Maxim Mokin
- Neuroscience Group, Division of Basic Biomedical Sciences, University of South Dakota School of Medicine, Vermillion, South Dakota 57069, USA
| | | |
Collapse
|
19
|
Zhu D, Keifer J. Distribution of facial motor neurons in the pond turtle Pseudemys scripta elegans. Neurosci Lett 2005; 373:134-7. [PMID: 15567568 DOI: 10.1016/j.neulet.2004.10.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Revised: 09/13/2004] [Accepted: 10/01/2004] [Indexed: 10/26/2022]
Abstract
A tract tracing study was performed to examine the localization of the facial nucleus in the brain stem of the pond turtle, Pseudemys scripta elegans. Neurobiotin and the fluorescent tracers alexa fluor 488 and 594 were used to retrogradely label neurons of the abducens or facial nerves. The results showed that the facial nucleus has two subnuclei, a medial group and a lateral group. Measurements of cell size revealed no significant differences between these populations. Double labeling studies showed that the medial cell group of the facial nucleus lies between the principal and accessory abducens nuclei in the pons, whereas the lateral group lies adjacent to the accessory abducens nucleus. The facial nucleus of pond turtles largely overlaps the rostrocaudal extent of the accessory abducens nucleus, but extends well beyond it into the medulla. These data elucidate the position and distribution of the facial nucleus in the brain stem of pond turtles and contribute to the body of comparative neuroanatomical literature on the distribution of the cranial nerve nuclei of reptiles.
Collapse
Affiliation(s)
- Dantong Zhu
- Neuroscience Group, Division of Basic Biomedical Sciences, University of South Dakota School of Medicine, Vermillion, SD 57069, USA
| | | |
Collapse
|
20
|
Lindahl JS, Keifer J. Glutamate receptor subunits are altered in forebrain and cerebellum in rats chronically exposed to the NMDA receptor antagonist phencyclidine. Neuropsychopharmacology 2004; 29:2065-73. [PMID: 15138442 DOI: 10.1038/sj.npp.1300485] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phencyclidine (PCP) is a noncompetitive antagonist of the N-methyl-D-aspartate (NMDA) glutamate receptor subtype. It produces transient psychoses in normal individuals and exacerbates psychoses in schizophrenics. When administered to rodents, PCP elicits stereotypic behaviors including unrelenting head swaying, hyperlocomotion, and social withdrawal. In this study, we examined the relative distribution of the NMDA receptor subunits, as well as the subunits of its modulating receptor, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) in the forebrain, hippocampus, and cerebellum of rats chronically exposed to PCP. Rats were injected for 30 days with PCP (10 mg/kg) and age/sex-matched controls were injected for 30 days with saline vehicle. Brain NMDA and AMPA receptor subunit distribution patterns and protein levels were then analyzed by immunocytochemistry and Western blot analysis. Chronic PCP-treated animals showed significant alterations in glutamate receptor subunits, particularly for the NR1, NR2B, NR2C, and NR2D components of the NMDA receptor. AMPA receptor subunits demonstrated few significant changes in subunit availabilities. Western blot analysis largely confirmed the immunocytochemical findings. These results support the conclusion that subunits of the NMDA receptor are selectively altered by chronic PCP antagonism, with minimal to no changes observed in AMPA receptor subunits. Our findings are consistent with the interpretation that a dysfunctional NMDA receptor complex may mediate abnormal glutamatergic neurotransmission and potentially contribute to the complex etiology of cognitive disorders.
Collapse
Affiliation(s)
- Josette S Lindahl
- Department of Psychiatry, University of South Dakota School of Medicine, Vermillion, SD, USA.
| | | |
Collapse
|
21
|
Summers CH, Forster GL, Korzan WJ, Watt MJ, Larson ET, Overli O, Höglund E, Ronan PJ, Summers TR, Renner KJ, Greenberg N. Dynamics and mechanics of social rank reversal. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2004; 191:241-52. [PMID: 15372303 DOI: 10.1007/s00359-004-0554-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2004] [Revised: 07/21/2004] [Accepted: 07/22/2004] [Indexed: 10/26/2022]
Abstract
Stable social relationships are rearranged over time as resources such as favored territorial positions change. We test the hypotheses that social rank relationships are relatively stable, and although social signals influence aggression and rank, they are not as important as memory of an opponent. In addition, we hypothesize that eyespots, aggression and corticosterone influence serotonin and N-methyl-D: -aspartate (NMDA) systems in limbic structures involved in learning and memory. In stable adult dominant-subordinate relationships in the lizard Anolis carolinensis, social rank can be reversed by pharmacological elevation of limbic serotonergic activity. Any pair of specific experiences: behaving aggressively, viewing aggression or perceiving sign stimuli indicative of dominant rank also elevate serotonergic activity. Differences in the extent of serotonergic activation may be a discriminating and consolidating factor in attaining superior rank. For instance, socially aggressive encounters lead to increases in plasma corticosterone that stimulate both serotonergic activity and expression of the NMDA receptor subunit 2B (NR(2B)) within the CA(3) region of the lizard hippocampus. Integration of these systems will regulate opponent recognition and memory, motivation to attack or retreat, and behavioral and physiological reactions to stressful social interactions. Contextually appropriate social responses provide a modifiable basis for coping with the flexibility of social relationships.
Collapse
Affiliation(s)
- Cliff H Summers
- Biology and Neuroscience, University of South Dakota, 414 East Clark Street, Vermillion, SD 57069-2390, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhu D, Keifer J. Pathways controlling trigeminal and auditory nerve-evoked abducens eyeblink reflexes in pond turtles. BRAIN, BEHAVIOR AND EVOLUTION 2004; 64:207-22. [PMID: 15319552 DOI: 10.1159/000080242] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Accepted: 03/06/2004] [Indexed: 11/19/2022]
Abstract
An in vitro brain stem preparation from turtles exhibits a neural correlate of eyeblink classical conditioning during pairing of auditory (CS) and trigeminal (US) nerve stimulation while recording from the abducens nerve. The premotor neuronal circuits controlling abducens nerve-mediated eyeblinks in turtles have not been previously described, which is a necessary step for understanding cellular mechanisms of conditioning in this preparation. The purpose of the present study was to neuroanatomically define the premotor pathways that underlie the trigeminal and auditory nerve-evoked abducens eyeblink responses. The results show that the principal sensory trigeminal nucleus forms a disynaptic pathway from both the trigeminal and auditory nerves to the principal and accessory abducens motor nuclei. Additionally, the principal abducens nucleus receives vestibular inputs, whereas the accessory nucleus receives input from the cochlear nucleus. The late R2-like component of abducens nerve responses is mediated by the spinal trigeminal nucleus in the medulla. Both the principal sensory trigeminal nucleus and the abducens motor nuclei receive CS-US convergence and therefore both, or either, might be considered potential sites of synapse modification during in vitro abducens conditioning. Further data are required to determine the role of the principal sensory trigeminal nucleus in in vitro conditioning.
Collapse
Affiliation(s)
- Dantong Zhu
- Neuroscience Group, Division of Basic Biomedical Sciences, University of South Dakota School of Medicine, Vermillion, SD 57069, USA
| | | |
Collapse
|
23
|
Meyer WN, Keifer J, Korzan WJ, Summers CH. Social stress and corticosterone regionally upregulate limbic N-methyl-d-aspartatereceptor (NR) subunit type NR2A and NR2B in the lizard anolis carolinensis. Neuroscience 2004; 128:675-84. [PMID: 15464276 DOI: 10.1016/j.neuroscience.2004.06.084] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2004] [Indexed: 11/29/2022]
Abstract
Social aggression in the lizard Anolis carolinensis produces dominant and subordinate relationships while elevating corticosterone levels and monoaminergic transmitter activity in hippocampus (medial and mediodorsal cortex). Adaptive social behavior for dominant and subordinate male A. carolinensis is learned during aggressive interaction and therefore was hypothesized to involve hippocampus and regulation of N-methyl-d-aspartate (NMDA) receptors. To test the effects of social stress and corticosterone on NMDA receptor subunits (NR), male lizards were either paired or given two injections of corticosterone 1 day apart. Paired males were allowed to form dominant-subordinate relationships and were killed 1 day later. Groups included isolated controls, dominant males, subordinate males and males injected with corticosterone. Brains were processed for glutamate receptor subunit immunohistochemistry and fluorescence was analyzed by image analysis for NR(2A) and NR(2B) in the small and large cell divisions of the medial and mediodorsal cortex. In the small granule cell division there were no significant differences in NR(2A) or NR(2B) immunoreactivity among all groups. In contrast, there was a significant upregulation of NR(2A) and NR(2B) subunits in the large pyramidal cell division in all three experimental groups as compared with controls. The results revealed significantly increased NR(2A) and NR(2B) subunits in behaving animals, whereas animals simply injected with corticosterone showed less of an effect, although they were significantly increased over control. Upregulation of NR(2) subunits occurs during stressful social interactions and is likely to be regulated in part by glucocorticoids. The data also suggest that learning social roles during stressful aggressive interactions may involve NMDA receptor-mediated mechanisms.
Collapse
Affiliation(s)
- W N Meyer
- Department of Biology, University of South Dakota, 414 East Clark Street, Vermillion, SD 57069, USA
| | | | | | | |
Collapse
|
24
|
Keifer J, Mokin M. Distribution of anterogradely labeled trigeminal and auditory nerve boutons on abducens motor neurons in turtles: Implications for in vitro classical conditioning. J Comp Neurol 2004; 471:144-52. [PMID: 14986308 DOI: 10.1002/cne.20032] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A conditioned abducens nerve response is generated in in vitro brainstem preparations from turtles by pairing a weak conditioned stimulus (CS) applied to the auditory nerve that immediately precedes an unconditioned stimulus (US) applied to the trigeminal nerve. Tract-tracing studies showed direct projections from auditory and trigeminal nerves to abducens motor neurons. In light of these findings for convergent CS-US inputs, it is hypothesized that auditory and trigeminal nerve synaptic inputs onto abducens motor neurons are in spatial proximity because the CS is a weak input that may be required to be near the US inputs to have an associative effect, and conditioning occurs only when the CS and US are temporally separated by less than 100 ms. This study examined the spatial relationship of 133 anterogradely labeled synaptic boutons conveying CS or US information on retrogradely labeled abducens motor neurons. The results show that trigeminal and auditory nerve terminal fields occupy primarily the soma and proximal dendrites of abducens motor neurons. Quantitative analysis shows that the majority of labeled boutons (76% and 85% from injections of the trigeminal and auditory nerves, respectively) were apposed to somata or were localized to dendritic segments no more than about 30 microm from the nucleus. There were no quantitative differences between trigeminal and auditory nerve boutons in terms of their localization on dendrites or bouton diameter. Finally, triple labeling experiments demonstrated that individual abducens motor neurons receive inputs from both nerves and that these inputs may be in close spatial proximity to one another. This synaptic arrangement allows for the possibility that in vitro abducens conditioning is generated by coincident CS-US detection mediated by NMDA receptors and may utilize a Hebbian-like plasticity mechanism.
Collapse
Affiliation(s)
- Joyce Keifer
- Neuroscience Group, Division of Basic Biomedical Sciences, University of South Dakota, School of Medicine, Vermillion, South Dakota 57069, USA.
| | | |
Collapse
|
25
|
Mokin M, Keifer J. Targeting of GLUR4-containing AMPA receptors to synaptic sites during in vitro classical conditioning. Neuroscience 2004; 128:219-28. [PMID: 15350635 DOI: 10.1016/j.neuroscience.2004.06.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2004] [Indexed: 11/17/2022]
Abstract
The synaptic delivery of GluR4-containing AMPA receptors during in vitro classical conditioning of a neural correlate of an eyeblink response was examined by fluorescence imaging of punctate staining for glutamate receptor subunits and the presynaptic marker synaptophysin. There was a significant increase in GluR4-containing AMPA receptors to synaptic sites after conditioning as determined by colocalization of GluR4 subunit puncta with synaptophysin. Moreover, the trafficking of these receptor subunits requires NMDA receptor activation as it was blocked by D,L-2-amino-5-phosphonovaleric acid (AP-5). In contrast, colocalization of NR1 subunits with synaptophysin was stable regardless of whether the preparations had undergone conditioning or had been treated by AP-5. The enhanced colocalization of GluR4 and synaptophysin was accompanied by an increase in both the total number and size of puncta for both proteins, suggesting greater synthesis and aggregation during conditioning. Western blot analysis confirmed upregulation of synaptophysin and GluR4 following conditioning. These data support the hypothesis that GluR4-containing AMPA receptors are delivered to synaptic sites during conditioning. Further, they suggest coordinate presynaptic and postsynaptic modifications during in vitro classical conditioning.
Collapse
Affiliation(s)
- M Mokin
- Neuroscience Group, Division of Basic Biomedical Sciences, University of South Dakota School of Medicine, 414 East Clark Street, Vermillion 57069, USA
| | | |
Collapse
|
26
|
Keifer J, Clark TG. Abducens conditioning in in vitro turtle brain stem without cerebellum requires NMDA receptors and involves upregulation of GluR4-containing AMPA receptors. Exp Brain Res 2003; 151:405-10. [PMID: 12802552 DOI: 10.1007/s00221-003-1494-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2003] [Accepted: 04/02/2003] [Indexed: 10/26/2022]
Abstract
Previous work showed that in vitro abducens eyeblink classical conditioning of turtle brain stem-cerebellum preparations involved NMDA-mediated mechanisms and redistribution of GluR4-containing AMPA receptors in the abducens motor nuclei. Since conditioning can be obtained in brain stem preparations without the cerebellum, we examined whether similar mechanisms were involved during conditioning of the brain stem alone. The results showed that conditioning could not be induced in the presence of the NMDA receptor antagonist dl-2-amino-5-phosphonovaleric acid (AP-5) and that abducens nerve conditioned responses, once initiated in normal saline, were significantly attenuated in the presence of AP-5. The effects of AP-5 did not generally depress physiological responsiveness of preparations because some abducens nerve reflexes were not significantly reduced by the compound. GluR4-containing AMPA receptors in the abducens motor nuclei were significantly upregulated and positively correlated with the levels of conditioning similar to that of preparations having an intact cerebellum. Furthermore, increased GluR4 subunits after brain stem conditioning was confirmed by Western blot analysis. These results suggest that NMDA receptor-mediated mechanisms and GluR4 upregulation may mediate in vitro abducens eyeblink classical conditioning and that these mechanisms reside in the brain stem eyeblink circuitry.
Collapse
Affiliation(s)
- Joyce Keifer
- Neuroscience Group, Division of Basic Biomedical Sciences, University of South Dakota School of Medicine, 414 E Clark Street, Vermillion, SD 57069, USA.
| | | |
Collapse
|
27
|
Keifer J, Brewer BT, Meehan PE, Brue RJ, Clark TG. Role for calbindin-D28K in in vitro classical conditioning of abducens nerve responses in turtles. Synapse 2003; 49:106-15. [PMID: 12740866 DOI: 10.1002/syn.10219] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Intracellular calcium has a pivotal role in synaptic modifications that may underlie learning and memory. The present study examined whether there were changes in immunoreactivity levels of the AMPA receptor subunits GluR2/3 and calcium binding proteins during classical conditioning recorded in the abducens nerve of in vitro brain stem preparations from turtles. The results showed that abducens motor neurons in unconditioned turtle brain stems were immunopositive for GluR2/3, calbindin-D28K, and calmodulin, but were immunonegative for parvalbumin. After classical conditioning, immunoreactivity for calbindin-D28K in the abducens motor nuclei was significantly reduced, whereas there were no significant changes in GluR2/3, calmodulin, or parvalbumin. This reduction in calbindin-D28K immunoreactivity was not observed following conditioning in the NMDA receptor antagonist AP-5, which blocked conditioned responses, suggesting that these changes are NMDA receptor-dependent. Moreover, the degree of the decrease in calbindin-D28K immunoreactivity was negatively correlated with the level of conditioning. Consistent with the immunocytochemical findings, Western blot analysis showed that calbindin-D28K protein levels were reduced after classical conditioning. The results support the hypothesis that in vitro classical conditioning of abducens nerve responses utilizes intracellular calcium-dependent signaling pathways that require NMDA receptor function and suggest a specific role for the calcium binding protein calbindin-D28K.
Collapse
Affiliation(s)
- Joyce Keifer
- Neuroscience Group, Division of Basic Biomedical Sciences, University of South Dakota School of Medicine, Vermillion, South Dakota 57010, USA.
| | | | | | | | | |
Collapse
|
28
|
Coleman SK, Cai C, Mottershead DG, Haapalahti JP, Keinänen K. Surface expression of GluR-D AMPA receptor is dependent on an interaction between its C-terminal domain and a 4.1 protein. J Neurosci 2003; 23:798-806. [PMID: 12574408 PMCID: PMC6741938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023] Open
Abstract
Dynamic regulation of the number and activity of AMPA receptors is believed to underlie many forms of synaptic plasticity and is presumably mediated by specific protein-protein interactions involving the C-terminal domain of the receptor. Several proteins interacting with the C-terminal tails of the glutamate receptor (GluR)-A and GluR-B subunits have been identified and implicated in the regulation of endocytosis and exocytosis, clustering, and anchoring of AMPA receptors to the cytoskeleton. In contrast, little is known of the molecular interactions of the GluR-D subunit, or of the mechanisms regulating the traffic of GluR-D-containing AMPA receptors. We analyzed the subcellular localization of homomeric GluR-D receptors carrying C-terminal deletions in transfected human embryonic kidney (HEK) 293 cells and in primary neurons by immunofluorescence microscopy and ELISA. A minimal requirement for a 14-residue cytoplasmic segment for the surface expression of homomeric GluR-D receptors was identified. Previously, a similar region in the GluR-A subunit was implicated in an interaction with 4.1 family proteins. Coimmunoprecipitation demonstrated that GluR-D associated with 4.1 protein(s) in both HEK293 cells and rat brain. Moreover, glutathione S-transferase pull-down experiments showed that the same 14-residue segment is critical for 4.1 binding to GluR-A and GluR-D. Point mutations within this segment dramatically decreased the surface expression of GluR-D in HEK293 cells, with a concomitant loss of the 4.1 interaction. Our findings demonstrate a novel molecular interaction for the GluR-D subunit and suggest that the association with the 4.1 family protein(s) plays an essential role in the transport to and stabilization of GluR-D-containing AMPA receptors at the cell surface.
Collapse
Affiliation(s)
- Sarah K Coleman
- Department of Biosciences, Division of Biochemistry, University of Helsinki, Helsinki, Finland FIN-00014
| | | | | | | | | |
Collapse
|
29
|
Rabbath G, Vassias I, Vidal PP, de Waele C. GluR2-R4 AMPA subunit study in rat vestibular nuclei after unilateral labyrinthectomy: an in situ and immunohistochemical study. Neuroscience 2002; 111:189-206. [PMID: 11955722 DOI: 10.1016/s0306-4522(01)00569-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the present investigation, we address the question of whether the expression of GluR2-R4 subunits mRNAs and GluR2 and GluR4 subunits protein of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)-selective glutamate receptors are modulated in the vestibular nuclei following unilateral labyrinthectomy. Specific GluR2-R4 radioactive oligonucleotides were used to probe sections of rat vestibular nuclei according to in situ hybridization methods. The signal was detected by means of film or emulsion photography. GluR2 and GluR4 subunit expression were also measured in control and operated rats by use of specific monoclonal GluR2 and GluR4 antibodies. Animals were killed at different stages following the lesion: 1, 3 or 8 days for the in situ hybridization study and 4 and 8 days for the immunohistochemical study. In normal animals, several brainstem regions including the lateral, medial, superior and inferior vestibular nuclei expressed all the GluR2, GluR3 and GluR4 subunit mRNAs. Moreover, numerous vestibular nuclei neurons are endowed with AMPA receptors containing the GluR2 and the GluR4 subunits. In unilaterally labyrinthectomized rats, no asymmetry could be detected on autoradiographs between the two medial vestibular nuclei probed with the GluR2 and the GluR4 oligonucleotide probes regardless of the delay following the lesion. However, compared to control, a bilateral decrease (-22%) in GluR3 gene expression was observed in the medial vestibular nuclei 3 days after the lesion followed by a return to normal at day 8 post-lesion. No significant asymmetrical changes in the density of GluR2- and GluR4-immunopositive cells could be detected between the intact and deafferented sides in any part of the vestibular nuclear complex and at any times (day 4 or day 8) following the lesion. Our data show that the removal of glutamatergic vestibular input induced an absence of modulation of GluR2 and GluR4 gene and subunits expression. This demonstrates that GluR2 and GluR4 expression do not play a role in the recovery of the resting discharge of the deafferented medial vestibular nuclei neurons and consequently in the functional restoration of the static postural and oculomotor deficits. The functional role of the slight and bilateral GluR3 mRNA decrease in the vestibular nuclei remains to be elucidated.
Collapse
Affiliation(s)
- G Rabbath
- LNRS (CNRS-Paris V), Centre Universitaire des Saints-Pères, 45 rue des Saints-Pères, 75270 Cedex 06, Paris, France
| | | | | | | |
Collapse
|