1
|
Evans CG, Barry MA, Jing J, Perkins MH, Weiss KR, Cropper EC. The Complement of Projection Neurons Activated Determines the Type of Feeding Motor Program in Aplysia. Front Neural Circuits 2021; 15:685222. [PMID: 34177471 PMCID: PMC8222659 DOI: 10.3389/fncir.2021.685222] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/12/2021] [Indexed: 11/17/2022] Open
Abstract
Multiple projection neurons are often activated to initiate behavior. A question that then arises is, what is the unique functional role of each neuron activated? We address this issue in the feeding system of Aplysia. Previous experiments identified a projection neuron [cerebral buccal interneuron 2 (CBI-2)] that can trigger ingestive motor programs but only after it is repeatedly stimulated, i.e., initial programs are poorly defined. As CBI-2 stimulation continues, programs become progressively more ingestive (repetition priming occurs). This priming results, at least in part, from persistent actions of peptide cotransmitters released from CBI-2. We now show that in some preparations repetition priming does not occur. There is no clear seasonal effect; priming and non-priming preparations are encountered throughout the year. CBI-2 is electrically coupled to a second projection neuron, cerebral buccal interneuron 3 (CBI-3). In preparations in which priming does not occur, we show that ingestive activity is generated when CBI-2 and CBI-3 are coactivated. Programs are immediately ingestive, i.e., priming is not necessary, and a persistent state is not induced. Our data suggest that dynamic changes in the configuration of activity can vary and be determined by the complement of projection neurons that trigger activity.
Collapse
Affiliation(s)
- Colin G. Evans
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Michael A. Barry
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jian Jing
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Matthew H. Perkins
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Klaudiusz R. Weiss
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Elizabeth C. Cropper
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
2
|
Wood EA, Stopka SA, Zhang L, Mattson S, Maasz G, Pirger Z, Vertes A. Neuropeptide Localization in Lymnaea stagnalis: From the Central Nervous System to Subcellular Compartments. Front Mol Neurosci 2021; 14:670303. [PMID: 34093125 PMCID: PMC8172996 DOI: 10.3389/fnmol.2021.670303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/09/2021] [Indexed: 12/02/2022] Open
Abstract
Due to the relatively small number of neurons (few tens of thousands), the well-established multipurpose model organism Lymnaea stagnalis, great pond snail, has been extensively used to study the functioning of the nervous system. Unlike the more complex brains of higher organisms, L. stagnalis has a relatively simple central nervous system (CNS) with well-defined circuits (e.g., feeding, locomotion, learning, and memory) and identified individual neurons (e.g., cerebral giant cell, CGC), which generate behavioral patterns. Accumulating information from electrophysiological experiments maps the network of neuronal connections and the neuronal circuits responsible for basic life functions. Chemical signaling between synaptic-coupled neurons is underpinned by neurotransmitters and neuropeptides. This review looks at the rapidly expanding contributions of mass spectrometry (MS) to neuropeptide discovery and identification at different granularity of CNS organization. Abundances and distributions of neuropeptides in the whole CNS, eleven interconnected ganglia, neuronal clusters, single neurons, and subcellular compartments are captured by MS imaging and single cell analysis techniques. Combining neuropeptide expression and electrophysiological data, and aided by genomic and transcriptomic information, the molecular basis of CNS-controlled biological functions is increasingly revealed.
Collapse
Affiliation(s)
- Ellen A. Wood
- Department of Chemistry, The George Washington University, Washington, DC, United States
| | - Sylwia A. Stopka
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Linwen Zhang
- Department of Chemistry, The George Washington University, Washington, DC, United States
| | - Sara Mattson
- Department of Chemistry, The George Washington University, Washington, DC, United States
| | - Gabor Maasz
- Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), Tihany, Hungary
- Soós Ernő Research and Development Center, University of Pannonia, Nagykanizsa, Hungary
| | - Zsolt Pirger
- Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), Tihany, Hungary
| | - Akos Vertes
- Department of Chemistry, The George Washington University, Washington, DC, United States
| |
Collapse
|
3
|
Morgan LD, Mohammed A, Patel BA, Arundell M, Jennert-Burtson K, Hernádi L, Overall A, Bowler LD, O'Hare D, Yeoman MS. Decreased 14-3-3 expression correlates with age-related regional reductions in CNS dopamine and motor function in the pond snail, Lymnaea. Eur J Neurosci 2020; 53:1394-1411. [PMID: 33131114 DOI: 10.1111/ejn.15033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 11/28/2022]
Abstract
Ageing is associated in many organisms with a reduction in motor movements. We have previously shown that the rate of feeding movements of the pond snail, Lymnaea, decreased with age but the underlying cause is not fully understood. Here, we show that dopamine in the cerebro-buccal complex is an important signalling molecule regulating feeding frequency in Lymnaea and that ageing is associated with a decrease in CNS dopamine. A proteomic screen of young and old CNSs highlighted a group of proteins that regulate stress responses. One of the proteins identified was 14-3-3, which can enhance the synthesis of dopamine. We show that the Lymnaea 14-3-3 family exists as three distinct isoforms. The expression of the 29 kDa isoform (14-3-3Lym3) in the cerebro-buccal complex decreased with age and correlated with feeding rate. Using a 14-3-3 antagonist (R18) we were able to reduce the synthesis of L-DOPA and dopamine in ex vivo cerebro-buccal complexes. Together these data suggest that an age-related reduction in 14-3-3 can decrease CNS dopamine leading to a consequential reduction in feeding rate.
Collapse
Affiliation(s)
- Lindsay D Morgan
- Centre for Stress and Age-Related Disease, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Aiyaz Mohammed
- Centre for Stress and Age-Related Disease, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Bhavik Anil Patel
- Centre for Stress and Age-Related Disease, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Martin Arundell
- Department of Bioengineering, College of Science Technology & Medicine, Imperial College, University of London, London, UK
| | - Katrin Jennert-Burtson
- Centre for Stress and Age-Related Disease, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - László Hernádi
- Balaton Limnological Institute, Centre for Ecological Research, Tihany, Hungary
| | - Andrew Overall
- Centre for Stress and Age-Related Disease, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Lucas D Bowler
- Centre for Stress and Age-Related Disease, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Danny O'Hare
- Department of Bioengineering, College of Science Technology & Medicine, Imperial College, University of London, London, UK
| | - Mark S Yeoman
- Centre for Stress and Age-Related Disease, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| |
Collapse
|
4
|
Totani Y, Kotani S, Odai K, Ito E, Sakakibara M. Real-Time Analysis of Animal Feeding Behavior With a Low-Calculation-Power CPU. IEEE Trans Biomed Eng 2019; 67:1197-1205. [PMID: 31395534 DOI: 10.1109/tbme.2019.2933243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Our goal was to develop an automated system to determine whether animals have learned and changed their behavior in real-time using a low calculation-power central processing unit (CPU). The bottleneck of real-time analysis is the speed of image recognition. For fast image recognition, 99.5% of the image was excluded from image recognition by distinguishing between the subject and the background. We achieved this by applying a binarization and connected-component labeling technique. This task is important for developing a fully automated learning apparatus. The use of such an automated system can improve the efficiency and accuracy of biological studies. The pond snail Lymnaea stagnails can be classically conditioned to avoid food that naturally elicits feeding behavior, and to consolidate this aversion into long-term memory. Determining memory status in the snail requires real-time analysis of the number of bites the snail makes in response to food presentation. The main algorithm for counting bites comprises two parts: extracting the mouth images from the recorded video and measuring the bite rate corresponding to the memory status. Reinforcement-supervised learning and image recognition were used to extract the mouth images. A change in the size of the mouth area was used as the cue for counting the number of bites. The accuracy of the final judgment of whether or not the snail had learned was the same as that determined by human observation. This method to improve the processing speed of image recognition has the potential for broad application beyond biological fields.
Collapse
|
5
|
Crossley M, Lorenzetti FD, Naskar S, O’Shea M, Kemenes G, Benjamin PR, Kemenes I. Proactive and retroactive interference with associative memory consolidation in the snail Lymnaea is time and circuit dependent. Commun Biol 2019; 2:242. [PMID: 31263786 PMCID: PMC6595009 DOI: 10.1038/s42003-019-0470-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/18/2019] [Indexed: 12/29/2022] Open
Abstract
Interference-based forgetting occurs when new information acquired either before or after a learning event attenuates memory expression (proactive and retroactive interference, respectively). Multiple learning events often occur in rapid succession, leading to competition between consolidating memories. However, it is unknown what factors determine which memory is remembered or forgotten. Here, we challenge the snail, Lymnaea, to acquire two consecutive similar or different memories and identify learning-induced changes in neurons of its well-characterized motor circuits. We show that when new learning takes place during a stable period of the original memory, proactive interference only occurs if the two consolidating memories engage the same circuit mechanisms. If different circuits are used, both memories survive. However, any new learning during a labile period of consolidation promotes retroactive interference and the acquisition of the new memory. Therefore, the effect of interference depends both on the timing of new learning and the underlying neuronal mechanisms.
Collapse
Affiliation(s)
- Michael Crossley
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG UK
| | | | - Souvik Naskar
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG UK
| | - Michael O’Shea
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG UK
| | - György Kemenes
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG UK
| | - Paul R. Benjamin
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG UK
| | - Ildikó Kemenes
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG UK
| |
Collapse
|
6
|
Crossley M, Staras K, Kemenes G. A central control circuit for encoding perceived food value. SCIENCE ADVANCES 2018; 4:eaau9180. [PMID: 30474061 PMCID: PMC6248929 DOI: 10.1126/sciadv.aau9180] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/24/2018] [Indexed: 05/10/2023]
Abstract
Hunger state can substantially alter the perceived value of a stimulus, even to the extent that the same sensory cue can trigger antagonistic behaviors. How the nervous system uses these graded perceptual shifts to select between opposed motor patterns remains enigmatic. Here, we challenged food-deprived and satiated Lymnaea to choose between two mutually exclusive behaviors, ingestion or egestion, produced by the same feeding central pattern generator. Decoding the underlying neural circuit reveals that the activity of central dopaminergic interneurons defines hunger state and drives network reconfiguration, biasing satiated animals toward the rejection of stimuli deemed palatable by food-deprived ones. By blocking the action of these neurons, satiated animals can be reconfigured to exhibit a hungry animal phenotype. This centralized mechanism occurs in the complete absence of sensory retuning and generalizes across different sensory modalities, allowing food-deprived animals to increase their perception of food value in a stimulus-independent manner to maximize potential calorific intake.
Collapse
|
7
|
Schoofs A, Hückesfeld S, Pankratz MJ. Serotonergic network in the subesophageal zone modulates the motor pattern for food intake in Drosophila. JOURNAL OF INSECT PHYSIOLOGY 2018; 106:36-46. [PMID: 28735009 DOI: 10.1016/j.jinsphys.2017.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 05/13/2023]
Abstract
The functional organization of central motor circuits underlying feeding behaviors is not well understood. We have combined electrophysiological and genetic approaches to investigate the regulatory networks upstream of the motor program underlying food intake in the Drosophila larval central nervous system. We discovered that the serotonergic network of the CNS is able to set the motor rhythm frequency of pharyngeal pumping. Pharmacological experiments verified that modulation of the feeding motor pattern is based on the release of serotonin. Classical lesion and laser based cell ablation indicated that the serotonergic neurons in the subesophageal zone represent a redundant network for motor control of larval food intake.
Collapse
Affiliation(s)
- Andreas Schoofs
- Department of Molecular Brain Physiology, Limes Institute, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany.
| | - Sebastian Hückesfeld
- Department of Molecular Brain Physiology, Limes Institute, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Michael J Pankratz
- Department of Molecular Brain Physiology, Limes Institute, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| |
Collapse
|
8
|
Cropper EC, Jing J, Perkins MH, Weiss KR. Use of the Aplysia feeding network to study repetition priming of an episodic behavior. J Neurophysiol 2017; 118:1861-1870. [PMID: 28679841 DOI: 10.1152/jn.00373.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/21/2017] [Accepted: 06/21/2017] [Indexed: 02/06/2023] Open
Abstract
Many central pattern generator (CPG)-mediated behaviors are episodic, meaning that they are not continuously ongoing; instead, there are pauses between bouts of activity. This raises an interesting possibility, that the neural networks that mediate these behaviors are not operating under "steady-state" conditions; i.e., there could be dynamic changes in motor activity as it stops and starts. Research in the feeding system of the mollusk Aplysia californica has demonstrated that this can be the case. After a pause, initial food grasping responses are relatively weak. With repetition, however, responses strengthen. In this review we describe experiments that have characterized cellular/molecular mechanisms that produce these changes in motor activity. In particular, we focus on cumulative effects of modulatory neuropeptides. Furthermore, we relate Aplysia research to work in other systems and species, and develop a hypothesis that postulates that changes in response magnitude are a reflection of an efficient feeding strategy.
Collapse
Affiliation(s)
- Elizabeth C Cropper
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; and
| | - Jian Jing
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; and.,State Key Laboratory of Pharmaceutical Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Matthew H Perkins
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; and
| | - Klaudiusz R Weiss
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; and
| |
Collapse
|
9
|
Crossley M, Staras K, Kemenes G. A two-neuron system for adaptive goal-directed decision-making in Lymnaea. Nat Commun 2016; 7:11793. [PMID: 27257106 PMCID: PMC4895806 DOI: 10.1038/ncomms11793] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 04/28/2016] [Indexed: 11/30/2022] Open
Abstract
During goal-directed decision-making, animals must integrate information from the external environment and their internal state to maximize resource localization while minimizing energy expenditure. How this complex problem is solved by the nervous system remains poorly understood. Here, using a combined behavioural and neurophysiological approach, we demonstrate that the mollusc Lymnaea performs a sophisticated form of decision-making during food-searching behaviour, using a core system consisting of just two neuron types. The first reports the presence of food and the second encodes motivational state acting as a gain controller for adaptive behaviour in the absence of food. Using an in vitro analogue of the decision-making process, we show that the system employs an energy management strategy, switching between a low- and high-use mode depending on the outcome of the decision. Our study reveals a parsimonious mechanism that drives a complex decision-making process via regulation of levels of tonic inhibition and phasic excitation. Integrating information from both the external environment and an organism's internal state is an important aspect of feeding-related decision making. Here, the authors identify a two neuron circuit within the mollusc Lymnaea that adapts feeding behaviour according to food availability and motivational state.
Collapse
Affiliation(s)
- Michael Crossley
- Sussex Neuroscience, School of Life Sciences, University of Sussex, 1 Lewes Road, Brighton BN1 9QG, UK
| | - Kevin Staras
- Sussex Neuroscience, School of Life Sciences, University of Sussex, 1 Lewes Road, Brighton BN1 9QG, UK
| | - György Kemenes
- Sussex Neuroscience, School of Life Sciences, University of Sussex, 1 Lewes Road, Brighton BN1 9QG, UK
| |
Collapse
|
10
|
Ford L, Crossley M, Williams T, Thorpe JR, Serpell LC, Kemenes G. Effects of Aβ exposure on long-term associative memory and its neuronal mechanisms in a defined neuronal network. Sci Rep 2015; 5:10614. [PMID: 26024049 PMCID: PMC4448550 DOI: 10.1038/srep10614] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 04/21/2015] [Indexed: 12/02/2022] Open
Abstract
Amyloid beta (Aβ) induced neuronal death has been linked to memory loss, perhaps the most devastating symptom of Alzheimer’s disease (AD). Although Aβ-induced impairment of synaptic or intrinsic plasticity is known to occur before any cell death, the links between these neurophysiological changes and the loss of specific types of behavioral memory are not fully understood. Here we used a behaviorally and physiologically tractable animal model to investigate Aβ-induced memory loss and electrophysiological changes in the absence of neuronal death in a defined network underlying associative memory. We found similar behavioral but different neurophysiological effects for Aβ 25-35 and Aβ 1-42 in the feeding circuitry of the snail Lymnaea stagnalis. Importantly, we also established that both the behavioral and neuronal effects were dependent upon the animals having been classically conditioned prior to treatment, since Aβ application before training caused neither memory impairment nor underlying neuronal changes over a comparable period of time following treatment.
Collapse
Affiliation(s)
- Lenzie Ford
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG
| | - Michael Crossley
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG
| | - Thomas Williams
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG
| | - Julian R Thorpe
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG
| | - Louise C Serpell
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG
| | - György Kemenes
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG
| |
Collapse
|
11
|
A modeling approach on why simple central pattern generators are built of irregular neurons. PLoS One 2015; 10:e0120314. [PMID: 25799556 PMCID: PMC4370567 DOI: 10.1371/journal.pone.0120314] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/15/2014] [Indexed: 11/25/2022] Open
Abstract
The crustacean pyloric Central Pattern Generator (CPG) is a nervous circuit that endogenously provides periodic motor patterns. Even after about 40 years of intensive studies, the rhythm genesis is still not rigorously understood in this CPG, mainly because it is made of neurons with irregular intrinsic activity. Using mathematical models we addressed the question of using a network of irregularly behaving elements to generate periodic oscillations, and we show some advantages of using non-periodic neurons with intrinsic behavior in the transition from bursting to tonic spiking (as found in biological pyloric CPGs) as building components. We studied two- and three-neuron model CPGs built either with Hindmarsh-Rose or with conductance-based Hodgkin-Huxley-like model neurons. By changing a model’s parameter we could span the neuron’s intrinsic dynamical behavior from slow periodic bursting to fast tonic spiking, passing through a transition where irregular bursting was observed. Two-neuron CPG, half center oscillator (HCO), was obtained for each intrinsic behavior of the neurons by coupling them with mutual symmetric synaptic inhibition. Most of these HCOs presented regular antiphasic bursting activity and the changes of the bursting frequencies was studied as a function of the inhibitory synaptic strength. Among all HCOs, those made of intrinsic irregular neurons presented a wider burst frequency range while keeping a reliable regular oscillatory (bursting) behavior. HCOs of periodic neurons tended to be either hard to change their behavior with synaptic strength variations (slow periodic burster neurons) or unable to perform a physiologically meaningful rhythm (fast tonic spiking neurons). Moreover, 3-neuron CPGs with connectivity and output similar to those of the pyloric CPG presented the same results.
Collapse
|
12
|
Ito E, Kojima S, Lukowiak K, Sakakibara M. From likes to dislikes: conditioned taste aversion in the great pond snail (Lymnaea stagnalis). CAN J ZOOL 2013. [DOI: 10.1139/cjz-2012-0292] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The neural circuitry comprising the central pattern generator (CPG) that drives feeding behavior in the great pond snail (Lymnaea stagnalis (L., 1758)) has been worked out. Because the feeding behavior undergoes associative learning and long-term memory (LTM) formation, it provides an excellent opportunity to study the causal neuronal mechanisms of these two processes. In this review, we explore some of the possible causal neuronal mechanisms of associative learning of conditioned taste aversion (CTA) and its subsequent consolidation processes into LTM in L. stagnalis. In the CTA training procedure, a sucrose solution, which evokes a feeding response, is used as the conditioned stimulus (CS) and a potassium chloride solution, which causes a withdrawal response, is used as the unconditioned stimulus (US). The pairing of the CS–US alters both the feeding response of the snail and the function of a pair of higher order interneurons in the cerebral ganglia. Following the acquisition of CTA, the polysynaptic inhibitory synaptic input from the higher order interneurons onto the feeding CPG neurons is enhanced, resulting in suppression of the feeding response. These changes in synaptic efficacy are thought to constitute a “memory trace” for CTA in L. stagnalis.
Collapse
Affiliation(s)
- E. Ito
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki 769-2193, Japan
| | - S. Kojima
- Sandler Neurosciences Center, University of California, San Francisco, 675 Nelson Rising Lane 518, San Francisco, CA 94143-0444, USA
| | - K. Lukowiak
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - M. Sakakibara
- School of High-Technology for Human Welfare, Tokai University, 317 Nishino, Numazu 410-0321, Japan
| |
Collapse
|
13
|
Kemenes G. Molecular and Cellular Mechanisms of Classical Conditioning in the Feeding System of Lymnaea. INVERTEBRATE LEARNING AND MEMORY 2013. [DOI: 10.1016/b978-0-12-415823-8.00020-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
14
|
Benjamin PR. Distributed network organization underlying feeding behavior in the mollusk Lymnaea. NEURAL SYSTEMS & CIRCUITS 2012; 2:4. [PMID: 22510302 PMCID: PMC3350398 DOI: 10.1186/2042-1001-2-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 04/17/2012] [Indexed: 12/03/2022]
Abstract
The aim of the work reviewed here is to relate the properties of individual neurons to network organization and behavior using the feeding system of the gastropod mollusk, Lymnaea. Food ingestion in this animal involves sequences of rhythmic biting movements that are initiated by the application of a chemical food stimulus to the lips and esophagus. We investigated how individual neurons contribute to various network functions that are required for the generation of feeding behavior such as rhythm generation, initiation ('decision making'), modulation and hunger and satiety. The data support the view that feeding behavior is generated by a distributed type of network organization with individual neurons often contributing to more than one network function, sharing roles with other neurons. Multitasking in a distributed type of network would be 'economically' sensible in the Lymnaea feeding system where only about 100 neurons are available to carry out a variety of complex tasks performed by millions of neurons in the vertebrate nervous system. Having complementary and potentially alternative mechanisms for network functions would also add robustness to what is a 'noisy' network where variable firing rates and synaptic strengths are commonly encountered in electrophysiological recording experiments.
Collapse
Affiliation(s)
- Paul R Benjamin
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK.
| |
Collapse
|
15
|
Lamb DG, Calabrese RL. Small is beautiful: models of small neuronal networks. Curr Opin Neurobiol 2012; 22:670-5. [PMID: 22364687 DOI: 10.1016/j.conb.2012.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 01/23/2012] [Accepted: 01/24/2012] [Indexed: 01/23/2023]
Abstract
Modeling has contributed a great deal to our understanding of how individual neurons and neuronal networks function. In this review, we focus on models of the small neuronal networks of invertebrates, especially rhythmically active CPG networks. Models have elucidated many aspects of these networks, from identifying key interacting membrane properties to pointing out gaps in our understanding, for example missing neurons. Even the complex CPGs of vertebrates, such as those that underlie respiration, have been reduced to small network models to great effect. Modeling of these networks spans from simplified models, which are amenable to mathematical analyses, to very complicated biophysical models. Some researchers have now adopted a population approach, where they generate and analyze many related models that differ in a few to several judiciously chosen free parameters; often these parameters show variability across animals and thus justify the approach. Models of small neuronal networks will continue to expand and refine our understanding of how neuronal networks in all animals program motor output, process sensory information and learn.
Collapse
Affiliation(s)
- Damon G Lamb
- Emory University, Department of Biology, Atlanta, GA 30322, United States
| | | |
Collapse
|
16
|
Wyeth RC, Croll RP. Peripheral sensory cells in the cephalic sensory organs of Lymnaea stagnalis. J Comp Neurol 2011; 519:1894-913. [PMID: 21452209 DOI: 10.1002/cne.22607] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The peripheral nervous system in gastropods plays a key role in the neural control of behaviors, but is poorly studied in comparison with the central nervous system. Peripheral sensory neurons, although known to be widespread, have been studied in a patchwork fashion across several species, with no comprehensive treatment in any one species. We attempted to remedy this limitation by cataloging peripheral sensory cells in the cephalic sensory organs of Lymnaea stagnalis employing backfills, vital stains, histochemistry, and immunohistochemistry. By using at least two independent methods to corroborate observations, we mapped four different cell types. We have found two different populations of bipolar sensory cells that appear to contain catecholamines(s) and histamine, respectively. Each cell had a peripheral soma, an epithelial process bearing cilia, and a second process projecting to the central nervous system. We also found evidence for two populations of nitric oxide-producing sensory cells, one bipolar, probably projecting centrally, and the second unipolar, with only a single epithelial process and no axon. The various cell types are presumably either mechanosensory or chemosensory, but the complexity of their distributions does not allow formation of hypotheses regarding modality. In addition, our observations indicate that yet more peripheral sensory cell types are present in the cephalic sensory organs of L. stagnalis. These results are an important step toward linking sensory cell morphology to modality. Moreover, our observations emphasize the size of the peripheral nervous system in gastropods, and we suggest that greater emphasis be placed on understanding its role in gastropod neuroethology.
Collapse
Affiliation(s)
- Russell C Wyeth
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, B2G 2W5, Canada.
| | | |
Collapse
|
17
|
Khesroshahi ND, Wessalowski U, Ulama T, Niederegger S, Heinzel HG, Spiess R. Gustatory feedback affects feeding related motor pattern generation in starved 3rd instar larvae of Calliphora vicina. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:872-880. [PMID: 21453707 DOI: 10.1016/j.jinsphys.2011.03.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 03/16/2011] [Accepted: 03/18/2011] [Indexed: 05/30/2023]
Abstract
Gustatory feedback allows animals to distinguish between edible and noxious food and adapts centrally generated feeding motor patterns to environmental demands. In reduced preparations obtained from starved Calliphora larvae, putatively appetitive (ethanol), aversive (sodium acetate) and neutral (glucose) gustatory stimuli were applied to the anterior sense organs. The resulting sensory response was recorded from the maxillary and antennal nerves. All three stimuli increased the neural activity in both nerves. Recordings obtained from the antennal nerve to monitor the activation pattern of the cibarial dilator muscles, demonstrated an effect of gustatory input on the central pattern generator for feeding. Ethanol consistently enhanced the rhythmic activity of the CDM motor neurons either by speeding up the rhythm or by increasing the burst duration. Ethanol also had an enhancing effect on the motor patterns of a protractor muscle which moves the cephalopharyngeal skeleton relative to the body. Sodium acetate showed a state dependent effect: in preparations without spontaneous CDM activity it initiated rhythmic motor patterns, while an ongoing CDM rhythm was inhibited. Surprisingly glucose had an enhancing effect which was less pronounced than that of ethanol. Gustatory feedback therefore can modify and adapt the motor output of the multifunctional central pattern generator for feeding.
Collapse
Affiliation(s)
- Nasim Dokani Khesroshahi
- Zoologisches Institut der Universität Bonn, Abteilung Neurobiologie, Poppelsdorfer Schloß, 53115 Bonn, Germany.
| | | | | | | | | | | |
Collapse
|
18
|
Dyakonova VE, Dyakonova TL. Coordination of rhythm-generating units via NO and extrasynaptic neurotransmitter release. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 196:529-41. [PMID: 20559642 DOI: 10.1007/s00359-010-0541-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 05/19/2010] [Accepted: 05/25/2010] [Indexed: 10/19/2022]
Abstract
The buccal ganglia of the mollusc, Lymnaea stagnalis, contain two distinct but interacting rhythm-generating units: the central pattern generator for the buccal rhythm and nitrergic B2 neurons controlling gut motility. Nitric oxide (NO) has previously been demonstrated to be involved in the activation of the buccal rhythm. Here, we found that NO-generating substances (SNP and SNAP) activated the buccal rhythm while slowing the endogenous rhythm of B2 bursters. The inhibitor of NO-synthase, L-NNA, the NO scavenger PTIO, or the inhibitor of soluble guanylyl cyclase, ODQ, each produced opposite, depolarising effects on the B2 neuron. In isolated B2 cells, only depolarising effects of substances interfering with NO production or function (PTIO, L-NNA and ODQ) were detected, whereas the NO donors had no hyperpolarising effects. However, when an isolated B2 cell was placed close to its initial position in the ganglion, hyperpolarising effects could be obtained with NO donors. This indicates that extrasynaptic release of some unidentified factor(s) mediates the hyperpolarising effects of NO donors on the B2 bursters. The results suggest that NO is involved in coordination between the radula and foregut movements and that the effects of NO are partially mediated by the volume chemical neurotransmission of as yet unknown origin.
Collapse
Affiliation(s)
- Varvara E Dyakonova
- Laboratory of Comparative Physiology, Institute of Developmental Biology of the Russian Academy of Sciences, Vavilov Str. 26, Moscow, 119991, Russia.
| | | |
Collapse
|
19
|
Jing J, Gillette R, Weiss KR. Evolving concepts of arousal: insights from simple model systems. Rev Neurosci 2010; 20:405-27. [PMID: 20397622 DOI: 10.1515/revneuro.2009.20.5-6.405] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Arousal states strongly influence behavioral decisions. In general, arousal promotes activity and enhances responsiveness to sensory stimuli. Earlier work has emphasized general, or nonspecific, effects of arousal on multiple classes of behaviors. However, contemporary work indicates that arousal has quite specific effects on behavior. Here we review studies of arousal-related circuitry in molluscan model systems. Neural substrates for both general and specific effects of arousal have been identified. Based on the scope of their actions, we can distinguish two major classes of arousal elements: localized versus general. Actions of localized arousal elements are often limited to one class of behavior, and may thereby mediate specific effects of arousal. In contrast, general arousal elements may influence multiple classes of behaviors, and mediate both specific and nonspecific effects of arousal. One common way in which general arousal elements influence multiple behaviors is by acting on localized arousal elements of distinct networks. Often, effects on distinct networks have different time courses that may facilitate formation of specific behavioral sequences. This review highlights prominent roles of serotonergic systems in arousal that are conserved in gastropod molluscs despite extreme diversification of body forms, diet and ecological niches. The studies also indicate that the serotonergic elements can act as either localized or general arousal elements. We discuss the implications of these findings across animals.
Collapse
Affiliation(s)
- Jian Jing
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | |
Collapse
|
20
|
|
21
|
Vavoulis DV, Straub VA, Kemenes I, Kemenes G, Feng J, Benjamin PR. Dynamic control of a central pattern generator circuit: a computational model of the snail feeding network. Eur J Neurosci 2007; 25:2805-18. [PMID: 17561845 DOI: 10.1111/j.1460-9568.2007.05517.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Central pattern generators (CPGs) are networks underlying rhythmic motor behaviours and they are dynamically regulated by neuronal elements that are extrinsic or intrinsic to the rhythmogenic circuit. In the feeding system of the pond snail, Lymnaea stagnalis, the extrinsic slow oscillator (SO) interneuron controls the frequency of the feeding rhythm and the N3t (tonic) has a dual role; it is an intrinsic CPG interneuron, but it also suppresses CPG activity in the absence of food, acting as a decision-making element in the feeding circuit. The firing patterns of the SO and N3t neurons and their synaptic connections with the rest of the CPG are known, but how these regulate network function is not well understood. This was investigated by building a computer model of the feeding network based on a minimum number of cells (N1M, N2v and N3t) required to generate the three-phase motor rhythm together with the SO that was used to activate the system. The intrinsic properties of individual neurons were represented using two-compartment models containing currents of the Hodgkin-Huxley type. Manipulations of neuronal activity in the N3t and SO neurons in the model produced similar quantitative effects to food and electrical stimulation in the biological network indicating that the model is a useful tool for studying the dynamic properties of the feeding circuit. The model also predicted novel effects of electrical stimulation of two CPG interneurons (N1M and N2v). When tested experimentally, similar effects were found in the biological system providing further validation of our model.
Collapse
Affiliation(s)
- Dimitris V Vavoulis
- Sussex Centre for Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex, UK.
| | | | | | | | | | | |
Collapse
|
22
|
Kemenes I, Straub VA, Nikitin ES, Staras K, O'Shea M, Kemenes G, Benjamin PR. Role of delayed nonsynaptic neuronal plasticity in long-term associative memory. Curr Biol 2006; 16:1269-79. [PMID: 16824916 DOI: 10.1016/j.cub.2006.05.049] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 05/17/2006] [Accepted: 05/18/2006] [Indexed: 02/05/2023]
Abstract
BACKGROUND It is now well established that persistent nonsynaptic neuronal plasticity occurs after learning and, like synaptic plasticity, it can be the substrate for long-term memory. What still remains unclear, though, is how nonsynaptic plasticity contributes to the altered neural network properties on which memory depends. Understanding how nonsynaptic plasticity is translated into modified network and behavioral output therefore represents an important objective of current learning and memory research. RESULTS By using behavioral single-trial classical conditioning together with electrophysiological analysis and calcium imaging, we have explored the cellular mechanisms by which experience-induced nonsynaptic electrical changes in a neuronal soma remote from the synaptic region are translated into synaptic and circuit level effects. We show that after single-trial food-reward conditioning in the snail Lymnaea stagnalis, identified modulatory neurons that are extrinsic to the feeding network become persistently depolarized between 16 and 24 hr after training. This is delayed with respect to early memory formation but concomitant with the establishment and duration of long-term memory. The persistent nonsynaptic change is extrinsic to and maintained independently of synaptic effects occurring within the network directly responsible for the generation of feeding. Artificial membrane potential manipulation and calcium-imaging experiments suggest a novel mechanism whereby the somal depolarization of an extrinsic neuron recruits command-like intrinsic neurons of the circuit underlying the learned behavior. CONCLUSIONS We show that nonsynaptic plasticity in an extrinsic modulatory neuron encodes information that enables the expression of long-term associative memory, and we describe how this information can be translated into modified network and behavioral output.
Collapse
Affiliation(s)
- Ildikó Kemenes
- Sussex Centre for Neuroscience, Department of Biological and Environmental Sciences, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
23
|
Large CJ, Smith T, Foulds G, Currey JD, Elliott CJH. Leaf mechanical properties modulate feeding movements and ingestive success of the pond snail, Lymnaea stagnalis. INVERTEBRATE NEUROSCIENCE : IN 2006; 6:133-40. [PMID: 16810503 DOI: 10.1007/s10158-006-0022-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Accepted: 06/09/2006] [Indexed: 10/24/2022]
Abstract
We examined the mechanical properties of Butterhead and Iceberg lettuce leaves, and the rate at which they were eaten by the pond snail Lymnaea stagnalis. The outer part of Butterhead leaves were less robust than either the inner Butterhead or outer Iceberg leaves (Young's modulus 2.8, 5.2, 7.7 MPa respectively; ultimate tensile stress 0.18, 0.34 0.51 MPa) which were also thicker. Snails ingested inner Butterhead and Iceberg strips more slowly (36 and 32%) than outer Butterhead. This was not due to differences in latency to first bite or biting rate. Rather, the drop was due to a decrease in the proportion of successful bites (inner Butterhead 84%; Iceberg 86%), to a shorter length ingested per bite (inner Butterhead 55%; Iceberg 45%) and to increased handling time (inner Butterhead 30%). We conclude that sensory input from the mechanically more robust lettuce slows the buccal central pattern generator.
Collapse
|
24
|
Sasaki K, Asaoka K. Swallowing motor pattern triggered and modified by sucrose stimulation in the larvae of the silkworm, Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2006; 52:528-37. [PMID: 16540116 DOI: 10.1016/j.jinsphys.2006.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Revised: 01/30/2006] [Accepted: 02/01/2006] [Indexed: 05/07/2023]
Abstract
To determine the contribution of sucrose signals to swallowing motor patterns, a series of behavioral, morphological and electrophysiological experiments were carried out in the larvae of the silkworm, Bombyx mori. The larvae ingested a droplet of sucrose solution applied to the mouth. The rate of ingestion was increased for higher sucrose concentrations. The swallowing movements were produced by a cibarial pump system that consisted of a circular compressor and pairs of dilators. The circular compressor was innervated by at least two dorsal motor neurons with the somata in the frontal ganglion. One of these neurons with arborized in both the frontal ganglion and the tritocerebrum of the brain. Both extra- and intracellular recording from the compressor showed that the rhythmic motor patterns were modified by different concentration of sucrose. A higher concentration of sucrose lengthened the duration of a burst or caused more excitatory junction potentials (EJPs) in the compressor, resulting in stronger swallowing contractions. Transection of both frontal connectives deleted the sucrose response, but spontaneous rhythmic motor patterns remained in the compressor, suggesting that the motor rhythm could be generated in the frontal ganglion, and triggered and/or modified by sucrose signals processed through the tritocerebrum of the brain.
Collapse
Affiliation(s)
- Ken Sasaki
- Laboratory of Insect Neurobiology, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan.
| | | |
Collapse
|
25
|
Straub VA, Styles BJ, Ireland JS, O'Shea M, Benjamin PR. Central localization of plasticity involved in appetitive conditioning in Lymnaea. Learn Mem 2004; 11:787-93. [PMID: 15537733 PMCID: PMC534707 DOI: 10.1101/lm.77004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Learning to associate a conditioned (CS) and unconditioned stimulus (US) results in changes in the processing of CS information. Here, we address directly the question whether chemical appetitive conditioning of Lymnaea feeding behavior involves changes in the peripheral and/or central processing of the CS by using extracellular recording techniques to monitor neuronal activity at two stages of the sensory processing pathway. Our data show that appetitive conditioning does not affect significantly the overall CS response of afferent nerves connecting chemosensory structures in the lips and tentacles to the central nervous system (CNS). In contrast, neuronal output from the cerebral ganglia, which represent the first central processing stage for chemosensory information, is enhanced significantly in response to the CS after appetitive conditioning. This demonstrates that chemical appetitive conditioning in Lymnaea affects the central, but not the peripheral processing of chemosensory information. It also identifies the cerebral ganglia of Lymnaea as an important site for neuronal plasticity and forms the basis for detailed cellular studies of neuronal plasticity.
Collapse
Affiliation(s)
- Volko A Straub
- Sussex Centre for Neuroscience, Department of Biology and Environmental Science, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, United Kingdom.
| | | | | | | | | |
Collapse
|
26
|
Vehovszky A, Szabó H, Elliott CJH. Octopamine-containing (OC) interneurons enhance central pattern generator activity in sucrose-induced feeding in the snail Lymnaea. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2004; 190:837-46. [PMID: 15316729 DOI: 10.1007/s00359-004-0539-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Revised: 06/04/2004] [Accepted: 06/05/2004] [Indexed: 11/30/2022]
Abstract
In the pond snail Lymnaea stagnalis octopamine-containing (OC) interneurons trigger and reconfigure the feeding pattern in isolated CNS by excitation of the central pattern generator. In semi-intact (lip-mouth-CNS) preparations, this central pattern generator is activated by chemosensory inputs. We now test if sucrose application to the lips activates the OC neurons independently of the rest of the feeding central pattern generator, or if the OC interneuron is activated by inputs from the feeding network. In 66% of experiments, sucrose stimulated feeding rhythms and OC interneurons received regular synaptic inputs. Only rarely (14%) did the OC interneuron fire action potentials, proving that firing of OC interneurons is not necessary for the sucrose-induced feeding. Prestimulation of OC neurons increased the intensity and duration of the feeding rhythm evoked by subsequent sucrose presentations. One micromolar octopamine in the CNS bath mimicked the effect of OC interneuron stimulation, enhancing the feeding response when sucrose is applied to the lips. We conclude that the modulatory OC neurons are not independently excited by chemosensory inputs to the lips, but rather from the buccal central pattern generator network. However, when OC neurons fire, they release modulatory octopamine, which provides a positive feedback to the network to enhance the sucrose-activated central pattern generator rhythm.
Collapse
Affiliation(s)
- Agnes Vehovszky
- Balaton Limnological Research Institute, Hungarian Academy of Sciences, PO Box 35, 8237 Tihany, Hungary.
| | | | | |
Collapse
|
27
|
Hernádi L, Hiripi L, Dyakonova V, Gyori J, Vehovszky A. Thee effect of food intake on the central monoaminergic system in the snail, Lymnaea stagnalis. ACTA BIOLOGICA HUNGARICA 2004; 55:185-94. [PMID: 15270234 DOI: 10.1556/abiol.55.2004.1-4.23] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We investigated the effect of food intake on the serotonin and dopamine levels of the CNS as well as on the spontaneous firing activity of the CGC in isolated preparations from starved, feeding and satiated animals. Furthermore we investigated the effects of 1 microM serotonin and/or dopamine and their mixture on the firing activity of the CGC. The HPLC assay of serotonin and dopamine showed that during food intake both the serotonin and dopamine levels of the CNS increased whereas in satiated animals their levels were not significantly more than the control levels. Recording from the CGC in isolated CNS preparation from starved, feeding or satiated animals showed that feeding increased the firing frequency of the CGC compared to the starved control. The application of 1 microM dopamine decreased the firing frequency whereas the application of 1 microM serotonin increased the firing frequency of the CGC. We conclude that during food intake the external and internal food stimuli increase the activity of the central monoaminergic system and also increase the levels of monoamines in the CNS. Furthermore, we also suggest that the increased dopamine and serotonin levels both affect the activity of the serotonergic neurons during the different phases of feeding.
Collapse
Affiliation(s)
- L Hernádi
- Department of Experimental Zoology, Balaton Limnological Research Institute, Hungarian Academy of Sciences, PO Box 35, H-8237 Tihany, Hungary.
| | | | | | | | | |
Collapse
|
28
|
Mozzachiodi R, Lechner HA, Baxter DA, Byrne JH. In vitro analog of classical conditioning of feeding behavior in aplysia. Learn Mem 2004; 10:478-94. [PMID: 14657259 PMCID: PMC305463 DOI: 10.1101/lm.65303] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The feeding behavior of Aplysia californica can be classically conditioned using tactile stimulation of the lips as a conditioned stimulus (CS) and food as an unconditioned stimulus (US). Moreover, several neural correlates of classical conditioning have been identified. The present study extended previous work by developing an in vitro analog of classical conditioning and by investigating pairing-specific changes in neuronal and synaptic properties. The preparation consisted of the isolated cerebral and buccal ganglia. Electrical stimulation of a lip nerve (AT4) and a branch of the esophageal nerve (En2) served as the CS and US, respectively. Three protocols were used: paired, unpaired, and US alone. Only the paired protocol produced a significant increase in CS-evoked fictive feeding. At the cellular level, classical conditioning enhanced the magnitude of the CS-evoked synaptic input to pattern-initiating neuron B31/32. In addition, paired training enhanced both the magnitude of the CS-evoked synaptic input and the CS-evoked spike activity in command-like neuron CBI-2. The in vitro analog of classical conditioning reproduced all of the cellular changes that previously were identified following behavioral conditioning and has led to the identification of several new learning-related neural changes. In addition, the pairing-specific enhancement of the CS response in CBI-2 indicates that some aspects of associative plasticity may occur at the level of the cerebral sensory neurons.
Collapse
Affiliation(s)
- Riccardo Mozzachiodi
- W.M. Keck Center for Neurobiology of Learning and Memory, Department of Neurobiology and Anatomy, The University of Texas-Houston Medical School, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
29
|
Dembrow NC, Jing J, Proekt A, Romero A, Vilim FS, Cropper EC, Weiss KR. A newly identified buccal interneuron initiates and modulates feeding motor programs in aplysia. J Neurophysiol 2003; 90:2190-204. [PMID: 12801904 DOI: 10.1152/jn.00173.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Despite considerable progress in characterizing the feeding central pattern generator (CPG) in Aplysia, the full complement of neurons that generate feeding motor programs has not yet been identified. The distribution of neuropeptide-containing neurons in the buccal and cerebral ganglia can be used as a tool to identify additional elements of the feeding circuitry by providing distinctions between otherwise morphologically indistinct neurons. For example, our recent study revealed a unique and potentially interesting unpaired PRQFVamide (PRQFVa)-containing neuron in the buccal ganglion. In this study, we describe the morphological and electrophysiological characterization of this novel neuron, which we designate as B50. We found that activation of B50 is capable of producing organized rhythmic output of the feeding CPG. The motor programs elicited by B50 exhibit some similarities as well as differences to motor programs elicited by the command-like cerebral-to-buccal interneuron CBI-2. In addition to activating the feeding CPG, B50 may act as a program modulator.
Collapse
Affiliation(s)
- N C Dembrow
- Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Jones NG, Kemenes I, Kemenes G, Benjamin PR. A persistent cellular change in a single modulatory neuron contributes to associative long-term memory. Curr Biol 2003; 13:1064-9. [PMID: 12814554 DOI: 10.1016/s0960-9822(03)00380-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Most neuronal models of learning assume that changes in synaptic strength are the main mechanism underlying long-term memory (LTM) formation. However, we show here that a persistent depolarization of membrane potential, a type of cellular change that increases neuronal responsiveness, contributes significantly to a long-lasting associative memory trace. The use of a model invertebrate network with identified neurons and known synaptic connectivity had the advantage that the contribution of this cellular change to memory could be evaluated in a neuron with a known function in the learning circuit. Specifically, we used the well-understood motor circuit underlying molluscan feeding and showed that a key modulatory neuron involved in the initiation of feeding ingestive movements underwent a long-term depolarization following behavioral associative conditioning. This depolarization led to an enhanced single cell and network responsiveness to a previously neutral tactile conditioned stimulus, and the persistence of both matched the time course of behavioral associative memory. The change in the membrane potential of a key modulatory neuron is both sufficient and necessary to initiate a conditioned response in a reduced preparation and underscores its importance for associative LTM.
Collapse
Affiliation(s)
- Nicholas G Jones
- Sussex Centre for Neuroscience, School of Biological Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | | | | | | |
Collapse
|
31
|
Staras K, Kemenes I, Benjamin PR, Kemenes G. Loss of self-inhibition is a cellular mechanism for episodic rhythmic behavior. Curr Biol 2003; 13:116-24. [PMID: 12546784 DOI: 10.1016/s0960-9822(02)01435-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Rhythmic motor behaviors can be generated continuously (e.g., breathing) or episodically (e.g., locomotion, swallowing), when short or long bouts of rhythmic activity are interspersed with periods of quiescence. Although the mechanisms of rhythm generation are known in detail in many systems, there is very little understanding of how the episodic nature of rhythmic behavior is produced at the neuronal level. RESULTS Using a well-established episodic rhythm-generating neural circuit controlling molluscan feeding, we demonstrate that quiescence between bouts of activity arises from active, maintained inhibition of an otherwise rhythmically active network. We show that the source of the suppressive drive is within the circuit itself; a single central pattern generator (CPG) interneuron type that fires tonically to inhibit feeding during quiescence. Suppression of the tonic activity of this neuron by food is sufficient to change the network from an inactive to a rhythmically active state, with the cell switching function to fire phasically as part of the food-evoked rhythmogenesis. Furthermore, the absolute level of intrinsic suppressive control is modulated extrinsically by the animal's behavioral state (e.g., hunger/satiety), increasing the probability of episodes of feeding when the animal is hungry. CONCLUSIONS By utilizing the same intrinsic member of a CPG network in both rhythm-generation and suppression, this system has developed a simple and efficient mechanism for generating a variable level of response to suit the animal's changing behavioral demands.
Collapse
Affiliation(s)
- Kevin Staras
- Sussex Centre for Neuroscience, School of Biological Sciences, University of Sussex, Brighton BN1 9QG, Falmer, United Kingdom
| | | | | | | |
Collapse
|
32
|
Narusuye K, Nagahama T. Cerebral CBM1 neuron contributes to synaptic modulation appearing during rejection of seaweed in Aplysia kurodai. J Neurophysiol 2002; 88:2778-95. [PMID: 12424312 DOI: 10.1152/jn.00757.2001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Japanese species Aplysia kurodai feeds well on Ulva but rejects Gelidium with distinctive rhythmic patterned movements of the jaws and radula. We have previously shown that the patterned jaw movements during the rejection of Gelidium might be caused by long-lasting suppression of the monosynaptic transmission from the multiaction MA neurons to the jaw-closing (JC) motor neurons in the buccal ganglia and that the modulation might be directly produced by some cerebral neurons. In the present paper, we have identified a pair of catecholaminergic neurons (CBM1) in bilateral cerebral M clusters. The CBM1, probably equivalent to CBI-1 in A. californica, simultaneously produced monosynaptic excitatory postsynaptic potentials (EPSPs) in the MA and JC neurons. Firing of the CBM1 reduced the size of the inhibitory postsynaptic currents (IPSCs) in the JC neuron, evoked by the MA spikes, for >100 s. Moreover, the application of dopamine mimicked the CBM1 modulatory effects and pretreatment with a D1 antagonist, SCH23390, blocked the modulatory effects induced by dopamine. It could also largely block the modulatory effects induced by the CBM1 firing. These results suggest that the CBM1 may directly modulate the synaptic transmission by releasing dopamine. Moreover, we explored the CBM1 spike activity induced by taste stimulation of the animal lips with seaweed extracts by the use of calcium imaging. The calcium-sensitive dye, Calcium Green-1, was iontophoretically loaded into a cell body of the CBM1 using a microelectrode. Application of either Ulva or Gelidium extract to the lips increased the fluorescence intensity, but the Gelidium extract always induced a larger change in fluorescence compared with the Ulva extract, although the solution used induced the maximum spike responses of the CBM1 for each of the seaweed extracts. When the firing frequency of the CBM1 activity after taste stimulation was estimated, the Gelidium extract induced a spike activity of ~30 spikes/s while the Ulva extract induced an activity of ~20 spikes/s, consistent with the effective firing frequency (>25 spikes/s) for the synaptic modulation. These results suggest that the CBM1 may be one of the cerebral neurons contributing to the modulation of the basic feeding circuits for rejection induced by the taste of seaweeds such as Gelidium.
Collapse
Affiliation(s)
- Kenji Narusuye
- Department of Biology, Faculty of Science, Kobe University, Kobe 657-8501, Japan
| | | |
Collapse
|
33
|
Straub VA, Staras K, Kemenes G, Benjamin PR. Endogenous and network properties of Lymnaea feeding central pattern generator interneurons. J Neurophysiol 2002; 88:1569-83. [PMID: 12364488 DOI: 10.1152/jn.2002.88.4.1569] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Understanding central pattern generator (CPG) circuits requires a detailed knowledge of the intrinsic cellular properties of the constituent neurons. These properties are poorly understood in most CPGs because of the complexity resulting from interactions with other neurons of the circuit. This is also the case in the feeding network of the snail, Lymnaea, one of the best-characterized CPG networks. We addressed this problem by isolating the interneurons comprising the feeding CPG in cell culture, which enabled us to study their basic intrinsic electrical and pharmacological cellular properties without interference from other network components. These results were then related to the activity patterns of the neurons in the intact feeding network. The most striking finding was the intrinsic generation of plateau potentials by medial N1 (N1M) interneurons. This property is probably critical for rhythm generation in the whole feeding circuit because the N1M interneurons are known to play a pivotal role in the initiation of feeding cycles in response to food. Plateau potential generation in another cell type, the ventral N2 (N2v), appeared to be conditional on the presence of acetylcholine. Examination of the other isolated feeding CPG interneurons [lateral N1 (N1L), dorsal N2 (N2d), phasic N3 (N3p)] and the modulatory slow oscillator (SO) revealed no significant intrinsic properties in relation to pattern generation. Instead, their firing patterns in the circuit appear to be determined largely by cholinergic and glutamatergic synaptic inputs from other CPG interneurons, which were mimicked in culture by application of these transmitters. This is an example of a CPG system where the initiation of each cycle appears to be determined by the intrinsic properties of a key interneuron, N1M, but most other features of the rhythm are probably determined by network interactions.
Collapse
Affiliation(s)
- Volko A Straub
- Sussex Centre for Neuroscience, School of Biological Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom.
| | | | | | | |
Collapse
|
34
|
Kemenes I, Kemenes G, Andrew RJ, Benjamin PR, O'Shea M. Critical time-window for NO-cGMP-dependent long-term memory formation after one-trial appetitive conditioning. J Neurosci 2002; 22:1414-25. [PMID: 11850468 PMCID: PMC6757551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
The nitric oxide (NO)-cGMP signaling pathway is implicated in an increasing number of experimental models of plasticity. Here, in a behavioral analysis using one-trial appetitive associative conditioning, we show that there is an obligatory requirement for this pathway in the formation of long-term memory (LTM). Moreover, we demonstrate that this requirement lasts for a critical period of approximately 5 hr after training. Specifically, we trained intact specimens of the snail Lymnaea stagnalis in a single conditioning trial using a conditioned stimulus, amyl-acetate, paired with a salient unconditioned stimulus, sucrose, for feeding. Long-term associative memory induced by a single associative trial was demonstrated at 24 hr and shown to last at least 14 d after training. Tests for LTM and its dependence on NO were performed routinely 24 hr after training. The critical period when NO was needed for memory formation was established by transiently depleting it from the animals at a series of time points after training by the injection of the NO-scavenger 2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl 3-oxide (PTIO). By blocking the activity of NO synthase and soluble guanylyl cyclase enzymes after training, we provided further evidence that LTM formation depends on an intact NO-cGMP pathway. An electrophysiological correlate of LTM was also blocked by PTIO, showing that the dependence of LTM on NO is amenable to analysis at the cellular level in vitro. This represents the first demonstration that associative memory formation after single-trial appetitive classical conditioning is dependent on an intact NO-cGMP signaling pathway.
Collapse
Affiliation(s)
- Ildikó Kemenes
- Sussex Centre for Neuroscience, School of Biological Sciences, University of Sussex, Falmer, Brighton, United Kingdom, BN1 9QG.
| | | | | | | | | |
Collapse
|
35
|
Morgan PT, Jing J, Vilim FS, Weiss KR. Interneuronal and peptidergic control of motor pattern switching in Aplysia. J Neurophysiol 2002; 87:49-61. [PMID: 11784729 DOI: 10.1152/jn.00438.2001] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has been proposed that a choice of specific behaviors can be mediated either by activation of behavior-specific higher order neurons or by distinct combinations of such neurons in different behaviors. We examined the role that two higher order neurons, CBI-2 and CBI-3, play in the selection of motor programs that correspond to ingestion and egestion, two stimulus-dependent behaviors that are generated by a single central pattern generator (CPG) of Aplysia. We found that CBI-2 could evoke either ingestive, egestive, or ambiguous motor programs depending on the regime of stimulation. When CBI-2 recruited CBI-3 firing via electrical coupling, the motor program tended to be ingestive. In the absence of CBI-3 activation, the program was usually egestive. When CBI-2 was stimulated to produce ingestive programs, hyperpolarization of CBI-3 converted the programs to egestive or ambiguous. When CBI-2 was stimulated to produce egestive or ambiguous programs, co-stimulation of CBI-3 converted them into ingestive. These findings are consistent with the idea that combinatorial commands are responsible for the choice of specific behaviors. Additional support for this view comes from the observations that appropriate stimulus conditions exist both for activation of CBI-2 together with CBI-3, and for activation of CBI-2 without a concomitant activation of CBI-3. The ability of CBI-3 to convert egestive and ambiguous programs into ingestive ones was mimicked by application of APGWamide, a neuropeptide that we have detected in CBI-3 by immunostaining. Thus combinatorial actions of higher order neurons that underlie pattern selection may involve the use of modulators released by specific higher order neurons.
Collapse
Affiliation(s)
- Peter T Morgan
- Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|
36
|
Abstract
In recent years, studies of molluscan and crustacean feeding circuits have greatly expanded our knowledge of how the nervous system selects specific behaviors. Increasing use of neurobehavioral studies, and examination of the roles of identified command-like or influential neurons have narrowed the gap between knowledge of circuit connectivity and understanding of the normal behavioral functions of these circuits.
Collapse
Affiliation(s)
- I Kupfermann
- Center for Neurobiology and Behavior, College of Physicians and Surgeons of Columbia University, 1051 Riverside Drive, Box 87, New York, NY 10032, USA.
| | | |
Collapse
|