1
|
Tsai YC, ElGrawani W, Muheim C, Spinnler A, Campbell BFN, Lasic D, Hleihil M, Brown SA, Tyagarajan SK. Modulation of sleep/wake patterns by gephyrin phosphorylation status. Eur J Neurosci 2024; 60:5431-5449. [PMID: 39032002 DOI: 10.1111/ejn.16464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/13/2024] [Accepted: 07/01/2024] [Indexed: 07/22/2024]
Abstract
Sleep/wake cycles intricately shape physiological activities including cognitive brain functions, yet the precise molecular orchestrators of sleep remain elusive. Notably, the clinical impact of benzodiazepine drugs underscores the pivotal role of GABAergic neurotransmission in sleep regulation. However, the specific contributions of distinct GABAA receptor subtypes and their principal scaffolding protein, gephyrin, in sleep dynamics remain unclear. The evolving role of synaptic phospho-proteome alterations at excitatory and inhibitory synapses suggests a potential avenue for modulating gephyrin and, consequently, GABAARs for sleep through on-demand kinase recruitment. Our study unveils the distinctive roles of two prevalent GABAA receptor subtypes, α1- and α2-GABAARs, in influencing sleep duration and electrical sleep activity. Notably, the absence of α1-GABAARs emerges as central in sleep regulation, manifesting significant alterations in both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep during dark or active phases, accompanied by altered electroencephalogram (EEG) patterns across various frequencies. Gephyrin proteomics analysis reveals sleep/wake-dependent interactions with a repertoire of known and novel kinases. Crucially, we identify the regulation of gephyrin interaction with ERK1/2, and phosphorylations at serines 268 and 270 are dictated by sleep/wake cycles. Employing AAV-eGFP-gephyrin or its phospho-null variant (S268A/S270A), we disrupt sleep either globally or locally to demonstrate gephyrin phosphorylation as a sleep regulator. In summary, our findings support the local cortical sleep hypothesis and we unveil a molecular mechanism operating at GABAergic synapses, providing critical insights into the intricate regulation of sleep.
Collapse
Affiliation(s)
- Yuan-Chen Tsai
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Centre Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Waleed ElGrawani
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Centre Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Christine Muheim
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Centre Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Andrea Spinnler
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Centre Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Benjamin F N Campbell
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Centre Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Denis Lasic
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Centre Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Mohammad Hleihil
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Steven A Brown
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Centre Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Shiva K Tyagarajan
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Centre Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Jiang ZF, Xuan LN, Sun XW, Liu SB, Yin J. Knockdown of SIK3 in the CA1 Region can Reduce Seizure Susceptibility in Mice by Inhibiting Decreases in GABA AR α1 Expression. Mol Neurobiol 2024; 61:1404-1416. [PMID: 37715891 DOI: 10.1007/s12035-023-03630-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/30/2023] [Indexed: 09/18/2023]
Abstract
Imbalance between excitation and inhibition is an important cause of epilepsy. Salt-inducible kinase 1 (SIK1) gene mutation can cause epilepsy. In this study, we first found that the expression of SIK3 is increased after epilepsy. Furthermore, the role of SIK3 in epilepsy was explored. In cultured hippocampal neurons, we used Pterosin B, a selective SIK3 inhibitor that can inhibit epileptiform discharges induced by the convulsant drug cyclothiazide (a positive allosteric modulator of AMPA receptors, CTZ). Knockdown of SIK3 inhibited epileptiform discharges and increased the amplitude of miniature inhibitory postsynaptic currents (mIPSCs). In mice, knockdown of SIK3 reduced epilepsy susceptibility in a pentylenetetrazole (a GABAA receptor antagonist, PTZ) acute kindling experiment and increased the expression of GABAA receptor α1. In conclusion, our results suggest that blockade or knockdown of SIK3 can inhibit epileptiform discharges and that SIK3 has the potential to be a novel target for epilepsy treatment.
Collapse
Affiliation(s)
- Zhen-Fu Jiang
- Dalian Medical University, Dalian, 116044, Liaoning, China.
- Department of Neurosurgery, the Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Shahekou, Dalian, 116023, Liaoning, China.
| | - Li-Na Xuan
- Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Xiao-Wan Sun
- East China Normal University, Shanghai, 200241, China
| | - Shao-Bo Liu
- Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Jian Yin
- Dalian Medical University, Dalian, 116044, Liaoning, China.
- Department of Neurosurgery, the Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Shahekou, Dalian, 116023, Liaoning, China.
| |
Collapse
|
3
|
Liu WH, Luo S, Zhang DM, Lin ZS, Lan S, Li X, Shi YW, Su T, Yi YH, Zhou P, Li BM. De novo GABRA1 variants in childhood epilepsies and the molecular subregional effects. Front Mol Neurosci 2024; 16:1321090. [PMID: 38269327 PMCID: PMC10806124 DOI: 10.3389/fnmol.2023.1321090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024] Open
Abstract
Background The GABRA1 gene, encoding the GABRAR subunit α1, plays vital roles in inhibitory neurons. Previously, the GABRA1 gene has been identified to be associated with developmental and epileptic encephalopathy (DEE) and idiopathic generalized epilepsy (IGE). This study aims to explore the phenotypic spectrum of GABRA1 and molecular subregional effect analysis. Methods Trios-based whole-exome sequencing was performed in patients with epilepsy. Previously reported GABRA1 mutations were systematically reviewed to analyze the molecular subregional effects. Results De novo GABRA1 mutations were identified in six unrelated patients with heterogeneous epilepsy, including three missense mutations (p.His83Asn, p.Val207Phe, and p.Arg214Cys) and one frameshift mutation (p.Thr453Hisfs*47). The two missense mutations, p.His83Asn and p.Val207Phe, were predicted to decrease the protein stability but no hydrogen bond alteration, with which the two patients also presented with mild genetic epilepsy with febrile seizures plus and achieved seizure-free status by monotherapy. The missense variant p.Arg214Cys was predicted to decrease protein stability and destroy hydrogen bonds with surrounding residues, which was recurrently identified in three cases with severe DEE. The frameshift variant p.Thr453Hisfs*47 was located in the last fifth residue of the C-terminus and caused an extension of 47 amino acids, with which the patients presented with moderated epilepsy with generalized tonic-clonic seizures alone (GTCA) but achieved seizure-free status by four drugs. The four variants were not presented in gnomAD and were evaluated as "pathogenic/likely pathogenic" according to ACMG criteria. Analysis of all reported cases indicated that patients with mutations in the N-terminal extracellular region presented a significantly higher percentage of FS and DEE, and the patients with variants in the transmembrane region presented earlier seizure onset ages. Significance This study suggested that GABRA1 variants were potentially associated with a spectrum of epilepsies, including EFS+, DEE, and GTCA. Phenotypic severity may be associated with the damaging effect of variants. The molecular subregional effects help in understanding the underlying mechanism of phenotypic variation.
Collapse
Affiliation(s)
- Wen-Hui Liu
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Sheng Luo
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Dong-Ming Zhang
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Zi-Sheng Lin
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Song Lan
- Department of Neurology, Maoming People’s Hospital, Maoming, China
| | - Xin Li
- Department of Pediatrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yi-Wu Shi
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Tao Su
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Yong-Hong Yi
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Peng Zhou
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Bing-Mei Li
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| |
Collapse
|
4
|
Leontiadis LJ, Trompoukis G, Tsotsokou G, Miliou A, Felemegkas P, Papatheodoropoulos C. Rescue of sharp wave-ripples and prevention of network hyperexcitability in the ventral but not the dorsal hippocampus of a rat model of fragile X syndrome. Front Cell Neurosci 2023; 17:1296235. [PMID: 38107412 PMCID: PMC10722241 DOI: 10.3389/fncel.2023.1296235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023] Open
Abstract
Fragile X syndrome (FXS) is a genetic neurodevelopmental disorder characterized by intellectual disability and is related to autism. FXS is caused by mutations of the fragile X messenger ribonucleoprotein 1 gene (Fmr1) and is associated with alterations in neuronal network excitability in several brain areas including hippocampus. The loss of fragile X protein affects brain oscillations, however, the effects of FXS on hippocampal sharp wave-ripples (SWRs), an endogenous hippocampal pattern contributing to memory consolidation have not been sufficiently clarified. In addition, it is still not known whether dorsal and ventral hippocampus are similarly affected by FXS. We used a Fmr1 knock-out (KO) rat model of FXS and electrophysiological recordings from the CA1 area of adult rat hippocampal slices to assess spontaneous and evoked neural activity. We find that SWRs and associated multiunit activity are affected in the dorsal but not the ventral KO hippocampus, while complex spike bursts remain normal in both segments of the KO hippocampus. Local network excitability increases in the dorsal KO hippocampus. Furthermore, specifically in the ventral hippocampus of KO rats we found an increased effectiveness of inhibition in suppressing excitation and an upregulation of α1GABAA receptor subtype. These changes in the ventral KO hippocampus are accompanied by a striking reduction in its susceptibility to induced epileptiform activity. We propose that the neuronal network specifically in the ventral segment of the hippocampus is reorganized in adult Fmr1-KO rats by means of balanced changes between excitability and inhibition to ensure normal generation of SWRs and preventing at the same time derailment of the neural activity toward hyperexcitability.
Collapse
|
5
|
Leontiadis LJ, Trompoukis G, Felemegkas P, Tsotsokou G, Miliou A, Papatheodoropoulos C. Increased Inhibition May Contribute to Maintaining Normal Network Function in the Ventral Hippocampus of a Fmr1-Targeted Transgenic Rat Model of Fragile X Syndrome. Brain Sci 2023; 13:1598. [PMID: 38002556 PMCID: PMC10669536 DOI: 10.3390/brainsci13111598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
A common neurobiological mechanism in several neurodevelopmental disorders, including fragile X syndrome (FXS), is alterations in the balance between excitation and inhibition in the brain. It is thought that in the hippocampus, as in other brain regions, FXS is associated with increased excitability and reduced inhibition. However, it is still not known whether these changes apply to both the dorsal and ventral hippocampus, which appear to be differently involved in neurodegenerative disorders. Using a Fmr1 knock-out (KO) rat model of FXS, we found increased neuronal excitability in both the dorsal and ventral KO hippocampus and increased excitatory synaptic transmission in the dorsal hippocampus. Interestingly, synaptic inhibition is significantly increased in the ventral but not the dorsal KO hippocampus. Furthermore, the ventral KO hippocampus displays increased expression of the α1GABAA receptor subtype and a remarkably reduced rate of epileptiform discharges induced by magnesium-free medium. In contrast, the dorsal KO hippocampus displays an increased rate of epileptiform discharges and similar expression of α1GABAA receptors compared with the dorsal WT hippocampus. Blockade of α5GABAA receptors by L-655,708 did not affect epileptiform discharges in any genotype or hippocampal segment, and the expression of α5GABAA receptors did not differ between WT and KO hippocampus. These results suggest that the increased excitability of the dorsal KO hippocampus contributes to its heightened tendency to epileptiform discharges, while the increased phasic inhibition in the Fmr1-KO ventral hippocampus may represent a homeostatic mechanism that compensates for the increased excitability reducing its vulnerability to epileptic activity.
Collapse
Affiliation(s)
| | | | | | | | | | - Costas Papatheodoropoulos
- Laboratory of Neurophysiology, Department of Medicine, University of Patras, 26504 Rion, Greece; (L.J.L.); (G.T. (George Trompoukis)); (P.F.); (G.T. (Giota Tsotsokou)); (A.M.)
| |
Collapse
|
6
|
Qin Y, Ahmadlou M, Suhai S, Neering P, de Kraker L, Heimel JA, Levelt CN. Thalamic regulation of ocular dominance plasticity in adult visual cortex. eLife 2023; 12:RP88124. [PMID: 37796249 PMCID: PMC10554735 DOI: 10.7554/elife.88124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023] Open
Abstract
Experience-dependent plasticity in the adult visual system is generally thought of as a cortical process. However, several recent studies have shown that perceptual learning or monocular deprivation can also induce plasticity in the adult dorsolateral geniculate nucleus (dLGN) of the thalamus. How plasticity in the thalamus and cortex interact in the adult visual system is ill-understood. To assess the influence of thalamic plasticity on plasticity in primary visual cortex (V1), we made use of our previous finding that during the critical period ocular dominance (OD) plasticity occurs in dLGN and requires thalamic synaptic inhibition. Using multielectrode recordings we find that this is also true in adult mice, and that in the absence of thalamic inhibition and plasticity, OD plasticity in adult V1 is absent. To study the influence of V1 on thalamic plasticity, we silenced V1 and show that during the critical period, but not in adulthood, the OD shift in dLGN is partially caused by feedback from V1. We conclude that during adulthood the thalamus plays an unexpectedly dominant role in experience-dependent plasticity in V1. Our findings highlight the importance of considering the thalamus as a potential source of plasticity in learning events that are typically thought of as cortical processes.
Collapse
Affiliation(s)
- Yi Qin
- Molecular Visual Plasticity Group, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and SciencesAmsterdamNetherlands
- University of StrasbourgStrasbourgFrance
| | - Mehran Ahmadlou
- Circuits, Structure and Function Group, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and SciencesAmsterdamNetherlands
| | - Samuel Suhai
- Molecular Visual Plasticity Group, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and SciencesAmsterdamNetherlands
| | - Paul Neering
- Molecular Visual Plasticity Group, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and SciencesAmsterdamNetherlands
| | - Leander de Kraker
- Molecular Visual Plasticity Group, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and SciencesAmsterdamNetherlands
| | - J Alexander Heimel
- Circuits, Structure and Function Group, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and SciencesAmsterdamNetherlands
| | - Christiaan N Levelt
- Molecular Visual Plasticity Group, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and SciencesAmsterdamNetherlands
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University AmsterdamAmsterdamNetherlands
| |
Collapse
|
7
|
Bijlsma A, Vanderschuren LJMJ, Wierenga CJ. Social play behavior shapes the development of prefrontal inhibition in a region-specific manner. Cereb Cortex 2023:bhad212. [PMID: 37317037 PMCID: PMC10393492 DOI: 10.1093/cercor/bhad212] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/16/2023] Open
Abstract
Experience-dependent organization of neuronal connectivity is critical for brain development. We recently demonstrated the importance of social play behavior for the developmental fine-tuning of inhibitory synapses in the medial prefrontal cortex in rats. When these effects of play experience occur and if this happens uniformly throughout the prefrontal cortex is currently unclear. Here we report important temporal and regional heterogeneity in the impact of social play on the development of excitatory and inhibitory neurotransmission in the medial prefrontal cortex and the orbitofrontal cortex. We recorded in layer 5 pyramidal neurons from juvenile (postnatal day (P)21), adolescent (P42), and adult (P85) rats after social play deprivation (between P21 and P42). The development of these prefrontal cortex subregions followed different trajectories. On P21, inhibitory and excitatory synaptic input was higher in the orbitofrontal cortex than in the medial prefrontal cortex. Social play deprivation did not affect excitatory currents, but reduced inhibitory transmission in both medial prefrontal cortex and orbitofrontal cortex. Intriguingly, the reduction occurred in the medial prefrontal cortex during social play deprivation, whereas the reduction in the orbitofrontal cortex only became manifested after social play deprivation. These data reveal a complex interaction between social play experience and the specific developmental trajectories of prefrontal subregions.
Collapse
Affiliation(s)
- Ate Bijlsma
- Department of Population Health Sciences, Section Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
- Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Louk J M J Vanderschuren
- Department of Population Health Sciences, Section Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Corette J Wierenga
- Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
8
|
Deng R, Chang M, Kao JPY, Kanold PO. Cortical inhibitory but not excitatory synaptic transmission and circuit refinement are altered after the deletion of NMDA receptors during early development. Sci Rep 2023; 13:656. [PMID: 36635357 PMCID: PMC9837136 DOI: 10.1038/s41598-023-27536-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
Neurons in the cerebral cortex form excitatory and inhibitory circuits with specific laminar locations. The mechanisms underlying the development of these spatially specific circuits is not fully understood. To test if postsynaptic N-methyl-D-aspartate (NMDA) receptors on excitatory neurons are required for the development of specific circuits to these neurons, we genetically ablated NMDA receptors from a subset of excitatory neurons in the temporal association cortex (TeA) through in utero electroporation and assessed the intracortical circuits connecting to L5 neurons through in vitro whole-cell patch clamp recordings coupled with laser-scanning photostimulation (LSPS). In NMDAR knockout neurons, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated connections were largely intact. In contrast both LSPS and mini-IPSC recordings revealed that γ-aminobutyric acid type A (GABAA) receptor-mediated connections were impaired in NMDAR knockout neurons. These results suggest that postsynaptic NMDA receptors are important for the development of GABAergic circuits.
Collapse
Affiliation(s)
- Rongkang Deng
- Department of Biology, University of Maryland, College Park, MD, 20742, USA
- Biological Sciences Graduate Program, University of Maryland, College Park, MD, 20742, USA
| | - Minzi Chang
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, 733 N. Broadway Avenue / Miller 379, Baltimore, MD, 21205, USA
| | - Joseph P Y Kao
- Center for Biomedical Engineering and Technology, Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Patrick O Kanold
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, 733 N. Broadway Avenue / Miller 379, Baltimore, MD, 21205, USA.
- Department of Biology, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
9
|
Chakraborty S, Parayil R, Mishra S, Nongthomba U, Clement JP. Epilepsy Characteristics in Neurodevelopmental Disorders: Research from Patient Cohorts and Animal Models Focusing on Autism Spectrum Disorder. Int J Mol Sci 2022; 23:ijms231810807. [PMID: 36142719 PMCID: PMC9501968 DOI: 10.3390/ijms231810807] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Epilepsy, a heterogeneous group of brain-related diseases, has continued to significantly burden society and families. Epilepsy comorbid with neurodevelopmental disorders (NDDs) is believed to occur due to multifaceted pathophysiological mechanisms involving disruptions in the excitation and inhibition (E/I) balance impeding widespread functional neuronal circuitry. Although the field has received much attention from the scientific community recently, the research has not yet translated into actionable therapeutics to completely cure epilepsy, particularly those comorbid with NDDs. In this review, we sought to elucidate the basic causes underlying epilepsy as well as those contributing to the association of epilepsy with NDDs. Comprehensive emphasis is put on some key neurodevelopmental genes implicated in epilepsy, such as MeCP2, SYNGAP1, FMR1, SHANK1-3 and TSC1, along with a few others, and the main electrophysiological and behavioral deficits are highlighted. For these genes, the progress made in developing appropriate and valid rodent models to accelerate basic research is also detailed. Further, we discuss the recent development in the therapeutic management of epilepsy and provide a briefing on the challenges and caveats in identifying and testing species-specific epilepsy models.
Collapse
Affiliation(s)
- Sukanya Chakraborty
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| | - Rrejusha Parayil
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| | - Shefali Mishra
- Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science, Bengaluru 560012, India
| | - Upendra Nongthomba
- Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science, Bengaluru 560012, India
| | - James P. Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
- Correspondence: ; Tel.: +91-08-2208-2613
| |
Collapse
|
10
|
Fish KN, Joffe ME. Targeting prefrontal cortex GABAergic microcircuits for the treatment of alcohol use disorder. Front Synaptic Neurosci 2022; 14:936911. [PMID: 36105666 PMCID: PMC9465392 DOI: 10.3389/fnsyn.2022.936911] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Developing novel treatments for alcohol use disorders (AUDs) is of paramount importance for improving patient outcomes and alleviating the suffering related to the disease. A better understanding of the molecular and neurocircuit mechanisms through which alcohol alters brain function will be instrumental in the rational development of new efficacious treatments. Clinical studies have consistently associated the prefrontal cortex (PFC) function with symptoms of AUDs. Population-level analyses have linked the PFC structure and function with heavy drinking and/or AUD diagnosis. Thus, targeting specific PFC cell types and neural circuits holds promise for the development of new treatments. Here, we overview the tremendous diversity in the form and function of inhibitory neuron subtypes within PFC and describe their therapeutic potential. We then summarize AUD population genetics studies, clinical neurophysiology findings, and translational neuroscience discoveries. This study collectively suggests that changes in fast transmission through PFC inhibitory microcircuits are a central component of the neurobiological effects of ethanol and the core symptoms of AUDs. Finally, we submit that there is a significant and timely need to examine sex as a biological variable and human postmortem brain tissue to maximize the efforts in translating findings to new clinical treatments.
Collapse
Affiliation(s)
| | - Max E. Joffe
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
11
|
Altered Development of Prefrontal GABAergic Functions and Anxiety-like Behavior in Adolescent Offspring Induced by Prenatal Stress. Brain Sci 2022; 12:brainsci12081015. [PMID: 36009078 PMCID: PMC9406165 DOI: 10.3390/brainsci12081015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/18/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
Maternal stress can afflict fetal brain development, putting the offspring at risk of cognitive deficits, including anxiety. The prefrontal cortex (PFC), a protracted maturing region, is notably affected by prenatal stress (PS). However, it remains unclear how PS interferes with the maturation of the GABAergic system, considering its functional adjustment in the PFC during adolescence. The present study thus investigated the long-lasting consequences of PS on the prefrontal GABAergic functions of adolescent offspring. Pregnant Sprague–Dawley rats were divided into controls and the PS group, which underwent restraint stress during the last week of gestation. Male pups from postnatal days (PND) 40–42 were submitted to the elevated plus maze (EPM) test. Proteins essentially involved in GABAergic signaling were then examined in PFC tissues, including the K+-Cl− cotransporter (KCC2), Na+-K+-Cl− cotransporter (NKCC1), α1 and α5 subunits of GABA type A receptors (GABAA receptors), and parvalbumin (PV), along with cAMP response element-binding protein phosphorylation (pCREB), which reacts in the plasticity regulation of PV-positive interneurons. The results revealed that the higher anxiety-like behavior of PS adolescent rats concurred with the significant decreases of the KCC2 and α1 subunits, with PV- and pCREB-lowered levels. The findings suggested that PS disrupts the continuance of PFC maturity by reducing the essential elements of GABAergic functions. These changes likely underlie the anxiety emerging in adolescence, possibly progressing to mental disorders.
Collapse
|
12
|
Braga MFM, Juranek J, Eiden LE, Li Z, Figueiredo TH, de Araujo Furtado M, Marini AM. GABAergic circuits of the basolateral amygdala and generation of anxiety after traumatic brain injury. Amino Acids 2022; 54:1229-1249. [PMID: 35798984 DOI: 10.1007/s00726-022-03184-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022]
Abstract
Traumatic brain injury (TBI) has reached epidemic proportions around the world and is a major public health concern in the United States. Approximately 2.8 million individuals sustain a traumatic brain injury and are treated in an Emergency Department yearly in the U.S., and about 50,000 of them die. Persistent symptoms develop in 10-15% of the cases including neuropsychiatric disorders. Anxiety is the second most common neuropsychiatric disorder that develops in those with persistent neuropsychiatric symptoms after TBI. Abnormalities or atrophy in the temporal lobe has been shown in the overwhelming number of TBI cases. The basolateral amygdala (BLA), a temporal lobe structure that consolidates, stores and generates fear and anxiety-based behavioral outputs, is a critical brain region in the anxiety circuitry. In this review, we sought to capture studies that characterized the relationship between human post-traumatic anxiety and structural/functional alterations in the amygdala. We compared the human findings with results obtained with a reproducible mild TBI animal model that demonstrated a direct relationship between the alterations in the BLA and an anxiety-like phenotype. From this analysis, both preliminary insights, and gaps in knowledge, have emerged which may open new directions for the development of rational and more efficacious treatments.
Collapse
Affiliation(s)
- Maria F M Braga
- Department of Anatomy, Physiology and Genetics and Program in Neuroscience, Uniformed Services University of the Health Science School of Medicine, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Jenifer Juranek
- Department of Pediatric Surgery, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77030, USA
| | - Lee E Eiden
- Section On Molecular Neuroscience, National Institute of Mental Health, Intramural Research Program, Bethesda, MD, 20814, USA
| | - Zheng Li
- Section On Synapse Development and Plasticity, National Institute of Mental Health, Intramural Research Program, Bethesda, MD, 20814, USA
| | - Taiza H Figueiredo
- Department of Anatomy, Physiology and Genetics and Program in Neuroscience, Uniformed Services University of the Health Science School of Medicine, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Marcio de Araujo Furtado
- Department of Anatomy, Physiology and Genetics and Program in Neuroscience, Uniformed Services University of the Health Science School of Medicine, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Ann M Marini
- Department of Neurology and Program in Neuroscience, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
13
|
Inhibition, but not excitation, recovers from partial cone loss with greater spatiotemporal integration, synapse density, and frequency. Cell Rep 2022; 38:110317. [PMID: 35108533 PMCID: PMC8865908 DOI: 10.1016/j.celrep.2022.110317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/30/2021] [Accepted: 01/07/2022] [Indexed: 12/30/2022] Open
Abstract
Neural circuits function in the face of changing inputs, either caused by normal variation in stimuli or by cell death. To maintain their ability to perform essential computations with partial inputs, neural circuits make modifications. Here, we study the retinal circuit’s responses to changes in light stimuli or in photoreceptor inputs by inducing partial cone death in the mature mouse retina. Can the retina withstand or recover from input loss? We find that the excitatory pathways exhibit functional loss commensurate with cone death and with some aspects predicted by partial light stimulation. However, inhibitory pathways recover functionally from lost input by increasing spatiotemporal integration in a way that is not recapitulated by partially stimulating the control retina. Anatomically, inhibitory synapses are upregulated on secondary bipolar cells and output ganglion cells. These findings demonstrate the greater capacity for inhibition, compared with excitation, to modify spatiotemporal processing with fewer cone inputs. Lee et al. find partial cone loss triggers inhibition, but not excitation, to increase spatiotemporal integration, recover contrast gain, and increase synaptic release onto retinal ganglion cells. Natural images filtered by cone-loss receptive fields perceptually match those of controls. Thus, inhibition compensates for fewer cones to potentially preserve perception.
Collapse
|
14
|
Serranilla M, Woodin MA. Striatal Chloride Dysregulation and Impaired GABAergic Signaling Due to Cation-Chloride Cotransporter Dysfunction in Huntington’s Disease. Front Cell Neurosci 2022; 15:817013. [PMID: 35095429 PMCID: PMC8795088 DOI: 10.3389/fncel.2021.817013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
Intracellular chloride (Cl–) levels in mature neurons must be tightly regulated for the maintenance of fast synaptic inhibition. In the mature central nervous system (CNS), synaptic inhibition is primarily mediated by gamma-amino butyric acid (GABA), which binds to Cl– permeable GABAA receptors (GABAARs). The intracellular Cl– concentration is primarily maintained by the antagonistic actions of two cation-chloride cotransporters (CCCs): Cl–-importing Na+-K+-Cl– co-transporter-1 (NKCC1) and Cl– -exporting K+-Cl– co-transporter-2 (KCC2). In mature neurons in the healthy brain, KCC2 expression is higher than NKCC1, leading to lower levels of intracellular Cl–, and Cl– influx upon GABAAR activation. However, in neurons of the immature brain or in neurological disorders such as epilepsy and traumatic brain injury, impaired KCC2 function and/or enhanced NKCC1 expression lead to intracellular Cl– accumulation and GABA-mediated excitation. In Huntington’s disease (HD), KCC2- and NKCC1-mediated Cl–-regulation are also altered, which leads to GABA-mediated excitation and contributes to the development of cognitive and motor impairments. This review summarizes the role of Cl– (dys)regulation in the healthy and HD brain, with a focus on the basal ganglia (BG) circuitry and CCCs as potential therapeutic targets in the treatment of HD.
Collapse
|
15
|
Systemic LPS-induced microglial activation results in increased GABAergic tone: A mechanism of protection against neuroinflammation in the medial prefrontal cortex in mice. Brain Behav Immun 2022; 99:53-69. [PMID: 34582995 DOI: 10.1016/j.bbi.2021.09.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 02/01/2023] Open
Abstract
Neuroinflammation with excess microglial activation and synaptic dysfunction are early symptoms of most neurological diseases. However, how microglia-associated neuroinflammation regulates synaptic activity remains obscure. We report here that acute neuroinflammation induced by intraperitoneal injection of lipopolysaccharide (LPS) results in cell-type-specific increases in inhibitory postsynaptic currents in the glutamatergic, but not the GABAergic, neurons of medial prefrontal cortex (mPFC), coinciding with excessive microglial activation. LPS causes upregulation in levels of GABAAR subunits, glutamine synthetase and vesicular GABA transporter, and downregulation in brain-derived neurotrophic factor (BDNF) and its receptor, pTrkB. Blockage of microglial activation by minocycline ameliorates LPS-induced abnormal expression of GABA signaling-related proteins and activity of synaptic and network. Moreover, minocycline prevents the mice from LPS-induced aberrant behavior, such as a reduction in total distance and time spent in the centre in the open field test; decreases in entries into the open arm of elevated-plus maze and in consumption of sucrose; increased immobility in the tail suspension test. Furthermore, upregulation of GABA signaling by tiagabine also prevents LPS-induced microglial activation and aberrant behavior. This study illustrates a mode of bidirectional constitutive signaling between the neural and immune compartments of the brain, and suggests that the mPFC is an important area for brain-immune system communication. Moreover, the present study highlights GABAergic signaling as a key therapeutic target for mitigating neuroinflammation-induced abnormal synaptic activity in the mPFC, together with the associated behavioral abnormalities.
Collapse
|
16
|
Sinha R, Grimes WN, Wallin J, Ebbinghaus BN, Luu K, Cherry T, Rieke F, Rudolph U, Wong RO, Hoon M. Transient expression of a GABA receptor subunit during early development is critical for inhibitory synapse maturation and function. Curr Biol 2021; 31:4314-4326.e5. [PMID: 34433078 DOI: 10.1016/j.cub.2021.07.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/29/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
Developing neural circuits, including GABAergic circuits, switch receptor types. But the role of early GABA receptor expression for establishment of functional inhibitory circuits remains unclear. Tracking the development of GABAergic synapses across axon terminals of retinal bipolar cells (BCs), we uncovered a crucial role of early GABAA receptor expression for the formation and function of presynaptic inhibitory synapses. Specifically, early α3-subunit-containing GABAA (GABAAα3) receptors are a key developmental organizer. Before eye opening, GABAAα3 gives way to GABAAα1 at individual BC presynaptic inhibitory synapses. The developmental downregulation of GABAAα3 is independent of GABAAα1 expression. Importantly, lack of early GABAAα3 impairs clustering of GABAAα1 and formation of functional GABAA synapses across mature BC terminals. This impacts the sensitivity of visual responses transmitted through the circuit. Lack of early GABAAα3 also perturbs aggregation of LRRTM4, the organizing protein at GABAergic synapses of rod BC terminals, and their arrangement of output ribbon synapses.
Collapse
Affiliation(s)
- Raunak Sinha
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - William N Grimes
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA; National Institute of Neurological Disease and Stroke, NIH, Bethesda, MD, USA
| | - Julie Wallin
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Briana N Ebbinghaus
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Kelsey Luu
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - Timothy Cherry
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington-Seattle and the Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Uwe Rudolph
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rachel O Wong
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Mrinalini Hoon
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
17
|
Marshall GF, Gonzalez-Sulser A, Abbott CM. Modelling epilepsy in the mouse: challenges and solutions. Dis Model Mech 2021; 14:dmm.047449. [PMID: 33619078 PMCID: PMC7938804 DOI: 10.1242/dmm.047449] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In most mouse models of disease, the outward manifestation of a disorder can be measured easily, can be assessed with a trivial test such as hind limb clasping, or can even be observed simply by comparing the gross morphological characteristics of mutant and wild-type littermates. But what if we are trying to model a disorder with a phenotype that appears only sporadically and briefly, like epileptic seizures? The purpose of this Review is to highlight the challenges of modelling epilepsy, in which the most obvious manifestation of the disorder, seizures, occurs only intermittently, possibly very rarely and often at times when the mice are not under direct observation. Over time, researchers have developed a number of ways in which to overcome these challenges, each with their own advantages and disadvantages. In this Review, we describe the genetics of epilepsy and the ways in which genetically altered mouse models have been used. We also discuss the use of induced models in which seizures are brought about by artificial stimulation to the brain of wild-type animals, and conclude with the ways these different approaches could be used to develop a wider range of anti-seizure medications that could benefit larger patient populations. Summary: This Review discusses the challenges of modelling epilepsy in mice, a condition in which the outward manifestation of the disorder appears only sporadically, and reviews possible solutions encompassing both genetic and induced models.
Collapse
Affiliation(s)
- Grant F Marshall
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Alfredo Gonzalez-Sulser
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK.,Centre for Discovery Brain Sciences, 1 George Square, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Catherine M Abbott
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK .,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
| |
Collapse
|
18
|
Wang W, Frankel WN. Overlaps, gaps, and complexities of mouse models of Developmental and Epileptic Encephalopathy. Neurobiol Dis 2021; 148:105220. [PMID: 33301879 PMCID: PMC8547712 DOI: 10.1016/j.nbd.2020.105220] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/17/2020] [Accepted: 12/04/2020] [Indexed: 11/28/2022] Open
Abstract
Mouse models have made innumerable contributions to understanding the genetic basis of neurological disease and pathogenic mechanisms and to therapy development. Here we consider the current state of mouse genetic models of Developmental and Epileptic Encephalopathy (DEE), representing a set of rare but devastating and largely intractable childhood epilepsies. By examining the range of mouse lines available in this rapidly moving field and by detailing both expected and unusual features in representative examples, we highlight lessons learned in an effort to maximize the full potential of this powerful resource for preclinical studies.
Collapse
Affiliation(s)
- Wanqi Wang
- Department of Genetics & Development, Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States of America.
| | - Wayne N Frankel
- Department of Genetics & Development, Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States of America.
| |
Collapse
|
19
|
Nietz A, Krook-Magnuson C, Gutierrez H, Klein J, Sauve C, Hoff I, Christenson Wick Z, Krook-Magnuson E. Selective loss of the GABA Aα1 subunit from Purkinje cells is sufficient to induce a tremor phenotype. J Neurophysiol 2020; 124:1183-1197. [PMID: 32902350 DOI: 10.1152/jn.00100.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Previously, an essential tremor-like phenotype has been noted in animals with a global knockout of the GABAAα1 subunit. Given the hypothesized role of the cerebellum in tremor, including essential tremor, we used transgenic mice to selectively knock out the GABAAα1 subunit from cerebellar Purkinje cells. We examined the resulting phenotype regarding impacts on inhibitory postsynaptic currents, survival rates, gross motor abilities, and expression of tremor. Purkinje cell specific knockout of the GABAAα1 subunit abolished all GABAA-mediated inhibition in Purkinje cells, while leaving GABAA-mediated inhibition to cerebellar molecular layer interneurons intact. Selective loss of GABAAα1 from Purkinje cells did not produce deficits on the accelerating rotarod, nor did it result in decreased survival rates. However, a tremor phenotype was apparent, regardless of sex or background strain. This tremor mimicked the tremor seen in animals with a global knockout of the GABAAα1 subunit, and, like essential tremor in patients, was responsive to ethanol. These findings indicate that reduced inhibition to Purkinje cells is sufficient to induce a tremor phenotype, highlighting the importance of the cerebellum, inhibition, and Purkinje cells in tremor.NEW & NOTEWORTHY Animals with a global knockout of the GABAAα1 subunit show a tremor phenotype reminiscent of essential tremor. Here we show that selective knockout of GABAAα1 from Purkinje cells is sufficient to produce a tremor phenotype, although this tremor is less severe than seen in animals with a global knockout. These findings illustrate that the cerebellum can play a key role in the genesis of the observed tremor phenotype.
Collapse
Affiliation(s)
- Angela Nietz
- University of Minnesota, Department of Neuroscience, Minneapolis, Minnesota
| | | | - Haruna Gutierrez
- University of Minnesota, Department of Neuroscience, Minneapolis, Minnesota
| | - Julia Klein
- University of Minnesota, Department of Neuroscience, Minneapolis, Minnesota
| | - Clarke Sauve
- University of Minnesota, Department of Neuroscience, Minneapolis, Minnesota
| | - Isaac Hoff
- University of Minnesota, Department of Neuroscience, Minneapolis, Minnesota
| | | | | |
Collapse
|
20
|
Ohki T, Matsuda T, Gunji A, Takei Y, Sakuma R, Kaneko Y, Inagaki M, Hanakawa T, Ueda K, Fukuda M, Hiraki K. Timing of phase-amplitude coupling is essential for neuronal and functional maturation of audiovisual integration in adolescents. Brain Behav 2020; 10:e01635. [PMID: 32342667 PMCID: PMC7303405 DOI: 10.1002/brb3.1635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/08/2020] [Accepted: 03/19/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE The ability to integrate audiovisual information matures late in adolescents, but its neuronal mechanism is still unknown. Recent studies showed that phase-amplitude coupling (PAC) of neuronal oscillations, which is defined as the modulation of high-frequency amplitude by low-frequency phase, is associated with audiovisual integration in adults. Thus, we investigated how PAC develops in adolescents and whether it is related to the functional maturation of audiovisual integration. In particular, we focused on the timing of PAC (or the coupling phase), which is defined as the low-frequency phase with maximum high-frequency amplitude. METHODS Using magnetoencephalography (MEG) on 15 adults and 14 adolescents while they performed an audiovisual speech integration task, we examined PAC in association cortexes with a trial-by-trial analysis. RESULTS Whereas delta-beta coupling was consistently observed in both adults and adolescents, we found that the timing of delta-beta PAC was delayed by 20-40 milliseconds in adolescents compared with adults. In addition, a logistic regression analysis revealed that the task performance improves as the timing of delta-beta PAC in the right temporal pole (TP) got closer to the trough position (180 degrees). CONCLUSION These results suggest that the timing of PAC is essential for binding audiovisual information and underlies the developmental process in adolescents.
Collapse
Affiliation(s)
- Takefumi Ohki
- Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan.,Department of Developmental Disorders, National Institute of Mental Health, National Centre of Neurology and Psychiatry, Tokyo, Japan.,Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan.,Osaka University Institute for Advanced Co-Creation Studies, Suita, Japan
| | - Takeru Matsuda
- Department of Mathematical Informatics, Graduate School of Information Science and Technology, University of Tokyo, Tokyo, Japan.,Mathematical Informatics Collaboration Unit, RIKEN Center for Brain Science, Saitama, Japan
| | - Atsuko Gunji
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan.,College of Education, Yokohama National University, Yokohama, Japan.,Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Centre of Neurology and Psychiatry, Tokyo, Japan
| | - Yuichi Takei
- Department of Psychiatry and Neuroscience, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Ryusuke Sakuma
- Department of Developmental Disorders, National Institute of Mental Health, National Centre of Neurology and Psychiatry, Tokyo, Japan.,Clinical Center for Developmental Disorders, Shirayuri College, Tokyo, Japan
| | - Yuu Kaneko
- Department of Neurosurgery, National Center Hospital, National Centre of Neurology and Psychiatry, Tokyo, Japan
| | - Masumi Inagaki
- Department of Developmental Disorders, National Institute of Mental Health, National Centre of Neurology and Psychiatry, Tokyo, Japan
| | - Takashi Hanakawa
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Centre of Neurology and Psychiatry, Tokyo, Japan
| | - Kazuhiro Ueda
- Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Masato Fukuda
- Department of Psychiatry and Neuroscience, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Kazuo Hiraki
- Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| |
Collapse
|
21
|
Fallah MS, Eubanks JH. Seizures in Mouse Models of Rare Neurodevelopmental Disorders. Neuroscience 2020; 445:50-68. [PMID: 32059984 DOI: 10.1016/j.neuroscience.2020.01.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023]
Abstract
Genetic neurodevelopmental disorders - that often include epilepsy as part of their phenotype - are a heterogeneous and clinically challenging spectrum of disorders in children. Although seizures often contribute significantly to morbidity in these affected populations, the mechanisms of epileptogenesis in these conditions remain poorly understood. Different model systems have been developed to aid in unraveling these mechanisms, which include a number of specific mutant mouse lines which genocopy specific general types of mutations present in patients. These mouse models have not only allowed for assessments of behavioral and electrographic seizure phenotypes to be ascertained, but also have allowed effects on the neurodevelopmental alterations and cognitive impairments associated with these disorders to be examined. In addition, these models play a role in advancing our understanding of these epileptic processes and developing preclinical therapeutics. The concordance of seizure phenotypes - in a select group of rare, genetic, neurodevelopmental disorders and epileptic encephalopathies - found between human patients and their model counterparts will be summarized. This review aims to assess whether models of Rett syndrome, CDKL5 deficiency disorder, Fragile-X syndrome, Dravet syndrome, and Ohtahara syndrome phenocopy the seizures seen in human patients.
Collapse
Affiliation(s)
- Merrick S Fallah
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, 399 Bathurst Street, Toronto, Ontario M5T 0S8, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - James H Eubanks
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, 399 Bathurst Street, Toronto, Ontario M5T 0S8, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Surgery (Neurosurgery), University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
22
|
Kuo SH, Louis ED, Faust PL, Handforth A, Chang SY, Avlar B, Lang EJ, Pan MK, Miterko LN, Brown AM, Sillitoe RV, Anderson CJ, Pulst SM, Gallagher MJ, Lyman KA, Chetkovich DM, Clark LN, Tio M, Tan EK, Elble RJ. Current Opinions and Consensus for Studying Tremor in Animal Models. CEREBELLUM (LONDON, ENGLAND) 2019; 18:1036-1063. [PMID: 31124049 PMCID: PMC6872927 DOI: 10.1007/s12311-019-01037-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tremor is the most common movement disorder; however, we are just beginning to understand the brain circuitry that generates tremor. Various neuroimaging, neuropathological, and physiological studies in human tremor disorders have been performed to further our knowledge of tremor. But, the causal relationship between these observations and tremor is usually difficult to establish and detailed mechanisms are not sufficiently studied. To overcome these obstacles, animal models can provide an important means to look into human tremor disorders. In this manuscript, we will discuss the use of different species of animals (mice, rats, fruit flies, pigs, and monkeys) to model human tremor disorders. Several ways to manipulate the brain circuitry and physiology in these animal models (pharmacology, genetics, and lesioning) will also be discussed. Finally, we will discuss how these animal models can help us to gain knowledge of the pathophysiology of human tremor disorders, which could serve as a platform towards developing novel therapies for tremor.
Collapse
Affiliation(s)
- Sheng-Han Kuo
- Department of Neurology, Columbia University, 650 West 168th Street, Room 305, New York, NY, 10032, USA.
| | - Elan D Louis
- Department of Neurology, Yale School of Medicine, Yale University, 800 Howard Avenue, Ste Lower Level, New Haven, CT, 06519, USA.
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, USA.
- Center for Neuroepidemiology and Clinical Neurological Research, Yale School of Medicine, Yale University, New Haven, CT, USA.
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| | - Adrian Handforth
- Neurology Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Su-Youne Chang
- Department of Neurologic Surgery and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Billur Avlar
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Eric J Lang
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Ming-Kai Pan
- Department of Medical Research and Neurology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Lauren N Miterko
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
| | - Amanda M Brown
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Collin J Anderson
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | | | - Kyle A Lyman
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Lorraine N Clark
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Murni Tio
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Rodger J Elble
- Department of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
23
|
Thorpe HHA, Hamidullah S, Jenkins BW, Khokhar JY. Adolescent neurodevelopment and substance use: Receptor expression and behavioral consequences. Pharmacol Ther 2019; 206:107431. [PMID: 31706976 DOI: 10.1016/j.pharmthera.2019.107431] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2019] [Indexed: 12/18/2022]
Abstract
Adolescence is the transitional period between childhood and adulthood, during which extensive brain development occurs. Since this period also overlaps with the initiation of drug use, it is important to consider how substance use during this time might produce long-term neurobiological alterations, especially against the backdrop of developmental changes in neurotransmission. Alcohol, cannabis, nicotine, and opioids all produce marked changes in the expression and function of the neurotransmitter and receptor systems with which they interact. These acute and chronic alterations also contribute to behavioral consequences ranging from increased addiction risk to cognitive or neuropsychiatric behavioral dysfunctions. The current review provides an in-depth overview and update of the developmental changes in neurotransmission during adolescence, as well as the impact of drug exposure during this neurodevelopmental window. While most of these factors have been studied in animal models, which are the focus of this review, future longitudinal studies in humans that assess neural function and behavior will help to confirm pre-clinical findings. Furthermore, the neural changes induced by each drug should also be considered in the context of other contributing factors, such as sex. Further understanding of these consequences can help in the identification of novel approaches for preventing and reversing the neurobiological effects of adolescent substance use.
Collapse
Affiliation(s)
- Hayley H A Thorpe
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Shahnaza Hamidullah
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Bryan W Jenkins
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Jibran Y Khokhar
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Ontario, Canada.
| |
Collapse
|
24
|
Developmental Changes in Serotonergic Modulation of GABAergic Synaptic Transmission and Postsynaptic GABA A Receptor Composition in the Cerebellar Nuclei. THE CEREBELLUM 2019; 17:346-358. [PMID: 29349630 DOI: 10.1007/s12311-018-0922-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Outputs from the cerebellar nuclei (CN) are important for generating and controlling movement. The activity of CN neurons is controlled not only by excitatory inputs from mossy and climbing fibers and by γ-aminobutyric acid (GABA)-based inhibitory transmission from Purkinje cells in the cerebellar cortex but is also modulated by inputs from other brain regions, including serotonergic fibers that originate in the dorsal raphe nuclei. We examined the modulatory effects of serotonin (5-HT) on GABAergic synapses during development, using rat cerebellar slices. As previously reported, 5-HT presynaptically decreased the amplitudes of stimulation-evoked inhibitory postsynaptic currents (IPSCs) in CN neurons, with this effect being stronger in slices from younger animals (postnatal days [P] 11-13) than in slices from older animals (P19-21). GABA release probabilities accordingly exhibited significant decreases from P11-13 to P19-21. Although there was a strong correlation between the GABA release probability and the magnitude of 5-HT-induced inhibition, manipulating the release probability by changing extracellular Ca2+ concentrations failed to control the extent of 5-HT-induced inhibition. We also found that the IPSCs exhibited slower kinetics at P11-13 than at P19-21. Pharmacological and molecular biological tests revealed that IPSC kinetics were largely determined by the prevalence of α1 subunits within GABAA receptors. In summary, pre- and postsynaptic developmental changes in serotonergic modulation and GABAergic synaptic transmission occur during the second to third postnatal weeks and may significantly contribute to the formation of normal adult cerebellar function.
Collapse
|
25
|
Clyburn C, Howe CA, Arnold AC, Lang CH, Travagli RA, Browning KN. Perinatal high-fat diet alters development of GABA A receptor subunits in dorsal motor nucleus of vagus. Am J Physiol Gastrointest Liver Physiol 2019; 317:G40-G50. [PMID: 31042399 PMCID: PMC6689732 DOI: 10.1152/ajpgi.00079.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/22/2019] [Accepted: 04/29/2019] [Indexed: 01/31/2023]
Abstract
Perinatal high-fat diet (pHFD) exposure increases the inhibition of dorsal motor nucleus of the vagus (DMV) neurons, potentially contributing to the dysregulation of gastric functions. The aim of this study was to test the hypothesis that pHFD increases the inhibition of DMV neurons by disrupting GABAA receptor subunit development. In vivo gastric recordings were made from adult anesthetized Sprague-Dawley rats fed a control or pHFD (14 or 60% kcal from fat, respectively) from embryonic day 13 (E13) to postnatal day 42 (P42), and response to brainstem microinjection of benzodiazepines was assessed. Whole cell patch clamp recordings from DMV neurons assessed the functional expression of GABAA α subunits, whereas mRNA and protein expression were measured via qPCR and Western blotting, respectively. pHFD decreased basal antrum and corpus motility, whereas brainstem microinjection of L838,417 (positive allosteric modulator of α2/3 subunit-containing GABAA receptors) produced a larger decrease in gastric tone and motility. GABAergic miniature inhibitory postsynaptic currents in pHFD DMV neurons were responsive to L838,417 throughout development, unlike control DMV neurons, which were responsive only at early postnatal timepoints. Brainstem mRNA and protein expression of the GABAA α1,2, and 3 subunits, however, did not differ between control and pHFD rats. This study suggests that pHFD exposure arrests the development of synaptic GABAA α2/3 receptor subunits on DMV neurons and that functional synaptic expression is maintained into adulthood, although cellular localization may differ. The tonic activation of slower GABAA α2/3 subunit-containing receptors implies that such developmental changes may contribute to the observed decreased gastric motility. NEW & NOTEWORTHY Vagal neurocircuits involved in the control of gastric functions, satiation, and food intake are subject to significant developmental regulation postnatally, with immature GABAA receptors expressing slower α2/3-subunits, whereas mature GABAA receptor express faster α1-subunits. After perinatal high-fat diet exposure, this developmental regulation of dorsal motor nucleus of the vagus (DMV) neurons is disrupted, increasing their tonic GABAergic inhibition, decreasing efferent output, and potentially decreasing gastric motility.
Collapse
Affiliation(s)
- Courtney Clyburn
- Department of Neural and Behavioral Sciences, Penn State College of Medicine , Hershey, Pennsylvania
| | - Caitlin A Howe
- Department of Neural and Behavioral Sciences, Penn State College of Medicine , Hershey, Pennsylvania
| | - Amy C Arnold
- Department of Neural and Behavioral Sciences, Penn State College of Medicine , Hershey, Pennsylvania
| | - Charles H Lang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine , Hershey, Pennsylvania
| | - R Alberto Travagli
- Department of Neural and Behavioral Sciences, Penn State College of Medicine , Hershey, Pennsylvania
| | - Kirsteen N Browning
- Department of Neural and Behavioral Sciences, Penn State College of Medicine , Hershey, Pennsylvania
| |
Collapse
|
26
|
Giacco V, Panattoni G, Medelin M, Bonechi E, Aldinucci A, Ballerini C, Ballerini L. Cytokine inflammatory threat, but not LPS one, shortens GABAergic synaptic currents in the mouse spinal cord organotypic cultures. J Neuroinflammation 2019; 16:127. [PMID: 31238967 PMCID: PMC6593520 DOI: 10.1186/s12974-019-1519-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/11/2019] [Indexed: 01/02/2023] Open
Abstract
Background Synaptic dysfunction, named synaptopathy, due to inflammatory status of the central nervous system (CNS) is a recognized factor potentially underlying both motor and cognitive dysfunctions in neurodegenerative diseases. To gain knowledge on the mechanistic interplay between local inflammation and synapse changes, we compared two diverse inflammatory paradigms, a cytokine cocktail (CKs; IL-1β, TNF-α, and GM-CSF) and LPS, and their ability to tune GABAergic current duration in spinal cord cultured circuits. Methods We exploit spinal organotypic cultures, single-cell electrophysiology, immunocytochemistry, and confocal microscopy to explore synaptic currents and resident neuroglia reactivity upon CK or LPS incubation. Results Local inflammation in slice cultures induced by CK or LPS stimulations boosts network activity; however, only CKs specifically reduced GABAergic current duration. We pharmacologically investigated the contribution of GABAAR α-subunits and suggested that a switch of GABAAR α1-subunit might have induced faster GABAAR decay time, weakening the inhibitory transmission. Conclusions Lower GABAergic current duration could contribute to providing an aberrant excitatory transmission critical for pre-motor circuit tasks and represent a specific feature of a CK cocktail able to mimic an inflammatory reaction that spreads in the CNS. Our results describe a selective mechanism that could be triggered during specific inflammatory stress. Electronic supplementary material The online version of this article (10.1186/s12974-019-1519-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vincenzo Giacco
- International School for Advanced Studies (SISSA/ISAS), 34136, Trieste, Italy.,Present address: Wolfson Centre for Age Related Disease, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Giulia Panattoni
- International School for Advanced Studies (SISSA/ISAS), 34136, Trieste, Italy
| | - Manuela Medelin
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Elena Bonechi
- Department NEUROFARBA, University of Florence, 50139, Florence, Italy
| | | | - Clara Ballerini
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, 50139, Florence, Italy.
| | - Laura Ballerini
- International School for Advanced Studies (SISSA/ISAS), 34136, Trieste, Italy.
| |
Collapse
|
27
|
Boccalaro IL, Cristiá-Lara L, Schwerdel C, Fritschy JM, Rubi L. Cell type-specific distribution of GABA A receptor subtypes in the mouse dorsal striatum. J Comp Neurol 2019; 527:2030-2046. [PMID: 30773633 DOI: 10.1002/cne.24665] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/25/2019] [Accepted: 02/10/2019] [Indexed: 01/02/2023]
Abstract
The striatum is the main input nucleus of the basal ganglia, mediating motor and cognitive functions. Striatal projection neurons are GABAergic medium spiny neurons (MSN), expressing either the dopamine receptor type 1 (D1 -R MSN) and forming the direct, movement-promoting pathway, or dopamine receptor type 2 (D2 -R MSN), forming the indirect movement-suppressing pathway. Locally, activity and synchronization of MSN are modulated by several subtypes of GABAergic and cholinergic interneurons. Overall, GABAergic circuits in the striatum remain poorly characterized, and little is known about the intrastriatal connectivity of interneurons and the distribution of GABAA receptor (GABAA R) subtypes, distinguished by their subunit composition, in striatal synapses. Here, by using immunofluorescence in mouse tissue, we investigated the distribution of GABAA Rs containing the α1 , α2 , or α3 subunit in perisomatic synapses of striatal MSN and interneurons, as well as the innervation pattern of D1 R- and D2 R-MSN soma and axonal initial segment (AIS) by GABAergic and cholinergic interneurons. Our results show that perisomatic GABAergic synapses of D1 R- and D2 R-MSN contain the GABAA R α1 and/or α2 subunits, but not the α3 subunit; D2 R-MSN have significantly more α1 -GABAA Rs on their soma than D1 R-MSN. Further, interneurons have few perisomatic synapses containing α2 -GABAA Rs, whereas α3 -GABAA Rs (along with the α1 -GABAA Rs) are abundant in perisomatic synapses of CCK+ , NPY+ /SOM+ , and vAChT+ interneurons. Each MSN and interneuron population analyzed received a distinct pattern of GABAergic and cholinergic innervation, complementing this postsynaptic heterogeneity. In conclusion, intra-striatal GABAergic circuits are distinguished by cell-type specific innervation patterns, differential expression and postsynaptic targeting of GABAA R subtypes.
Collapse
Affiliation(s)
- Ida Luisa Boccalaro
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | | | - Cornelia Schwerdel
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Lena Rubi
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
28
|
An Essential Role for the Tetraspanin LHFPL4 in the Cell-Type-Specific Targeting and Clustering of Synaptic GABA A Receptors. Cell Rep 2018; 21:70-83. [PMID: 28978485 PMCID: PMC5640807 DOI: 10.1016/j.celrep.2017.09.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/17/2017] [Accepted: 09/06/2017] [Indexed: 02/04/2023] Open
Abstract
Inhibitory synaptic transmission requires the targeting and stabilization of GABAA receptors (GABAARs) at synapses. The mechanisms responsible remain poorly understood, and roles for transmembrane accessory proteins have not been established. Using molecular, imaging, and electrophysiological approaches, we identify the tetraspanin LHFPL4 as a critical regulator of postsynaptic GABAAR clustering in hippocampal pyramidal neurons. LHFPL4 interacts tightly with GABAAR subunits and is selectively enriched at inhibitory synapses. In LHFPL4 knockout mice, there is a dramatic cell-type-specific reduction in GABAAR and gephyrin clusters and an accumulation of large intracellular gephyrin aggregates in vivo. While GABAARs are still trafficked to the neuronal surface in pyramidal neurons, they are no longer localized at synapses, resulting in a profound loss of fast inhibitory postsynaptic currents. Hippocampal interneuron currents remain unaffected. Our results establish LHFPL4 as a synapse-specific tetraspanin essential for inhibitory synapse function and provide fresh insights into the molecular make-up of inhibitory synapses. LHFPL4 is a tetraspanin enriched at inhibitory synapses that complexes with GABAARs LHFPL4 is important for GABAAR clustering both in vitro and in vivo LHFPL4 is required for the surface clustering but not the trafficking of GABAARs GABAergic synaptic inputs on CA1 pyramidal neurons, but not interneurons, require LHFPL4
Collapse
|
29
|
Meis S, Endres T, Munsch T, Lessmann V. Presynaptic Regulation of Tonic Inhibition by Neuromodulatory Transmitters in the Basal Amygdala. Mol Neurobiol 2018; 55:8509-8521. [PMID: 29560580 DOI: 10.1007/s12035-018-0984-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 02/28/2018] [Indexed: 01/23/2023]
Abstract
Tonic inhibition mediated by ambient levels of GABA that activate extrasynaptic GABAA receptors emerges as an essential factor that tunes neuronal network excitability in vitro and shapes behavioral responses in vivo. To address the role of neuromodulatory transmitter systems on this type of inhibition, we employed patch clamp recordings in mouse amygdala slice preparations. Our results show that the current amplitude of tonic inhibition (Itonic) in projection neurons of the basal amygdala (BA) is increased by preincubation with the neurosteroid THDOC, while the benzodiazepine diazepam is ineffective. This suggests involvement of THDOC sensitive δ subunit containing GABAA receptors in mediating tonic inhibition. Moreover, we provide evidence that the neuromodulatory transmitters NE, 5HT, and ACh strongly enhance spontaneous IPSCs as well as Itonic in the BA. As the increase in frequency, amplitude, and charge of sIPSCs by these neuromodulatory transmitters strongly correlated with the amplitude of Itonic, we conclude that spill-over of synaptic GABA leads to activation of Itonic and thereby to dampening of amygdala excitability. Since local injection of THDOC, as a positive modulator of tonic inhibition, into the BA interfered with the expression of contextual fear memory, our results point to a prominent role of Itonic in fear learning.
Collapse
Affiliation(s)
- S Meis
- Institut für Physiologie, Otto-von-Guericke-Universität, Leipziger Str. 44, D-39120, Magdeburg, Germany. .,Center for Behavioral Brain Sciences, Magdeburg, Germany.
| | - T Endres
- Institut für Physiologie, Otto-von-Guericke-Universität, Leipziger Str. 44, D-39120, Magdeburg, Germany
| | - T Munsch
- Institut für Physiologie, Otto-von-Guericke-Universität, Leipziger Str. 44, D-39120, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - V Lessmann
- Institut für Physiologie, Otto-von-Guericke-Universität, Leipziger Str. 44, D-39120, Magdeburg, Germany. .,Center for Behavioral Brain Sciences, Magdeburg, Germany.
| |
Collapse
|
30
|
Garret M, Du Z, Chazalon M, Cho YH, Baufreton J. Alteration of GABAergic neurotransmission in Huntington's disease. CNS Neurosci Ther 2018; 24:292-300. [PMID: 29464851 DOI: 10.1111/cns.12826] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/23/2018] [Accepted: 01/26/2018] [Indexed: 12/16/2022] Open
Abstract
Hereditary Huntington's disease (HD) is characterized by cell dysfunction and death in the brain, leading to progressive cognitive, psychiatric, and motor impairments. Despite molecular and cellular descriptions of the effects of the HD mutation, no effective pharmacological treatment is yet available. In addition to well-established alterations of glutamatergic and dopaminergic neurotransmitter systems, it is becoming clear that the GABAergic systems are also impaired in HD. GABA is the major inhibitory neurotransmitter in the brain, and GABAergic neurotransmission has been postulated to be modified in many neurological and psychiatric diseases. In addition, GABAergic neurotransmission is the target of many drugs that are in wide clinical use. Here, we summarize data demonstrating the occurrence of alterations of GABAergic markers in the brain of HD carriers as well as in rodent models of the disease. In particular, we pinpoint HD-related changes in the expression of GABAA receptors (GABAA Rs). On the basis that a novel GABA pharmacology of GABAA Rs established with more selective drugs is emerging, we argue that clinical treatments acting specifically on GABAergic neurotransmission may be an appropriate strategy for improving symptoms linked to the HD mutation.
Collapse
Affiliation(s)
- Maurice Garret
- Université de Bordeaux, INCIA, UMR 5287, Bordeaux, France.,CNRS, INCIA, UMR 5287, Bordeaux, France
| | - Zhuowei Du
- Université de Bordeaux, INCIA, UMR 5287, Bordeaux, France.,CNRS, INCIA, UMR 5287, Bordeaux, France
| | - Marine Chazalon
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293, Bordeaux, France.,Institut des Maladies Neurodégénératives, CNRS, UMR 5293, Bordeaux, France
| | - Yoon H Cho
- Université de Bordeaux, INCIA, UMR 5287, Bordeaux, France.,CNRS, INCIA, UMR 5287, Bordeaux, France
| | - Jérôme Baufreton
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293, Bordeaux, France.,Institut des Maladies Neurodégénératives, CNRS, UMR 5293, Bordeaux, France
| |
Collapse
|
31
|
Skilbeck KJ, Johnston GA, Hinton T. Long-lasting effects of early-life intervention in mice on adulthood behaviour, GABA A receptor subunit expression and synaptic clustering. Pharmacol Res 2018; 128:179-189. [DOI: 10.1016/j.phrs.2017.09.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/21/2017] [Accepted: 09/28/2017] [Indexed: 02/06/2023]
|
32
|
Belelli D, Brown AR, Mitchell SJ, Gunn BG, Herd MB, Phillips GD, Seifi M, Swinny JD, Lambert JJ. Endogenous neurosteroids influence synaptic GABA A receptors during postnatal development. J Neuroendocrinol 2018; 30. [PMID: 28905487 DOI: 10.1111/jne.12537] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/22/2017] [Accepted: 09/10/2017] [Indexed: 12/12/2022]
Abstract
GABA plays a key role in both embryonic and neonatal brain development. For example, during early neonatal nervous system maturation, synaptic transmission, mediated by GABAA receptors (GABAA Rs), undergoes a temporally specific form of synaptic plasticity to accommodate the changing requirements of maturing neural networks. Specifically, the duration of miniature inhibitory postsynaptic currents (mIPSCs), resulting from vesicular GABA activating synaptic GABAA Rs, is reduced, permitting neurones to appropriately influence the window for postsynaptic excitation. Conventionally, programmed expression changes to the subtype of synaptic GABAA R are primarily implicated in this plasticity. However, it is now evident that, in developing thalamic and cortical principal- and inter-neurones, an endogenous neurosteroid tone (eg, allopregnanolone) enhances synaptic GABAA R function. Furthermore, a cessation of steroidogenesis, as a result of a lack of substrate, or a co-factor, appears to be primarily responsible for early neonatal changes to GABAergic synaptic transmission, followed by further refinement, which results from subsequent alterations of the GABAA R subtype. The timing of this cessation of neurosteroid influence is neurone-specific, occurring by postnatal day (P)10 in the thalamus but approximately 1 week later in the cortex. Neurosteroid levels are not static and change dynamically in a variety of physiological and pathophysiological scenarios. Given that GABA plays an important role in brain development, abnormal perturbations of neonatal GABAA R-active neurosteroids may have not only a considerable immediate, but also a longer-term impact upon neural network activity. Here, we review recent evidence indicating that changes in neurosteroidogenesis substantially influence neonatal GABAergic synaptic transmission. We discuss the physiological relevance of these findings and how the interference of neurosteroid-GABAA R interaction early in life may contribute to psychiatric conditions later in life.
Collapse
Affiliation(s)
- D Belelli
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - A R Brown
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - S J Mitchell
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - B G Gunn
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - M B Herd
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - G D Phillips
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - M Seifi
- Institute for Biomedical & Biomolecular Sciences, School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - J D Swinny
- Institute for Biomedical & Biomolecular Sciences, School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - J J Lambert
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| |
Collapse
|
33
|
Al-Muhtasib N, Sepulveda-Rodriguez A, Vicini S, Forcelli PA. Neonatal phenobarbital exposure disrupts GABAergic synaptic maturation in rat CA1 neurons. Epilepsia 2018; 59:333-344. [PMID: 29315524 DOI: 10.1111/epi.13990] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2017] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Phenobarbital is the most commonly utilized drug for the treatment of neonatal seizures. The use of phenobarbital continues despite growing evidence that it exerts suboptimal seizure control and is associated with long-term alterations in brain structure, function, and behavior. Alterations following neonatal phenobarbital exposure include acute induction of neuronal apoptosis, disruption of synaptic development in the striatum, and a host of behavioral deficits. These behavioral deficits include those in learning and memory mediated by the hippocampus. However, the synaptic changes caused by acute exposure to phenobarbital that lead to lasting effects on brain function and behavior remain understudied. METHODS Postnatal day (P)7 rat pups were treated with phenobarbital (75 mg/kg) or saline. On P13-14 or P29-37, acute slices were prepared and whole-cell patch-clamp recordings were made from CA1 pyramidal neurons. RESULTS At P14 we found an increase in miniature inhibitory postsynaptic current (mIPSC) frequency in the phenobarbital-exposed as compared to the saline-exposed group. In addition to this change in mIPSC frequency, the phenobarbital group displayed larger bicuculline-sensitive tonic currents, decreased capacitance and membrane time constant, and a surprising persistence of giant depolarizing potentials. At P29+, the frequency of mIPSCs in the saline-exposed group had increased significantly from the frequency at P14, typical of normal synaptic development; at this age the phenobarbital-exposed group displayed a lower mIPSC frequency than did the control group. Spontaneous inhibitory postsynaptic current (sIPSC) frequency was unaffected at either P14 or P29+. SIGNIFICANCE These neurophysiological alterations following phenobarbital exposure provide a potential mechanism by which acute phenobarbital exposure can have a long-lasting impact on brain development and behavior.
Collapse
Affiliation(s)
- Nour Al-Muhtasib
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, USA
| | - Alberto Sepulveda-Rodriguez
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, USA.,Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA
| | - Stefano Vicini
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, USA.,Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA.,Department of Neuroscience, Georgetown University, Washington, DC, USA
| | - Patrick A Forcelli
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, USA.,Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA.,Department of Neuroscience, Georgetown University, Washington, DC, USA
| |
Collapse
|
34
|
McMenamin CA, Travagli RA, Browning KN. Perinatal high fat diet increases inhibition of dorsal motor nucleus of the vagus neurons regulating gastric functions. Neurogastroenterol Motil 2018; 30:10.1111/nmo.13150. [PMID: 28762595 PMCID: PMC5739938 DOI: 10.1111/nmo.13150] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/07/2017] [Indexed: 01/02/2023]
Abstract
BACKGROUND Previous studies suggest an increased inhibition of dorsal motor nucleus of the vagus (DMV) neurons following exposure to a perinatal high fat diet (PNHFD); the underlying neural mechanisms, however, remain unknown. This study assessed the effects of PNHFD on inhibitory synaptic inputs to DMV neurons and the vagally dependent control of gastric tone and motility. METHODS Whole-cell patch clamp recordings were made from DMV neurons in thin brainstem slices from Sprague-Dawley rats fed either a control diet or HFD (14 or 60% kcal from fat, respectively) from embryonic day 13 onwards; gastric tone and motility were recorded in in vivo anesthetized rats. KEY RESULTS The non-selective GABAA antagonist, BIC (10 μmol L-1 ), induced comparable inward currents in PNHFD and control DMV neurons, but a larger current in PNHFD neurons at higher concentrations (50 μmol L-1 ). Differences were not apparent in neuronal responses to the phasic GABAA antagonist, gabazine (GBZ), the extrasynaptic GABAA agonist, THIP, the GABA transport blocker, nipecotic acid, or the gliotoxin, fluoroacetate, suggesting that PNHFD altered inhibitory transmission but not GABAA receptor density or function, GABA uptake or glial modulation of synaptic strength. Similarly, the increase in gastric motility and tone following brainstem microinjection of low doses of BIC (1-10 pmoles) and GBZ (0.01-0.1 pmoles) were unchanged in PNHFD rats while higher doses of BIC (25 pmoles) induced a significantly larger increase in gastric tone compared to control. CONCLUSIONS AND INFERENCES These studies suggest that exposure to PNHFD increases the tonic inhibition of DMV neurons, possibly contributing to dysregulated vagal control of gastric functions.
Collapse
Affiliation(s)
| | | | - Kirsteen N. Browning
- Address for correspondence: Kirsteen N Browning, PhD, Department of Neural and Behavioral Science, Penn State College of Medicine, 500 University Drive, MC H109, Hershey, PA 17033, Tel: 717 531 8267,
| |
Collapse
|
35
|
Cao B, Ni HY, Li J, Zhou Y, Bian XL, Tao Y, Cai CY, Qin C, Wu HY, Chang L, Luo CX, Zhu DY. (+)-Borneol suppresses conditioned fear recall and anxiety-like behaviors in mice. Biochem Biophys Res Commun 2017; 495:1588-1593. [PMID: 29223397 DOI: 10.1016/j.bbrc.2017.12.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 12/05/2017] [Indexed: 01/19/2023]
Abstract
Fear- and anxiety-related psychiatric disorders have been one of the major chronic diseases afflicting patients for decades, and new compounds for treating such disorders remain to be developed. (+)-Borneol, a bicyclic monoterpene found in several species of Artemisia and Dipterocarpaceae, is widely used for anxiety, pain and anesthesia in Chinese medicine. Meanwhile, it can potentiate GABA (γ-aminobutyric acid) activity directly in recombinant GABAA receptors. The present study was to investigate the effects of (+)-Borneol on both contextual and cued fear recall. Interestingly, microinjection of (+)-Borneol into the dorsal hippocampus inhibited 24 h and 7 d contextual fear, whereas its infusion into ventral hippocampus only reduced 24 h cued fear responses. Moreover, microinjection of (+)-Borneol into dorsal but not ventral hippocampus suppressed anxiety-like behaviors in the open field test, light/dark exploration and the elevated plus maze test. As selective GABAA receptor antagonist bicuculline reversed the effect of (+)-Borneol on contextual fear paradigm and the drug potentiated GABA-evoked currents in acute hippocampus slices, modulation of the GABAergic neurotransmission may explain the effects of (+)-Borneol. Our findings suggest that (+)-Borneol can serve as a new therapeutic in fear- and anxiety-related disorders.
Collapse
Affiliation(s)
- Bo Cao
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Huan-Yu Ni
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jun Li
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ying Zhou
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xin-Lan Bian
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yan Tao
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Cheng-Yun Cai
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Cheng Qin
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Hai-Yin Wu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Lei Chang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Chun-Xia Luo
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Dong-Ya Zhu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Precision Medicine of Cardiovascular Disease, Nanjing Medical University, Nanjing 211166, China; Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
36
|
Sommeijer JP, Ahmadlou M, Saiepour MH, Seignette K, Min R, Heimel JA, Levelt CN. Thalamic inhibition regulates critical-period plasticity in visual cortex and thalamus. Nat Neurosci 2017; 20:1715-1721. [DOI: 10.1038/s41593-017-0002-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 08/23/2017] [Indexed: 11/09/2022]
|
37
|
Boychuk CR, Smith KC, Smith BN. Functional and molecular plasticity of γ and α1 GABA A receptor subunits in the dorsal motor nucleus of the vagus after experimentally induced diabetes. J Neurophysiol 2017; 118:2833-2841. [PMID: 28835522 DOI: 10.1152/jn.00085.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 08/17/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022] Open
Abstract
Chronic experimentally induced hyperglycemia augments subunit-specific γ-aminobutyric acid A (GABAA) receptor-mediated inhibition of parasympathetic preganglionic motor neurons in the dorsal motor nucleus of the vagus (DMV). However, the contribution of α1 or γ GABAA receptor subunits, which are ubiquitously expressed on central nervous system neurons, to this elevation in inhibitory tone have not been determined. This study investigated the effect of chronic hyperglycemia/hypoinsulinemia on α1- and γ-subunit-specific GABAA receptor-mediated inhibition using electrophysiological recordings in vitro and quantitative RT-PCR. DMV neurons from streptozotocin-treated mice demonstrated enhancement of both phasic and tonic inhibitory currents in response to application of the α1-subunit-selective GABAA receptor-positive allosteric modulator zolpidem. Responses to low concentrations of the GABAA receptor antagonist gabazine suggested an additional increased contribution of γ-subunit-containing receptors to tonic currents in DMV neurons. Consistent with the functional elevation in α1- and γ-subunit-dependent activity, transcription of both the α1- and γ2-subunits was increased in the dorsal vagal complex of streptozotocin-treated mice. Overall, these findings suggest an increased sensitivity to both zolpidem and gabazine after several days of hyperglycemia/hypoinsulinemia, which could contribute to altered parasympathetic output from DMV neurons in diabetes.NEW & NOTEWORTHY Glutamate and GABA signaling in the dorsal vagal complex is elevated after several days of chronic hyperglycemia in a mouse model of type 1 diabetes. We report persistently enhanced GABAA receptor-mediated responses to the somnolescent zolpidem in preganglionic vagal motor neurons. These results imply a broader impact of chronic hyperglycemia on central vagal function than previously appreciated and reinforce the hypothesis that diabetes effects in the brain can impact regulation of metabolic homeostasis.
Collapse
Affiliation(s)
- Carie R Boychuk
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Katalin C Smith
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Bret N Smith
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky
| |
Collapse
|
38
|
Du Z, Tertrais M, Courtand G, Leste-Lasserre T, Cardoit L, Masmejean F, Halgand C, Cho YH, Garret M. Differential Alteration in Expression of Striatal GABA AR Subunits in Mouse Models of Huntington's Disease. Front Mol Neurosci 2017; 10:198. [PMID: 28676743 PMCID: PMC5476702 DOI: 10.3389/fnmol.2017.00198] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/06/2017] [Indexed: 12/20/2022] Open
Abstract
Huntington’s disease (HD) is a neurodegenerative disorder characterized by progressive motor symptoms that are preceded by cognitive deficits and is considered as a disorder that primarily affects forebrain striatal neurons. To gain a better understanding of the molecular and cellular mechanisms associated with disease progression, we analyzed the expression of proteins involved in GABAergic neurotransmission in the striatum of the R6/1 transgenic mouse model. Western blot, quantitative PCR and immunohistochemical analyses were conducted on male R6/1 mice and age-matched wild type littermates. Analyses were performed on 2 and 6 month-old animals, respectively, before and after the onset of motor symptoms. Expression of GAD 67, GAD 65, NL2, or gephyrin proteins, involved in GABA synthesis or synapse formation did not display major changes. In contrast, expression of α1, α3 and α5 GABAAR subunits was increased while the expression of δ was decreased, suggesting a change in tonic- and phasic inhibitory transmission. Western blot analysis of the striatum from 8 month-old Hdh Q111, a knock-in mouse model of HD with mild deficits, confirmed the α1 subunit increased expression. From immunohistochemical analyses, we also found that α1 subunit expression is increased in medium-sized spiny projection neurons (MSN) and decreased in parvalbumin (PV)-expressing interneurons at 2 and 6 months in R6/1 mice. Moreover, α2 subunit labeling on the PV and MSN cell membranes was increased at 2 months and decreased at 6 months. Alteration of gene expression in the striatum and modification of GABAA receptor subtypes in both interneurons and projection neurons suggested that HD mutation has a profound effect on synaptic plasticity at an early stage, before the onset of motor symptoms. These results also indicate that cognitive and other behavioral deficits may be associated with changes in GABAergic neurotransmission that consequently could be a relevant target for early therapeutic treatment.
Collapse
Affiliation(s)
- Zhuowei Du
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, University of BordeauxBordeaux, France.,Centre National de la Recherche Scientifique, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287Bordeaux, France
| | - Margot Tertrais
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, University of BordeauxBordeaux, France.,Centre National de la Recherche Scientifique, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287Bordeaux, France
| | - Gilles Courtand
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, University of BordeauxBordeaux, France.,Centre National de la Recherche Scientifique, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287Bordeaux, France
| | - Thierry Leste-Lasserre
- Institut National de la Santé et de la Recherche Médicale, Neurocentre Magendie, U862, Physiopathologie de la Plasticité NeuronaleBordeaux, France.,Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, University of BordeauxBordeaux, France
| | - Laura Cardoit
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, University of BordeauxBordeaux, France.,Centre National de la Recherche Scientifique, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287Bordeaux, France
| | - Frédérique Masmejean
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, University of BordeauxBordeaux, France.,Centre National de la Recherche Scientifique, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287Bordeaux, France
| | - Christophe Halgand
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, University of BordeauxBordeaux, France.,Centre National de la Recherche Scientifique, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287Bordeaux, France
| | - Yoon H Cho
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, University of BordeauxBordeaux, France.,Centre National de la Recherche Scientifique, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287Bordeaux, France
| | - Maurice Garret
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, University of BordeauxBordeaux, France.,Centre National de la Recherche Scientifique, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287Bordeaux, France
| |
Collapse
|
39
|
Maex R, Gutkin B. Temporal integration and 1/ f power scaling in a circuit model of cerebellar interneurons. J Neurophysiol 2017; 118:471-485. [PMID: 28446587 DOI: 10.1152/jn.00789.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 03/29/2017] [Accepted: 04/22/2017] [Indexed: 11/22/2022] Open
Abstract
Inhibitory interneurons interconnected via electrical and chemical (GABAA receptor) synapses form extensive circuits in several brain regions. They are thought to be involved in timing and synchronization through fast feedforward control of principal neurons. Theoretical studies have shown, however, that whereas self-inhibition does indeed reduce response duration, lateral inhibition, in contrast, may generate slow response components through a process of gradual disinhibition. Here we simulated a circuit of interneurons (stellate and basket cells) of the molecular layer of the cerebellar cortex and observed circuit time constants that could rise, depending on parameter values, to >1 s. The integration time scaled both with the strength of inhibition, vanishing completely when inhibition was blocked, and with the average connection distance, which determined the balance between lateral and self-inhibition. Electrical synapses could further enhance the integration time by limiting heterogeneity among the interneurons and by introducing a slow capacitive current. The model can explain several observations, such as the slow time course of OFF-beam inhibition, the phase lag of interneurons during vestibular rotation, or the phase lead of Purkinje cells. Interestingly, the interneuron spike trains displayed power that scaled approximately as 1/f at low frequencies. In conclusion, stellate and basket cells in cerebellar cortex, and interneuron circuits in general, may not only provide fast inhibition to principal cells but also act as temporal integrators that build a very short-term memory.NEW & NOTEWORTHY The most common function attributed to inhibitory interneurons is feedforward control of principal neurons. In many brain regions, however, the interneurons are densely interconnected via both chemical and electrical synapses but the function of this coupling is largely unknown. Based on large-scale simulations of an interneuron circuit of cerebellar cortex, we propose that this coupling enhances the integration time constant, and hence the memory trace, of the circuit.
Collapse
Affiliation(s)
- Reinoud Maex
- Department of Cognitive Sciences, École Normale Supérieure, PSL Research University, Paris, France; and
| | - Boris Gutkin
- Department of Cognitive Sciences, École Normale Supérieure, PSL Research University, Paris, France; and.,Centre for Cognition and Decision Making, Higher School of Economics, Moscow, Russian Federation
| |
Collapse
|
40
|
Stephens DN, King SL, Lambert JJ, Belelli D, Duka T. GABAAreceptor subtype involvement in addictive behaviour. GENES BRAIN AND BEHAVIOR 2016; 16:149-184. [DOI: 10.1111/gbb.12321] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/19/2016] [Accepted: 08/15/2016] [Indexed: 12/17/2022]
Affiliation(s)
| | - S. L. King
- School of Psychology; University of Sussex; Brighton UK
| | - J. J. Lambert
- Division of Neuroscience; University of Dundee; Dundee UK
| | - D. Belelli
- Division of Neuroscience; University of Dundee; Dundee UK
| | - T. Duka
- School of Psychology; University of Sussex; Brighton UK
| |
Collapse
|
41
|
London SE. Influences of non-canonical neurosteroid signaling on developing neural circuits. Curr Opin Neurobiol 2016; 40:103-110. [PMID: 27429051 DOI: 10.1016/j.conb.2016.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/21/2016] [Accepted: 06/22/2016] [Indexed: 12/31/2022]
Abstract
Developing neural circuits are especially susceptible to environmental perturbation. Endocrine signaling systems such as steroids provide a mechanism to encode physiological changes and integrate function across various biological systems including the brain. 'Neurosteroids' are synthesized and act within the brain across development. There is a long history of steroids sculpting developing neural circuits; more recently, evidence has demonstrated how neurosteroids influence the early potential for neural circuits to organize and transmit precise information via non-canonical receptor types.
Collapse
Affiliation(s)
- Sarah E London
- University of Chicago, Psychology, 940 E 57th Street, 125C BPSB, Chicago, IL 60637, United States.
| |
Collapse
|
42
|
Caballero A, Granberg R, Tseng KY. Mechanisms contributing to prefrontal cortex maturation during adolescence. Neurosci Biobehav Rev 2016; 70:4-12. [PMID: 27235076 DOI: 10.1016/j.neubiorev.2016.05.013] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 12/17/2022]
Abstract
Adolescence is defined as a transitional period between childhood and adulthood characterized by changes in social interaction and acquisition of mature cognitive abilities. These changes have been associated with the maturation of brain regions involved in the control of motivation, emotion, and cognition. Among these regions, the protracted development of the human prefrontal cortex during adolescence has been proposed to underlie the maturation of cognitive functions and the regulation of affective responses. Studies in animal models allow us to test the causal contribution of specific neural processes in the development of the prefrontal cortex and the acquisition of adult behavior. This review summarizes the cellular and synaptic mechanisms occurring in the rodent prefrontal cortex during adolescence as a model for understanding the changes underlying human prefrontal development.
Collapse
Affiliation(s)
- Adriana Caballero
- Department of Cellular & Molecular Pharmacology, The Chicago Medical School at Rosalind Franklin University of Medicine & Science, North Chicago, IL 60064, USA
| | - Rachel Granberg
- Department of Cellular & Molecular Pharmacology, The Chicago Medical School at Rosalind Franklin University of Medicine & Science, North Chicago, IL 60064, USA
| | - Kuei Y Tseng
- Department of Cellular & Molecular Pharmacology, The Chicago Medical School at Rosalind Franklin University of Medicine & Science, North Chicago, IL 60064, USA.
| |
Collapse
|
43
|
GABAergic Function as a Limiting Factor for Prefrontal Maturation during Adolescence. Trends Neurosci 2016; 39:441-448. [PMID: 27233681 DOI: 10.1016/j.tins.2016.04.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/22/2016] [Accepted: 04/25/2016] [Indexed: 11/24/2022]
Abstract
Adolescence is a vulnerable period for the onset of mental illnesses including schizophrenia and affective disorders, yet the neurodevelopmental processes underlying this vulnerability remain poorly understood. The prefrontal cortex (PFC) and its local GABAergic system are thought to contribute to the core of cognitive deficits associated with such disorders. However, clinical and preclinical end-point analyses performed in adults are likely to give limited insight into the cellular mechanisms that are altered during adolescence but are only manifested in adulthood. This perspective summarizes work regarding the developmental trajectories of the GABAergic system in the PFC during adolescence to provide an insight into the increased susceptibility to psychiatric disorders during this critical developmental period.
Collapse
|
44
|
Formation of GABA A receptor complexes containing α1 and α5 subunits is paralleling a multiple T-maze learning task in mice. Brain Struct Funct 2016; 222:549-561. [PMID: 27155990 DOI: 10.1007/s00429-016-1233-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 04/28/2016] [Indexed: 10/21/2022]
Abstract
There is limited information on the role of GABA type A receptors (GABAARs) containing α1, α5 and γ2 subunits in learning and memory. Here, we assessed the possible role of such receptors in spatial learning using the multiple T-maze (MTM) paradigm. C57BL/6J mice were trained in the MTM which induced elevated levels of α1 and α5 subunit-containing hippocampal GABAAR complexes. Moreover, spatial learning evoked a significant increase in the colocalization of α1 and α5 subunits in both, CA1 and dentate gyrus regions of the hippocampus suggesting the formation of complexes containing both subunits. Additionally, the presence of α1, α5 and γ2 subunits in high molecular weight GABAARs was detected and significant correlation in the level of α1-containing complexes with those containing α5 and γ2 subunits was demonstrated. Accordingly, α1 deficiency led to decreased levels of γ2 subunit-containing complexes, however, had no effect on α5-containing ones. On the other hand, α1 knockout mice showed impaired performance in the MTM correlating with increased levels of α5 subunit-containing GABAARs in comparison to trained floxed control animals which quickly learned the task. Taken together, these results suggest that α1, α5 and γ2-containing hippocampal GABAAR complexes play an essential role in spatial learning and memory in which targeted disruption of the α1 subunit produces profound deficits.
Collapse
|
45
|
Accardi MV, Daniels BA, Brown PMGE, Fritschy JM, Tyagarajan SK, Bowie D. Mitochondrial reactive oxygen species regulate the strength of inhibitory GABA-mediated synaptic transmission. Nat Commun 2016; 5:3168. [PMID: 24430741 PMCID: PMC4977183 DOI: 10.1038/ncomms4168] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 12/20/2013] [Indexed: 01/08/2023] Open
Abstract
Neuronal communication imposes a heavy metabolic burden in maintaining ionic gradients essential for action potential firing and synaptic signaling. Although cellular metabolism is known to regulate excitatory neurotransmission, it is still unclear whether the brain’s energy supply affects inhibitory signaling. Here we show that mitochondrial-derived reactive oxygen species (mROS) regulate the strength of postsynaptic GABAA receptors at inhibitory synapses of cerebellar stellate cells. Inhibition is strengthened through a mechanism that selectively recruits α3-containing GABAA receptors into synapses with no discernible effect on resident α1-containing receptors. Since mROS promotes the emergence of postsynaptic events with unique kinetic properties, we conclude that newly-recruited α3-containing GABAA receptors are activated by neurotransmitter released onto discrete postsynaptic sites. Although traditionally associated with oxidative stress in neurodegenerative disease, our data identifies mROS as a putative homeostatic signaling molecule coupling cellular metabolism to the strength of inhibitory transmission.
Collapse
Affiliation(s)
- Michael V Accardi
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada H3B 0B1
| | - Bryan A Daniels
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada H3B 0B1
| | - Patricia M G E Brown
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada H3B 0B1
| | - Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057, Zurich, Switzerland
| | - Shiva K Tyagarajan
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057, Zurich, Switzerland
| | - Derek Bowie
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada H3B 0B1
| |
Collapse
|
46
|
Berlin S, Szobota S, Reiner A, Carroll EC, Kienzler MA, Guyon A, Xiao T, Trauner D, Isacoff EY. A family of photoswitchable NMDA receptors. eLife 2016; 5. [PMID: 26929991 PMCID: PMC4786437 DOI: 10.7554/elife.12040] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/31/2016] [Indexed: 02/07/2023] Open
Abstract
NMDA receptors, which regulate synaptic strength and are implicated in learning and memory, consist of several subtypes with distinct subunit compositions and functional properties. To enable spatiotemporally defined, rapid and reproducible manipulation of function of specific subtypes, we engineered a set of photoswitchable GluN subunits ('LiGluNs'). Photo-agonism of GluN2A or GluN2B elicits an excitatory drive to hippocampal neurons that can be shaped in time to mimic synaptic activation. Photo-agonism of GluN2A at single dendritic spines evokes spine-specific calcium elevation and expansion, the morphological correlate of LTP. Photo-antagonism of GluN2A alone, or in combination with photo-antagonism of GluN1a, reversibly blocks excitatory synaptic currents, prevents the induction of long-term potentiation and prevents spine expansion. In addition, photo-antagonism in vivo disrupts synaptic pruning of developing retino-tectal projections in larval zebrafish. By providing precise and rapidly reversible optical control of NMDA receptor subtypes, LiGluNs should help unravel the contribution of specific NMDA receptors to synaptic transmission, integration and plasticity.
Collapse
Affiliation(s)
- Shai Berlin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Stephanie Szobota
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Andreas Reiner
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Elizabeth C Carroll
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Michael A Kienzler
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Alice Guyon
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia Antipolis, Nice, France
| | - Tong Xiao
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Dirk Trauner
- Department of Chemistry, Center of Integrated Protein Science, University of Munich, Munich, Germany
| | - Ehud Y Isacoff
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States.,Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| |
Collapse
|
47
|
Brown AR, Mitchell SJ, Peden DR, Herd MB, Seifi M, Swinny JD, Belelli D, Lambert JJ. During postnatal development endogenous neurosteroids influence GABA-ergic neurotransmission of mouse cortical neurons. Neuropharmacology 2015; 103:163-73. [PMID: 26626485 PMCID: PMC4764649 DOI: 10.1016/j.neuropharm.2015.11.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 11/11/2015] [Accepted: 11/22/2015] [Indexed: 12/11/2022]
Abstract
As neuronal development progresses, GABAergic synaptic transmission undergoes a defined program of reconfiguration. For example, GABAA receptor (GABAAR)-mediated synaptic currents, (miniature inhibitory postsynaptic currents; mIPSCs), which initially exhibit a relatively slow decay phase, become progressively reduced in duration, thereby supporting the temporal resolution required for mature network activity. Here we report that during postnatal development of cortical layer 2/3 pyramidal neurons, GABAAR-mediated phasic inhibition is influenced by a resident neurosteroid tone, which wanes in the second postnatal week, resulting in the brief phasic events characteristic of mature neuronal signalling. Treatment of cortical slices with the immediate precursor of 5α-pregnan-3α-ol-20-one (5α3α), the GABAAR-inactive 5α-dihydroprogesterone, (5α-DHP), greatly prolonged the mIPSCs of P20 pyramidal neurons, demonstrating these more mature neurons retain the capacity to synthesize GABAAR-active neurosteroids, but now lack the endogenous steroid substrate. Previously, such developmental plasticity of phasic inhibition was ascribed to the expression of synaptic GABAARs incorporating the α1 subunit. However, the duration of mIPSCs recorded from L2/3 cortical neurons derived from α1 subunit deleted mice, were similarly under the developmental influence of a neurosteroid tone. In addition to principal cells, synaptic GABAARs of L2/3 interneurons were modulated by native neurosteroids in a development-dependent manner. In summary, local neurosteroids influence synaptic transmission during a crucial period of cortical neurodevelopment, findings which may be of importance for establishing normal network connectivity. Upon postnatal maturation GABAA receptor synaptic inhibition is reduced in duration. Reduced synthesis of local neurosteroids contributes to this cortical plasticity. The study reveals a potent mechanism to locally regulate cortical neuron activity.
Collapse
Affiliation(s)
- Adam R Brown
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital & Medical School, Dundee University, Dundee, UK
| | - Scott J Mitchell
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital & Medical School, Dundee University, Dundee, UK
| | - Dianne R Peden
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital & Medical School, Dundee University, Dundee, UK
| | - Murray B Herd
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital & Medical School, Dundee University, Dundee, UK
| | - Mohsen Seifi
- Institute for Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Jerome D Swinny
- Institute for Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Delia Belelli
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital & Medical School, Dundee University, Dundee, UK
| | - Jeremy J Lambert
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital & Medical School, Dundee University, Dundee, UK.
| |
Collapse
|
48
|
Pangratz-Fuehrer S, Sieghart W, Rudolph U, Parada I, Huguenard JR. Early postnatal switch in GABAA receptor α-subunits in the reticular thalamic nucleus. J Neurophysiol 2015; 115:1183-95. [PMID: 26631150 DOI: 10.1152/jn.00905.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/02/2015] [Indexed: 01/25/2023] Open
Abstract
The GABAergic neurons of the thalamic reticular nucleus (nRt) provide the primary source of inhibition within the thalamus. Using physiology, pharmacology, and immunohistochemistry in mice, we characterized postsynaptic developmental changes in these inhibitory projection neurons. First, at postnatal days 3-5 (P3-5), inhibitory postsynaptic currents (IPSCs) decayed very slowly, followed by a biphasic developmental progression, becoming faster at P6-8 and then slower again at P9-11 before stabilizing in a mature form around P12. Second, the pharmacological profile of GABA(A) receptor (GABA(A)R)-mediated IPSCs differed between neonatal and mature nRt neurons, and this was accompanied by reciprocal changes in α3 (late) and α5 (early) subunit expression in nRt. Zolpidem, selective for α1- and α3-containing GABA(A)Rs, augmented only mature IPSCs, whereas clonazepam enhanced IPSCs at all stages. This effect was blocked by the α5-specific inverse agonist L-655,708, but only in immature neurons. In α3(H126R) mice, in which α3-subunits were mutated to become benzodiazepine insensitive, IPSCs were enhanced compared with those in wild-type animals in early development. Third, tonic GABA(A)R activation in nRt is age dependent and more prominent in immature neurons, which correlates with early expression of α5-containing GABA(A)Rs. Thus neonatal nRt neurons show relatively high expression of α5-subunits, which contributes to both slow synaptic and tonic extrasynaptic inhibition. The postnatal switch in GABA(A)R subunits from α5 to α3 could facilitate spontaneous network activity in nRt that occurs at this developmental time point and which is proposed to play a role in early circuit development.
Collapse
Affiliation(s)
- Susanne Pangratz-Fuehrer
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Werner Sieghart
- Brain Research Institute Vienna, University of Vienna, Vienna, Austria; and
| | - Uwe Rudolph
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Mailman Research Center, Harvard Medical School, Belmont, Massachusetts
| | - Isabel Parada
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - John R Huguenard
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California;
| |
Collapse
|
49
|
Butkovich LM, DePoy LM, Allen AG, Shapiro LP, Swanson AM, Gourley SL. Adolescent-onset GABAA α1 silencing regulates reward-related decision making. Eur J Neurosci 2015; 42:2114-2121. [PMID: 26096050 DOI: 10.1111/ejn.12995] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/11/2015] [Accepted: 06/17/2015] [Indexed: 11/30/2022]
Abstract
The GABAA receptor mediates fast, inhibitory signaling, and cortical expression of the α1 subunit increases during postnatal development. Certain pathological stimuli such as stressors or prenatal cocaine exposure can interfere with this process, but causal relationships between GABAA α1 deficiency and complex behavioral outcomes remain unconfirmed. We chronically reduced GABAA α1 expression selectively in the medial prefrontal cortex (prelimbic subregion) of mice using viral-mediated gene silencing of Gabra1. Adolescent-onset Gabra1 knockdown delayed the acquisition of a cocaine-reinforced instrumental response but spared cocaine seeking in extinction and in a cue-induced reinstatement procedure. To determine whether response acquisition deficits could be associated with impairments in action-outcome associative learning and memory, we next assessed behavioral sensitivity to instrumental contingency degradation. In this case, the predictive relationship between familiar actions and their outcomes is violated. Adolescent-onset knockdown, although not adult-onset knockdown, delayed the expression of goal-directed response strategies in this task, resulting instead in inflexible habit-like modes of response. Thus, the maturation of medial prefrontal cortex GABAA α1 systems during adolescence appears necessary for goal-directed reward-related decision making in adulthood. These findings are discussed in the light of evidence that prolonged Gabra1 deficiency may impair synaptic plasticity.
Collapse
Affiliation(s)
| | - Lauren M DePoy
- Graduate Program in Neuroscience, Emory University.,Department of Pediatrics, Emory University.,Yerkes National Primate Research Center, Emory University
| | - Amanda G Allen
- Department of Pediatrics, Emory University.,Yerkes National Primate Research Center, Emory University
| | - Lauren P Shapiro
- Department of Pediatrics, Emory University.,Yerkes National Primate Research Center, Emory University.,Molecular and Systems Pharmacology, Emory University
| | - Andrew M Swanson
- Graduate Program in Neuroscience, Emory University.,Department of Pediatrics, Emory University.,Yerkes National Primate Research Center, Emory University
| | - Shannon L Gourley
- Graduate Program in Neuroscience, Emory University.,Department of Pediatrics, Emory University.,Yerkes National Primate Research Center, Emory University.,Department of Psychiatry and Behavioral Sciences, Emory University
| |
Collapse
|
50
|
Klenowski PM, Fogarty MJ, Belmer A, Noakes PG, Bellingham MC, Bartlett SE. Structural and functional characterization of dendritic arbors and GABAergic synaptic inputs on interneurons and principal cells in the rat basolateral amygdala. J Neurophysiol 2015; 114:942-57. [PMID: 26041829 DOI: 10.1152/jn.00824.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 06/02/2015] [Indexed: 11/22/2022] Open
Abstract
The basolateral amygdala (BLA) is a complex brain region associated with processing emotional states, such as fear, anxiety, and stress. Some aspects of these emotional states are driven by the network activity of synaptic connections, derived from both local circuitry and projections to the BLA from other regions. Although the synaptic physiology and general morphological characteristics are known for many individual cell types within the BLA, the combination of morphological, electrophysiological, and distribution of neurochemical GABAergic synapses in a three-dimensional neuronal arbor has not been reported for single neurons from this region. The aim of this study was to assess differences in morphological characteristics of BLA principal cells and interneurons, quantify the distribution of GABAergic neurochemical synapses within the entire neuronal arbor of each cell type, and determine whether GABAergic synaptic density correlates with electrophysiological recordings of inhibitory postsynaptic currents. We show that BLA principal neurons form complex dendritic arborizations, with proximal dendrites having fewer spines but higher densities of neurochemical GABAergic synapses compared with distal dendrites. Furthermore, we found that BLA interneurons exhibited reduced dendritic arbor lengths and spine densities but had significantly higher densities of putative GABAergic synapses compared with principal cells, which was correlated with an increased frequency of spontaneous inhibitory postsynaptic currents. The quantification of GABAergic connectivity, in combination with morphological and electrophysiological measurements of the BLA cell types, is the first step toward a greater understanding of how fear and stress lead to changes in morphology, local connectivity, and/or synaptic reorganization of the BLA.
Collapse
Affiliation(s)
- Paul M Klenowski
- Translational Research Institute and Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Matthew J Fogarty
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia; and
| | - Arnauld Belmer
- Translational Research Institute and Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Peter G Noakes
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia; and Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Mark C Bellingham
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia; and
| | - Selena E Bartlett
- Translational Research Institute and Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia;
| |
Collapse
|