1
|
Kasanga EA, Soto I, Centner A, McManus R, Shifflet MK, Navarrete W, Han Y, Lisk J, Ehrhardt T, Wheeler K, Mhatre-Winters I, Richardson JR, Bishop C, Nejtek VA, Salvatore MF. Moderate intensity aerobic exercise alleviates motor deficits in 6-OHDA lesioned rats and reduces serum levels of biomarkers of Parkinson's disease severity without recovery of striatal dopamine or tyrosine hydroxylase. Exp Neurol 2024; 379:114875. [PMID: 38944332 DOI: 10.1016/j.expneurol.2024.114875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024]
Abstract
Alleviation of motor impairment by aerobic exercise (AE) in Parkinson's disease (PD) patients points to activation of neurobiological mechanisms that may be targetable by therapeutic approaches. However, evidence for AE-related recovery of striatal dopamine (DA) signaling or tyrosine hydroxylase (TH) loss has been inconsistent in rodent studies. This ambiguity may be related to the timing of AE intervention in relation to the status of nigrostriatal neuron loss. Here, we replicated human PD at diagnosis by establishing motor impairment with >80% striatal DA and TH loss prior to initiating AE, and assessed its potential to alleviate motor decline and restore DA and TH loss. We also evaluated if serum levels of neurofilament light (NfL) and glial fibrillary acidic protein (GFAP), biomarkers of human PD severity, changed in response to AE. 6-hydroxydopamine (6-OHDA) was infused unilaterally into rat medial forebrain bundle to induce progressive nigrostriatal neuron loss over 28 days. Moderate intensity AE (3× per week, 40 min/session), began 8-10 days post-lesion following establishment of impaired forelimb use. Striatal tissue DA, TH protein and mRNA, and serum levels of NfL/GFAP were determined 3-wks after AE began. Despite severe striatal DA depletion at AE initiation, forelimb use deficits and hypokinesia onset were alleviated by AE, without recovery of striatal DA or TH protein loss, but reduced NfL and GFAP serum levels. This proof-of-concept study shows AE alleviates motor impairment when initiated with >80% striatal DA loss without obligate recovery of striatal DA or TH protein. Moreover, the AE-related reduction of NfL and GFAP serum levels may serve as objective blood-based biomarkers of AE efficacy.
Collapse
Affiliation(s)
- Ella A Kasanga
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States of America
| | - Isabel Soto
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States of America
| | - Ashley Centner
- Department of Psychology, Binghamton University, Binghamton, NY, United States of America
| | - Robert McManus
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States of America
| | - Marla K Shifflet
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States of America
| | - Walter Navarrete
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States of America
| | - Yoonhee Han
- Department of Environmental Health Sciences, Robert Stempel School of Public Health & Social Work, Florida International University, Miami, FL, United States of America; Isakson Center for Neurological Disease Research, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| | - Jerome Lisk
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States of America
| | - Travis Ehrhardt
- Clearcut Ortho Rehab & Diagnostics, Fort Worth, TX, United States of America
| | - Ken Wheeler
- Clearcut Ortho Rehab & Diagnostics, Fort Worth, TX, United States of America
| | - Isha Mhatre-Winters
- Department of Environmental Health Sciences, Robert Stempel School of Public Health & Social Work, Florida International University, Miami, FL, United States of America; Isakson Center for Neurological Disease Research, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| | - Jason R Richardson
- Department of Environmental Health Sciences, Robert Stempel School of Public Health & Social Work, Florida International University, Miami, FL, United States of America; Isakson Center for Neurological Disease Research, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| | - Christopher Bishop
- Department of Psychology, Binghamton University, Binghamton, NY, United States of America
| | - Vicki A Nejtek
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States of America
| | - Michael F Salvatore
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States of America.
| |
Collapse
|
2
|
Kim MS, Kim H, Lee G. Precision Medicine in Parkinson's Disease Using Induced Pluripotent Stem Cells. Adv Healthc Mater 2024; 13:e2303041. [PMID: 38269602 DOI: 10.1002/adhm.202303041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Parkinson's disease (PD) is one of the most devastating neurological diseases; however, there is no effective cure yet. The availability of human induced pluripotent stem cells (iPSCs) provides unprecedented opportunities to understand the pathogenic mechanism and identification of new therapy for PD. Here a new model system of PD, including 2D human iPSC-derived midbrain dopaminergic (mDA) neurons, 3D iPSC-derived midbrain organoids (MOs) with cellular complexity, and more advanced microphysiological systems (MPS) with 3D organoids, is introduced. It is believed that successful integrations and applications of iPSC, organoid, and MPS technologies can bring new insight on PD's pathogenesis that will lead to more effective treatments for this debilitating disease.
Collapse
Affiliation(s)
- Min Seong Kim
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Hyesoo Kim
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Gabsang Lee
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
3
|
Sikora J, Dovero S, Kinet R, Arotcarena ML, Bohic S, Bezard E, Fernagut PO, Dehay B. Nigral ATP13A2 depletion induces Parkinson's disease-related neurodegeneration in a pilot study in non-human primates. NPJ Parkinsons Dis 2024; 10:141. [PMID: 39090150 PMCID: PMC11294619 DOI: 10.1038/s41531-024-00757-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
Lysosomal impairment is strongly implicated in Parkinson's disease (PD). Among the several PD-linked genes, the ATP13A2 gene, associated with the PARK9 locus, encodes a transmembrane lysosomal P5-type ATPase. Mutations in the ATP13A2 gene were primarily identified as the cause of Kufor-Rakeb syndrome (KRS), a juvenile-onset form of PD. Subsequently, an increasing list of several mutations has been described. These mutations result in truncation of the ATP13A2 protein, leading to a loss of function but surprisingly causing heterogeneity and variability in the clinical symptoms associated with different brain pathologies. In vitro studies show that its loss compromises lysosomal function, contributing to cell death. To understand the role of ATP13A2 dysfunction in disease, we disrupted its expression through a viral vector-based approach in nonhuman primates. Here, in this pilot study, we injected bilaterally into the substantia nigra of macaques, a lentiviral vector expressing an ATP13A2 small hairpin RNA. Animals were terminated five months later, and brains were harvested and compared with historical non-injected control brains to evaluate cerebral pathological markers known to be affected in KRS and PD. We characterised the pattern of dopaminergic loss in the striatum and the substantia nigra, the regional distribution of α-synuclein immunoreactivity in several brain structures, and its pathological status (i.e., S129 phosphorylation), the accumulation of heavy metals in nigral sections and occurrence of lysosomal dysfunction. This proof-of-concept experiment highlights the potential value of lentivirus-mediated ATP13A2 silencing to induce significant and ongoing degeneration in the nigrostriatal pathway, α-synuclein pathology, and iron accumulation in nonhuman primates.
Collapse
Affiliation(s)
- Joanna Sikora
- Univ. Bordeaux, CNRS, IMN, Bordeaux, France
- Univ. De Poitiers, INSERM, LNEC, Poitiers, France
| | | | - Rémi Kinet
- Univ. Bordeaux, CNRS, IMN, Bordeaux, France
| | | | - Sylvain Bohic
- Univ. Grenoble Alpes, Synchrotron Radiation for Biomedicine (STROBE), Grenoble, France
| | | | | | | |
Collapse
|
4
|
Buck SA, Mabry SJ, Glausier JR, Banks-Tibbs T, Ward C, Kozel JG, Fu C, Fish KN, Lewis DA, Logan RW, Freyberg Z. Aging disrupts the coordination between mRNA and protein expression in mouse and human midbrain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.01.596950. [PMID: 38854057 PMCID: PMC11160743 DOI: 10.1101/2024.06.01.596950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Age-related dopamine (DA) neuron loss is a primary feature of Parkinson's disease. However, it remains unclear whether similar biological processes occur during healthy aging, albeit to a lesser degree. We therefore determined whether midbrain DA neurons degenerate during aging in mice and humans. In mice, we identified no changes in midbrain neuron numbers throughout aging. Despite this, we found age-related decreases in midbrain mRNA expression of tyrosine hydroxylase (Th), the rate limiting enzyme of DA synthesis. Among midbrain glutamatergic cells, we similarly identified age-related declines in vesicular glutamate transporter 2 (Vglut2) mRNA expression. In co-transmitting Th +/Vglut2 + neurons, Th and Vglut2 transcripts decreased with aging. Importantly, striatal Th and Vglut2 protein expression remained unchanged. In translating our findings to humans, we found no midbrain neurodegeneration during aging and identified age-related decreases in TH and VGLUT2 mRNA expression similar to mouse. Unlike mice, we discovered diminished density of striatal TH+ dopaminergic terminals in aged human subjects. However, TH and VGLUT2 protein expression were unchanged in the remaining striatal boutons. Finally, in contrast to Th and Vglut2 mRNA, expression of most ribosomal genes in Th + neurons was either maintained or even upregulated during aging. This suggests a homeostatic mechanism where age-related declines in transcriptional efficiency are overcome by ongoing ribosomal translation. Overall, we demonstrate species-conserved transcriptional effects of aging in midbrain dopaminergic and glutamatergic neurons that are not accompanied by marked cell death or lower striatal protein expression. This opens the door to novel therapeutic approaches to maintain neurotransmission and bolster neuronal resilience.
Collapse
Affiliation(s)
- Silas A. Buck
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Samuel J. Mabry
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jill R. Glausier
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tabitha Banks-Tibbs
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Caroline Ward
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jenesis Gayden Kozel
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chen Fu
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kenneth N. Fish
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - David A. Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan W. Logan
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Rademacher K, Nakamura K. Role of dopamine neuron activity in Parkinson's disease pathophysiology. Exp Neurol 2024; 373:114645. [PMID: 38092187 DOI: 10.1016/j.expneurol.2023.114645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/17/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023]
Abstract
Neural activity is finely tuned to produce normal behaviors, and disruptions in activity likely occur early in the course of many neurodegenerative diseases. However, how neural activity is altered, and how these changes influence neurodegeneration is poorly understood. Here, we focus on evidence that the activity of dopamine neurons is altered in Parkinson's disease (PD), either as a compensatory response to degeneration or as a result of circuit dynamics or pathologic proteins, based on available human data and studies in animal models of PD. We then discuss how this abnormal activity may augment other neurotoxic phenomena in PD, including mitochondrial deficits, protein aggregation and spread, dopamine toxicity, and excitotoxicity. A more complete picture of how activity is altered and the resulting effects on dopaminergic neuron health and function may inform future therapeutic interventions to target and protect dopamine neurons from degeneration.
Collapse
Affiliation(s)
- Katerina Rademacher
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, California, 94158, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.; Graduate Program in Neuroscience, University of California San Francisco, San Francisco, California, 94158, USA
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, California, 94158, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.; Graduate Program in Neuroscience, University of California San Francisco, San Francisco, California, 94158, USA; Graduate Program in Biomedical Sciences, University of California San Francisco, San Francisco, California, 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, California, 94158, USA.
| |
Collapse
|
6
|
Mattson MP, Leak RK. The hormesis principle of neuroplasticity and neuroprotection. Cell Metab 2024; 36:315-337. [PMID: 38211591 DOI: 10.1016/j.cmet.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/06/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024]
Abstract
Animals live in habitats fraught with a range of environmental challenges to their bodies and brains. Accordingly, cells and organ systems have evolved stress-responsive signaling pathways that enable them to not only withstand environmental challenges but also to prepare for future challenges and function more efficiently. These phylogenetically conserved processes are the foundation of the hormesis principle, in which single or repeated exposures to low levels of environmental challenges improve cellular and organismal fitness and raise the probability of survival. Hormetic principles have been most intensively studied in physical exercise but apply to numerous other challenges known to improve human health (e.g., intermittent fasting, cognitive stimulation, and dietary phytochemicals). Here we review the physiological mechanisms underlying hormesis-based neuroplasticity and neuroprotection. Approaching natural resilience from the lens of hormesis may reveal novel methods for optimizing brain function and lowering the burden of neurological disorders.
Collapse
Affiliation(s)
- Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Kolacheva A, Pavlova E, Bannikova A, Bogdanov V, Ugrumov M. Initial Molecular Mechanisms of the Pathogenesis of Parkinson's Disease in a Mouse Neurotoxic Model of the Earliest Preclinical Stage of This Disease. Int J Mol Sci 2024; 25:1354. [PMID: 38279354 PMCID: PMC10816442 DOI: 10.3390/ijms25021354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Studying the initial molecular mechanisms of the pathogenesis of Parkinson's disease (PD), primarily in the nigrostriatal dopaminergic system, is one of the priorities in neurology. Of particular interest is elucidating these mechanisms in the preclinical stage of PD, which lasts decades before diagnosis and is therefore not available for study in patients. Therefore, our main goal was to study the initial molecular mechanisms of the pathogenesis of PD in the striatum, the key center for dopamine regulation in motor function, in a mouse model of the earliest preclinical stage of PD, from 1 to 24 h after the administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). It was shown that the content of tyrosine hydroxylase (TH), the first enzyme in dopamine synthesis, does not change within 6 h after the administration of MPTP, but decreases after 24 h. In turn, TH activity increases after 1 h, decreases after 3 h, remains at the control level after 6 h, and decreases 24 h after the administration of MPTP. The concentration of dopamine in the striatum gradually decreases after MPTP administration, despite a decrease in its degradation. The identified initial molecular mechanisms of PD pathogenesis are considered as potential targets for the development of preventive neuroprotective treatment.
Collapse
Affiliation(s)
| | | | | | | | - Michael Ugrumov
- Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 119334 Moscow, Russia; (A.K.); (E.P.); (A.B.); (V.B.)
| |
Collapse
|
8
|
Salvatore MF. Dopamine Signaling in Substantia Nigra and Its Impact on Locomotor Function-Not a New Concept, but Neglected Reality. Int J Mol Sci 2024; 25:1131. [PMID: 38256204 PMCID: PMC10815979 DOI: 10.3390/ijms25021131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
The mechanistic influences of dopamine (DA) signaling and impact on motor function are nearly always interpreted from changes in nigrostriatal neuron terminals in striatum. This is a standard practice in studies of human Parkinson's disease (PD) and aging and related animal models of PD and aging-related parkinsonism. However, despite dozens of studies indicating an ambiguous relationship between changes in striatal DA signaling and motor phenotype, this perseverating focus on striatum continues. Although DA release in substantia nigra (SN) was first reported almost 50 years ago, assessment of nigral DA signaling changes in relation to motor function is rarely considered. Whereas DA signaling has been well-characterized in striatum at all five steps of neurotransmission (biosynthesis and turnover, storage, release, reuptake, and post-synaptic binding) in the nigrostriatal pathway, the depth of such interrogations in the SN, outside of cell counts, is sparse. However, there is sufficient evidence that these steps in DA neurotransmission in the SN are operational and regulated autonomously from striatum and are present in human PD and aging and related animal models. To complete our understanding of how nigrostriatal DA signaling affects motor function, it is past time to include interrogation of nigral DA signaling. This brief review highlights evidence that changes in nigral DA signaling at each step in DA neurotransmission are autonomous from those in striatum and changes in the SN alone can influence locomotor function. Accordingly, for full characterization of how nigrostriatal DA signaling affects locomotor activity, interrogation of DA signaling in SN is essential.
Collapse
Affiliation(s)
- Michael F Salvatore
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
9
|
Cruikshank A, Nijhout HF, Best J, Reed M. Dynamical questions in volume transmission. JOURNAL OF BIOLOGICAL DYNAMICS 2023; 17:2269986. [PMID: 37876112 DOI: 10.1080/17513758.2023.2269986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/05/2023] [Indexed: 10/26/2023]
Abstract
In volume transmission (or neuromodulation) neurons do not make one-to-one connections to other neurons, but instead simply release neurotransmitter into the extracellular space from numerous varicosities. Many well-known neurotransmitters including serotonin (5HT), dopamine (DA), histamine (HA), Gamma-Aminobutyric Acid (GABA) and acetylcholine (ACh) participate in volume transmission. Typically, the cell bodies are in one volume and the axons project to a distant volume in the brain releasing the neurotransmitter there. We introduce volume transmission and describe mathematically two natural homeostatic mechanisms. In some brain regions several neurotransmitters in the extracellular space affect each other's release. We investigate the dynamics created by this comodulation in two different cases: serotonin and histamine; and the comodulation of 4 neurotransmitters in the striatum and we compare to experimental data. This kind of comodulation poses new dynamical questions as well as the question of how these biochemical networks influence the electrophysiological networks in the brain.
Collapse
Affiliation(s)
| | | | - Janet Best
- Department of Mathematics, The Ohio State University, Columbus, OH, USA
| | - Michael Reed
- Department of Mathematics, Duke University, Durham, NC, USA
| |
Collapse
|
10
|
Yamamoto R, Takenoshita N, Inagawa Y, Kato H, Kaneshiro K, Kamiya T, Inagawa S, Saisho A, Tsugawa A, Mastumoto Y, Yoshimura M, Saito K, Shimizu S, Sato T. Association between longitudinal changes in striatal dopamine transporter uptake and clinical features of dementia with Lewy bodies. Psychogeriatrics 2023; 23:1036-1042. [PMID: 37726104 DOI: 10.1111/psyg.13025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND It is widely known that there is low striatal 123 I-2β-Carbomethoxy-3β-(4-iodophenyl)-N-(3- fluoropropyl) nortropane (123 I-FP-CIT) dopamine transporter single photon emission tomography (DaT-SPECT) uptake in patients with dementia with Lewy bodies (DLB). No studies to date have analyzed the association between longitudinal changes of clinical features and DaT uptake in patients with Parkinson syndrome, particularly those with DLB. The aim of this study was to investigate the association between the longitudinal changes in DaT uptake and the severity of parkinsonism and cognitive function in DLB patients. METHODS A total of 35 outpatients with probable DLB who underwent DaT-SPECT twice (at the initial examination and the follow-up period) in the Memory Disorder Clinic at the Department of Geriatric Medicine, Tokyo Medical University, were enrolled in this study between April 2014 and September 2020. The correlation between annual changes in DaT uptake and clinical features (cognitive function decline and parkinsonism) of the patients was analyzed. RESULTS A significant correlation was detected between annual changes in parkinsonism symptom severity and DaT uptake in the left posterior putamen (r = -0.39, P = 0.03), and between Mini-Mental State Examination scores and DaT uptake in all regions except the right posterior putamen (P < 0.05) in patients with DLB. CONCLUSIONS Our results suggested that the pathway from the ventrolateral tier of the substantia nigra to the putamen might be more crucial for motor function than other pathways, not only in Parkinson's disease but also in DLB.
Collapse
Affiliation(s)
- Ryo Yamamoto
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Naoto Takenoshita
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Yuta Inagawa
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Hikaru Kato
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Kyoko Kaneshiro
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Tomoki Kamiya
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Shoya Inagawa
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Aya Saisho
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Akito Tsugawa
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Yukari Mastumoto
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Mana Yoshimura
- Department of Radiology, Tokyo Medical University, Tokyo, Japan
| | - Kazuhiro Saito
- Department of Radiology, Tokyo Medical University, Tokyo, Japan
| | - Soichiro Shimizu
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Tomohiko Sato
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
11
|
Milekovic T, Moraud EM, Macellari N, Moerman C, Raschellà F, Sun S, Perich MG, Varescon C, Demesmaeker R, Bruel A, Bole-Feysot LN, Schiavone G, Pirondini E, YunLong C, Hao L, Galvez A, Hernandez-Charpak SD, Dumont G, Ravier J, Le Goff-Mignardot CG, Mignardot JB, Carparelli G, Harte C, Hankov N, Aureli V, Watrin A, Lambert H, Borton D, Laurens J, Vollenweider I, Borgognon S, Bourre F, Goillandeau M, Ko WKD, Petit L, Li Q, Buschman R, Buse N, Yaroshinsky M, Ledoux JB, Becce F, Jimenez MC, Bally JF, Denison T, Guehl D, Ijspeert A, Capogrosso M, Squair JW, Asboth L, Starr PA, Wang DD, Lacour SP, Micera S, Qin C, Bloch J, Bezard E, Courtine G. A spinal cord neuroprosthesis for locomotor deficits due to Parkinson's disease. Nat Med 2023; 29:2854-2865. [PMID: 37932548 DOI: 10.1038/s41591-023-02584-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/08/2023] [Indexed: 11/08/2023]
Abstract
People with late-stage Parkinson's disease (PD) often suffer from debilitating locomotor deficits that are resistant to currently available therapies. To alleviate these deficits, we developed a neuroprosthesis operating in closed loop that targets the dorsal root entry zones innervating lumbosacral segments to reproduce the natural spatiotemporal activation of the lumbosacral spinal cord during walking. We first developed this neuroprosthesis in a non-human primate model that replicates locomotor deficits due to PD. This neuroprosthesis not only alleviated locomotor deficits but also restored skilled walking in this model. We then implanted the neuroprosthesis in a 62-year-old male with a 30-year history of PD who presented with severe gait impairments and frequent falls that were medically refractory to currently available therapies. We found that the neuroprosthesis interacted synergistically with deep brain stimulation of the subthalamic nucleus and dopaminergic replacement therapies to alleviate asymmetry and promote longer steps, improve balance and reduce freezing of gait. This neuroprosthesis opens new perspectives to reduce the severity of locomotor deficits in people with PD.
Collapse
Affiliation(s)
- Tomislav Milekovic
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, CHUV, Lausanne, Switzerland
- Department of Fundamental Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Eduardo Martin Moraud
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, CHUV, Lausanne, Switzerland
| | - Nicolo Macellari
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, CHUV, Lausanne, Switzerland
| | - Charlotte Moerman
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, CHUV, Lausanne, Switzerland
| | - Flavio Raschellà
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- NeuroX Institute, School of Bioengineering, EPFL, Lausanne, Switzerland
| | - Shiqi Sun
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, CHUV, Lausanne, Switzerland
| | - Matthew G Perich
- Department of Fundamental Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Camille Varescon
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, CHUV, Lausanne, Switzerland
| | - Robin Demesmaeker
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, CHUV, Lausanne, Switzerland
| | - Alice Bruel
- Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| | - Léa N Bole-Feysot
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, CHUV, Lausanne, Switzerland
| | - Giuseppe Schiavone
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Laboratory for Soft Bioelectronic Interfaces (LSBI), NeuroX Institute, EPFL, Lausanne, Switzerland
| | - Elvira Pirondini
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cheng YunLong
- Motac Neuroscience, UK-M15 6WE, Manchester, UK
- China Academy of Medical Sciences, Beijing, China
- Institute of Laboratory Animal Sciences, Beijing, China
| | - Li Hao
- Motac Neuroscience, UK-M15 6WE, Manchester, UK
- China Academy of Medical Sciences, Beijing, China
- Institute of Laboratory Animal Sciences, Beijing, China
| | - Andrea Galvez
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, CHUV, Lausanne, Switzerland
| | - Sergio Daniel Hernandez-Charpak
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, CHUV, Lausanne, Switzerland
| | - Gregory Dumont
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, CHUV, Lausanne, Switzerland
| | - Jimmy Ravier
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, CHUV, Lausanne, Switzerland
| | - Camille G Le Goff-Mignardot
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, CHUV, Lausanne, Switzerland
| | - Jean-Baptiste Mignardot
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, CHUV, Lausanne, Switzerland
| | - Gaia Carparelli
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, CHUV, Lausanne, Switzerland
| | - Cathal Harte
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, CHUV, Lausanne, Switzerland
| | - Nicolas Hankov
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, CHUV, Lausanne, Switzerland
| | - Viviana Aureli
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, CHUV, Lausanne, Switzerland
| | | | | | - David Borton
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, CHUV, Lausanne, Switzerland
- School of Engineering, Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Jean Laurens
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Isabelle Vollenweider
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, CHUV, Lausanne, Switzerland
| | - Simon Borgognon
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, CHUV, Lausanne, Switzerland
| | - François Bourre
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Michel Goillandeau
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Wai Kin D Ko
- Motac Neuroscience, UK-M15 6WE, Manchester, UK
- China Academy of Medical Sciences, Beijing, China
- Institute of Laboratory Animal Sciences, Beijing, China
| | - Laurent Petit
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Qin Li
- Motac Neuroscience, UK-M15 6WE, Manchester, UK
- China Academy of Medical Sciences, Beijing, China
- Institute of Laboratory Animal Sciences, Beijing, China
| | | | | | - Maria Yaroshinsky
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Jean-Baptiste Ledoux
- Department of Diagnostic and Interventional Radiology, CHUV/UNIL, Lausanne, Switzerland
| | - Fabio Becce
- Department of Diagnostic and Interventional Radiology, CHUV/UNIL, Lausanne, Switzerland
| | | | - Julien F Bally
- Department of Neurology, CHUV/UNIL, Lausanne, Switzerland
| | | | - Dominique Guehl
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Auke Ijspeert
- Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| | - Marco Capogrosso
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, CHUV, Lausanne, Switzerland
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jordan W Squair
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, CHUV, Lausanne, Switzerland
| | - Leonie Asboth
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, CHUV, Lausanne, Switzerland
| | - Philip A Starr
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Doris D Wang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Stéphanie P Lacour
- NeuroX Institute, School of Bioengineering, EPFL, Lausanne, Switzerland
- Laboratory for Soft Bioelectronic Interfaces (LSBI), NeuroX Institute, EPFL, Lausanne, Switzerland
| | - Silvestro Micera
- NeuroX Institute, School of Bioengineering, EPFL, Lausanne, Switzerland
- Department of Excellence in Robotics and AI, Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Chuan Qin
- China Academy of Medical Sciences, Beijing, China
| | - Jocelyne Bloch
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland.
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland.
- Department of Neurosurgery, CHUV, Lausanne, Switzerland.
| | - Erwan Bezard
- Motac Neuroscience, UK-M15 6WE, Manchester, UK.
- China Academy of Medical Sciences, Beijing, China.
- Institute of Laboratory Animal Sciences, Beijing, China.
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.
| | - G Courtine
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland.
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland.
- Department of Neurosurgery, CHUV, Lausanne, Switzerland.
| |
Collapse
|
12
|
Kasanga EA, Han Y, Shifflet MK, Navarrete W, McManus R, Parry C, Barahona A, Nejtek VA, Manfredsson FP, Kordower JH, Richardson JR, Salvatore MF. Nigral-specific increase in ser31 phosphorylation compensates for tyrosine hydroxylase protein and nigrostriatal neuron loss: Implications for delaying parkinsonian signs. Exp Neurol 2023; 368:114509. [PMID: 37634696 DOI: 10.1016/j.expneurol.2023.114509] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Compensatory mechanisms that augment dopamine (DA) signaling are thought to mitigate onset of hypokinesia prior to major loss of tyrosine hydroxylase (TH) in striatum that occurs in Parkinson's disease. However, the identity of such mechanisms remains elusive. In the present study, the rat nigrostriatal pathway was unilaterally-lesioned with 6-hydroxydopamine (6-OHDA) to determine whether differences in DA content, TH protein, TH phosphorylation, or D1 receptor expression in striatum or substantia nigra (SN) aligned with hypokinesia onset and severity at two time points. In striatum, DA and TH loss reached its maximum (>90%) 7 days after lesion induction. However, in SN, no DA loss occurred, despite ∼60% TH loss. Hypokinesia was established at 21 days post-lesion and maintained at 28 days. At this time, DA loss was ∼60% in the SN, but still of lesser magnitude than TH loss. At day 7 and 28, ser31 TH phosphorylation increased only in SN, corresponding to less DA versus TH protein loss. In contrast, ser40 TH phosphorylation was unaffected in either region. Despite DA loss in both regions at day 28, D1 receptor expression increased only in lesioned SN. These results support the concept that augmented components of DA signaling in the SN, through increased ser31 TH phosphorylation and D1 receptor expression, contribute as compensatory mechanisms against progressive nigrostriatal neuron and TH protein loss, and may mitigate hypokinesia severity.
Collapse
Affiliation(s)
- Ella A Kasanga
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76117, USA
| | - Yoonhee Han
- Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Marla K Shifflet
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76117, USA
| | - Walter Navarrete
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76117, USA
| | - Robert McManus
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76117, USA
| | - Caleb Parry
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76117, USA
| | - Arturo Barahona
- Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Vicki A Nejtek
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76117, USA
| | - Fredric P Manfredsson
- Parkinson's Disease Research Unit, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Jeffrey H Kordower
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ 85287, USA
| | - Jason R Richardson
- Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Michael F Salvatore
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76117, USA.
| |
Collapse
|
13
|
Kaya I, Nilsson A, Luptáková D, He Y, Vallianatou T, Bjärterot P, Svenningsson P, Bezard E, Andrén PE. Spatial lipidomics reveals brain region-specific changes of sulfatides in an experimental MPTP Parkinson's disease primate model. NPJ Parkinsons Dis 2023; 9:118. [PMID: 37495571 PMCID: PMC10372136 DOI: 10.1038/s41531-023-00558-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023] Open
Abstract
Metabolism of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) to the neurotoxin MPP+ in the brain causes permanent Parkinson's disease-like symptoms by destroying dopaminergic neurons in the pars compacta of the substantia nigra in humans and non-human primates. However, the complete molecular pathology underlying MPTP-induced parkinsonism remains poorly understood. We used dual polarity matrix-assisted laser desorption/ionization mass spectrometry imaging to thoroughly image numerous glycerophospholipids and sphingolipids in coronal brain tissue sections of MPTP-lesioned and control non-human primate brains (Macaca mulatta). The results revealed specific distributions of several sulfatide lipid molecules based on chain-length, number of double bonds, and importantly, hydroxylation stage. More specifically, certain long-chain hydroxylated sulfatides with polyunsaturated chains in the molecular structure were depleted within motor-related brain regions in the MPTP-lesioned animals, e.g., external and internal segments of globus pallidus and substantia nigra pars reticulata. In contrast, certain long-chain non-hydroxylated sulfatides were found to be elevated within the same brain regions. These findings demonstrate region-specific dysregulation of sulfatide metabolism within the MPTP-lesioned macaque brain. The depletion of long-chain hydroxylated sulfatides in the MPTP-induced pathology indicates oxidative stress and oligodendrocyte/myelin damage within the pathologically relevant brain regions. Hence, the presented findings improve our current understanding of the molecular pathology of MPTP-induced parkinsonism within primate brains, and provide a basis for further research regarding the role of dysregulated sulfatide metabolism in PD.
Collapse
Affiliation(s)
- Ibrahim Kaya
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Nilsson
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Dominika Luptáková
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Yachao He
- Section of Neurology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Theodosia Vallianatou
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Patrik Bjärterot
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Per Svenningsson
- Section of Neurology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Erwan Bezard
- University of Bordeaux, CNRS, IMN, UMR 5293, F-33000, Bordeaux, France
| | - Per E Andrén
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
14
|
Darricau M, Katsinelos T, Raschella F, Milekovic T, Crochemore L, Li Q, Courtine G, McEwan WA, Dehay B, Bezard E, Planche V. Tau seeds from patients induce progressive supranuclear palsy pathology and symptoms in primates. Brain 2023; 146:2524-2534. [PMID: 36382344 PMCID: PMC10232263 DOI: 10.1093/brain/awac428] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 11/17/2022] Open
Abstract
Progressive supranuclear palsy is a primary tauopathy affecting both neurons and glia and is responsible for both motor and cognitive symptoms. Recently, it has been suggested that progressive supranuclear palsy tauopathy may spread in the brain from cell to cell in a 'prion-like' manner. However, direct experimental evidence of this phenomenon, and its consequences on brain functions, is still lacking in primates. In this study, we first derived sarkosyl-insoluble tau fractions from post-mortem brains of patients with progressive supranuclear palsy. We also isolated the same fraction from age-matched control brains. Compared to control extracts, the in vitro characterization of progressive supranuclear palsy-tau fractions demonstrated a high seeding activity in P301S-tau expressing cells, displaying after incubation abnormally phosphorylated (AT8- and AT100-positivity), misfolded, filamentous (pentameric formyl thiophene acetic acid positive) and sarkosyl-insoluble tau. We bilaterally injected two male rhesus macaques in the supranigral area with this fraction of progressive supranuclear palsy-tau proteopathic seeds, and two other macaques with the control fraction. The quantitative analysis of kinematic features revealed that progressive supranuclear palsy-tau injected macaques exhibited symptoms suggestive of parkinsonism as early as 6 months after injection, remaining present until euthanasia at 18 months. An object retrieval task showed the progressive appearance of a significant dysexecutive syndrome in progressive supranuclear palsy-tau injected macaques compared to controls. We found AT8-positive staining and 4R-tau inclusions only in progressive supranuclear palsy-tau injected macaques. Characteristic pathological hallmarks of progressive supranuclear palsy, including globose and neurofibrillary tangles, tufted astrocytes and coiled bodies, were found close to the injection sites but also in connected brain regions that are known to be affected in progressive supranuclear palsy (striatum, pallidum, thalamus). Interestingly, while glial AT8-positive lesions were the most frequent near the injection site, we found mainly neuronal inclusions in the remote brain area, consistent with a neuronal transsynaptic spreading of the disease. Our results demonstrate that progressive supranuclear palsy patient-derived tau aggregates can induce motor and behavioural impairments in non-human primates related to the prion-like seeding and spreading of typical pathological progressive supranuclear palsy lesions. This pilot study paves the way for supporting progressive supranuclear palsy-tau injected macaque as a relevant animal model to accelerate drug development targeting this rare and fatal neurodegenerative disease.
Collapse
Affiliation(s)
- Morgane Darricau
- University of Bordeaux, CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Taxiarchis Katsinelos
- UK Dementia Research Institute, Department of Clinical Neurosciences, University of Cambridge, CB2 0AH Cambridge, UK
| | - Flavio Raschella
- Swiss Federal Institute of Technology (EPFL), CH-1011 Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), CH-1011 Lausanne, Switzerland
- Centre Hospitalier Universitaire Vaudois (CHUV), CH-1011 Lausanne, Switzerland
| | - Tomislav Milekovic
- Swiss Federal Institute of Technology (EPFL), CH-1011 Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), CH-1011 Lausanne, Switzerland
- Centre Hospitalier Universitaire Vaudois (CHUV), CH-1011 Lausanne, Switzerland
| | - Louis Crochemore
- University of Bordeaux, CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Qin Li
- Motac Neuroscience, F-33000 Bordeaux, France
| | - Grégoire Courtine
- Swiss Federal Institute of Technology (EPFL), CH-1011 Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), CH-1011 Lausanne, Switzerland
- Centre Hospitalier Universitaire Vaudois (CHUV), CH-1011 Lausanne, Switzerland
| | - William A McEwan
- UK Dementia Research Institute, Department of Clinical Neurosciences, University of Cambridge, CB2 0AH Cambridge, UK
| | - Benjamin Dehay
- University of Bordeaux, CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Erwan Bezard
- University of Bordeaux, CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
- Motac Neuroscience, F-33000 Bordeaux, France
| | - Vincent Planche
- University of Bordeaux, CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
- CHU de Bordeaux, Pôle de Neurosciences Cliniques, Centre Mémoire de Ressources et de Recherche, F-33000 Bordeaux, France
| |
Collapse
|
15
|
Kaya I, Schembri LS, Nilsson A, Shariatgorji R, Baijnath S, Zhang X, Bezard E, Svenningsson P, Odell LR, Andrén PE. On-Tissue Chemical Derivatization for Comprehensive Mapping of Brain Carboxyl and Aldehyde Metabolites by MALDI-MS Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:836-846. [PMID: 37052344 PMCID: PMC10161219 DOI: 10.1021/jasms.2c00336] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The visualization of small metabolites by MALDI mass spectrometry imaging in brain tissue sections is challenging due to low detection sensitivity and high background interference. We present an on-tissue chemical derivatization MALDI mass spectrometry imaging approach for the comprehensive mapping of carboxyls and aldehydes in brain tissue sections. In this approach, the AMPP (1-(4-(aminomethyl)phenyl)pyridin-1-ium chloride) derivatization reagent is used for the covalent charge-tagging of molecules containing carboxylic acid (in the presence of peptide coupling reagents) and aldehydes. This includes free fatty acids and the associated metabolites, fatty aldehydes, dipeptides, neurotoxic reactive aldehydes, amino acids, neurotransmitters and associated metabolites, as well as tricarboxylic acid cycle metabolites. We performed sensitive ultrahigh mass resolution MALDI-MS detection and imaging of various carboxyl- and aldehyde-containing endogenous metabolites simultaneously in rodent brain tissue sections. We verified the AMPP-derivatized metabolites by tandem MS for structural elucidation. This approach allowed us to image numerous aldehydes and carboxyls, including certain metabolites which had been undetectable in brain tissue sections. We also demonstrated the application of on-tissue derivatization to carboxyls and aldehydes in coronal brain tissue sections of a nonhuman primate Parkinson's disease model. Our methodology provides a powerful tool for the sensitive, simultaneous spatial molecular imaging of numerous aldehydes and carboxylic acids during pathological states, including neurodegeneration, in brain tissue.
Collapse
Affiliation(s)
- Ibrahim Kaya
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, SE-75124 Uppsala, Sweden
| | | | - Anna Nilsson
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, SE-75124 Uppsala, Sweden
| | - Reza Shariatgorji
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, SE-75124 Uppsala, Sweden
| | - Sooraj Baijnath
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, SE-75124 Uppsala, Sweden
| | - Xiaoqun Zhang
- Section of Neurology, Department of Clinical Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Erwan Bezard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, F-33000 Bordeaux, France
| | - Per Svenningsson
- Section of Neurology, Department of Clinical Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Luke R Odell
- Department of Medicinal Chemistry, Uppsala University, SE-75123 Uppsala, Sweden
| | - Per E Andrén
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, SE-75124 Uppsala, Sweden
| |
Collapse
|
16
|
Norris SA, Tian L, Williams EL, Perlmutter JS. Transient dystonia correlates with parkinsonism after 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine in nonhuman primates. DYSTONIA 2023; 2:11019. [PMID: 37711667 PMCID: PMC10501383 DOI: 10.3389/dyst.2023.11019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Unilateral internal carotid artery 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) infusion in non-human primates produces transient contralateral hemi-dystonia followed by stable contralateral hemi-parkinsonism; the relationship between dystonia and parkinsonism remains unclear. We hypothesized that transient dystonia severity following MPTP correlates with parkinsonism severity. In male Macaca nemestrina (n = 3) and M. fascicularis (n = 17) we administered unilateral intra-carotid MPTP, then correlated validated blinded ratings of transient peak dystonia and delayed parkinsonism. We also correlated dystonia severity with post-mortem measures of residual striatal dopamine and nigral neuron counts obtained a mean 53 ± 15 days following MPTP, after resolution of dystonia but during stable parkinsonism. Median latency to dystonia onset was 1 day, and peak severity 2.5 days after MPTP; total dystonia duration was 13.5 days. Parkinsonism peaked a median of 19.5 days after MPTP, remaining nearly constant thereafter. Peak dystonia severity highly correlated with parkinsonism severity (r[18] = 0.82, p < 0.001). Residual cell counts in lesioned nigra correlated linearly with peak dystonia scores (r[18] = -0.68, p=<0.001). Dystonia was not observed in monkeys without striatal dopamine depletion (n = 2); dystonia severity correlated with striatal dopamine depletion when residual nigral cell loss was less than 50% ([11] r = -0.83, p < 0.001) but spanned a broad range with near complete striatal dopamine depletion, when nigral cell loss was greater than 50%. Our data indicate that residual striatal dopamine may not reflect dystonia severity. We speculate on mechanisms of transient dystonia followed by parkinsonism that may be studied using this particular NHP MPTP model to better understand relationships of transient dystonia to nigrostriatal injury and parkinsonism.
Collapse
Affiliation(s)
- S. A. Norris
- Department of Neurology, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Radiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - L. Tian
- Department of Neurology, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - E. L. Williams
- Department of Neurology, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - J. S. Perlmutter
- Department of Neurology, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Radiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Neuroscience, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Physical Therapy, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Occupational Therapy, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
17
|
Modulation of nigral dopamine signaling mitigates parkinsonian signs of aging: evidence from intervention with calorie restriction or inhibition of dopamine uptake. GeroScience 2023; 45:45-63. [PMID: 35635679 PMCID: PMC9886753 DOI: 10.1007/s11357-022-00583-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/29/2022] [Indexed: 02/03/2023] Open
Abstract
Identifying neurobiological mechanisms of aging-related parkinsonism, and lifestyle interventions that mitigate them, remain critical knowledge gaps. No aging study, from rodent to human, has reported loss of any dopamine (DA) signaling marker near the magnitude associated with onset of parkinsonian signs in Parkinson's disease (PD). However, in substantia nigra (SN), similar loss of DA signaling markers in PD or aging coincide with parkinsonian signs. Alleviation of these parkinsonian signs may be possible by interventions such as calorie restriction (CR), which augment DA signaling markers like tyrosine hydroxylase (TH) expression in the SN, but not striatum. Here, we interrogated respective contributions of nigral and striatal DA mechanisms to aging-related parkinsonian signs in aging (18 months old) rats in two studies: by the imposition of CR for 6 months, and inhibition of DA uptake within the SN or striatum by cannula-directed infusion of nomifensine. Parkinsonian signs were mitigated within 12 weeks after CR and maintained until 24 months old, commensurate with increased D1 receptor expression in the SN alone, and increased GDNF family receptor, GFR-α1, in the striatum, suggesting increased GDNF signaling. Nomifensine infusion into the SN or striatum selectively increased extracellular DA. However, only nigral infusion increased locomotor activity. These results indicate mechanisms that increase components of DA signaling in the SN alone mitigate parkinsonian signs in aging, and are modifiable by interventions, like CR, to offset parkinsonian signs, even at advanced age. Moreover, these results give evidence that changes in nigral DA signaling may modulate some parameters of locomotor activity autonomously from striatal DA signaling.
Collapse
|
18
|
Jeong SH, Park CW, Lee HS, Kim YJ, Yun M, Lee PH, Sohn YH, Chung SJ. Patterns of striatal dopamine depletion and motor deficits in de novo Parkinson's disease. J Neural Transm (Vienna) 2023; 130:19-28. [PMID: 36462096 DOI: 10.1007/s00702-022-02571-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/24/2022] [Indexed: 12/07/2022]
Abstract
The background of this study is to investigate whether striatal dopamine depletion patterns (selective involvement in the sensorimotor striatum or asymmetry) are associated with motor deficits in Parkinson's disease (PD). We enrolled 404 drug-naïve patients with early stage PD who underwent dopamine transporter (DAT) imaging. After quantifying DAT availability in each striatal sub-region, principal component (PC) analysis was conducted to yield PCs representing the spatial patterns of striatal dopamine depletion. Subsequently, multivariate linear regression analysis was conducted to investigate the relationship between striatal dopamine depletion patterns and motor deficits assessed using the Unified PD Rating Scale Part III (UPDRS-III). Mediation analyses were used to evaluate whether dopamine deficiency in the posterior putamen mediated the association between striatal dopamine depletion patterns and parkinsonian motor deficits. Three PCs indicated patterns of striatal dopamine depletion: PC1 (overall striatal dopamine deficiency), PC2 (selective dopamine loss in the sensorimotor striatum), and PC3 (symmetric dopamine loss in the striatum). Multivariate linear regression analysis revealed that PC1 (β = - 1.605, p < 0.001) and PC2 (β = 3.201, p < 0.001) were associated with motor deficits (i.e., higher UPDRS-III scores in subjects with severe dopamine depletion throughout the whole striatum or more selective dopamine loss in the sensorimotor striatum), whereas PC3 was not (β = - 0.016, p = 0.992). Mediation analyses demonstrated that the effects of PC1 and PC2 on UPDRS-III scores were indirectly mediated by DAT availability in the posterior putamen, with a non-significant direct effect. Dopamine deficiency in the posterior putamen was most relevant to the severity of motor deficits in patients with PD, while the spatial patterns of striatal dopamine depletion were not a key determinant.
Collapse
Affiliation(s)
- Seong Ho Jeong
- Department of Neurology, Inje University Sanggye Paik Hospital, Seoul, South Korea.,Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Chan Wook Park
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, South Korea
| | - Yun Joong Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, 363 Dongbaekjukjeon-daero Giheung-gu, Yongin-si, Gyeonggi-do, 16995, South Korea.,YONSEI BEYOND LAB, Yongin, South Korea
| | - Mijin Yun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea. .,Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, 363 Dongbaekjukjeon-daero Giheung-gu, Yongin-si, Gyeonggi-do, 16995, South Korea. .,YONSEI BEYOND LAB, Yongin, South Korea.
| |
Collapse
|
19
|
Jeong SH, Lee EC, Chung SJ, Lee HS, Jung JH, Sohn YH, Seong JK, Lee PH. Local striatal volume and motor reserve in drug-naïve Parkinson's disease. NPJ Parkinsons Dis 2022; 8:168. [PMID: 36470876 PMCID: PMC9722895 DOI: 10.1038/s41531-022-00429-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Motor reserve (MR) may explain why individuals with similar pathological changes show marked differences in motor deficits in Parkinson's disease (PD). In this study, we investigated whether estimated individual MR was linked to local striatal volume (LSV) in PD. We analyzed data obtained from 333 patients with drug naïve PD who underwent dopamine transporter scans and high-resolution 3-tesla T1-weighted structural magnetic resonance images. Using a residual model, we estimated individual MRs on the basis of initial UPDRS-III score and striatal dopamine depletion. We performed a correlation analysis between MR estimates and LSV. Furthermore, we assessed the effect of LSV, which is correlated with MR estimates, on the longitudinal increase in the levodopa-equivalent dose (LED) during the 4-year follow-up period using a linear mixed model. After controlling for intracranial volume, there was a significant positive correlation between LSV and MR estimates in the bilateral caudate, anterior putamen, and ventro-posterior putamen. The linear mixed model showed that the large local volume of anterior and ventro-posterior putamen was associated with the low requirement of LED initially and accelerated LED increment thereafter. The present study demonstrated that LSV is crucial to MR in early-stage PD, suggesting LSV as a neural correlate of MR in PD.
Collapse
Affiliation(s)
- Seong Ho Jeong
- grid.15444.300000 0004 0470 5454Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea ,grid.411627.70000 0004 0647 4151Department of Neurology, Inje University Sanggye Paik Hospital, Seoul, South Korea
| | - Eun-Chong Lee
- grid.222754.40000 0001 0840 2678School of Biomedical Engineering, Korea University, Seoul, South Korea
| | - Seok Jong Chung
- grid.15444.300000 0004 0470 5454Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea ,grid.413046.40000 0004 0439 4086Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
| | - Hye Sun Lee
- grid.15444.300000 0004 0470 5454Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Ho Jung
- grid.411625.50000 0004 0647 1102Department of Neurology, Inje University Busan Paik Hospital, Seoul, South Korea
| | - Young H. Sohn
- grid.15444.300000 0004 0470 5454Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Joon-Kyung Seong
- grid.222754.40000 0001 0840 2678School of Biomedical Engineering, Korea University, Seoul, South Korea ,grid.222754.40000 0001 0840 2678Department of Artificial Intelligence, Korea University, Seoul, South Korea
| | - Phil Hyu Lee
- grid.15444.300000 0004 0470 5454Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea ,grid.15444.300000 0004 0470 5454Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
20
|
Lin HC, Wu YH, Huang CW, Ker MD. Verification of the beta oscillations in the subthalamic nucleus of the MPTP-induced parkinsonian minipig model. Brain Res 2022; 1798:148165. [DOI: 10.1016/j.brainres.2022.148165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/14/2022]
|
21
|
Bose S, Nag TC, Dey S, Sundd M, Jain S. Therapeutic Potential of Low-Intensity Magnetic Field Stimulation in 6-Hydroxydopamine Rat Model of Parkinson’s Disease: From Inflammation to Motor Function. Ann Neurosci 2022. [DOI: 10.1177/09727531221117634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background and Purpose Parkinson’s disease (PD) is a progressive neurodegenerative disorder that mainly affects the aged population. Transcranial magnetic field (MF) stimulation has shown to provide temporary motor recovery in neurological disorders. The aim of this study was to understand the cellular and molecular mechanism of low-intensity MF stimulation (17.96 µT; 50Hz; 2 h/day, four weeks) in a rat model of severe PD. Methods A clinically relevant, bilateral striatal 6-hydroxydopamine (6-OHDA) lesioned rat model of severe PD was employed to test the efficacy of low-intensity MF stimulation in the management of motor symptoms. The mechanism of action of MF was dissected by assessing the microglial activation, tissue ultrastructure, and cerebrospinal fluid (CSF) metabolomics using microdialysis. Results We observed a significant improvement in the postural balance and gait after MF exposure with a significant reduction in the number of activated microglia. There was an improvement in striatal dopaminergic innervation and glutamate levels but it did not reach a level of statistical significance. Conclusion MF stimulation helped ameliorate the motor deficits and reduced inflammation but was unable to provide a significant change in terms of dopaminergic innervation and metabolic profile in the severe 6-OHDA PD rat model.
Collapse
Affiliation(s)
- Samrat Bose
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, Delhi, India
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Tapas Chandra Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Soumil Dey
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, Delhi India
| | - Monica Sundd
- NMR Lab, National Institute of Immunology, New Delhi, Delhi, India
| | - Suman Jain
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, Delhi, India
| |
Collapse
|
22
|
Changes in Tyrosine Hydroxylase Activity and Dopamine Synthesis in the Nigrostriatal System of Mice in an Acute Model of Parkinson's Disease as a Manifestation of Neurodegeneration and Neuroplasticity. Brain Sci 2022; 12:brainsci12060779. [PMID: 35741664 PMCID: PMC9221104 DOI: 10.3390/brainsci12060779] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 02/06/2023] Open
Abstract
The progressive degradation of the nigrostriatal system leads to the development of Parkinson’s disease (PD). The synthesis of dopamine, the neurotransmitter of the nigrostriatal system, depends on the rate-limiting enzyme, tyrosine hydroxylase (TH). In this study, we evaluated the synthesis of dopamine during periods of neurodegradation and neuroplasticity in the nigrostriatal system on a model of the early clinical stage of PD. It was shown that the concentration of dopamine correlated with activity of TH, while TH activity did not depend on total protein content either in the SN or in the striatum. Both during the period of neurodegeneration and neuroplasticity, TH activity in SN was determined by the content of P19-TH, and in the striatum it was determined by P31-TH and P40-TH (to a lesser extent). The data obtained indicate a difference in the regulation of dopamine synthesis between DA-neuron bodies and their axons, which must be considered for the further development of symptomatic pharmacotherapy aimed at increasing TH activity.
Collapse
|
23
|
Hulme H, Fridjonsdottir E, Vallianatou T, Shariatgorji R, Nilsson A, Li Q, Bezard E, Andrén PE. Basal ganglia neuropeptides show abnormal processing associated with L-DOPA-induced dyskinesia. NPJ Parkinsons Dis 2022; 8:41. [PMID: 35418178 PMCID: PMC9007979 DOI: 10.1038/s41531-022-00299-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 03/04/2022] [Indexed: 12/23/2022] Open
Abstract
L-DOPA administration is the primary treatment for Parkinson’s disease (PD) but long-term administration is usually accompanied by hyperkinetic side-effects called L-DOPA-induced dyskinesia (LID). Signaling neuropeptides of the basal ganglia are affected in LID and changes in the expression of neuropeptide precursors have been described, but the final products formed from these precursors have not been well defined and regionally mapped. We therefore used mass spectrometry imaging to visualize and quantify neuropeptides in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposed parkinsonian and LID Macaca mulatta brain samples. We found that dyskinesia severity correlated with the levels of some abnormally processed peptides — notably, des-tyrosine dynorphins, substance P (1-7), and substance P (1-9) — in multiple brain regions. Levels of the active neuropeptides; dynorphin B, dynorphin A (1-8), α-neoendorphin, substance P (1-11), and neurokinin A, in the globus pallidus and substantia nigra correlated with putaminal levels of L-DOPA. Our results demonstrate that the abundance of selected active neuropeptides is associated with L-DOPA concentrations in the putamen, emphasizing their sensitivity to L-DOPA. Additionally, levels of truncated neuropeptides (which generally exhibit reduced or altered receptor affinity) correlate with dyskinesia severity, particularly for peptides associated with the direct pathway (i.e., dynorphins and tachykinins). The increases in tone of the tachykinin, enkephalin, and dynorphin neuropeptides in LID result in abnormal processing of neuropeptides with different biological activity and may constitute a functional compensatory mechanism for balancing the increased L-DOPA levels across the whole basal ganglia.
Collapse
Affiliation(s)
- Heather Hulme
- Department of Pharmaceutical Biosciences, Medical Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden.,Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, Uppsala, Sweden
| | - Elva Fridjonsdottir
- Department of Pharmaceutical Biosciences, Medical Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden
| | - Theodosia Vallianatou
- Department of Pharmaceutical Biosciences, Medical Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden
| | - Reza Shariatgorji
- Department of Pharmaceutical Biosciences, Medical Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden.,Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, Uppsala, Sweden
| | - Anna Nilsson
- Department of Pharmaceutical Biosciences, Medical Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden.,Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, Uppsala, Sweden
| | - Qin Li
- Motac Neuroscience, Manchester, M15 6WE, UK
| | - Erwan Bezard
- Motac Neuroscience, Manchester, M15 6WE, UK.,Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France.,Centre National de la Recherche Scientifique, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Per E Andrén
- Department of Pharmaceutical Biosciences, Medical Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden. .,Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
24
|
Motor and non-motor circuit disturbances in early Parkinson disease: which happens first? Nat Rev Neurosci 2022; 23:115-128. [PMID: 34907352 DOI: 10.1038/s41583-021-00542-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2021] [Indexed: 12/15/2022]
Abstract
For the last two decades, pathogenic concepts in Parkinson disease (PD) have revolved around the toxicity and spread of α-synuclein. Thus, α-synuclein would follow caudo-rostral propagation from the periphery to the central nervous system, first producing non-motor manifestations (such as constipation, sleep disorders and hyposmia), and subsequently impinging upon the mesencephalon to account for the cardinal motor features before reaching the neocortex as the disease evolves towards dementia. This model is the prevailing theory of the principal neurobiological mechanism of disease. Here, we scrutinize the temporal evolution of motor and non-motor manifestations in PD and suggest that, even though the postulated bottom-up mechanisms are likely to be involved, early involvement of the nigrostriatal system is a key and prominent pathophysiological mechanism. Upcoming studies of detailed clinical manifestations with newer neuroimaging techniques will allow us to more closely define, in vivo, the role of α-synuclein aggregates with respect to neuronal loss during the onset and progression of PD.
Collapse
|
25
|
Li ZF, Cui L, Jin MM, Hu DY, Hou XG, Liu SS, Zhang X, Zhu JH. A Matrigel-based 3D construct of SH-SY5Y cells models the α-synuclein pathologies of Parkinson's disease. Dis Model Mech 2022; 15:273997. [PMID: 35023548 PMCID: PMC8922027 DOI: 10.1242/dmm.049125] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 01/04/2022] [Indexed: 11/20/2022] Open
Abstract
Parkinson's disease (PD) is associated with α-synuclein-based Lewy body pathology, which has been difficult to observe in conventional two-dimensional (2D) cell culture and even in animal models. We herein aimed to develop a three-dimensional (3D) cellular model of PD to recapitulate the α-synuclein pathologies. All-trans-retinoic acid-differentiated human SH-SY5Y cells and Matrigel were optimized for 3D construction. The 3D cultured cells displayed higher tyrosine hydroxylase expression than 2D cells and improved dopaminergic-like phenotypes, as suggested by RNA-sequencing analyses. Multiple forms of α-synuclein, including monomer, and low- and high-molecular mass oligomers, were differentially present in the 2D and 3D cells, but mostly remained unchanged upon N-methyl-4-phenyl pyridine or rotenone treatment. Phosphorylated α-synuclein was accumulated, and detergent-insoluble α-synuclein fraction was observed, in the neurotoxin-treated 3D cells. Importantly, Lewy body-like inclusions were captured in the 3D system, including proteinase K-resistant α-synuclein aggregates, ubiquitin aggregation, and β-amyloid and β-sheet protein deposition. The study provides a unique and convenient 3D model of PD that recapitulates critical α-synuclein pathologies and should be useful in multiple PD-associated applications. Summary: This study provides a convenient 3D model of Parkinson's disease (PD), which recapitulates α-synuclein pathologies in human cells and could be used to investigate PD mechanisms and screen drugs.
Collapse
Affiliation(s)
- Zhao-Feng Li
- Institute of Nutrition and Diseases, Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Neurology and Geriatrics, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lei Cui
- Institute of Nutrition and Diseases, Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mi-Mi Jin
- Department of Neurology and Geriatrics, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dong-Yan Hu
- Institute of Nutrition and Diseases, Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiao-Gang Hou
- Department of Neurology and Geriatrics, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shu-Shu Liu
- Institute of Nutrition and Diseases, Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiong Zhang
- Department of Neurology and Geriatrics, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian-Hong Zhu
- Institute of Nutrition and Diseases, Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Neurology and Geriatrics, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
26
|
Reduction of tyrosine hydroxylase expression and increase of α-synuclein in the substantia nigra in a rat model of benign prostatic hyperplasia. Neurosci Lett 2021; 769:136386. [PMID: 34875351 DOI: 10.1016/j.neulet.2021.136386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/07/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022]
Abstract
Parkinson's disease (PD) occurs when dopaminergic cells in the substantia nigra (SN) region are destroyed; however, the cause of the destruction of dopamine cells has not yet been determined. This study was performed to investigate whether changes in the hormones that cause benign prostatic hyperplasia (BPH) are related to pathological changes in PD. The pathological findings were examined by observing the lesion sites related to PD in a BPH rat model. BPH was induced in rats by subcutaneous injection of testosterone propionate for 4 weeks after castration. To investigate the changes in the SN regions, tyrosine hydroxylase (TH) and α-synuclein (α-syn) expression were analyzed by western blotting. TH expression, expressed in dopaminergic cells and used as a dopaminergic cell detection marker, decreased, whereas α-syn expression increased at the SN site. These results are quite similar to the pathological changes observed in patients with PD and Parkinsonism animal models. Our results showed an increased expression of inducible nitric oxide synthase and cyclooxygenase-2 in the SN regions in the BPH group. Additionally, a decreased expression of B-cell lymphoma protein 2 and an increased expression of B-cell lymphoma protein 2-associated X, suggesting increased apoptosis, were observed in the BPH group. These results suggest that the pathological changes associated with PD may be caused by BPH or factors related to BPH. Thus, this study has presented a new avenue for an approach related to hormonal changes as a method to determine the cause of PD, for which the exact cause is not yet known.
Collapse
|
27
|
Salvatore MF, Soto I, Alphonso H, Cunningham R, James R, Nejtek VA. Is there a Neurobiological Rationale for the Utility of the Iowa Gambling Task in Parkinson's Disease? JOURNAL OF PARKINSONS DISEASE 2021; 11:405-419. [PMID: 33361612 PMCID: PMC8150623 DOI: 10.3233/jpd-202449] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Up to 23% of newly diagnosed, non-demented, Parkinson’s disease (PD) patients experience deficits in executive functioning (EF). In fact, EF deficits may occur up to 39-months prior to the onset of motor decline. Optimal EF requires working memory, attention, cognitive flexibility, and response inhibition underlying appropriate decision-making. The capacity for making strategic decisions requires inhibiting imprudent decisions and are associated with noradrenergic and dopaminergic signaling in prefrontal and orbitofrontal cortex. Catecholaminergic dysfunction and the loss of noradrenergic and dopaminergic cell bodies early in PD progression in the aforementioned cortical areas likely contribute to EF deficits resulting in non-strategic decision-making. Thus, detecting these deficits early in the disease process could help identify a significant portion of individuals with PD pathology (14–60%) before frank motor impairment. A task to evaluate EF in the domain of non-strategic decision-making might be useful to indicate the moderate loss of catecholamines that occurs early in PD pathology prior to motor decline and cognitive impairment. In this review, we focus on the potential utility of the Iowa Gambling Task (IGT) for this purpose, given significant overlap between in loss of dopaminergic and noradrenergic cells bodies in early PD and the deficits in catecholamine function associated with decreased EF. As such, given the loss of catecholamines already well-underway after PD diagnosis, we evaluate the potential utility of the IGT to identify the risk of therapeutic non-compliance and a potential companion approach to detect PD in premotor stages.
Collapse
Affiliation(s)
- Michael F Salvatore
- Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Isabel Soto
- Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Helene Alphonso
- John Peter Smith Health Network, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Rebecca Cunningham
- College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Rachael James
- Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Vicki A Nejtek
- Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
28
|
McQuade RM, Singleton LM, Wu H, Lee S, Constable R, Di Natale M, Ringuet MT, Berger JP, Kauhausen J, Parish CL, Finkelstein DI, Furness JB, Diwakarla S. The association of enteric neuropathy with gut phenotypes in acute and progressive models of Parkinson's disease. Sci Rep 2021; 11:7934. [PMID: 33846426 PMCID: PMC8041759 DOI: 10.1038/s41598-021-86917-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is associated with neuronal damage in the brain and gut. This work compares changes in the enteric nervous system (ENS) of commonly used mouse models of PD that exhibit central neuropathy and a gut phenotype. Enteric neuropathy was assessed in five mouse models: peripheral injection of MPTP; intracerebral injection of 6-OHDA; oral rotenone; and mice transgenic for A53T variant human α-synuclein with and without rotenone. Changes in the ENS of the colon were quantified using pan-neuronal marker, Hu, and neuronal nitric oxide synthase (nNOS) and were correlated with GI function. MPTP had no effect on the number of Hu+ neurons but was associated with an increase in Hu+ nuclear translocation (P < 0.04). 6-OHDA lesioned mice had significantly fewer Hu+ neurons/ganglion (P < 0.02) and a reduced proportion of nNOS+ neurons in colon (P < 0.001). A53T mice had significantly fewer Hu+ neurons/area (P < 0.001) and exhibited larger soma size (P < 0.03). Treatment with rotenone reduced the number of Hu+ cells/mm2 in WT mice (P < 0.006) and increased the proportion of Hu+ translocated cells in both WT (P < 0.02) and A53T mice (P < 0.04). All PD models exhibited a degree of enteric neuropathy, the extent and type of damage to the ENS, however, was dependent on the model.
Collapse
Affiliation(s)
- Rachel M McQuade
- Department of Medicine, Western Health, Melbourne University, Sunshine, VIC, 3021, Australia.
- College of Health and Biomedicine, Victoria University, Sunshine, VIC, 3021, Australia.
- Digestive Physiology and Nutrition Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3010, Australia.
| | - Lewis M Singleton
- Digestive Physiology and Nutrition Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3010, Australia
| | - Hongyi Wu
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Sophie Lee
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Remy Constable
- Digestive Physiology and Nutrition Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3010, Australia
| | - Madeleine Di Natale
- Digestive Physiology and Nutrition Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3010, Australia
| | - Mitchell T Ringuet
- Digestive Physiology and Nutrition Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3010, Australia
| | | | - Jessica Kauhausen
- Stem Cells and Neural Development Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3010, Australia
| | - Clare L Parish
- Stem Cells and Neural Development Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3010, Australia
| | - David I Finkelstein
- Parkinson's Disease Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3010, Australia
| | - John B Furness
- Digestive Physiology and Nutrition Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3010, Australia
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Shanti Diwakarla
- Department of Medicine, Western Health, Melbourne University, Sunshine, VIC, 3021, Australia
- Digestive Physiology and Nutrition Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3010, Australia
| |
Collapse
|
29
|
Olivieri P, Lebouvier T, Hardouin JB, Courtemanche H, Le Dily S, Barbin L, Pallardy A, Derkinderen P, Boutoleau-Bretonnière C. LeSCoD: a new clinical scale for the detection of Lewy body disease in neurocognitive disorders. J Neurol 2021; 268:3886-3896. [PMID: 33830336 DOI: 10.1007/s00415-021-10539-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Dementia with Lewy bodies remains underdiagnosed in clinical practice mainly because of the low sensitivity of existing diagnostic criteria and a strong overlap with Alzheimer's pathology that can mask the Lewy phenotype. OBJECTIVE The objective of this study was therefore to develop and validate a new clinical scale designed to detect signs of Lewy body disease, called LeSCoD for Lewy body Screening scale in Cognitive Disorders. METHODS 128 patients who fulfilled the clinical criteria of dementia with Lewy bodies (DLB; n = 32), Alzheimer's disease (AD; n = 77) or both (n = 19) was prospectively enrolled. 18F-DOPA PET imaging and/or CSF biomarkers were available in some patients. LeSCoD scale was systematically administered and the potential correlation with 18F-DOPA PET imaging was evaluated in a subgroup of patients. RESULTS LeSCoD scale showed robust internal and external validity. We determined a cut-off of 10 above which the sensitivity and specificity for Lewy body disease diagnosis were 86% and 95%, respectively. The LeSCoD scale correlated with striatal dopamine uptake in 18F-DOPA PET. CONCLUSION LeSCoD scale is a simple and reliable tool for the evaluation of Lewy body disease in routine clinical practice, with a higher sensitivity and specificity than the existing criteria. It might be an alternative to the use of dopamine-specific imaging.
Collapse
Affiliation(s)
- Pauline Olivieri
- Department of Neurology of Memory and Language, GHU Paris Psychiatry and Neurosciences, Hôpital Sainte Anne, 75014, Paris, France.,Université de Paris, 75006, Paris, France
| | - Thibaud Lebouvier
- University of Lille, Inserm U1172, CHU Lille, DISTALZ, Lille, France
| | - Jean-Benoît Hardouin
- UMR INSERM 1246-SPHERE "Methods in Patient-Centered Outcomes and Health Research", Université de Nantes, Université de Tours, Tours, France.,Unit of Methodology and Biostatistics, Université de Nantes, Nantes, France
| | - Hélène Courtemanche
- Centre Mémoire Ressource et Recherche (CMRR), Department of Neurology, CHU Nantes, 44093, Nantes, France.,INSERM CIC 04, Nantes, France
| | | | | | | | | | - Claire Boutoleau-Bretonnière
- Centre Mémoire Ressource et Recherche (CMRR), Department of Neurology, CHU Nantes, 44093, Nantes, France. .,INSERM CIC 04, Nantes, France. .,Claire Boutoleau-Bretonnière, Centre Mémoire Ressource et Recherche (CMRR), Centre Hospitalier Universitaire de Nantes Hôpital Laennec, Boulevard Jacques Monod, 44000, Nantes, France.
| |
Collapse
|
30
|
Comparison of the expression and toxicity of AAV2/9 carrying the human A53T α-synuclein gene in presence or absence of WPRE. Heliyon 2021; 7:e06302. [PMID: 33665452 PMCID: PMC7903312 DOI: 10.1016/j.heliyon.2021.e06302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/25/2020] [Accepted: 02/12/2021] [Indexed: 12/15/2022] Open
Abstract
Woodchuck Hepatitis Virus Post-transcriptional Regulatory Element (WPRE) is thought to enhance transgene expression of target genes delivered by adeno-associated viral (AAV) vectors. This study assessed the protein expression of α-synuclein, phosphorylated α-synuclein at Serine 129, extent of nigrostriatal degeneration as well as subsequent behavioral deficits induced by unilateral intranigral stereotactic injection in male adult C57BL/6J mice of an AAV2/9 expressing A53T human α-synuclein under the control of the synapsin promoter in presence or absence of the WPRE. The presence of WPRE enabled to achieve greater nigrostriatal degeneration and synucleinopathy which was concomitant with worsened forelimb use asymmetry. This work refines a mouse Parkinson's disease model in which anatomo-pathology is related to behavioral deficits.
Collapse
|
31
|
Fridjonsdottir E, Shariatgorji R, Nilsson A, Vallianatou T, Odell LR, Schembri LS, Svenningsson P, Fernagut PO, Crossman AR, Bezard E, Andrén PE. Mass spectrometry imaging identifies abnormally elevated brain l-DOPA levels and extrastriatal monoaminergic dysregulation in l-DOPA-induced dyskinesia. SCIENCE ADVANCES 2021; 7:7/2/eabe5948. [PMID: 33523980 PMCID: PMC7787486 DOI: 10.1126/sciadv.abe5948] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/10/2020] [Indexed: 05/20/2023]
Abstract
l-DOPA treatment for Parkinson's disease frequently leads to dyskinesias, the pathophysiology of which is poorly understood. We used MALDI-MSI to map the distribution of l-DOPA and monoaminergic pathways in brains of dyskinetic and nondyskinetic primates. We report elevated levels of l-DOPA, and its metabolite 3-O-methyldopa, in all measured brain regions of dyskinetic animals and increases in dopamine and metabolites in all regions analyzed except the striatum. In dyskinesia, dopamine levels correlated well with l-DOPA levels in extrastriatal regions, such as hippocampus, amygdala, bed nucleus of the stria terminalis, and cortical areas, but not in the striatum. Our results demonstrate that l-DOPA-induced dyskinesia is linked to a dysregulation of l-DOPA metabolism throughout the brain. The inability of extrastriatal brain areas to regulate the formation of dopamine during l-DOPA treatment introduces the potential of dopamine or even l-DOPA itself to modulate neuronal signaling widely across the brain, resulting in unwanted side effects.
Collapse
Affiliation(s)
- Elva Fridjonsdottir
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Reza Shariatgorji
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, National Resource for Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden
| | - Anna Nilsson
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, National Resource for Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden
| | - Theodosia Vallianatou
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Luke R Odell
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Luke S Schembri
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, National Resource for Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden
| | - Per Svenningsson
- Section of Neurology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Pierre-Olivier Fernagut
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
- Université de Poitiers, INSERM, U0-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | | | - Erwan Bezard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France.
- CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
- Motac Neuroscience, Manchester M15 6WE, UK
| | - Per E Andrén
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
- Science for Life Laboratory, National Resource for Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden
| |
Collapse
|
32
|
Deffains M, Canron MH, Teil M, Li Q, Dehay B, Bezard E, Fernagut PO. L-DOPA regulates α-synuclein accumulation in experimental parkinsonism. Neuropathol Appl Neurobiol 2020; 47:532-543. [PMID: 33275784 DOI: 10.1111/nan.12678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/09/2020] [Accepted: 11/28/2020] [Indexed: 11/30/2022]
Abstract
AIMS Widespread accumulation of misfolded α-synuclein aggregates is a key feature of Parkinson's disease (PD). Although the pattern and extent of α-synuclein accumulation through PD brains is known, the impact of chronic dopamine-replacement therapy (the gold-standard pharmacological treatment of PD) on the fate of α-synuclein is still unknown. Here, we investigated the distribution and accumulation of α-synuclein in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) non-human primate model of PD and determined the effect of chronic L-DOPA treatment on MPTP-induced α-synuclein pathology. METHODS We measured the density of α-synuclein and tau immuno-positive neurons in the substantia nigra, putamen, hippocampal CA1 region, temporal cortex and dentate nucleus of control, MPTP and MPTP+L-DOPA-treated monkeys. Moreover, we also extracted and quantified Triton-X (TX) soluble and insoluble α-synuclein in putamen and hippocampus samples from a separate cohort of control, MPTP and MPTP+L-DOPA-treated monkeys. RESULTS MPTP-induced α-synuclein accumulation in NHP model of PD was not limited to the substantia nigra but also occurred in the putamen, hippocampal CA1 region and temporal cortex. Tau was increased only in the temporal cortex. Moreover, increased intraneuronal TX insoluble α-synuclein was truncated, but not in the structural form of Lewy bodies. The MPTP-induced increase in α-synuclein levels was abolished in animals having received L-DOPA in all the brain regions, except in the substantia nigra. CONCLUSIONS Dopamine replacement therapy can dramatically ameliorate α-synuclein pathology in the MPTP NHP model of PD. Therefore, patient's dopaminergic medication should be systematically considered when assessing α-synuclein as a biomarker for diagnosis, monitoring disease progression and response to disease-modifying treatments.
Collapse
Affiliation(s)
- Marc Deffains
- Univ. Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, France
| | | | - Margaux Teil
- Univ. Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, France
| | - Qin Li
- Motac Neuroscience, Manchester, United Kingdom.,Institute of Laboratory Animal Sciences, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | | | - Erwan Bezard
- Univ. Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, France.,Motac Neuroscience, Manchester, United Kingdom.,Institute of Laboratory Animal Sciences, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Pierre-Olivier Fernagut
- Univ. Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, France.,Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM UMR_S 1084, Poitiers, France
| |
Collapse
|
33
|
Arotcarena ML, Dovero S, Prigent A, Bourdenx M, Camus S, Porras G, Thiolat ML, Tasselli M, Aubert P, Kruse N, Mollenhauer B, Trigo Damas I, Estrada C, Garcia-Carrillo N, Vaikath NN, El-Agnaf OMA, Herrero MT, Vila M, Obeso JA, Derkinderen P, Dehay B, Bezard E. Bidirectional gut-to-brain and brain-to-gut propagation of synucleinopathy in non-human primates. Brain 2020; 143:1462-1475. [PMID: 32380543 DOI: 10.1093/brain/awaa096] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/17/2020] [Indexed: 01/01/2023] Open
Abstract
In Parkinson's disease, synucleinopathy is hypothesized to spread from the enteric nervous system, via the vagus nerve, to the CNS. Here, we compare, in baboon monkeys, the pathological consequences of either intrastriatal or enteric injection of α-synuclein-containing Lewy body extracts from patients with Parkinson's disease. This study shows that patient-derived α-synuclein aggregates are able to induce nigrostriatal lesions and enteric nervous system pathology after either enteric or striatal injection in a non-human primate model. This finding suggests that the progression of α-synuclein pathology might be either caudo-rostral or rostro-caudal, varying between patients and disease subtypes. In addition, we report that α-synuclein pathological lesions were not found in the vagal nerve in our experimental setting. This study does not support the hypothesis of a transmission of α-synuclein pathology through the vagus nerve and the dorsal motor nucleus of the vagus. Instead, our results suggest a possible systemic mechanism in which the general circulation would act as a route for long-distance bidirectional transmission of endogenous α-synuclein between the enteric and the central nervous systems. Taken together, our study provides invaluable primate data exploring the role of the gut-brain axis in the initiation and propagation of Parkinson's disease pathology and should open the door to the development and testing of new therapeutic approaches aimed at interfering with the development of sporadic Parkinson's disease.
Collapse
Affiliation(s)
- Marie-Laure Arotcarena
- University of Bordeaux, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France.,CNRS, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France
| | - Sandra Dovero
- University of Bordeaux, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France.,CNRS, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France
| | - Alice Prigent
- Inserm, U1235, Nantes F-44035, France.,Nantes University, Nantes F-44035, France.,CHU Nantes, Department of Neurology, Nantes F-44093, France
| | - Mathieu Bourdenx
- University of Bordeaux, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France.,CNRS, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France
| | - Sandrine Camus
- University of Bordeaux, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France.,CNRS, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France
| | - Gregory Porras
- University of Bordeaux, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France.,CNRS, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France
| | - Marie-Laure Thiolat
- University of Bordeaux, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France.,CNRS, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France
| | - Maddalena Tasselli
- Inserm, U1235, Nantes F-44035, France.,Nantes University, Nantes F-44035, France.,CHU Nantes, Department of Neurology, Nantes F-44093, France
| | - Philippe Aubert
- Inserm, U1235, Nantes F-44035, France.,Nantes University, Nantes F-44035, France.,CHU Nantes, Department of Neurology, Nantes F-44093, France
| | - Niels Kruse
- Paracelsus-Elena-Klinik, Kassel, Germany.,University Medical Center Goettingen, Institute of Neuropathology, Goettingen, Germany
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, Kassel, Germany.,University Medical Center Goettingen, Institute of Neuropathology, Goettingen, Germany
| | - Ines Trigo Damas
- HM CINAC, HM Puerta del Sur, San Pablo University Madrid, E-28938 Mostoles, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain.,CEU, San Pablo University Madrid, E-28938 Mostoles, Spain
| | - Cristina Estrada
- Clinical and Experimental Neuroscience Unit, School of Medicine, Biomedical Research Institute of Murcia (IMIB), University of Murcia, Campus Mare Nostrum, 30100 Murcia, Spain.,Institute of Research on Aging (IUIE), School of Medicine, University of Murcia, 30100 Murcia, Spain
| | - Nuria Garcia-Carrillo
- Centro Experimental en Investigaciones Biomédica (CEIB), University of Murcia, Murcia, Spain
| | - Nishant N Vaikath
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Education City, Qatar
| | - Omar M A El-Agnaf
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Education City, Qatar
| | - Maria Trinidad Herrero
- Clinical and Experimental Neuroscience Unit, School of Medicine, Biomedical Research Institute of Murcia (IMIB), University of Murcia, Campus Mare Nostrum, 30100 Murcia, Spain.,Institute of Research on Aging (IUIE), School of Medicine, University of Murcia, 30100 Murcia, Spain
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona (UAB), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Jose A Obeso
- HM CINAC, HM Puerta del Sur, San Pablo University Madrid, E-28938 Mostoles, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain.,CEU, San Pablo University Madrid, E-28938 Mostoles, Spain
| | - Pascal Derkinderen
- Inserm, U1235, Nantes F-44035, France.,Nantes University, Nantes F-44035, France.,CHU Nantes, Department of Neurology, Nantes F-44093, France
| | - Benjamin Dehay
- University of Bordeaux, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France.,CNRS, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France
| | - Erwan Bezard
- University of Bordeaux, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France.,CNRS, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France
| |
Collapse
|
34
|
Delamarre A, MacSweeney C, Suzuki R, Brown AJH, Li Q, Pioli EY, Bezard E. Gastrointestinal and metabolic function in the MPTP-treated macaque model of Parkinson's disease. Heliyon 2020; 6:e05771. [PMID: 33385085 PMCID: PMC7772551 DOI: 10.1016/j.heliyon.2020.e05771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/07/2020] [Accepted: 12/15/2020] [Indexed: 11/30/2022] Open
Abstract
Background Gastrointestinal (GI) and metabolic function are frequently altered in Parkinson's disease (PD). Although enteric nervous system anatomopathological alterations have previously been reported in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) monkey model of PD, the resulting gastric emptying and intestinal permeability functional parameters are unknown. The current exploratory study was, thus, designed to investigate these GI functional factors and insulin resistance in the MPTP-treated monkey. Methods Eight rhesus macaque monkeys (4 controls and 4 MPTP-treated) received the oral acetaminophen absorption test to measure gastric emptying, the oral FITC-dextran absorption test to investigate intestinal permeability, and the intravenous glucose tolerance test to assess insulin resistance. Constipation was evaluated using the Bristol stool scale. Results None of the tests, acetaminophen absorption, FITC-dextran absorption or glucose tolerance, showed a difference between control and MPTP-treated monkeys. MPTP-treated monkeys did present signs of transit acceleration. Conclusion While the MPTP monkey model reliably displays motor and certain non-motor symptoms of PD, the current study did not demonstrate the GI symptoms associated with PD.
Collapse
|
35
|
Marmion DJ, Rutkowski AA, Chatterjee D, Hiller BM, Werner MH, Bezard E, Kirik D, McCown T, Gray SJ, Kordower JH. Viral-based rodent and nonhuman primate models of multiple system atrophy: Fidelity to the human disease. Neurobiol Dis 2020; 148:105184. [PMID: 33221532 DOI: 10.1016/j.nbd.2020.105184] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/30/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022] Open
Abstract
Multiple system atrophy (MSA) is a rare and extremely debilitating progressive neurodegenerative disease characterized by variable combinations of parkinsonism, cerebellar ataxia, dysautonomia, and pyramidal dysfunction. MSA is a unique synucleinopathy, in which alpha synuclein-rich aggregates are present in the cytoplasm of oligodendroglia. The precise origin of the alpha synuclein (aSyn) found in the glial cytoplasmic inclusions (GCIs) as well the mechanisms of neurodegeneration in MSA remain unclear. Despite this fact, cell and animal models of MSA rely on oligodendroglial overexpression of aSyn. In the present study, we utilized a novel oligotrophic AAV, Olig001, to overexpress aSyn specifically in striatal oligodendrocytes of rats and nonhuman primates in an effort to further characterize our novel viral vector-mediated MSA animal models. Using two cohorts of animals with 10-fold differences in Olig001 vector titers, we show a dose-dependent formation of MSA-like pathology in rats. High titer of Olig001-aSyn in these animals were required to produce the formation of pS129+ and proteinase K resistant aSyn-rich GCIs, demyelination, and neurodegeneration. Using this knowledge, we injected high titer Olig001 in the putamen of cynomolgus macaques. After six months, histological analysis showed that oligodendroglial overexpression of aSyn resulted in the formation of hallmark GCIs throughout the putamen, demyelination, a 44% reduction of striatal neurons and a 12% loss of nigral neurons. Furthermore, a robust inflammatory response similar to MSA was produced in Olig001-aSyn NHPs, including microglial activation, astrogliosis, and a robust infiltration of T cells into the CNS. Taken together, oligodendroglial-specific viral vector-mediated overexpression of aSyn in rats and nonhuman primates faithfully reproduces many of the pathological disease hallmarks found in MSA. Future studies utilizing these large animal models of MSA would prove extremely valuable as a pre-clinical platform to test novel therapeutics that are so desperately needed for MSA.
Collapse
Affiliation(s)
- David J Marmion
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA; Parkinson's Disease Research Unit, Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Angela A Rutkowski
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Diptaman Chatterjee
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Benjamin M Hiller
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | | | - Erwan Bezard
- University of Bordeaux, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France; CNRS, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France
| | - Deniz Kirik
- Brain Repair and Imaging in Neural Systems (B.R.A.I.N.S) Unit, Department of Experimental Medical Science, Lund University, Lund 221 00, Sweden
| | - Thomas McCown
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC, USA; Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Steven J Gray
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jeffrey H Kordower
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
36
|
Outeiro TF, Heutink P, Bezard E, Cenci AM. From iPS Cells to Rodents and Nonhuman Primates: Filling Gaps in Modeling Parkinson's Disease. Mov Disord 2020; 36:832-841. [PMID: 33200446 DOI: 10.1002/mds.28387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/12/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022] Open
Abstract
Parkinson's disease (PD) is primarily known as a movement disorder because of typical clinical manifestations associated with the loss of dopaminergic neurons in the substantia nigra. However, it is now widely recognized that PD is a much more complex condition, with multiple and severe nonmotor features implicating additional brain areas and organs in the disease process. Pathologically, typical forms of PD are characterized by the accumulation of α-synuclein-rich protein inclusions known as Lewy bodies and Lewy neurites, although other types of protein inclusions are also often present in the brain. Familial forms of PD have provided a wealth of information about molecular pathways leading to neurodegeneration, but only to add to the complexity of the problem and uncover new knowledge gaps. Therefore, modeling PD in the laboratory has become increasingly challenging. Here, we discuss knowledge gaps and challenges in the use of laboratory models for the study of a disease that is clinically heterogeneous and multifactorial. We propose that the combined use of patient-derived cells and animal models, along with current technological tools, will not only expand our molecular and pathophysiological understanding of PD, but also assist in the identification of therapeutic strategies targeting relevant pathogenic pathways. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany.,Max Planck Institute for Experimental Medicine, Goettingen, Germany.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Peter Heutink
- German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Erwan Bezard
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Angela M Cenci
- Department of Experimental Medical Science, Basal Ganglia Pathophysiology Unit, Lund University, Lund, Sweden
| |
Collapse
|
37
|
An integrative model of Parkinson's disease treatment including levodopa pharmacokinetics, dopamine kinetics, basal ganglia neurotransmission and motor action throughout disease progression. J Pharmacokinet Pharmacodyn 2020; 48:133-148. [PMID: 33084988 DOI: 10.1007/s10928-020-09723-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 10/05/2020] [Indexed: 01/08/2023]
Abstract
Levodopa is considered the gold standard treatment of Parkinson's disease. Although very effective in alleviating symptoms at their onset, its chronic use with the progressive neuronal denervation in the basal ganglia leads to a decrease in levodopa's effect duration and to the appearance of motor complications. This evolution challenges the establishment of optimal regimens to manage the symptoms as the disease progresses. Based on up-to-date pathophysiological and pharmacological knowledge, we developed an integrative model for Parkinson's disease to evaluate motor function in response to levodopa treatment as the disease progresses. We combined a pharmacokinetic model of levodopa to a model of dopamine's kinetics and a neurocomputational model of basal ganglia. The parameter values were either measured directly or estimated from human and animal data. The concentrations and behaviors predicted by our model were compared to available information and data. Using this model, we were able to predict levodopa plasma concentration, its related dopamine concentration in the brain and the response performance of a motor task for different stages of disease.
Collapse
|
38
|
Zhang Z, Zhou Y, Zhao H, Xu J, Yang X. Association Between Pathophysiological Mechanisms of Diabetic Retinopathy and Parkinson's Disease. Cell Mol Neurobiol 2020; 42:665-675. [PMID: 32880791 DOI: 10.1007/s10571-020-00953-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/22/2020] [Indexed: 11/27/2022]
Abstract
Diabetic retinopathy, the most common complication of diabetes, is a neurodegenerative disease in the eye. And Parkinson's disease, affecting the health of 1-2% of people over 60 years old throughout the world, is the second largest neurodegenerative disease in the brain. As the understanding of diabetic retinopathy and Parkinson's disease deepens, the two diseases are found to show correlation in incidence, similarity in clinical presentation, and close association in pathophysiological mechanisms. To reveal the association between pathophysiological mechanisms of the two disease, in this review, the shared pathophysiological factors of diabetic retinopathy and Parkinson's disease are summarized and classified into dopaminergic system, circadian rhythm, neurotrophic factors, α-synuclein, and Wnt signaling pathways. Furthermore, similar and different mechanisms so far as the shared pathophysiological factors of the two disorders are discussed systematically. Finally, a brief summary and new perspectives are presented to provide new directions for further efforts on the association, exploration, and clinical prevention and treatment of diabetic retinopathy and Parkinson's disease.
Collapse
Affiliation(s)
- Zhuoqing Zhang
- Department of Ophthalmology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Department of Ophthalmology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Yikun Zhou
- Department of Endocrinology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Haiyan Zhao
- Department of Ophthalmology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Department of Ophthalmology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Jinghui Xu
- Department of Ophthalmology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Department of Ophthalmology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Xiaochun Yang
- Department of Ophthalmology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China.
- Department of Ophthalmology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.
| |
Collapse
|
39
|
Pérez‐Taboada I, Alberquilla S, Martín ED, Anand R, Vietti‐Michelina S, Tebeka NN, Cantley J, Cragg SJ, Moratalla R, Vallejo M. Diabetes Causes Dysfunctional Dopamine Neurotransmission Favoring Nigrostriatal Degeneration in Mice. Mov Disord 2020; 35:1636-1648. [PMID: 32666590 PMCID: PMC7818508 DOI: 10.1002/mds.28124] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/05/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Numerous studies indicate an association between neurodegenerative and metabolic diseases. Although still a matter of debate, growing evidence from epidemiological and animal studies indicate that preexisting diabetes increases the risk to develop Parkinson's disease. However, the mechanisms of such an association are unknown. OBJECTIVES We investigated whether diabetes alters striatal dopamine neurotransmission and assessed the vulnerability of nigrostriatal neurons to neurodegeneration. METHODS We used streptozotocin-treated and genetically diabetic db/db mice. Expression of oxidative stress and nigrostriatal neuronal markers and levels of dopamine and its metabolites were monitored. Dopamine release and uptake were assessed using fast-scan cyclic voltammetry. 6-Hydroxydopamine was unilaterally injected into the striatum using stereotaxic surgery. Motor performance was scored using specific tests. RESULTS Diabetes resulted in oxidative stress and decreased levels of dopamine and its metabolites in the striatum. Levels of proteins regulating dopamine release and uptake, including the dopamine transporter, the Girk2 potassium channel, the vesicular monoamine transporter 2, and the presynaptic vesicle protein synaptobrevin-2, were decreased in diabetic mice. Electrically evoked levels of extracellular dopamine in the striatum were enhanced, and altered dopamine uptake was observed. Striatal microinjections of a subthreshold dose of the neurotoxin 6-hydroxydopamine in diabetic mice, insufficient to cause motor alterations in nondiabetic animals, resulted in motor impairment, higher loss of striatal dopaminergic axons, and decreased neuronal cell bodies in the substantia nigra. CONCLUSIONS Our results indicate that diabetes promotes striatal oxidative stress, alters dopamine neurotransmission, and increases vulnerability to neurodegenerative damage leading to motor impairment. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Iara Pérez‐Taboada
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de MadridMadridSpain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEMMadridSpain
| | - Samuel Alberquilla
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| | - Eduardo D. Martín
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| | - Rishi Anand
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUnited Kingdom
| | | | - Nchimunya N. Tebeka
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUnited Kingdom
- Division of Systems MedicineUniversity of Dundee, Ninewells Hospital & Medical SchoolDundeeUnited Kingdom
| | - James Cantley
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUnited Kingdom
- Division of Systems MedicineUniversity of Dundee, Ninewells Hospital & Medical SchoolDundeeUnited Kingdom
| | - Stephanie J. Cragg
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUnited Kingdom
- Oxford Parkinson's Disease CentreUniversity of OxfordOxfordUnited Kingdom
| | - Rosario Moratalla
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
- CIBERNED, Instituto de Salud Carlos IIIMadridSpain
| | - Mario Vallejo
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de MadridMadridSpain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEMMadridSpain
| |
Collapse
|
40
|
Karagiannis P, Inoue H. ALS, a cellular whodunit on motor neuron degeneration. Mol Cell Neurosci 2020; 107:103524. [PMID: 32629110 DOI: 10.1016/j.mcn.2020.103524] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 12/24/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that primarily targets motor neurons. Motor neurons from ALS patients show cytoplasmic inclusions that are reflective of an altered RNA metabolism and protein degradation. Causal gene mutations are found in all cell types even though patient motor neurons are by far the most susceptible to the degeneration. Using induced pluripotent stem cell (iPSC) technology, researchers have generated motor neurons with the same genotype as the patient including sporadic ones. They have also generated other cell types associated with the disease such as astrocytes, microglia and oligodendrocytes. These cells provide not only new insights on the mechanisms of the disease from the early stage, but also a platform for drug screening that has led to several clinical trials. This review examines the knowledge gained from iPSC studies using patient cells on the gene mutations and cellular networks in ALS and relevant experimental therapies.
Collapse
Affiliation(s)
- Peter Karagiannis
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Haruhisa Inoue
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan; Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan.
| |
Collapse
|
41
|
Rosenblad C, Li Q, Pioli EY, Dovero S, Antunes AS, Agúndez L, Bardelli M, Linden RM, Henckaerts E, Björklund A, Bezard E, Björklund T. Vector-mediated l-3,4-dihydroxyphenylalanine delivery reverses motor impairments in a primate model of Parkinson's disease. Brain 2020; 142:2402-2416. [PMID: 31243443 PMCID: PMC6658866 DOI: 10.1093/brain/awz176] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/19/2019] [Accepted: 04/24/2019] [Indexed: 02/06/2023] Open
Abstract
Ever since its introduction 40 years ago l-3,4-dihydroxyphenylalanine (l-DOPA) therapy has retained its role as the leading standard medication for patients with Parkinson's disease. With time, however, the shortcomings of oral l-DOPA treatment have become apparent, particularly the motor fluctuations and troublesome dyskinetic side effects. These side effects, which are caused by the excessive swings in striatal dopamine caused by intermittent oral delivery, can be avoided by delivering l-DOPA in a more continuous manner. Local gene delivery of the l-DOPA synthesizing enzymes, tyrosine hydroxylase and guanosine-tri-phosphate-cyclohydrolase-1, offers a new approach to a more refined dopaminergic therapy where l-DOPA is delivered continuously at the site where it is needed i.e. the striatum. In this study we have explored the therapeutic efficacy of adeno-associated viral vector-mediated l-DOPA delivery to the putamen in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated rhesus monkeys, the standard non-human primate model of Parkinson's disease. Viral vector delivery of the two enzymes, tyrosine hydroxylase and guanosine-5'-tri-phosphate-cyclohydrolase-1, bilaterally into the dopamine-depleted putamen, induced a significant, dose-dependent improvement of motor behaviour up to a level identical to that obtained with the optimal dose of peripheral l-DOPA. Importantly, this improvement in motor function was obtained without any adverse dyskinetic effects. These results provide proof-of-principle for continuous vector-mediated l-DOPA synthesis as a novel therapeutic strategy for Parkinson's disease. The constant, local supply of l-DOPA obtained with this approach holds promise as an efficient one-time treatment that can provide long-lasting clinical improvement and at the same time prevent the appearance of motor fluctuations and dyskinetic side effects associated with standard oral dopaminergic medication.
Collapse
Affiliation(s)
- Carl Rosenblad
- Division of Neurology, Department of Clinical Sciences, Lund University, Skane University Hospital, 221 84 Lund, Sweden.,Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - Qin Li
- Motac Neuroscience, Manchester, UK
| | | | - Sandra Dovero
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France.,Centre National de la Recherche Scientifique Unité Mixte de Recherche 5293, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - André Slm Antunes
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Leticia Agúndez
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Martino Bardelli
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - R Michael Linden
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Els Henckaerts
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Anders Björklund
- Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - Erwan Bezard
- Motac Neuroscience, Manchester, UK.,Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France.,Centre National de la Recherche Scientifique Unité Mixte de Recherche 5293, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Tomas Björklund
- Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden.,Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| |
Collapse
|
42
|
Dehay B, Bezard E. Intrastriatal injection of alpha-synuclein fibrils induces Parkinson-like pathology in macaques. Brain 2020; 142:3321-3322. [PMID: 31665750 DOI: 10.1093/brain/awz329] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This scientific commentary refers to ‘Intrastriatal alpha-synuclein fibrils in monkeys: spreading, imaging and neuropathological changes’, by Chu et al. (doi:10.1093/brain/awz296).
Collapse
Affiliation(s)
- Benjamin Dehay
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France.,Centre National de la Recherche Scientifique Unité Mixte de Recherche 5293, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Erwan Bezard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France.,Centre National de la Recherche Scientifique Unité Mixte de Recherche 5293, Institut des Maladies Neurodégénératives, Bordeaux, France
| |
Collapse
|
43
|
Bourdenx M, Nioche A, Dovero S, Arotcarena ML, Camus S, Porras G, Thiolat ML, Rougier NP, Prigent A, Aubert P, Bohic S, Sandt C, Laferrière F, Doudnikoff E, Kruse N, Mollenhauer B, Novello S, Morari M, Leste-Lasserre T, Trigo-Damas I, Goillandeau M, Perier C, Estrada C, Garcia-Carrillo N, Recasens A, Vaikath NN, El-Agnaf OMA, Herrero MT, Derkinderen P, Vila M, Obeso JA, Dehay B, Bezard E. Identification of distinct pathological signatures induced by patient-derived α-synuclein structures in nonhuman primates. SCIENCE ADVANCES 2020; 6:eaaz9165. [PMID: 32426502 PMCID: PMC7220339 DOI: 10.1126/sciadv.aaz9165] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/06/2020] [Indexed: 06/11/2023]
Abstract
Dopaminergic neuronal cell death, associated with intracellular α-synuclein (α-syn)-rich protein aggregates [termed "Lewy bodies" (LBs)], is a well-established characteristic of Parkinson's disease (PD). Much evidence, accumulated from multiple experimental models, has suggested that α-syn plays a role in PD pathogenesis, not only as a trigger of pathology but also as a mediator of disease progression through pathological spreading. Here, we have used a machine learning-based approach to identify unique signatures of neurodegeneration in monkeys induced by distinct α-syn pathogenic structures derived from patients with PD. Unexpectedly, our results show that, in nonhuman primates, a small amount of singular α-syn aggregates is as toxic as larger amyloid fibrils present in the LBs, thus reinforcing the need for preclinical research in this species. Furthermore, our results provide evidence supporting the true multifactorial nature of PD, as multiple causes can induce a similar outcome regarding dopaminergic neurodegeneration.
Collapse
Affiliation(s)
- M. Bourdenx
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - A. Nioche
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
- Institut Jean Nicod, Département d’études cognitives, ENS, EHESS, PSL Research University, 75005 Paris, France
- Institut Jean Nicod, Département d’études cognitives, CNRS, UMR 8129, Paris, France
| | - S. Dovero
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - M.-L. Arotcarena
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - S. Camus
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - G. Porras
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - M.-L. Thiolat
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - N. P. Rougier
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
- INRIA Bordeaux Sud-Ouest, 33405 Talence, France
| | - A. Prigent
- INSERM, U1235, Nantes F-44035, France
- Nantes University, Nantes F-44035, France
- CHU Nantes, Department of Neurology, Nantes F-44093, France
| | - P. Aubert
- INSERM, U1235, Nantes F-44035, France
- Nantes University, Nantes F-44035, France
- CHU Nantes, Department of Neurology, Nantes F-44093, France
| | - S. Bohic
- EA-7442 Rayonnement Synchrotron et Recherche Medicale, RSRM, University of Grenoble Alpes, 38000 Grenoble, France
| | - C. Sandt
- SMIS beamline, Synchrotron SOLEIL, l’orme des merisiers, 91192 Gif sur Yvette, France
| | - F. Laferrière
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - E. Doudnikoff
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - N. Kruse
- Paracelsus-Elena-Klinik, Kassel, Germany
- University Medical Center Goettingen, Institute of Neuropathology, Goettingen, Germany
| | - B. Mollenhauer
- Paracelsus-Elena-Klinik, Kassel, Germany
- University Medical Center Goettingen, Institute of Neuropathology, Goettingen, Germany
| | - S. Novello
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, via Fossato di Mortara 17-19, 44121 Ferrara, Italy
- Neuroscience Center and National Institute of Neuroscience, University of Ferrara, via Fossato di Mortara 17-19, 44121 Ferrara, Italy
| | - M. Morari
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, via Fossato di Mortara 17-19, 44121 Ferrara, Italy
- Neuroscience Center and National Institute of Neuroscience, University of Ferrara, via Fossato di Mortara 17-19, 44121 Ferrara, Italy
| | - T. Leste-Lasserre
- INSERM, Neurocentre Magendie, U1215, Physiopathologie de la Plasticité Neuronale, F-33000 Bordeaux, France
| | - I. Trigo-Damas
- HM CINAC, HM Puerta del Sur and CEU–San Pablo University Madrid, E-28938 Mostoles, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - M. Goillandeau
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - C. Perier
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR)–Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - C. Estrada
- Clinical and Experimental Neuroscience Unit, School of Medicine, Biomedical Research Institute of Murcia (IMIB), University of Murcia, Campus Mare Nostrum, 30100 Murcia, Spain
- Institute of Research on Aging (IUIE), School of Medicine, University of Murcia, 30100 Murcia, Spain
| | - N. Garcia-Carrillo
- Centro Experimental en Investigaciones Biomédica (CEIB), Universidad de Murcia, Murcia, Spain
| | - A. Recasens
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR)–Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - N. N. Vaikath
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Education City, Qatar
| | - O. M. A. El-Agnaf
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Education City, Qatar
| | - M. T. Herrero
- Clinical and Experimental Neuroscience Unit, School of Medicine, Biomedical Research Institute of Murcia (IMIB), University of Murcia, Campus Mare Nostrum, 30100 Murcia, Spain
- Institute of Research on Aging (IUIE), School of Medicine, University of Murcia, 30100 Murcia, Spain
| | - P. Derkinderen
- INSERM, U1235, Nantes F-44035, France
- Nantes University, Nantes F-44035, France
- CHU Nantes, Department of Neurology, Nantes F-44093, France
| | - M. Vila
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR)–Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona (UAB), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - J. A. Obeso
- HM CINAC, HM Puerta del Sur and CEU–San Pablo University Madrid, E-28938 Mostoles, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - B. Dehay
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - E. Bezard
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| |
Collapse
|
44
|
Wang L, Liu Y, Yan S, Du T, Fu X, Gong X, Zhou X, Zhang T, Wang X. Disease Progression-Dependent Expression of CD200R1 and CX3CR1 in Mouse Models of Parkinson's Disease. Aging Dis 2020; 11:254-268. [PMID: 32257540 PMCID: PMC7069458 DOI: 10.14336/ad.2019.0615] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/15/2019] [Indexed: 12/16/2022] Open
Abstract
Microglial activation is an important contributor to the pathogenesis of Parkinson’s disease (PD). Microglia are tightly and efficiently regulated by immune checkpoints, including CD200-CD200R1 and CX3CL1-CX3CR1. Understanding the involvement of these checkpoints in disease progression provides important insights into how microglial activation contributes to PD pathology. However, so far, studies have produced seemingly conflicting results. In this study, we demonstrate that CD200R1 expression is down-regulated at both early and late stage of PD model, and CX3CR1 expression is down-regulated in early stage and recovered in late stage. In primary cultured microglia, CD200R1 and CX3CR1 expressions are both directly regulated by LPS or α-synuclein, and CD200R1 expression is more sensitively regulated than CX3CR1. In addition, CD200 knockout causes an increase in proinflammatory cytokine production and microglial activation in the midbrain. Remarkably, DA neurons in the substantial nigra are degenerated in CD200-/- mice. Finally, activation of the CD200R with CD200Fc alleviates the neuroinflammation in microglia. Together, these results suggest that immune checkpoints play distinct functional roles in different stage of PD pathology, and the CD200-CD200R1 axis plays a significant role in nigrostriatal neuron viability and function.
Collapse
Affiliation(s)
- Le Wang
- 1Department of Neurobiology, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Yang Liu
- 1Department of Neurobiology, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Shuxin Yan
- 1Department of Neurobiology, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Tianshu Du
- 1Department of Neurobiology, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Xia Fu
- 1Department of Neurobiology, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Xiaoli Gong
- 2Department of Physiology and Pathophysiology, Capital Medical University, Beijing, China
| | - Xinyu Zhou
- 1Department of Neurobiology, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Ting Zhang
- 1Department of Neurobiology, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Xiaomin Wang
- 1Department of Neurobiology, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China.,2Department of Physiology and Pathophysiology, Capital Medical University, Beijing, China
| |
Collapse
|
45
|
Teil M, Arotcarena ML, Faggiani E, Laferriere F, Bezard E, Dehay B. Targeting α-synuclein for PD Therapeutics: A Pursuit on All Fronts. Biomolecules 2020; 10:biom10030391. [PMID: 32138193 PMCID: PMC7175302 DOI: 10.3390/biom10030391] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/26/2020] [Accepted: 02/29/2020] [Indexed: 12/15/2022] Open
Abstract
Parkinson's Disease (PD) is characterized both by the loss of dopaminergic neurons in the substantia nigra and the presence of cytoplasmic inclusions called Lewy Bodies. These Lewy Bodies contain the aggregated α-synuclein (α-syn) protein, which has been shown to be able to propagate from cell to cell and throughout different regions in the brain. Due to its central role in the pathology and the lack of a curative treatment for PD, an increasing number of studies have aimed at targeting this protein for therapeutics. Here, we reviewed and discussed the many different approaches that have been studied to inhibit α-syn accumulation via direct and indirect targeting. These analyses have led to the generation of multiple clinical trials that are either completed or currently active. These clinical trials and the current preclinical studies must still face obstacles ahead, but give hope of finding a therapy for PD with time.
Collapse
Affiliation(s)
- Margaux Teil
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; (M.T.); (M.-L.A.); (E.F.); (F.L.); (E.B.)
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Marie-Laure Arotcarena
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; (M.T.); (M.-L.A.); (E.F.); (F.L.); (E.B.)
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Emilie Faggiani
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; (M.T.); (M.-L.A.); (E.F.); (F.L.); (E.B.)
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Florent Laferriere
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; (M.T.); (M.-L.A.); (E.F.); (F.L.); (E.B.)
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Erwan Bezard
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; (M.T.); (M.-L.A.); (E.F.); (F.L.); (E.B.)
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Benjamin Dehay
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; (M.T.); (M.-L.A.); (E.F.); (F.L.); (E.B.)
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
- Correspondence:
| |
Collapse
|
46
|
Zhang Y, Meng X, Jiao Z, Liu Y, Zhang X, Qu S. Generation of a Novel Mouse Model of Parkinson's Disease via Targeted Knockdown of Glutamate Transporter GLT-1 in the Substantia Nigra. ACS Chem Neurosci 2020; 11:406-417. [PMID: 31909584 DOI: 10.1021/acschemneuro.9b00609] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease that is characterized by pathological dopaminergic (DA) neuronal death and α-synuclein aggregation. Glutamate excitotoxicity is a well-established pathogenesis of PD that involves dysfunctional expression of glutamate transporters. Glutamate transporter-1 (GLT-1) is mainly responsible for clearance of glutamate at synapses, including DA synapses. However, the role of GLT-1 in the aberrant synaptic transmission in PD remains elusive. In the present study, we generated small-interfering RNAs (siRNAs) to knockdown GLT-1 expression in primary astrocytes, and we report that siRNA knockdown of astrocytic GLT-1 decreased postsynaptic density-95 (PSD-95) expression in neuron-astrocyte cocultures in vitro. Using adeno-associated viruses (AAVs) targeting GLT-1 short-hairpin RNA (shRNA) sequences with a glial fibrillary acidic protein (GFAP) promoter, we abolished astrocytic GLT-1 expression in the substantia nigra pars compacta (SNpc) of mice. We found that GLT-1 deficiency in the SNpc induced parkinsonian phenotypes in terms of progressive motor deficits and nigral DA neuronal death in mice. We also found that there were reactive astrocytes and microglia in the SNpc upon GLT-1 knockdown. Furthermore, we used RNA sequencing to determine altered gene expression patterns upon GLT-1 knockdown in the SNpc, which revealed that disrupted calcium signaling pathways may be responsible for GLT-1 deficiency-mediated DA neuronal death in the SNpc. Taken together, our findings provide evidence for a novel role of GLT-1 in parkinsonian phenotypes in mice, which may contribute to further elucidation of the mechanisms of PD pathogenesis.
Collapse
Affiliation(s)
- Yunlong Zhang
- Institute of Neuroscience
and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Xingjun Meng
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan 528300, China
| | - Zhigang Jiao
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan 528300, China
| | - Yan Liu
- Department of Traditional Chinese Medicine, Medical College, Xiamen University, Xiamen 361102, China
| | - Xiuping Zhang
- Teaching Center of Experimental Medicine, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shaogang Qu
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan 528300, China
| |
Collapse
|
47
|
Monje MHG, Blesa J, García-Cabezas MÁ, Obeso JA, Cavada C. Changes in thalamic dopamine innervation in a progressive Parkinson's disease model in monkeys. Mov Disord 2019; 35:419-430. [PMID: 31800134 PMCID: PMC7154739 DOI: 10.1002/mds.27921] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/08/2019] [Accepted: 10/21/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Dopamine loss beyond the mesostriatal system might be relevant in pathogenic mechanisms and some clinical manifestations in PD. The primate thalamus is densely and heterogeneously innervated with dopaminergic axons, most of which express the dopamine transporter, as does the nigrostriatal system. We hypothesized that dopamine depletion may be present in the thalamus of the parkinsonian brain and set out to ascertain possible regional differences. METHODS The toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine was administered to adult macaque monkeys using a slow intoxication protocol. The treated macaques were classified into 2 groups according to their motor status: nonsymptomatic and parkinsonian. Dopamine innervation was studied with immunohistochemistry for the dopamine transporter. Topographic maps of the dopamine transporter-immunoreactive axon distribution were generated and the total length and length density of these axons stereologically estimated using a 3-dimensional fractionator. RESULTS Parkinsonian macaques exhibited lower dopamine transporter-immunoreactive axon length density than controls in mediodorsal and centromedian-parafascicular nuclei. Dopamine denervation in the mediodorsal nucleus was already noticeable in nonsymptomatic macaques and was even greater in parkinsonian macaques. Reticular nucleus dopamine transporter-immunoreactive axon length density presented an inverse pattern, increasing progressively to the maximum density seen in parkinsonian macaques. No changes were observed in ventral thalamic nuclei. Dopamine transporter-immunoreactive axon maps supported the quantitative findings. CONCLUSIONS Changes in the dopamine innervation of various thalamic nuclei are heterogeneous and start in the premotor parkinsonian stage. These changes may be involved in some poorly understood nonmotor manifestations of PD. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Mariana H G Monje
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,HM-CINAC, HM Puerta del Sur University Hospital, Móstoles, and CEU-San Pablo University, Madrid, Spain
| | - Javier Blesa
- HM-CINAC, HM Puerta del Sur University Hospital, Móstoles, and CEU-San Pablo University, Madrid, Spain.,CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases), Instituto Carlos III, Madrid, Spain
| | - Miguel Ángel García-Cabezas
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - José A Obeso
- HM-CINAC, HM Puerta del Sur University Hospital, Móstoles, and CEU-San Pablo University, Madrid, Spain.,CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases), Instituto Carlos III, Madrid, Spain
| | - Carmen Cavada
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
48
|
Animal Models for Parkinson's Disease Research: Trends in the 2000s. Int J Mol Sci 2019; 20:ijms20215402. [PMID: 31671557 PMCID: PMC6862023 DOI: 10.3390/ijms20215402] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/21/2022] Open
Abstract
Parkinson’s disease (PD) is a chronic and progressive movement disorder and the second most common neurodegenerative disease. Although many studies have been conducted, there is an unmet clinical need to develop new treatments because, currently, only symptomatic therapies are available. To achieve this goal, clarification of the pathology is required. Attempts have been made to emulate human PD and various animal models have been developed over the decades. Neurotoxin models have been commonly used for PD research. Recently, advances in transgenic technology have enabled the development of genetic models that help to identify new approaches in PD research. However, PD animal model trends have not been investigated. Revealing the trends for PD research will be valuable for increasing our understanding of the positive and negative aspects of each model. In this article, we clarified the trends for animal models that were used to research PD in the 2000s, and we discussed each model based on these trends.
Collapse
|
49
|
Kasanga EA, Owens CL, Cantu MA, Richard AD, Davis RW, McDivitt LM, Blancher B, Pruett BS, Tan C, Gajewski A, Manfredsson FP, Nejtek VA, Salvatore MF. GFR-α1 Expression in Substantia Nigra Increases Bilaterally Following Unilateral Striatal GDNF in Aged Rats and Attenuates Nigral Tyrosine Hydroxylase Loss Following 6-OHDA Nigrostriatal Lesion. ACS Chem Neurosci 2019; 10:4237-4249. [PMID: 31538765 DOI: 10.1021/acschemneuro.9b00291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) improved motor function in Parkinson's disease (PD) patients in Phase I clinical trials, and these effects persisted months after GDNF discontinuation. Conversely, phase II clinical trials reported no significant effects on motor improvement vs placebo. The disease duration and the quantity, infusion approach, and duration of GDNF delivery may affect GDNF efficacy in PD treatment. However, identifying mechanisms activated by GDNF that affect nigrostriatal function may reveal additional avenues to partially restore nigrostriatal function. In PD and aging models, GDNF affects tyrosine hydroxylase (TH) expression or phosphorylation in substantia nigra (SN), long after a single GDNF injection in striatum. In aged rats, the GDNF family receptor, GFR-α1, increases TH expression and phosphorylation in SN. To determine if GFR-α1 could be a mechanistic link in long-term GDNF impact, we conducted two studies; first to determine if a single unilateral striatal delivery of GDNF affected GFR-α1 and TH over time (1 day, 1 week, and 4 weeks) in the striatum or SN in aged rats, and second, to determine if soluble GFR-α1 could mitigate TH loss following 6-hydroxydopamine (6-OHDA) lesion. In aged rats, GDNF bilaterally increased ser31 TH phosphorylation and GFR-α1 expression in SN at 1 day and 4 weeks after GDNF, respectively. In striatum, GFR-α1 expression decreased 1 week after GDNF, only on the GDNF-injected side. In 6-OHDA-lesioned rats, recombinant soluble GFR-α1 mitigated nigral, but not striatal, TH protein loss following 6-OHDA. Together, these results show GDNF has immediate and long-term impact on dopamine regulation in the SN, which includes a gradual increase in GFR-α1 expression that may sustain TH expression and dopamine function therein.
Collapse
Affiliation(s)
- Ella A Kasanga
- Institute for Healthy Aging , University of North Texas Health Science Center , Fort Worth , Texas 76107 , United States
| | - Catherine L Owens
- Department of Pharmacology, Toxicology, & Neuroscience , Louisiana State University Health Sciences Center , Shreveport , Louisiana 71130 , United States
| | - Mark A Cantu
- Institute for Healthy Aging , University of North Texas Health Science Center , Fort Worth , Texas 76107 , United States
| | - Adam D Richard
- Department of Pharmacology, Toxicology, & Neuroscience , Louisiana State University Health Sciences Center , Shreveport , Louisiana 71130 , United States
| | - Richard W Davis
- Department of Pharmacology, Toxicology, & Neuroscience , Louisiana State University Health Sciences Center , Shreveport , Louisiana 71130 , United States
| | - Lisa M McDivitt
- Department of Pharmacology, Toxicology, & Neuroscience , Louisiana State University Health Sciences Center , Shreveport , Louisiana 71130 , United States
| | - Blake Blancher
- Department of Pharmacology, Toxicology, & Neuroscience , Louisiana State University Health Sciences Center , Shreveport , Louisiana 71130 , United States
| | - Brandon S Pruett
- Department of Pharmacology, Toxicology, & Neuroscience , Louisiana State University Health Sciences Center , Shreveport , Louisiana 71130 , United States
| | - Christopher Tan
- Institute for Healthy Aging , University of North Texas Health Science Center , Fort Worth , Texas 76107 , United States
| | - Austin Gajewski
- Institute for Healthy Aging , University of North Texas Health Science Center , Fort Worth , Texas 76107 , United States
| | - Fredric P Manfredsson
- Parkinson's Disease Research Unit, Department of Neurobiology , Barrow Neurological Institute , Phoenix , Arizona 85013 , United States
| | - Vicki A Nejtek
- Institute for Healthy Aging , University of North Texas Health Science Center , Fort Worth , Texas 76107 , United States
| | - Michael F Salvatore
- Institute for Healthy Aging , University of North Texas Health Science Center , Fort Worth , Texas 76107 , United States
| |
Collapse
|
50
|
Polinski NK, Volpicelli-Daley LA, Sortwell CE, Luk KC, Cremades N, Gottler LM, Froula J, Duffy MF, Lee VMY, Martinez TN, Dave KD. Best Practices for Generating and Using Alpha-Synuclein Pre-Formed Fibrils to Model Parkinson's Disease in Rodents. JOURNAL OF PARKINSONS DISEASE 2019; 8:303-322. [PMID: 29400668 PMCID: PMC6004926 DOI: 10.3233/jpd-171248] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease, affecting approximately one-percent of the population over the age of sixty. Although many animal models have been developed to study this disease, each model presents its own advantages and caveats. A unique model has arisen to study the role of alpha-synuclein (aSyn) in the pathogenesis of PD. This model involves the conversion of recombinant monomeric aSyn protein to a fibrillar form—the aSyn pre-formed fibril (aSyn PFF)—which is then injected into the brain or introduced to the media in culture. Although many groups have successfully adopted and replicated the aSyn PFF model, issues with generating consistent pathology have been reported by investigators. To improve the replicability of this model and diminish these issues, The Michael J. Fox Foundation for Parkinson’s Research (MJFF) has enlisted the help of field leaders who performed key experiments to establish the aSyn PFF model to provide the research community with guidelines and practical tips for improving the robustness and success of this model. Specifically, we identify key pitfalls and suggestions for avoiding these mistakes as they relate to generating the aSyn PFFs from monomeric protein, validating the formation of pathogenic aSyn PFFs, and using the aSyn PFFs in vivo or in vitro to model PD. With this additional information, adoption and use of the aSyn PFF model should present fewer challenges, resulting in a robust and widely available model of PD.
Collapse
Affiliation(s)
- Nicole K Polinski
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Laura A Volpicelli-Daley
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Caryl E Sortwell
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Nunilo Cremades
- Institute for Biocomputation and Complex Systems Physics (BIFI), University of Zaragoza, Zaragoza, Spain
| | | | - Jessica Froula
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Megan F Duffy
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Virginia M Y Lee
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Terina N Martinez
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Kuldip D Dave
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| |
Collapse
|