1
|
Merkulyeva N, Lyakhovetskii V, Mikhalkin А. Anisotropy of the Orientation Selectivity in the Visual Cortex Area 18 of Cats Reared Under Normal and Altered Visual Experience. Eur J Neurosci 2025; 61:e70004. [PMID: 39866043 DOI: 10.1111/ejn.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 12/07/2024] [Accepted: 01/07/2025] [Indexed: 01/28/2025]
Abstract
The "oblique effect" refers to the reduced visual performance for stimuli presented at oblique orientations compared to those at cardinal orientations. In the cortex, neurons that respond to specific orientations are organized into orientation columns. This raises the question: Are the orientation signals in the iso-orientation columns associated with cardinal orientations the same as those in the iso-orientation columns associated with oblique orientations, and is this signal influenced by experience? To explore this, iso-orientation columns in visual area 18 were examined using optical imaging techniques. Kittens were raised under either standard or modified conditions, including total darkness or rhythmic light stimulation through one or both eyes, which could potentially disrupt the orientation tuning of visual neurons. A signal profile around the pinwheel center was calculated to assess the distribution of the orientation signal within the hypercolumn. This profile exhibits a sinusoidal pattern with identifiable minima and maxima. To emphasize that these amplitude variations are localized within a specific circle rather than throughout the entire optical map, we used the terms "local minima" and "local maxima." The number of local maxima in areas corresponding to oblique orientations was similar to those in regions associated with vertical orientations. The highest number of local maxima was found in horizontal iso-orientation columns, indicating a "horizontal bias." This finding may be related to the postnatal development of sensory-sensory and sensory-motor integrations involving the visual system. We propose that the data presented should be incorporated into mathematical models of visual cortex activity, as well as vision itself.
Collapse
Affiliation(s)
- N Merkulyeva
- Pavlov Institute of Physiology RAS, Saint-Petersburg, Russia
| | - V Lyakhovetskii
- Pavlov Institute of Physiology RAS, Saint-Petersburg, Russia
| | - А Mikhalkin
- Pavlov Institute of Physiology RAS, Saint-Petersburg, Russia
| |
Collapse
|
2
|
Bauer J, Lewin U, Herbert E, Gjorgjieva J, Schoonover CE, Fink AJP, Rose T, Bonhoeffer T, Hübener M. Sensory experience steers representational drift in mouse visual cortex. Nat Commun 2024; 15:9153. [PMID: 39443498 PMCID: PMC11499870 DOI: 10.1038/s41467-024-53326-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Representational drift-the gradual continuous change of neuronal representations-has been observed across many brain areas. It is unclear whether drift is caused by synaptic plasticity elicited by sensory experience, or by the intrinsic volatility of synapses. Here, using chronic two-photon calcium imaging in primary visual cortex of female mice, we find that the preferred stimulus orientation of individual neurons slowly drifts over the course of weeks. By using cylinder lens goggles to limit visual experience to a narrow range of orientations, we show that the direction of drift, but not its magnitude, is biased by the statistics of visual input. A network model suggests that drift of preferred orientation largely results from synaptic volatility, which under normal visual conditions is counteracted by experience-driven Hebbian mechanisms, stabilizing preferred orientation. Under deprivation conditions these Hebbian mechanisms enable adaptation. Thus, Hebbian synaptic plasticity steers drift to match the statistics of the environment.
Collapse
Affiliation(s)
- Joel Bauer
- Max Planck Institute for Biological Intelligence, Martinsried, Germany.
- International Max Planck Research School for Molecular Life Sciences, Martinsried, Germany.
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK.
| | - Uwe Lewin
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Elizabeth Herbert
- School of Life Sciences, Technical University of Munich, Freising, Germany
| | | | - Carl E Schoonover
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, USA
- Allen Institute for Neural Dynamics, Seattle, WA, USA
| | - Andrew J P Fink
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, USA
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Tobias Rose
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Medical Center, Bonn, Germany
| | - Tobias Bonhoeffer
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Mark Hübener
- Max Planck Institute for Biological Intelligence, Martinsried, Germany.
| |
Collapse
|
3
|
Ding Z, Fahey PG, Papadopoulos S, Wang EY, Celii B, Papadopoulos C, Chang A, Kunin AB, Tran D, Fu J, Ding Z, Patel S, Ntanavara L, Froebe R, Ponder K, Muhammad T, Alexander Bae J, Bodor AL, Brittain D, Buchanan J, Bumbarger DJ, Castro MA, Cobos E, Dorkenwald S, Elabbady L, Halageri A, Jia Z, Jordan C, Kapner D, Kemnitz N, Kinn S, Lee K, Li K, Lu R, Macrina T, Mahalingam G, Mitchell E, Mondal SS, Mu S, Nehoran B, Popovych S, Schneider-Mizell CM, Silversmith W, Takeno M, Torres R, Turner NL, Wong W, Wu J, Yin W, Yu SC, Yatsenko D, Froudarakis E, Sinz F, Josić K, Rosenbaum R, Sebastian Seung H, Collman F, da Costa NM, Clay Reid R, Walker EY, Pitkow X, Reimer J, Tolias AS. Functional connectomics reveals general wiring rule in mouse visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.13.531369. [PMID: 36993398 PMCID: PMC10054929 DOI: 10.1101/2023.03.13.531369] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Understanding the relationship between circuit connectivity and function is crucial for uncovering how the brain implements computation. In the mouse primary visual cortex (V1), excitatory neurons with similar response properties are more likely to be synaptically connected, but previous studies have been limited to within V1, leaving much unknown about broader connectivity rules. In this study, we leverage the millimeter-scale MICrONS dataset to analyze synaptic connectivity and functional properties of individual neurons across cortical layers and areas. Our results reveal that neurons with similar responses are preferentially connected both within and across layers and areas - including feedback connections - suggesting the universality of the 'like-to-like' connectivity across the visual hierarchy. Using a validated digital twin model, we separated neuronal tuning into feature (what neurons respond to) and spatial (receptive field location) components. We found that only the feature component predicts fine-scale synaptic connections, beyond what could be explained by the physical proximity of axons and dendrites. We also found a higher-order rule where postsynaptic neuron cohorts downstream of individual presynaptic cells show greater functional similarity than predicted by a pairwise like-to-like rule. Notably, recurrent neural networks (RNNs) trained on a simple classification task develop connectivity patterns mirroring both pairwise and higher-order rules, with magnitude similar to those in the MICrONS data. Lesion studies in these RNNs reveal that disrupting 'like-to-like' connections has a significantly greater impact on performance compared to lesions of random connections. These findings suggest that these connectivity principles may play a functional role in sensory processing and learning, highlighting shared principles between biological and artificial systems.
Collapse
Affiliation(s)
- Zhuokun Ding
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Bio-X, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Paul G Fahey
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Bio-X, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Stelios Papadopoulos
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Bio-X, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Eric Y Wang
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - Brendan Celii
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, USA
| | - Christos Papadopoulos
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - Andersen Chang
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - Alexander B Kunin
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Mathematics, Creighton University, Omaha, USA
| | - Dat Tran
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - Jiakun Fu
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - Zhiwei Ding
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - Saumil Patel
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Bio-X, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Lydia Ntanavara
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Bio-X, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Rachel Froebe
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Bio-X, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Kayla Ponder
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - Taliah Muhammad
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - J Alexander Bae
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Electrical and Computer Engineering Department, Princeton University, Princeton, USA
| | | | | | | | | | - Manuel A Castro
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Erick Cobos
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Computer Science Department, Princeton University, Princeton, USA
| | | | - Akhilesh Halageri
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Zhen Jia
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Computer Science Department, Princeton University, Princeton, USA
| | - Chris Jordan
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Dan Kapner
- Allen Institute for Brain Science, Seattle, USA
| | - Nico Kemnitz
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Sam Kinn
- Allen Institute for Brain Science, Seattle, USA
| | - Kisuk Lee
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Brain & Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, USA
| | - Kai Li
- Computer Science Department, Princeton University, Princeton, USA
| | - Ran Lu
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Thomas Macrina
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Computer Science Department, Princeton University, Princeton, USA
| | | | - Eric Mitchell
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Shanka Subhra Mondal
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Electrical and Computer Engineering Department, Princeton University, Princeton, USA
| | - Shang Mu
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Barak Nehoran
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Computer Science Department, Princeton University, Princeton, USA
| | - Sergiy Popovych
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Computer Science Department, Princeton University, Princeton, USA
| | | | | | - Marc Takeno
- Allen Institute for Brain Science, Seattle, USA
| | | | - Nicholas L Turner
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Computer Science Department, Princeton University, Princeton, USA
| | - William Wong
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Jingpeng Wu
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Wenjing Yin
- Allen Institute for Brain Science, Seattle, USA
| | - Szi-Chieh Yu
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Dimitri Yatsenko
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- DataJoint Inc., Houston, TX, USA
| | - Emmanouil Froudarakis
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
| | - Fabian Sinz
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Institute for Bioinformatics and Medical Informatics, University Tübingen, Tübingen, Germany
- Institute for Computer Science and Campus Institute Data Science, University Göttingen, Göttingen, Germany
| | - Krešimir Josić
- Departments of Mathematics, Biology and Biochemistry, University of Houston, Houston, USA
| | - Robert Rosenbaum
- Departments of Applied and Computational Mathematics and Statistics and Biological Sciences, University of Notre Dame, Notre Dame, USA
| | - H Sebastian Seung
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | | | | | - R Clay Reid
- Allen Institute for Brain Science, Seattle, USA
| | - Edgar Y Walker
- Department of Neurobiology & Biophysics, University of Washington, Seattle, USA
- Computational Neuroscience Center, University of Washington, Seattle, USA
| | - Xaq Pitkow
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, USA
- Department of Computer Science, Rice University, Houston, TX, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Machine Learning, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jacob Reimer
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - Andreas S Tolias
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Bio-X, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
4
|
Yang J, Zhang H, Lim S. Sensory-memory interactions via modular structure explain errors in visual working memory. eLife 2024; 13:RP95160. [PMID: 39388221 PMCID: PMC11466453 DOI: 10.7554/elife.95160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
Errors in stimulus estimation reveal how stimulus representation changes during cognitive processes. Repulsive bias and minimum variance observed near cardinal axes are well-known error patterns typically associated with visual orientation perception. Recent experiments suggest that these errors continuously evolve during working memory, posing a challenge that neither static sensory models nor traditional memory models can address. Here, we demonstrate that these evolving errors, maintaining characteristic shapes, require network interaction between two distinct modules. Each module fulfills efficient sensory encoding and memory maintenance, which cannot be achieved simultaneously in a single-module network. The sensory module exhibits heterogeneous tuning with strong inhibitory modulation reflecting natural orientation statistics. While the memory module, operating alone, supports homogeneous representation via continuous attractor dynamics, the fully connected network forms discrete attractors with moderate drift speed and nonuniform diffusion processes. Together, our work underscores the significance of sensory-memory interaction in continuously shaping stimulus representation during working memory.
Collapse
Affiliation(s)
- Jun Yang
- Weiyang College, Tsinghua UniversityBeijingChina
| | - Hanqi Zhang
- Shanghai Frontiers Science Center of Artificial Intelligence and Deep LearningShanghaiChina
- Neural ScienceShanghaiChina
- NYU-ECNU Institute of Brain and Cognitive ScienceShanghaiChina
| | - Sukbin Lim
- Shanghai Frontiers Science Center of Artificial Intelligence and Deep LearningShanghaiChina
- Neural ScienceShanghaiChina
- NYU-ECNU Institute of Brain and Cognitive ScienceShanghaiChina
| |
Collapse
|
5
|
Vita DJ, Orsi FS, Stanko NG, Clark NA, Tiriac A. Development and organization of the retinal orientation selectivity map. Nat Commun 2024; 15:4829. [PMID: 38844438 PMCID: PMC11156980 DOI: 10.1038/s41467-024-49206-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 05/24/2024] [Indexed: 06/09/2024] Open
Abstract
Orientation or axial selectivity, the property of neurons in the visual system to respond preferentially to certain angles of visual stimuli, plays a pivotal role in our understanding of visual perception and information processing. This computation is performed as early as the retina, and although much work has established the cellular mechanisms of retinal orientation selectivity, how this computation is organized across the retina is unknown. Using a large dataset collected across the mouse retina, we demonstrate functional organization rules of retinal orientation selectivity. First, we identify three major functional classes of retinal cells that are orientation selective and match previous descriptions. Second, we show that one orientation is predominantly represented in the retina and that this predominant orientation changes as a function of retinal location. Third, we demonstrate that neural activity plays little role on the organization of retinal orientation selectivity. Lastly, we use in silico modeling followed by validation experiments to demonstrate that the overrepresented orientation aligns along concentric axes. These results demonstrate that, similar to direction selectivity, orientation selectivity is organized in a functional map as early as the retina.
Collapse
Affiliation(s)
- Dominic J Vita
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| | - Fernanda S Orsi
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| | - Nathan G Stanko
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| | - Natalie A Clark
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| | - Alexandre Tiriac
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37232, USA.
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
6
|
Vita DJ, Orsi FS, Stanko NG, Clark NA, Tiriac A. Development and Organization of the Retinal Orientation Selectivity Map. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.585774. [PMID: 38585937 PMCID: PMC10996665 DOI: 10.1101/2024.03.27.585774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Orientation or axial selectivity, the property of neurons in the visual system to respond preferentially to certain angles of a visual stimuli, plays a pivotal role in our understanding of visual perception and information processing. This computation is performed as early as the retina, and although much work has established the cellular mechanisms of retinal orientation selectivity, how this computation is organized across the retina is unknown. Using a large dataset collected across the mouse retina, we demonstrate functional organization rules of retinal orientation selectivity. First, we identify three major functional classes of retinal cells that are orientation selective and match previous descriptions. Second, we show that one orientation is predominantly represented in the retina and that this predominant orientation changes as a function of retinal location. Third, we demonstrate that neural activity plays little role on the organization of retinal orientation selectivity. Lastly, we use in silico modeling followed by validation experiments to demonstrate that the overrepresented orientation aligns along concentric axes. These results demonstrate that, similar to direction selectivity, orientation selectivity is organized in a functional map as early as the retina. One Sentence Summary Development and organization of retinal orientation selectivity.
Collapse
|
7
|
Boerma T, Ter Haar S, Ganga R, Wijnen F, Blom E, Wierenga CJ. What risk factors for Developmental Language Disorder can tell us about the neurobiological mechanisms of language development. Neurosci Biobehav Rev 2023; 154:105398. [PMID: 37741516 DOI: 10.1016/j.neubiorev.2023.105398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/03/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023]
Abstract
Language is a complex multidimensional cognitive system that is connected to many neurocognitive capacities. The development of language is therefore strongly intertwined with the development of these capacities and their neurobiological substrates. Consequently, language problems, for example those of children with Developmental Language Disorder (DLD), are explained by a variety of etiological pathways and each of these pathways will be associated with specific risk factors. In this review, we attempt to link previously described factors that may interfere with language development to putative underlying neurobiological mechanisms of language development, hoping to uncover openings for future therapeutical approaches or interventions that can help children to optimally develop their language skills.
Collapse
Affiliation(s)
- Tessel Boerma
- Institute for Language Sciences, Department of Languages, Literature and Communication, Utrecht University, Utrecht, the Netherlands
| | - Sita Ter Haar
- Institute for Language Sciences, Department of Languages, Literature and Communication, Utrecht University, Utrecht, the Netherlands; Cognitive Neurobiology and Helmholtz Institute, Department of Psychology, Utrecht University/Translational Neuroscience, University Medical Center Utrecht, the Netherlands
| | - Rachida Ganga
- Institute for Language Sciences, Department of Languages, Literature and Communication, Utrecht University, Utrecht, the Netherlands
| | - Frank Wijnen
- Institute for Language Sciences, Department of Languages, Literature and Communication, Utrecht University, Utrecht, the Netherlands
| | - Elma Blom
- Department of Development and Education of youth in Diverse Societies (DEEDS), Utrecht University, Utrecht, the Netherlands; Department of Language and Culture, The Arctic University of Norway UiT, Tromsø, Norway.
| | - Corette J Wierenga
- Biology Department, Faculty of Science, Utrecht University, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
8
|
Mukherjee D, Xue B, Chen CT, Chang M, Kao JPY, Kanold PO. Early retinal deprivation crossmodally alters nascent subplate circuits and activity in the auditory cortex during the precritical period. Cereb Cortex 2023; 33:9038-9053. [PMID: 37259176 PMCID: PMC10350824 DOI: 10.1093/cercor/bhad180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 06/02/2023] Open
Abstract
Sensory perturbation in one modality results in the adaptive reorganization of neural pathways within the spared modalities, a phenomenon known as "crossmodal plasticity," which has been examined during or after the classic "critical period." Because peripheral perturbations can alter the auditory cortex (ACX) activity and functional connectivity of the ACX subplate neurons (SPNs) even before the critical period, called the precritical period, we investigated if retinal deprivation at birth crossmodally alters the ACX activity and SPN circuits during the precritical period. We deprived newborn mice of visual inputs after birth by performing bilateral enucleation. We performed in vivo widefield imaging in the ACX of awake pups during the first two postnatal weeks to investigate cortical activity. We found that enucleation alters spontaneous and sound-evoked activities in the ACX in an age-dependent manner. Next, we performed whole-cell patch clamp recording combined with laser scanning photostimulation in ACX slices to investigate circuit changes in SPNs. We found that enucleation alters the intracortical inhibitory circuits impinging on SPNs, shifting the excitation-inhibition balance toward excitation and this shift persists after ear opening. Together, our results indicate that crossmodal functional changes exist in the developing sensory cortices at early ages before the onset of the classic critical period.
Collapse
Affiliation(s)
- Didhiti Mukherjee
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Binghan Xue
- Department of Biology, University of Maryland, College Park, MD 20742, United States
| | - Chih-Ting Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Minzi Chang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Joseph P Y Kao
- Department of Physiology, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Patrick O Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, United States
- Department of Biology, University of Maryland, College Park, MD 20742, United States
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, United States
| |
Collapse
|
9
|
Gugel ZV, Maurais EG, Hong EJ. Chronic exposure to odors at naturally occurring concentrations triggers limited plasticity in early stages of Drosophila olfactory processing. eLife 2023; 12:e85443. [PMID: 37195027 PMCID: PMC10229125 DOI: 10.7554/elife.85443] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/06/2023] [Indexed: 05/18/2023] Open
Abstract
In insects and mammals, olfactory experience in early life alters olfactory behavior and function in later life. In the vinegar fly Drosophila, flies chronically exposed to a high concentration of a monomolecular odor exhibit reduced behavioral aversion to the familiar odor when it is reencountered. This change in olfactory behavior has been attributed to selective decreases in the sensitivity of second-order olfactory projection neurons (PNs) in the antennal lobe that respond to the overrepresented odor. However, since odorant compounds do not occur at similarly high concentrations in natural sources, the role of odor experience-dependent plasticity in natural environments is unclear. Here, we investigated olfactory plasticity in the antennal lobe of flies chronically exposed to odors at concentrations that are typically encountered in natural odor sources. These stimuli were chosen to each strongly and selectively excite a single class of primary olfactory receptor neuron (ORN), thus facilitating a rigorous assessment of the selectivity of olfactory plasticity for PNs directly excited by overrepresented stimuli. Unexpectedly, we found that chronic exposure to three such odors did not result in decreased PN sensitivity but rather mildly increased responses to weak stimuli in most PN types. Odor-evoked PN activity in response to stronger stimuli was mostly unaffected by odor experience. When present, plasticity was observed broadly in multiple PN types and thus was not selective for PNs receiving direct input from the chronically active ORNs. We further investigated the DL5 olfactory coding channel and found that chronic odor-mediated excitation of its input ORNs did not affect PN intrinsic properties, local inhibitory innervation, ORN responses or ORN-PN synaptic strength; however, broad-acting lateral excitation evoked by some odors was increased. These results show that PN odor coding is only mildly affected by strong persistent activation of a single olfactory input, highlighting the stability of early stages of insect olfactory processing to significant perturbations in the sensory environment.
Collapse
Affiliation(s)
- Zhannetta V Gugel
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Elizabeth G Maurais
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Elizabeth J Hong
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| |
Collapse
|
10
|
Mukherjee D, Xue B, Chen CT, Chang M, Kao JPY, Kanold PO. Early retinal deprivation crossmodally alters nascent subplate circuits and activity in the auditory cortex during the precritical period. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529453. [PMID: 36865142 PMCID: PMC9980129 DOI: 10.1101/2023.02.21.529453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Sensory perturbation in one modality results in adaptive reorganization of neural pathways within the spared modalities, a phenomenon known as "crossmodal plasticity", which has been examined during or after the classic 'critical period'. Because peripheral perturbations can alter auditory cortex (ACX) activity and functional connectivity of the ACX subplate neurons (SPNs) even before the classic critical period, called the precritical period, we investigated if retinal deprivation at birth crossmodally alters ACX activity and SPN circuits during the precritical period. We deprived newborn mice of visual inputs after birth by performing bilateral enucleation. We performed in vivo imaging in the ACX of awake pups during the first two postnatal weeks to investigate cortical activity. We found that enucleation alters spontaneous and sound-evoked activity in the ACX in an age-dependent manner. Next, we performed whole-cell patch clamp recording combined with laser scanning photostimulation in ACX slices to investigate circuit changes in SPNs. We found that enucleation alters the intracortical inhibitory circuits impinging on SPNs shifting the excitation-inhibition balance towards excitation and this shift persists after ear opening. Together, our results indicate that crossmodal functional changes exist in the developing sensory cortices at early ages before the onset of the classic critical period.
Collapse
|
11
|
Kirchberger L, Mukherjee S, Self MW, Roelfsema PR. Contextual drive of neuronal responses in mouse V1 in the absence of feedforward input. SCIENCE ADVANCES 2023; 9:eadd2498. [PMID: 36662858 PMCID: PMC9858514 DOI: 10.1126/sciadv.add2498] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Neurons in the primary visual cortex (V1) respond to stimuli in their receptive field (RF), which is defined by the feedforward input from the retina. However, V1 neurons are also sensitive to contextual information outside their RF, even if the RF itself is unstimulated. Here, we examined the cortical circuits for V1 contextual responses to gray disks superimposed on different backgrounds. Contextual responses began late and were strongest in the feedback-recipient layers of V1. They differed between the three main classes of inhibitory neurons, with particularly strong contextual drive of VIP neurons, indicating a contribution of disinhibitory circuits to contextual drive. Contextual drive was strongest when the gray disk was perceived as figure, occluding its background, rather than a hole. Our results link contextual drive in V1 to perceptual organization and provide previously unknown insight into how recurrent processing shapes the response of sensory neurons to facilitate figure perception.
Collapse
Affiliation(s)
- Lisa Kirchberger
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, Netherlands
| | - Sreedeep Mukherjee
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, Netherlands
| | - Matthew W. Self
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, Netherlands
| | - Pieter R. Roelfsema
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
- Department of Psychiatry, Academic Medical Center, Amsterdam, Netherlands
- Laboratory of Visual Brain Therapy, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris F-75012, France
| |
Collapse
|
12
|
Mukherjee D, Kanold PO. Changing subplate circuits: Early activity dependent circuit plasticity. Front Cell Neurosci 2023; 16:1067365. [PMID: 36713777 PMCID: PMC9874351 DOI: 10.3389/fncel.2022.1067365] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Early neural activity in the developing sensory system comprises spontaneous bursts of patterned activity, which is fundamental for sculpting and refinement of immature cortical connections. The crude early connections that are initially refined by spontaneous activity, are further elaborated by sensory-driven activity from the periphery such that orderly and mature connections are established for the proper functioning of the cortices. Subplate neurons (SPNs) are one of the first-born mature neurons that are transiently present during early development, the period of heightened activity-dependent plasticity. SPNs are well integrated within the developing sensory cortices. Their structural and functional properties such as relative mature intrinsic membrane properties, heightened connectivity via chemical and electrical synapses, robust activation by neuromodulatory inputs-place them in an ideal position to serve as crucial elements in monitoring and regulating spontaneous endogenous network activity. Moreover, SPNs are the earliest substrates to receive early sensory-driven activity from the periphery and are involved in its modulation, amplification, and transmission before the maturation of the direct adult-like thalamocortical connectivity. Consequently, SPNs are vulnerable to sensory manipulations in the periphery. A broad range of early sensory deprivations alters SPN circuit organization and functions that might be associated with long term neurodevelopmental and psychiatric disorders. Here we provide a comprehensive overview of SPN function in activity-dependent development during early life and integrate recent findings on the impact of early sensory deprivation on SPNs that could eventually lead to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Didhiti Mukherjee
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Patrick O. Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States,Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, United States,*Correspondence: Patrick O. Kanold ✉
| |
Collapse
|
13
|
Weiler S, Guggiana Nilo D, Bonhoeffer T, Hübener M, Rose T, Scheuss V. Functional and structural features of L2/3 pyramidal cells continuously covary with pial depth in mouse visual cortex. Cereb Cortex 2022; 33:3715-3733. [PMID: 36017976 PMCID: PMC10068292 DOI: 10.1093/cercor/bhac303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Pyramidal cells of neocortical layer 2/3 (L2/3 PyrCs) integrate signals from numerous brain areas and project throughout the neocortex. These PyrCs show pial depth-dependent functional and structural specializations, indicating participation in different functional microcircuits. However, whether these depth-dependent differences result from separable PyrC subtypes or whether their features display a continuum correlated with pial depth is unknown. Here, we assessed the stimulus selectivity, electrophysiological properties, dendritic morphology, and excitatory and inhibitory connectivity across the depth of L2/3 in the binocular visual cortex of mice. We find that the apical, but not the basal dendritic tree structure, varies with pial depth, which is accompanied by variation in subthreshold electrophysiological properties. Lower L2/3 PyrCs receive increased input from L4, while upper L2/3 PyrCs receive a larger proportion of intralaminar input. In vivo calcium imaging revealed a systematic change in visual responsiveness, with deeper PyrCs showing more robust responses than superficial PyrCs. Furthermore, deeper PyrCs are more driven by contralateral than ipsilateral eye stimulation. Importantly, the property value transitions are gradual, and L2/3 PyrCs do not display discrete subtypes based on these parameters. Therefore, L2/3 PyrCs' multiple functional and structural properties systematically correlate with their depth, forming a continuum rather than discrete subtypes.
Collapse
Affiliation(s)
- Simon Weiler
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, Martinsried 82152, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, Planegg 82152, Germany.,Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, 25 Howland Street, London W1T 4JG, United Kingdom
| | - Drago Guggiana Nilo
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, Martinsried 82152, Germany.,Max Planck Institute for Biological Intelligence, in foundation, Martinsried, Germany
| | - Tobias Bonhoeffer
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, Martinsried 82152, Germany.,Max Planck Institute for Biological Intelligence, in foundation, Martinsried, Germany
| | - Mark Hübener
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, Martinsried 82152, Germany.,Max Planck Institute for Biological Intelligence, in foundation, Martinsried, Germany
| | - Tobias Rose
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, Martinsried 82152, Germany.,Institute for Experimental Epileptology and Cognition Research, University of Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| | - Volker Scheuss
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, Martinsried 82152, Germany.,Department of Psychiatry, Ludwig-Maximilians-Universität München, Nussbaumstr. 7, München 80336, Germany
| |
Collapse
|
14
|
Abstract
Orientation selectivity is one of the most important functional features of visual neurons. In the primate visual cortex, whether all orientations are represented equally is still unclear. Previous electrophysiological recordings led to controversial findings. By analyzing a large set of optical imaging data, we found anisotropic representations of orientation in macaque visual areas and that different areas had different types of anisotropies. These findings not only shed light on the long-standing question regarding a basic property of the primate visual cortex, but also on the strategy the visual system takes to represent and analyze the visual world. In mammals, a larger number of neurons in V1 are devoted to cardinal (horizontal and vertical) orientations than to oblique orientations. However, electrophysiological results from the macaque monkey visual cortex are controversial. Both isotropic and anisotropic orientation distributions have been reported. It is also unclear whether different visual areas along the visual hierarchy have different orientation anisotropies. We analyzed orientation maps in a large set of intrinsic signal optical imaging data and found that both V1 and V4 exhibited significant orientation anisotropies. However, their overrepresented orientations were very different: in V1, both cardinal and radial orientations were overrepresented, while in V4, only cardinal bias was presented. These findings suggest that different cortical areas have evolved to emphasize different features that are suitable for their functional purposes, a factor that needs to be considered when efforts are made to explain the relationships between the visual environment and the cortical representation and between the cortical representation and visual perception.
Collapse
|
15
|
Ferrer C, De Marco García NV. The Role of Inhibitory Interneurons in Circuit Assembly and Refinement Across Sensory Cortices. Front Neural Circuits 2022; 16:866999. [PMID: 35463203 PMCID: PMC9021723 DOI: 10.3389/fncir.2022.866999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/16/2022] [Indexed: 12/15/2022] Open
Abstract
Sensory information is transduced into electrical signals in the periphery by specialized sensory organs, which relay this information to the thalamus and subsequently to cortical primary sensory areas. In the cortex, microcircuits constituted by interconnected pyramidal cells and inhibitory interneurons, distributed throughout the cortical column, form the basic processing units of sensory information underlying sensation. In the mouse, these circuits mature shortly after birth. In the first postnatal week cortical activity is characterized by highly synchronized spontaneous activity. While by the second postnatal week, spontaneous activity desynchronizes and sensory influx increases drastically upon eye opening, as well as with the onset of hearing and active whisking. This influx of sensory stimuli is fundamental for the maturation of functional properties and connectivity in neurons allocated to sensory cortices. In the subsequent developmental period, spanning the first five postnatal weeks, sensory circuits are malleable in response to sensory stimulation in the so-called critical periods. During these critical periods, which vary in timing and duration across sensory areas, perturbations in sensory experience can alter cortical connectivity, leading to long-lasting modifications in sensory processing. The recent advent of intersectional genetics, in vivo calcium imaging and single cell transcriptomics has aided the identification of circuit components in emergent networks. Multiple studies in recent years have sought a better understanding of how genetically-defined neuronal subtypes regulate circuit plasticity and maturation during development. In this review, we discuss the current literature focused on postnatal development and critical periods in the primary auditory (A1), visual (V1), and somatosensory (S1) cortices. We compare the developmental trajectory among the three sensory areas with a particular emphasis on interneuron function and the role of inhibitory circuits in cortical development and function.
Collapse
|
16
|
Li AA, Wang F, Wu S, Zhang X. Emergence of probabilistic representation in the neural network of primary visual cortex. iScience 2022; 25:103975. [PMID: 35310336 PMCID: PMC8924637 DOI: 10.1016/j.isci.2022.103975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/27/2021] [Accepted: 02/21/2022] [Indexed: 11/12/2022] Open
Abstract
During the early development of the mammalian visual system, the distribution of neuronal preferred orientations in the primary visual cortex (V1) gradually shifts to match major orientation features of the environment, achieving its optimal representation. By combining computational modeling and electrophysiological recording, we provide a circuit plasticity mechanism that underlies the developmental emergence of such matched representation in the visual cortical network. Specifically, in a canonical circuit of densely-interconnected pyramidal cells and inhibitory parvalbumin-expressing (PV+) fast-spiking interneurons in V1 layer 2/3, our model successfully simulates the experimental observations and further reveals that the nonuniform inhibition plays a key role in shaping the network representation through spike timing-dependent plasticity. The experimental results suggest that PV + interneurons in V1 are capable of providing nonuniform inhibition shortly after vision onset. Our study elucidates a circuit mechanism for acquisition of prior knowledge of environment for optimal inference in sensory neural systems Computational and experimental methods are combined to representation in mice V1 Nonuniform inhibition plays a key role in shaping the network representation PV + interneurons provide nonuniform inhibition shortly after vision onset
Collapse
Affiliation(s)
- Ang A Li
- Academy for Advanced Interdisciplinary Studies, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Fengchao Wang
- Academy for Advanced Interdisciplinary Studies, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Beijing, China.,State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Si Wu
- Academy for Advanced Interdisciplinary Studies, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Beijing, China.,School of Psychology and Cognitive Sciences, Peking University, Beijing, China
| | - Xiaohui Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
17
|
Henderson M, Serences JT. Biased orientation representations can be explained by experience with nonuniform training set statistics. J Vis 2021; 21:10. [PMID: 34351397 PMCID: PMC8354037 DOI: 10.1167/jov.21.8.10] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Visual acuity is better for vertical and horizontal compared to other orientations. This cross-species phenomenon is often explained by “efficient coding,” whereby more neurons show sharper tuning for the orientations most common in natural vision. However, it is unclear if experience alone can account for such biases. Here, we measured orientation representations in a convolutional neural network, VGG-16, trained on modified versions of ImageNet (rotated by 0°, 22.5°, or 45° counterclockwise of upright). Discriminability for each model was highest near the orientations that were most common in the network's training set. Furthermore, there was an overrepresentation of narrowly tuned units selective for the most common orientations. These effects emerged in middle layers and increased with depth in the network, though this layer-wise pattern may depend on properties of the evaluation stimuli used. Biases emerged early in training, consistent with the possibility that nonuniform representations may play a functional role in the network's task performance. Together, our results suggest that biased orientation representations can emerge through experience with a nonuniform distribution of orientations, supporting the efficient coding hypothesis.
Collapse
Affiliation(s)
- Margaret Henderson
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, USA.,Department of Machine Learning, Carnegie Mellon University, Pittsburgh, PA, USA.,Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA.,
| | - John T Serences
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, USA.,Department of Psychology, University of California, San Diego, La Jolla, CA, USA.,Kavli Foundation for the Brain and Mind, University of California, San Diego, La Jolla, CA, USA.,
| |
Collapse
|
18
|
Nishio N, Hayashi K, Ishikawa AW, Yoshimura Y. The role of early visual experience in the development of spatial-frequency preference in the primary visual cortex. J Physiol 2021; 599:4131-4152. [PMID: 34275157 DOI: 10.1113/jp281463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/15/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The mature functioning of the primary visual cortex depends on postnatal visual experience, while the orientation/direction preference is established just after eye-opening, independently of visual experience. In this study, we find that visual experience is required for the normal development of spatial-frequency (SF) preference in mouse primary visual cortex. We show that age- and experience-dependent shifts in optimal SFs towards higher frequencies occurred similarly in excitatory neurons and parvalbumin-positive interneurons. We also show that some excitatory and parvalbumin-positive neurons preferentially responded to visual stimuli consisting of very high SFs and posterior directions, and that the preference was established at earlier developmental stages than the SF preference in the standard frequency range. These results suggest that early visual experience is required for the development of SF representation and shed light on the experience-dependent developmental mechanisms underlying visual cortical functions. ABSTRACT Early visual experience is crucial for the maturation of visual cortical functions. It has been demonstrated that the orientation and direction preferences in individual neurons of the primary visual cortex are well established immediately after eye-opening. The postnatal development of spatial frequency (SF) tuning and its dependence on visual experience, however, has not been thoroughly quantified. In this study, macroscopic imaging with flavoprotein autofluorescence revealed that the optimal SFs shift towards higher frequency values during normal development in mouse primary visual cortex. This developmental shift was impaired by binocular deprivation during the sensitive period, postnatal 3 weeks (PW3) to PW6. Furthermore, two-photon Ca2+ imaging revealed that the developmental shift of the optimal SFs, depending on visual experience, concurrently occurs in excitatory neurons and parvalbumin-positive inhibitory interneurons (PV neurons). In addition, some excitatory and PV neurons exhibited a preference for visual stimuli consisting of particularly high SFs and posterior directions at relatively early developmental stages; this preference was not affected by binocular deprivation. Thus, there may be two distinct developmental mechanisms for the establishment of SF preference depending on the frequency values. After PW3, SF tuning for neurons tuned to standard frequency ranges was sharper in excitatory neurons and slightly broader in PV neurons, leading to considerably attenuated SF tuning in PV neurons compared to excitatory neurons by PW5. Our findings suggest that early visual experience is far more important than orientation/direction selectivity for the development of the neural representation of the diverse SFs.
Collapse
Affiliation(s)
- Nana Nishio
- Division of Visual Information Processing, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Kenji Hayashi
- Division of Visual Information Processing, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Ayako Wendy Ishikawa
- Division of Visual Information Processing, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Yumiko Yoshimura
- Division of Visual Information Processing, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| |
Collapse
|
19
|
Kowalewski NN, Kauttonen J, Stan PL, Jeon BB, Fuchs T, Chase SM, Lee TS, Kuhlman SJ. Development of Natural Scene Representation in Primary Visual Cortex Requires Early Postnatal Experience. Curr Biol 2020; 31:369-380.e5. [PMID: 33220181 DOI: 10.1016/j.cub.2020.10.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/10/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023]
Abstract
The development of the visual system is known to be shaped by early-life experience. To identify response properties that contribute to enhanced natural scene representation, we performed calcium imaging of excitatory neurons in the primary visual cortex (V1) of awake mice raised in three different conditions (standard-reared, dark-reared, and delayed-visual experience) and compared neuronal responses to natural scene features in relation to simpler grating stimuli that varied in orientation and spatial frequency. We assessed population selectivity in the V1 by using decoding methods and found that natural scene discriminability increased by 75% between the ages of 4 and 6 weeks. Both natural scene and grating discriminability were higher in standard-reared animals than in those raised in the dark. This increase in discriminability was accompanied by a reduction in the number of neurons that responded to low-spatial-frequency gratings. At the same time, there was an increase in neuronal preference for natural scenes. Light exposure restricted to a 2- to 4-week window during adulthood did not induce improvements in natural scene or in grating stimulus discriminability. Our results demonstrate that experience reduces the number of neurons needed to effectively encode grating stimuli and that early visual experience enhances natural scene discriminability by directly increasing responsiveness to natural scene features.
Collapse
Affiliation(s)
- Nina N Kowalewski
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Janne Kauttonen
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA; Center for the Neural Basis of Cognition, 1400 Locust Street, Pittsburgh, PA 15219, USA
| | - Patricia L Stan
- Center for the Neural Basis of Cognition, 1400 Locust Street, Pittsburgh, PA 15219, USA; University of Pittsburgh Center for Neuroscience, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Brian B Jeon
- Department of Biomedical Engineering, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA; Neuroscience Institute, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Thomas Fuchs
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA; Center for the Neural Basis of Cognition, 1400 Locust Street, Pittsburgh, PA 15219, USA; Neuroscience Institute, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Steven M Chase
- Center for the Neural Basis of Cognition, 1400 Locust Street, Pittsburgh, PA 15219, USA; Department of Biomedical Engineering, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA; Neuroscience Institute, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Tai Sing Lee
- Center for the Neural Basis of Cognition, 1400 Locust Street, Pittsburgh, PA 15219, USA; Neuroscience Institute, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA; Department of Computer Science, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Sandra J Kuhlman
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA; Center for the Neural Basis of Cognition, 1400 Locust Street, Pittsburgh, PA 15219, USA; University of Pittsburgh Center for Neuroscience, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA; Department of Biomedical Engineering, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA; Neuroscience Institute, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
20
|
Pak A, Chubykin AA. Cortical Tuning is Impaired After Perceptual Experience in Primary Visual Cortex of Serotonin Transporter-Deficient Mice. Cereb Cortex Commun 2020; 1:tgaa066. [PMID: 33134928 PMCID: PMC7575641 DOI: 10.1093/texcom/tgaa066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 08/27/2020] [Accepted: 09/06/2020] [Indexed: 11/16/2022] Open
Abstract
Serotonin (5-hydroxytryptamine) is crucial for the proper development of neuronal circuits early in life and their refinement throughout adulthood. Its signaling is tightly regulated by the serotonin transporter (SERT), alterations of which were implicated in various neurological and psychiatric disorders. Animal models lacking a functional SERT variant display diverse phenotypes, including increased anxiety, social communication deficits, and altered cortical development. However, it remains unclear how SERT disruption affects sensory processing and experience-dependent learning in adulthood. It has been previously shown that perceptual experience leads to the development of visual familiarity-evoked theta oscillations in mouse V1. Here, we discovered that familiarity-evoked theta oscillations were longer and less stimulus specific in SERT knockout (KO) compared with wild-type (WT) mice. Interestingly, while the overall visual response properties were similar in naive mice, orientation and spatial frequency processing were significantly impaired in SERT KO compared with WT or SERT heterozygous mice following perceptual experience. Our findings shed more light on the mechanism of familiarity-evoked oscillations and highlight the importance of serotonin signaling in perceptual learning.
Collapse
Affiliation(s)
- Alexandr Pak
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Alexander A Chubykin
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
21
|
Early Visual Motion Experience Improves Retinal Encoding of Motion Directions. J Neurosci 2020; 40:5431-5442. [PMID: 32532886 DOI: 10.1523/jneurosci.0569-20.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/14/2020] [Accepted: 05/16/2020] [Indexed: 11/21/2022] Open
Abstract
Altered sensory experience in early life often leads to altered response properties of the sensory neurons. This process is mostly thought to happen in the brain, not in the sensory organs. We show that in the mouse retina of both sexes, exposed to a motion-dominated visual environment from eye-opening, the ON-OFF direction selective ganglion cells (ooDSGCs) develop significantly stronger direction encoding ability for motion in all directions. This improvement occurs independent of the motion direction used for training. We demonstrated that this enhanced ability to encode motion direction is mainly attributed to increased response reliability of ooDSGCs. Closer examination revealed that the excitatory inputs from the ON bipolar pathway showed enhanced response reliability after the motion experience training, while other synaptic inputs remain relatively unchanged. Our results demonstrate that retina adapts to the visual environment during neonatal development.SIGNIFICANCE STATEMENT We found that retina, as the first stage of visual sensation, can also be affected by experience dependent plasticity during development. Exposure to a motion enriched visual environment immediately after eye-opening greatly improves motion direction encoding by direction selective retinal ganglion cells (RGCs). These results motivate future studies aimed at understanding how visual experience shapes the retinal circuits and the response properties of retinal neurons.
Collapse
|
22
|
Ribic A. Stability in the Face of Change: Lifelong Experience-Dependent Plasticity in the Sensory Cortex. Front Cell Neurosci 2020; 14:76. [PMID: 32372915 PMCID: PMC7186337 DOI: 10.3389/fncel.2020.00076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/17/2020] [Indexed: 11/13/2022] Open
Abstract
Plasticity is a fundamental property of the nervous system that enables its adaptations to the ever-changing environment. Heightened plasticity typical for developing circuits facilitates their robust experience-dependent functional maturation. This plasticity wanes during adolescence to permit the stabilization of mature brain function, but abundant evidence supports that adult circuits exhibit both transient and long-term experience-induced plasticity. Cortical plasticity has been extensively studied throughout the life span in sensory systems and the main distinction between development and adulthood arising from these studies is the concept that passive exposure to relevant information is sufficient to drive robust plasticity early in life, while higher-order attentional mechanisms are necessary to drive plastic changes in adults. Recent work in the primary visual and auditory cortices began to define the circuit mechanisms that govern these processes and enable continuous adaptation to the environment, with transient circuit disinhibition emerging as a common prerequisite for both developmental and adult plasticity. Drawing from studies in visual and auditory systems, this review article summarizes recent reports on the circuit and cellular mechanisms of experience-driven plasticity in the developing and adult brains and emphasizes the similarities and differences between them. The benefits of distinct plasticity mechanisms used at different ages are discussed in the context of sensory learning, as well as their relationship to maladaptive plasticity and neurodevelopmental brain disorders. Knowledge gaps and avenues for future work are highlighted, and these will hopefully motivate future research in these areas, particularly those about the learning of complex skills during development.
Collapse
Affiliation(s)
- Adema Ribic
- Department of Psychology, College and Graduate School of Arts and Sciences, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
23
|
Zhang L, Wu Q, Zhang Y. Early visual motion experience shapes the gap junction connections among direction selective ganglion cells. PLoS Biol 2020; 18:e3000692. [PMID: 32210427 PMCID: PMC7135332 DOI: 10.1371/journal.pbio.3000692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/06/2020] [Accepted: 03/12/2020] [Indexed: 11/30/2022] Open
Abstract
Gap junction connections between neurons play critical roles in the development of the nervous system. However, studies on the sensory experience–driven plasticity during the critical period rarely examine the involvement of gap junction connections. ON-OFF direction selective ganglion cells (ooDSGCs) in the mouse retina that prefer upward motion are connected by gap junctions throughout development. Here, we show that after exposing the mice to a visual environment dominated by upward motion from eye-opening to puberty, ooDSGCs that respond preferentially to upward motion show enhanced spike synchronization, while downward motion training has the opposite effect. The effect is long-term, persisting at least three months after the training. Correlated activity during training is tightly linked to this effect: Cells trained by stimuli that promote higher levels of activity correlation show stronger gap junction connection after the training, while stimuli that produce very low activity correlation leave the cells with much weaker gap junction connections afterwards. Direct investigation of the gap junction connections among upward motion–preferring ooDSGCs show that both the percentage of electrically coupled ooDSGCs and the strength of the coupling are affected by visual motion training. Our results demonstrate that in the retina, one of the peripheral sensory systems, gap junction connections can be shaped by experience during development. Gap junction connections between upward motion–preferring direction selective ganglion cells can be shaped by early visual experience; upward motion training leads to enhanced connectivity, while downward motion greatly suppresses the connection, suggesting a form of activity-dependent plasticity.
Collapse
Affiliation(s)
- Li Zhang
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiwen Wu
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yifeng Zhang
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
24
|
Crijns E, Kaliukhovich DA, Vankelecom L, Op de Beeck H. Unsupervised Temporal Contiguity Experience Does Not Break the Invariance of Orientation Selectivity Across Spatial Frequency. Front Syst Neurosci 2019; 13:22. [PMID: 31231196 PMCID: PMC6558410 DOI: 10.3389/fnsys.2019.00022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/30/2019] [Indexed: 11/28/2022] Open
Abstract
The images projected onto the retina can vary widely for a single object. Despite these transformations primates can quickly and reliably recognize objects. At the neural level, transformation tolerance in monkey inferotemporal cortex is affected by the temporal contiguity statistics of the visual input. Here we investigated whether temporal contiguity learning also influences the basic feature detectors in lower levels of the visual hierarchy, in particular the independent coding of orientation and spatial frequency (SF) in primary visual cortex. Eight male Long Evans rats were repeatedly exposed to a temporal transition between two gratings that changed in SF and had either the same (control SF) or a different (swap SF) orientation. Electrophysiological evidence showed that the responses of single neurons during this exposure were sensitive to the change in orientation. Nevertheless, the tolerance of orientation selectivity for changes in SF was unaffected by the temporal contiguity manipulation, as observed in 239 single neurons isolated pre-exposure and 234 post-exposure. Temporal contiguity learning did not affect orientation selectivity in V1. The basic filter mechanisms that characterize V1 processing seem unaffected by temporal contiguity manipulations.
Collapse
Affiliation(s)
- Els Crijns
- Laboratory of Biological Psychology, Department of Brain and Cognition, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, Leuven, Belgium
| | - Dzmitry A Kaliukhovich
- Laboratory of Biological Psychology, Department of Brain and Cognition, KU Leuven, Leuven, Belgium
| | - Lara Vankelecom
- Laboratory of Biological Psychology, Department of Brain and Cognition, KU Leuven, Leuven, Belgium
| | - Hans Op de Beeck
- Laboratory of Biological Psychology, Department of Brain and Cognition, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, Leuven, Belgium
| |
Collapse
|
25
|
Jin M, Beck JM, Glickfeld LL. Neuronal Adaptation Reveals a Suboptimal Decoding of Orientation Tuned Populations in the Mouse Visual Cortex. J Neurosci 2019; 39:3867-3881. [PMID: 30833509 PMCID: PMC6520502 DOI: 10.1523/jneurosci.3172-18.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/15/2019] [Accepted: 02/21/2019] [Indexed: 01/18/2023] Open
Abstract
Sensory information is encoded by populations of cortical neurons. Yet, it is unknown how this information is used for even simple perceptual choices such as discriminating orientation. To determine the computation underlying this perceptual choice, we took advantage of the robust visual adaptation in mouse primary visual cortex (V1). We first designed a stimulus paradigm in which we could vary the degree of neuronal adaptation measured in V1 during an orientation discrimination task. We then determined how adaptation affects task performance for mice of both sexes and tested which neuronal computations are most consistent with the behavioral results given the adapted population responses in V1. Despite increasing the reliability of the population representation of orientation among neurons, and improving the ability of a variety of optimal decoders to discriminate target from distractor orientations, adaptation increases animals' behavioral thresholds. Decoding the animals' choice from neuronal activity revealed that this unexpected effect on behavior could be explained by an overreliance of the perceptual choice circuit on target preferring neurons and a failure to appropriately discount the activity of neurons that prefer the distractor. Consistent with this all-positive computation, we find that animals' task performance is susceptible to subtle perturbations of distractor orientation and optogenetic suppression of neuronal activity in V1. This suggests that to solve this task the circuit has adopted a suboptimal and task-specific computation that discards important task-related information.SIGNIFICANCE STATEMENT A major goal in systems neuroscience is to understand how sensory signals are used to guide behavior. This requires determining what information in sensory cortical areas is used, and how it is combined, by downstream perceptual choice circuits. Here we demonstrate that when performing a go/no-go orientation discrimination task, mice suboptimally integrate signals from orientation tuned visual cortical neurons. While they appropriately positively weight target-preferring neurons, they fail to negatively weight distractor-preferring neurons. We propose that this all-positive computation may be adopted because of its simple learning rules and faster processing, and may be a common approach to perceptual decision-making when task conditions allow.
Collapse
Affiliation(s)
- Miaomiao Jin
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Jeffrey M Beck
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Lindsey L Glickfeld
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
26
|
How Senses Work Together: Cross-Modal Interactions between Primary Sensory Cortices. Neural Plast 2018; 2018:5380921. [PMID: 30647732 PMCID: PMC6311735 DOI: 10.1155/2018/5380921] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/04/2018] [Indexed: 11/17/2022] Open
Abstract
On our way through a town, the things we see can make us change the way we go. The things that we hear can make us stop or walk on, or the things we feel can cause us to wear a warm jacket or just a t-shirt. All these behaviors are mediated by highly complex processing mechanisms in our brain and reflect responses to many important sensory inputs. The mammalian cerebral cortex, which processes the sensory information, consists of largely specialized sensory areas mainly receiving information from their corresponding sensory modalities. The first cortical regions receiving the input from the outer world are the so called primary sensory cortices. Strikingly, there is convincing evidence that primary sensory cortices do not work in isolation but are substantially affected by other sensory modalities. Here, we will review previous and current literature on this cross-modal interplay.
Collapse
|
27
|
Singer Y, Teramoto Y, Willmore BD, Schnupp JW, King AJ, Harper NS. Sensory cortex is optimized for prediction of future input. eLife 2018; 7:31557. [PMID: 29911971 PMCID: PMC6108826 DOI: 10.7554/elife.31557] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 06/16/2018] [Indexed: 11/13/2022] Open
Abstract
Neurons in sensory cortex are tuned to diverse features in natural scenes. But what determines which features neurons become selective to? Here we explore the idea that neuronal selectivity is optimized to represent features in the recent sensory past that best predict immediate future inputs. We tested this hypothesis using simple feedforward neural networks, which were trained to predict the next few moments of video or audio in clips of natural scenes. The networks developed receptive fields that closely matched those of real cortical neurons in different mammalian species, including the oriented spatial tuning of primary visual cortex, the frequency selectivity of primary auditory cortex and, most notably, their temporal tuning properties. Furthermore, the better a network predicted future inputs the more closely its receptive fields resembled those in the brain. This suggests that sensory processing is optimized to extract those features with the most capacity to predict future input. A large part of our brain is devoted to processing the sensory inputs that we receive from the world. This allows us to tell, for example, whether we are looking at a cat or a dog, and if we are hearing a bark or a meow. Neurons in the sensory cortex respond to these stimuli by generating spikes of activity. Within each sensory area, neurons respond best to stimuli with precise properties: those in the primary visual cortex prefer edge-like structures that move in a certain direction at a given speed, while neurons in the primary auditory cortex favour sounds that change in loudness over a particular range of frequencies. Singer et al. sought to understand why neurons respond to the particular features of stimuli that they do. Why do visual neurons react more to moving edges than to, say, rotating hexagons? And why do auditory neurons respond more to certain changing sounds than to, say, constant tones? One leading idea is that the brain tries to use as few spikes as possible to represent real-world stimuli. Known as sparse coding, this principle can account for much of the behaviour of sensory neurons. Another possibility is that sensory areas respond the way they do because it enables them to best predict future sensory input. To test this idea, Singer et al. used a computer to simulate a network of neurons and trained this network to predict the next few frames of video clips using the previous few frames. When the network had learned this task, Singer et al. examined the neurons’ preferred stimuli. Like neurons in primary visual cortex, the simulated neurons typically responded most to edges that moved over time. The same network was also trained in a similar way, but this time using sound. As for neurons in primary auditory cortex, the simulated neurons preferred sounds that changed in loudness at particular frequencies. Notably, for both vision and audition, the simulated neurons favoured recent inputs over those further into the past. In this way and others, they were more similar to real neurons than simulated neurons that used sparse coding. Both artificial networks trained to foretell sensory input and the brain therefore favour the same types of stimuli: the ones that are good at helping to grasp future information. This suggests that the brain represents the sensory world so as to be able to best predict the future. Knowing how the brain handles information from our senses may help to understand disorders associated with sensory processing, such as dyslexia and tinnitus. It may also inspire approaches for training machines to process sensory inputs, improving artificial intelligence.
Collapse
Affiliation(s)
- Yosef Singer
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Yayoi Teramoto
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Ben Db Willmore
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Jan Wh Schnupp
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Andrew J King
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Nicol S Harper
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
28
|
LeMessurier AM, Feldman DE. Plasticity of population coding in primary sensory cortex. Curr Opin Neurobiol 2018; 53:50-56. [PMID: 29775823 DOI: 10.1016/j.conb.2018.04.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 10/14/2022]
Abstract
That experience shapes sensory tuning in primary sensory cortex is well understood. But effective neural population codes depend on more than just sensory tuning. Recent population imaging and recording studies have characterized population codes in sensory cortex, and tracked how they change with sensory manipulations and training on perceptual learning tasks. These studies confirm sensory tuning changes, but also reveal other features of plasticity, including sensory gain modulation, restructuring of firing correlations, and differential routing of information to output pathways. Unexpectedly strong day-to-day variation exists in single-neuron sensory tuning, which stabilizes during learning. These are novel dimensions of plasticity in sensory cortex, which refine population codes during learning, but whose mechanisms are unknown.
Collapse
Affiliation(s)
- Amy M LeMessurier
- Department of Molecular & Cell Biology, Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA 94720-3200, United States
| | - Daniel E Feldman
- Department of Molecular & Cell Biology, Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA 94720-3200, United States.
| |
Collapse
|
29
|
Sharifian S, Homaei A, Hemmati R, B Luwor R, Khajeh K. The emerging use of bioluminescence in medical research. Biomed Pharmacother 2018; 101:74-86. [PMID: 29477474 DOI: 10.1016/j.biopha.2018.02.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 01/01/2023] Open
Abstract
Bioluminescence is the light produced by a living organism and is commonly emitted by sea life with Ca2+-regulated photoproteins being the most responsible for bioluminescence emission. Marine coelenterates provide important functions involved in essential purposes such as defense, feeding, and breeding. In this review, the main characteristics of marine photoproteins including aequorin, clytin, obelin, berovin, pholasin and symplectin from different marine organisms will be discussed. We will focused on the recent use of recombinant photoproteins in different biomedical research fields including the measurement of Ca2+ in different intracellular compartments of animal cells, as labels in the design and development of binding assays. This review will also outline how bioluminescent photoproteins have been used in a plethora of analytical methods including ultra-sensitive assays and in vivo imaging of cellular processes. Due to their unique properties including elective intracellular distribution, wide dynamic range, high signal-to-noise ratio and low Ca2+-buffering effect, recombinant photoproteins represent a promising future analytical tool in several in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Sana Sharifian
- Department of Marine Biology, Faculty of Sciences, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Biochemistry, Faculty of Sciences, University of Hormozgan, Bandar Abbas, Iran.
| | - Roohullah Hemmati
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Rodney B Luwor
- Department of Surgery, Level 5, Clinical Sciences Building, The University of Melbourne, The Royal Melbourne Hospital, Grattan Street, Parkville, VIC 3050, Australia
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
30
|
Ranson A. Stability and Plasticity of Contextual Modulation in the Mouse Visual Cortex. Cell Rep 2017; 18:840-848. [PMID: 28122235 PMCID: PMC5289925 DOI: 10.1016/j.celrep.2016.12.080] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/08/2016] [Accepted: 12/22/2016] [Indexed: 02/04/2023] Open
Abstract
Activity of neurons in primary visual cortex is shaped by sensory and behavioral context. However, the long-term stability of the influence of contextual factors in the mature cortex remains poorly understood. To investigate this, we used two-photon calcium imaging to track the influence of surround suppression and locomotion on individual neurons over 14 days. We found that highly active excitatory neurons and parvalbumin-positive (PV+) interneurons exhibited relatively stable modulation by visual context. Similarly, most neurons exhibited a stable yet distinct degree of modulation by locomotion. In contrast, less active excitatory neurons exhibited plasticity in visual context influence, resulting in increased suppression. These findings suggest that the mature visual cortex possesses stable subnetworks of neurons, differentiated by cell type and activity level, which have distinctive and stable interactions with sensory and behavioral contexts, as well as other less active and more labile neurons, which are sensitive to visual experience. Highly active excitatory neurons are stably modulated by visual context Lower activity neurons exhibit plasticity of influence of visual context in mature V1 PV interneurons maintain relatively stable modulation by visual and behavioral context Majority of excitatory neurons are stably modulated by behavioral context
Collapse
Affiliation(s)
- Adam Ranson
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
31
|
Teichert M, Bolz J. Simultaneous intrinsic signal imaging of auditory and visual cortex reveals profound effects of acute hearing loss on visual processing. Neuroimage 2017; 159:459-472. [DOI: 10.1016/j.neuroimage.2017.07.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/08/2017] [Accepted: 07/18/2017] [Indexed: 12/29/2022] Open
|
32
|
Cortical Control of Spatial Resolution by VIP+ Interneurons. J Neurosci 2017; 36:11498-11509. [PMID: 27911754 DOI: 10.1523/jneurosci.1920-16.2016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/15/2016] [Accepted: 09/19/2016] [Indexed: 11/21/2022] Open
Abstract
Neuronal tuning, defined by the degree of selectivity to a specific stimulus, is a hallmark of cortical computation. Understanding the role of GABAergic interneurons in shaping cortical tuning is now possible with the ability to manipulate interneuron classes selectively. Here, we show that interneurons expressing vasoactive intestinal polypeptide (VIP+) regulate the spatial frequency (SF) tuning of pyramidal neurons in mouse visual cortex. Using two-photon calcium imaging and optogenetic manipulations of VIP+ cell activity, we found that activating VIP+ cells elicited a stronger network response to stimuli of higher SFs, whereas suppressing VIP+ cells resulted in a network response shift toward lower SFs. These results establish that cortical inhibition modulates the spatial resolution of visual processing and add further evidence demonstrating that feature selectivity depends, not only on the feedforward excitatory projections into the cortex, but also on dynamic intracortical modulations by specific forms of inhibition. SIGNIFICANCE STATEMENT We demonstrate that interneurons expressing vasoactive intestinal polypeptide (VIP+) play a causal role in regulating the spatial frequency (SF) tuning of neurons in mouse visual cortex. We show that optogenetic activation of VIP+ cells results in a shift in network preference toward higher SFs, whereas suppressing them shifts the network toward lower SFs. Several studies have shown that VIP+ cells are sensitive to neuromodulation and increase their firing during locomotion, whisking, and pupil dilation and are involved in spatially specific top-down modulation, reminiscent of the effects of top-down attention, and also that attention enhances spatial resolution. Our findings provide a bridge between these studies by establishing the inhibitory circuitry that regulates these fundamental modulations of SF in the cortex.
Collapse
|
33
|
Learning Enhances Sensory Processing in Mouse V1 before Improving Behavior. J Neurosci 2017; 37:6460-6474. [PMID: 28559381 DOI: 10.1523/jneurosci.3485-16.2017] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 04/28/2017] [Accepted: 05/20/2017] [Indexed: 01/03/2023] Open
Abstract
A fundamental property of visual cortex is to enhance the representation of those stimuli that are relevant for behavior, but it remains poorly understood how such enhanced representations arise during learning. Using classical conditioning in adult mice of either sex, we show that orientation discrimination is learned in a sequence of distinct behavioral stages, in which animals first rely on stimulus appearance before exploiting its orientation to guide behavior. After confirming that orientation discrimination under classical conditioning requires primary visual cortex (V1), we measured, during learning, response properties of V1 neurons. Learning improved neural discriminability, sharpened orientation tuning, and led to higher contrast sensitivity. Remarkably, these learning-related improvements in the V1 representation were fully expressed before successful orientation discrimination was evident in the animals' behavior. We propose that V1 plays a key role early in discrimination learning to enhance behaviorally relevant sensory information.SIGNIFICANCE STATEMENT Decades of research have documented that responses of neurons in visual cortex can reflect the behavioral relevance of visual information. The behavioral relevance of any stimulus needs to be learned, though, and little is known how visual sensory processing changes, as the significance of a stimulus becomes clear. Here, we trained mice to discriminate two visual stimuli, precisely quantified when learning happened, and measured, during learning, the neural representation of these stimuli in V1. We observed learning-related improvements in V1 processing, which were fully expressed before discrimination was evident in the animals' behavior. These findings indicate that sensory and behavioral improvements can follow different time courses and point toward a key role of V1 at early stages in discrimination learning.
Collapse
|
34
|
Flashing Lights Induce Prolonged Distortions in Visual Cortical Responses and Visual Perception. eNeuro 2017; 4:eN-NWR-0304-16. [PMID: 28508035 PMCID: PMC5429040 DOI: 10.1523/eneuro.0304-16.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 04/24/2017] [Accepted: 04/28/2017] [Indexed: 01/01/2023] Open
Abstract
The primary sensory neocortex generates an internal representation of the environment, and its circuit reorganization is thought to lead to a modification of sensory perception. This reorganization occurs primarily through activity-dependent plasticity and has been well documented in animals during early developmental stages. Here, we describe a new method for the noninvasive induction of long-term plasticity in the mature brain: simple transient visual stimuli (i.e., flashing lights) can be used to induce prolonged modifications in visual cortical processing and visually driven behaviors. Our previous studies have shown that, in the primary visual cortex (V1) of mice, a flashing light stimulus evokes a long-delayed response that persists for seconds. When the mice were repetitively presented with drifting grating stimuli (conditioned stimuli) during the flash stimulus-evoked delayed response period, the V1 neurons exhibited a long-lasting decrease in responsiveness to the conditioned stimuli. The flash stimulus-induced underrepresentation of the grating motion was specific to the direction of the conditioned stimuli and was associated with a decrease in the animal's ability to detect the motion of the drifting gratings. The neurophysiological and behavioral plasticity both persisted for at least several hours and required N-methyl-d-aspartate receptor activation in the visual cortex. We propose that flashing light stimuli can be used as an experimental tool to investigate the visual function and plasticity of neuronal representations and perception after a critical period of neocortical plasticity.
Collapse
|
35
|
Dooley JC, Donaldson MS, Krubitzer LA. Cortical plasticity following stripe rearing in the marsupial Monodelphis domestica: neural response properties of V1. J Neurophysiol 2017; 117:566-581. [PMID: 27852732 DOI: 10.1152/jn.00431.2016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/04/2016] [Indexed: 12/14/2022] Open
Abstract
The functional organization of the primary visual area (V1) and the importance of sensory experience in its normal development have been well documented in eutherian mammals. However, very few studies have investigated the response properties of V1 neurons in another large class of mammals, or whether sensory experience plays a role in shaping their response properties. Thus we reared opossums (Monodelphis domestica) in normal and vertically striped cages until they reached adulthood. They were then anesthetized using urethane, and electrophysiological techniques were used to examine neuronal responses to different orientations, spatial and temporal frequencies, and contrast levels. For normal opossums, we observed responses to the temporal and spatial characteristics of the stimulus to be similar to those described in small, nocturnal, eutherian mammals such as rats and mice; neurons in V1 responded maximally to stimuli at 0.09 cycles per degree and 2.12 cycles per second. Unlike other eutherians, but similar to other marsupials investigated, only 40% of the neurons were orientation selective. In stripe-reared animals, neurons were significantly more likely to respond to vertical stimuli at a wider range of spatial frequencies, and were more sensitive to gratings at lower contrast values compared with normal animals. These results are the first to demonstrate experience-dependent plasticity in the visual system of a marsupial species. Thus the ability of cortical neurons to alter their properties based on the dynamics of the visual environment predates the emergence of eutherian mammals and was likely present in our earliest mammalian ancestors. NEW & NOTEWORTHY These results are the first description of visual response properties of the most commonly studied marsupial model organism, the short-tailed opossum (Monodelphis domestica). Further, these results are the first to demonstrate experience-dependent plasticity in the visual system of a marsupial species. Thus the ability of cortical neurons to alter their properties based on the dynamics of the visual environment predates the emergence of eutherian mammals and was likely present in our earliest mammalian ancestors.
Collapse
Affiliation(s)
- James C Dooley
- Center for Neuroscience, University of California, Davis, Davis, California; and
| | - Michaela S Donaldson
- Center for Neuroscience, University of California, Davis, Davis, California; and
| | - Leah A Krubitzer
- Center for Neuroscience, University of California, Davis, Davis, California; and .,Department of Psychology, University of California, Davis, Davis, California
| |
Collapse
|
36
|
Thompson A, Gribizis A, Chen C, Crair MC. Activity-dependent development of visual receptive fields. Curr Opin Neurobiol 2017; 42:136-143. [PMID: 28088066 DOI: 10.1016/j.conb.2016.12.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 11/17/2022]
Abstract
It is widely appreciated that neuronal activity contributes to the development of brain representations of the external world. In the visual system, in particular, it is well known that activity cooperates with molecular cues to establish the topographic organization of visual maps on a macroscopic scale [1,2] (Huberman et al., 2008; Cang and Feldheim, 2013), mapping axons in a retinotopic and eye-specific manner. In recent years, significant progress has been made in elucidating the role of activity in driving the finer-scale circuit refinement that shapes the receptive fields of individual cells. In this review, we focus on these recent breakthroughs-primarily in mice, but also in other mammals where noted.
Collapse
Affiliation(s)
- Andrew Thompson
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Alexandra Gribizis
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Chinfei Chen
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Michael C Crair
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
37
|
Transplanted embryonic neurons integrate into adult neocortical circuits. Nature 2016; 539:248-253. [DOI: 10.1038/nature20113] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 09/23/2016] [Indexed: 12/19/2022]
|
38
|
Mixed functional microarchitectures for orientation selectivity in the mouse primary visual cortex. Nat Commun 2016; 7:13210. [PMID: 27767032 PMCID: PMC5078743 DOI: 10.1038/ncomms13210] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 09/12/2016] [Indexed: 11/21/2022] Open
Abstract
A minicolumn is the smallest anatomical module in the cortical architecture, but it is still in debate whether it serves as functional units for cortical processing. In the rodent primary visual cortex (V1), neurons with different preferred orientations are mixed horizontally in a salt and pepper manner, but vertical functional organization was not examined. In this study, we found that neurons with similar orientation preference are weakly but significantly clustered vertically in a short length and horizontally in the scale of a minicolumn. Interestingly, the vertical clustering is found only in a part of minicolumns, and others are composed of neurons with a variety of orientation preferences. Thus, the mouse V1 is a mixture of vertical clusters of neurons with various degrees of orientation similarity, which may be the compromise between the brain size and keeping the vertical clusters of similarly tuned neurons at least in a subset of clusters. Primary visual cortical neurons display mostly a salt and pepper arrangement of orientation preferences along the horizontal cortical axis. Here the authors show that a significant subset of minicolumns, one-cell wide arrays of cells arranged along the vertical axis, show similar orientation tuning preferences.
Collapse
|
39
|
Cloherty SL, Hughes NJ, Hietanen MA, Bhagavatula PS, Goodhill GJ, Ibbotson MR. Sensory experience modifies feature map relationships in visual cortex. eLife 2016; 5. [PMID: 27310531 PMCID: PMC4911216 DOI: 10.7554/elife.13911] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/12/2016] [Indexed: 11/13/2022] Open
Abstract
The extent to which brain structure is influenced by sensory input during development is a critical but controversial question. A paradigmatic system for studying this is the mammalian visual cortex. Maps of orientation preference (OP) and ocular dominance (OD) in the primary visual cortex of ferrets, cats and monkeys can be individually changed by altered visual input. However, the spatial relationship between OP and OD maps has appeared immutable. Using a computational model we predicted that biasing the visual input to orthogonal orientation in the two eyes should cause a shift of OP pinwheels towards the border of OD columns. We then confirmed this prediction by rearing cats wearing orthogonally oriented cylindrical lenses over each eye. Thus, the spatial relationship between OP and OD maps can be modified by visual experience, revealing a previously unknown degree of brain plasticity in response to sensory input. DOI:http://dx.doi.org/10.7554/eLife.13911.001 The structure of the brain results from a combination of nature (genes) and nurture (environment). The brain’s ability to adapt to changes in the environment is known as plasticity, and the young brain is especially plastic. An animal’s sensory experiences in early life help to determine how its brain will process sensory input as an adult. One of the best sensory systems in which to study this process is the visual system. Within the visual system, some brain cells respond only to input from the left eye and others only to input from the right eye. Cells that respond to input from the same eye are arranged to form columns. Within each column, some cells respond only to lines with a particular orientation. Cells with different preferred orientations are grouped together in patterns that resemble pinwheels. The relative positions of the pinwheels and eye-specific columns within the brain tissue belonging to the visual system have so far been robust to changes in visual experience during development, suggesting that they are determined by an animal’s genes. However, Cloherty, Hughes et al. have now tested the unexpected predictions of a computer model. The model suggested that rearing animals so that they saw mostly vertical lines through one eye, and mostly horizontal lines through the other, would cause a form of plasticity that had never been observed before. Specifically, it would change the relative positions of the pinwheels and eye-specific columns within the visual parts of the brain. This prediction turned out to be correct. Young cats that wore special lenses – which slightly distorted what they saw but did not obviously affect their behavior – showed the predicted changes in brain structure. The results confirm that this aspect of brain structure is partly determined by nurture, as opposed to being entirely specified by nature. A key future challenge is to identify the chemical signaling that enables sensory input to have these effects on brain structure. It might then be possible to use drugs to restore normal brain activity in cases where abnormal sensory input has altered the brain, for example in the condition known as amblyopia (or “lazy eye”). DOI:http://dx.doi.org/10.7554/eLife.13911.002
Collapse
Affiliation(s)
- Shaun L Cloherty
- National Vision Research Institute, Australian College of Optometry, Carlton, Australia.,ARC Center of Excellence for Integrative Brain Function, Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Australia.,Department of Electrical and Electronic Engineering, University of Melbourne, Parkville, Australia
| | - Nicholas J Hughes
- Queensland Brain Institute, The University of Queensland, St Lucia, Australia.,School of Mathematics and Physics, The University of Queensland, St Lucia, Australia
| | - Markus A Hietanen
- National Vision Research Institute, Australian College of Optometry, Carlton, Australia.,ARC Center of Excellence for Integrative Brain Function, Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Australia
| | - Partha S Bhagavatula
- National Vision Research Institute, Australian College of Optometry, Carlton, Australia.,ARC Center of Excellence for Integrative Brain Function, Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Australia
| | - Geoffrey J Goodhill
- Queensland Brain Institute, The University of Queensland, St Lucia, Australia.,School of Mathematics and Physics, The University of Queensland, St Lucia, Australia
| | - Michael R Ibbotson
- National Vision Research Institute, Australian College of Optometry, Carlton, Australia.,ARC Center of Excellence for Integrative Brain Function, Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Australia
| |
Collapse
|
40
|
Sysoeva OV, Davletshina MA, Orekhova EV, Galuta IA, Stroganova TA. Reduced Oblique Effect in Children with Autism Spectrum Disorders (ASD). Front Neurosci 2016; 9:512. [PMID: 26834540 PMCID: PMC4720792 DOI: 10.3389/fnins.2015.00512] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/22/2015] [Indexed: 11/13/2022] Open
Abstract
People are very precise in the discrimination of a line orientation relative to the cardinal (vertical and horizontal) axes, while their orientation discrimination sensitivity along the oblique axes is less refined. This difference in discrimination sensitivity along cardinal and oblique axes is called the "oblique effect." Given that the oblique effect is a basic feature of visual processing with an early developmental origin, its investigation in children with Autism Spectrum Disorder (ASD) may shed light on the nature of visual sensory abnormalities frequently reported in this population. We examined line orientation sensitivity along oblique and vertical axes in a sample of 26 boys with ASD (IQ > 68) and 38 typically developing (TD) boys aged 7-15 years, as well as in a subsample of carefully IQ-matched ASD and TD participants. Children were asked to detect the direction of tilt of a high-contrast black-and-white grating relative to vertical (90°) or oblique (45°) templates. The oblique effect was reduced in children with ASD as compared to TD participants, irrespective of their IQ. This reduction was due to poor orientation sensitivity along the vertical axis in ASD children, while their ability to discriminate line orientation along the oblique axis was unaffected. We speculate that this deficit in sensitivity to vertical orientation may reflect disrupted mechanisms of early experience-dependent learning that takes place during the critical period for orientation selectivity.
Collapse
Affiliation(s)
- Olga V. Sysoeva
- Autism Research Laboratory, Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and EducationMoscow, Russia
| | | | | | | | | |
Collapse
|
41
|
Sasaki KS, Kimura R, Ninomiya T, Tabuchi Y, Tanaka H, Fukui M, Asada YC, Arai T, Inagaki M, Nakazono T, Baba M, Kato D, Nishimoto S, Sanada TM, Tani T, Imamura K, Tanaka S, Ohzawa I. Supranormal orientation selectivity of visual neurons in orientation-restricted animals. Sci Rep 2015; 5:16712. [PMID: 26567927 PMCID: PMC4644951 DOI: 10.1038/srep16712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/19/2015] [Indexed: 11/24/2022] Open
Abstract
Altered sensory experience in early life often leads to remarkable adaptations so that humans and animals can make the best use of the available information in a particular environment. By restricting visual input to a limited range of orientations in young animals, this investigation shows that stimulus selectivity, e.g., the sharpness of tuning of single neurons in the primary visual cortex, is modified to match a particular environment. Specifically, neurons tuned to an experienced orientation in orientation-restricted animals show sharper orientation tuning than neurons in normal animals, whereas the opposite was true for neurons tuned to non-experienced orientations. This sharpened tuning appears to be due to elongated receptive fields. Our results demonstrate that restricted sensory experiences can sculpt the supranormal functions of single neurons tailored for a particular environment. The above findings, in addition to the minimal population response to orientations close to the experienced one, agree with the predictions of a sparse coding hypothesis in which information is represented efficiently by a small number of activated neurons. This suggests that early brain areas adopt an efficient strategy for coding information even when animals are raised in a severely limited visual environment where sensory inputs have an unnatural statistical structure.
Collapse
Affiliation(s)
- Kota S Sasaki
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.,Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka 565-0871, Japan
| | - Rui Kimura
- Universität Tübingen, 72076 Tübingen, Germany
| | - Taihei Ninomiya
- Primate Research Institute, Kyoto University, Inuyama, 484-8506, Japan
| | - Yuka Tabuchi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroki Tanaka
- Kyoto Sangyo University, Kita-ku, Kyoto 603-8555, Japan
| | - Masayuki Fukui
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yusuke C Asada
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Toshiya Arai
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mikio Inagaki
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.,Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka 565-0871, Japan
| | - Takayuki Nakazono
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mika Baba
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Daisuke Kato
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shinji Nishimoto
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.,Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka 565-0871, Japan
| | - Takahisa M Sanada
- National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Toshiki Tani
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan.,Graduate School of Medicine, Hirosaki University, Aomori 036-8562, Japan
| | - Kazuyuki Imamura
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan.,Department of Systems Life Engineering, Maebashi Institute of Technology, Gunma 371-0816, Japan
| | - Shigeru Tanaka
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan.,Brain Science Inspired Life Support Research Center, The University of Electro-Communications, Tokyo 182-8585, Japan
| | - Izumi Ohzawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.,Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka 565-0871, Japan
| |
Collapse
|
42
|
Neuronal activity is not required for the initial formation and maturation of visual selectivity. Nat Neurosci 2015; 18:1780-8. [PMID: 26523644 DOI: 10.1038/nn.4155] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/28/2015] [Indexed: 12/15/2022]
Abstract
Neuronal activity is important for the functional refinement of neuronal circuits in the early visual system. At the level of the cerebral cortex, however, it is still unknown whether the formation of fundamental functions such as orientation selectivity depends on neuronal activity, as it has been difficult to suppress activity throughout development. Using genetic silencing of cortical activity starting before the formation of orientation selectivity, we found that the orientation selectivity of neurons in the mouse visual cortex formed and matured normally despite a strong suppression of both spontaneous and visually evoked activity throughout development. After the orientation selectivity formed, the distribution of the preferred orientations of neurons was reorganized. We found that this process required spontaneous activity, but not visually evoked activity. Thus, the initial formation and maturation of orientation selectivity is largely independent of neuronal activity, and the initial selectivity is subsequently modified depending on neuronal activity.
Collapse
|
43
|
Muir DR, Roth MM, Helmchen F, Kampa BM. Model-based analysis of pattern motion processing in mouse primary visual cortex. Front Neural Circuits 2015; 9:38. [PMID: 26300738 PMCID: PMC4525018 DOI: 10.3389/fncir.2015.00038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/16/2015] [Indexed: 12/14/2022] Open
Abstract
Neurons in sensory areas of neocortex exhibit responses tuned to specific features of the environment. In visual cortex, information about features such as edges or textures with particular orientations must be integrated to recognize a visual scene or object. Connectivity studies in rodent cortex have revealed that neurons make specific connections within sub-networks sharing common input tuning. In principle, this sub-network architecture enables local cortical circuits to integrate sensory information. However, whether feature integration indeed occurs locally in rodent primary sensory areas has not been examined directly. We studied local integration of sensory features in primary visual cortex (V1) of the mouse by presenting drifting grating and plaid stimuli, while recording the activity of neuronal populations with two-photon calcium imaging. Using a Bayesian model-based analysis framework, we classified single-cell responses as being selective for either individual grating components or for moving plaid patterns. Rather than relying on trial-averaged responses, our model-based framework takes into account single-trial responses and can easily be extended to consider any number of arbitrary predictive models. Our analysis method was able to successfully classify significantly more responses than traditional partial correlation (PC) analysis, and provides a rigorous statistical framework to rank any number of models and reject poorly performing models. We also found a large proportion of cells that respond strongly to only one stimulus class. In addition, a quarter of selectively responding neurons had more complex responses that could not be explained by any simple integration model. Our results show that a broad range of pattern integration processes already take place at the level of V1. This diversity of integration is consistent with processing of visual inputs by local sub-networks within V1 that are tuned to combinations of sensory features.
Collapse
Affiliation(s)
- Dylan R Muir
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zürich Zürich, Switzerland ; Biozentrum, University of Basel Basel, Switzerland
| | - Morgane M Roth
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zürich Zürich, Switzerland ; Biozentrum, University of Basel Basel, Switzerland
| | - Fritjof Helmchen
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zürich Zürich, Switzerland
| | - Björn M Kampa
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zürich Zürich, Switzerland ; Department of Neurophysiology, Institute of Biology II, RWTH Aachen University Aachen, Germany
| |
Collapse
|
44
|
Haak KV, Fast E, Bao M, Lee M, Engel SA. Four days of visual contrast deprivation reveals limits of neuronal adaptation. Curr Biol 2014; 24:2575-9. [PMID: 25438945 DOI: 10.1016/j.cub.2014.09.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/11/2014] [Accepted: 09/09/2014] [Indexed: 11/27/2022]
Abstract
Sensory systems continuously adjust their function to match changes in the environment. Such adaptation produces large perceptual effects, and its pervasiveness makes it a key part of understanding cortical function generally. In visual contrast adaptation, for example, brief exposure to vertical stripes can dramatically alter the apparent orientation and intensity of similarly oriented patterns (e.g., [4-7]). However, many environmental changes are long lasting. How does the visual system adjust to such challenges? Most past work on contrast adaptation has adapted subjects for just a few minutes. Only a few studies have examined durations greater than 1 hr, and none have exceeded 1 day. Here, we measured perceptual effects of adaptation in humans who viewed a world lacking vertical information for 4 days continuously. As expected, adaptation increased in magnitude during the first day, but it then showed a drop in strength. The decrease in adaptation is surprising because the adapting environment remained constant, and in short-term work, adaptation always strengthens or at least is maintained under such conditions. It indicates that the classical effects of contrast adaptation, which arise largely in primary visual cortex, are not maintained after approximately 1 day. Results from day 2 through day 4 further showed that slower adaptive processes can overcome this limit. Because adaptation is generally beneficial overall, its limits argue that the brain is sensitive to costs that arise when the neural code changes. These costs may determine when and how cortex can alter its function.
Collapse
Affiliation(s)
- Koen V Haak
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Kapittelweg 29, 6525 EN Nijmegen, the Netherlands.
| | - Elizabeth Fast
- Department of Psychology, University of Minnesota, 75 East River Road, Minneapolis, MN 55455, USA
| | - Min Bao
- Institute for Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing 100101, China
| | - Michael Lee
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 420 Delaware Street South East, Minneapolis, MN 55455, USA
| | - Stephen A Engel
- Department of Psychology, University of Minnesota, 75 East River Road, Minneapolis, MN 55455, USA.
| |
Collapse
|
45
|
Medini P. Experience-dependent plasticity of visual cortical microcircuits. Neuroscience 2014; 278:367-84. [PMID: 25171791 DOI: 10.1016/j.neuroscience.2014.08.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 08/05/2014] [Accepted: 08/07/2014] [Indexed: 11/18/2022]
Abstract
The recent decade testified a tremendous increase in our knowledge on how cell-type-specific microcircuits process sensory information in the neocortex and on how such circuitry reacts to manipulations of the sensory environment. Experience-dependent plasticity has now been investigated with techniques endowed with cell resolution during both postnatal development and in adult animals. This review recapitulates the main recent findings in the field using mainly the primary visual cortex as a model system to highlight the more important questions and physiological principles (such as the role of non-competitive mechanisms, the role of inhibition in excitatory cell plasticity, the functional importance of spine and axonal plasticity on a microscale level). I will also discuss on which scientific problems the debate and controversies are more pronounced. New technologies that allow to perturbate cell-type-specific subcircuits will certainly shine new light in the years to come at least on some of the still open questions.
Collapse
Affiliation(s)
- P Medini
- Institutionen för Molekylärbiologi, and Institutionen för Integrativ Medicinsk Biologi (IMB), Fysiologi Avdelning, Umeå Universitet, 90187 Umeå, Sweden.
| |
Collapse
|
46
|
Montijn JS, Vinck M, Pennartz CMA. Population coding in mouse visual cortex: response reliability and dissociability of stimulus tuning and noise correlation. Front Comput Neurosci 2014; 8:58. [PMID: 24917812 PMCID: PMC4040453 DOI: 10.3389/fncom.2014.00058] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/14/2014] [Indexed: 11/13/2022] Open
Abstract
The primary visual cortex is an excellent model system for investigating how neuronal populations encode information, because of well-documented relationships between stimulus characteristics and neuronal activation patterns. We used two-photon calcium imaging data to relate the performance of different methods for studying population coding (population vectors, template matching, and Bayesian decoding algorithms) to their underlying assumptions. We show that the variability of neuronal responses may hamper the decoding of population activity, and that a normalization to correct for this variability may be of critical importance for correct decoding of population activity. Second, by comparing noise correlations and stimulus tuning we find that these properties have dissociated anatomical correlates, even though noise correlations have been previously hypothesized to reflect common synaptic input. We hypothesize that noise correlations arise from large non-specific increases in spiking activity acting on many weak synapses simultaneously, while neuronal stimulus response properties are dependent on more reliable connections. Finally, this paper provides practical guidelines for further research on population coding and shows that population coding cannot be approximated by a simple summation of inputs, but is heavily influenced by factors such as input reliability and noise correlation structure.
Collapse
Affiliation(s)
- Jorrit S Montijn
- Cognitive and Systems Neuroscience, Faculty of Science, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| | - Martin Vinck
- Cognitive and Systems Neuroscience, Faculty of Science, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| | - Cyriel M A Pennartz
- Cognitive and Systems Neuroscience, Faculty of Science, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands ; Research Priority Program Brain and Cognition, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
47
|
Zapasnik M, Burnat K. Binocular pattern deprivation with delayed onset has impact on motion perception in adulthood. Neuroscience 2013; 255:99-109. [PMID: 24120559 DOI: 10.1016/j.neuroscience.2013.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/25/2013] [Accepted: 10/03/2013] [Indexed: 11/30/2022]
Abstract
The quality of motion perception depends on visual input during early development. Even 1month of binocular deprivation (BD) from birth impairs motion coherence thresholds when tested in kittens; conversely BD with a 1-month delayed onset does not impair it (Mitchell et al., 2009). We showed that 6months of BD applied from birth induces a selective impairment in a Global Motion Detection task, but not in global form perception, when tested in adulthood (Burnat et al., 2002, 2005). In these animals cell counts of the retinal motion-sensitive alpha ganglion revealed a life-long increase in OFF-type ganglion cell (Burnat et al., 2012). Here we examined in adult cats the effect of BD on global motion perception using an array of tasks with gradually increasing perceptual difficulty. Two conditions of BD were applied: from birth, lasting for 1, 2, 4 or 6months, and with a delayed onset with first 2months of normal vision followed by 2months of BD. Cats deprived from birth for a 6-month period had Global Motion Detection impaired, as compared to the normal group. Velocity and low contrast-defined motion processing was impaired when BD was applied exclusively in months 3-4 of life. The cats deprived from birth for 1 or 2months were not impaired in any of the tested motion tasks. Motion coherence thresholds, when tested at the end of a long motion training were not affected by BD and did not differ from those obtained for the normal group. Impaired extraction of low contrast-defined motion signal was found in cats deprived solely in months 3-4 of life. Surprisingly, binocular pattern deprivation during the first 2months of life did not weaken motion sensitivity, revealing the occurrence of a critical period for motion perception later in development than previously suggested.
Collapse
Affiliation(s)
- M Zapasnik
- Laboratory of Neuroplasticity, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Pasteur 3, 02-093 Warsaw, Poland
| | | |
Collapse
|
48
|
Krubitzer L, Dooley JC. Cortical plasticity within and across lifetimes: how can development inform us about phenotypic transformations? Front Hum Neurosci 2013; 7:620. [PMID: 24130524 PMCID: PMC3793242 DOI: 10.3389/fnhum.2013.00620] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 09/08/2013] [Indexed: 11/13/2022] Open
Abstract
The neocortex is the part of the mammalian brain that is involved in perception, cognition, and volitional motor control. It is a highly dynamic structure that is dramatically altered within the lifetime of an animal and in different lineages throughout the course of evolution. These alterations account for the remarkable variations in behavior that species exhibit. Of particular interest is how these cortical phenotypes change within the lifetime of the individual and eventually evolve in species over time. Because we cannot study the evolution of the neocortex directly we use comparative analysis to appreciate the types of changes that have been made to the neocortex and the similarities that exist across taxa. Developmental studies inform us about how these phenotypic transitions may arise by alterations in developmental cascades or changes in the physical environment in which the brain develops. Both genes and the sensory environment contribute to aspects of the phenotype and similar features, such as the size of a cortical field, can be altered in a variety of ways. Although both genes and the laws of physics place constraints on the evolution of the neocortex, mammals have evolved a number of mechanisms that allow them to loosen these constraints and often alter the course of their own evolution.
Collapse
Affiliation(s)
- Leah Krubitzer
- Center for Neuroscience, University of California Davis, Davis, CA, USA ; Department of Psychology, University of California Davis, Davis, CA, USA
| | | |
Collapse
|
49
|
In vivo two-photon Ca2+ imaging reveals selective reward effects on stimulus-specific assemblies in mouse visual cortex. J Neurosci 2013; 33:11540-55. [PMID: 23843524 DOI: 10.1523/jneurosci.1341-12.2013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Experiences can alter functional properties of neurons in primary sensory neocortex but it is poorly understood how stimulus-reward associations contribute to these changes. Using in vivo two-photon calcium imaging in mouse primary visual cortex (V1), we show that association of a directional visual stimulus with reward results in broadened orientation tuning and sharpened direction tuning in a stimulus-selective subpopulation of V1 neurons. Neurons with preferred orientations similar, but not identical to, the CS+ selectively increased their tuning curve bandwidth and thereby exhibited an increased response amplitude at the CS+ orientation. The increase in response amplitude was observed for a small range of orientations around the CS+ orientation. A nonuniform spatial distribution of reward effects across the cortical surface was observed, as the spatial distance between pairs of CS+ tuned neurons was reduced compared with pairs of CS- tuned neurons and pairs of control directions or orientations. These data show that, in primary visual cortex, formation of a stimulus-reward association results in selective alterations in stimulus-specific assemblies rather than population-wide effects.
Collapse
|
50
|
Srinivasa N, Jiang Q. Stable learning of functional maps in self-organizing spiking neural networks with continuous synaptic plasticity. Front Comput Neurosci 2013; 7:10. [PMID: 23450808 PMCID: PMC3583036 DOI: 10.3389/fncom.2013.00010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 02/09/2013] [Indexed: 11/13/2022] Open
Abstract
This study describes a spiking model that self-organizes for stable formation and maintenance of orientation and ocular dominance maps in the visual cortex (V1). This self-organization process simulates three development phases: an early experience-independent phase, a late experience-independent phase and a subsequent refinement phase during which experience acts to shape the map properties. The ocular dominance maps that emerge accommodate the two sets of monocular inputs that arise from the lateral geniculate nucleus (LGN) to layer 4 of V1. The orientation selectivity maps that emerge feature well-developed iso-orientation domains and fractures. During the last two phases of development the orientation preferences at some locations appear to rotate continuously through ±180° along circular paths and referred to as pinwheel-like patterns but without any corresponding point discontinuities in the orientation gradient maps. The formation of these functional maps is driven by balanced excitatory and inhibitory currents that are established via synaptic plasticity based on spike timing for both excitatory and inhibitory synapses. The stability and maintenance of the formed maps with continuous synaptic plasticity is enabled by homeostasis caused by inhibitory plasticity. However, a prolonged exposure to repeated stimuli does alter the formed maps over time due to plasticity. The results from this study suggest that continuous synaptic plasticity in both excitatory neurons and interneurons could play a critical role in the formation, stability, and maintenance of functional maps in the cortex.
Collapse
Affiliation(s)
- Narayan Srinivasa
- Center for Neural and Emergent Systems, HRL Laboratories LLC Malibu, CA, USA
| | | |
Collapse
|