1
|
Khamassi M, Peyrache A, Benchenane K, Hopkins DA, Lebas N, Douchamps V, Droulez J, Battaglia FP, Wiener SI. Rat anterior cingulate neurons responsive to rule or strategy changes are modulated by the hippocampal theta rhythm and sharp-wave ripples. Eur J Neurosci 2024; 60:5300-5327. [PMID: 39161082 DOI: 10.1111/ejn.16496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/04/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024]
Abstract
To better understand neural processing during adaptive learning of stimulus-response-reward contingencies, we recorded synchrony of neuronal activity in anterior cingulate cortex (ACC) and hippocampal rhythms in male rats acquiring and switching between spatial and visual discrimination tasks in a Y-maze. ACC population activity as well as single unit activity shifted shortly after task rule changes or just before the rats adopted different task strategies. Hippocampal theta oscillations (associated with memory encoding) modulated an elevated proportion of rule-change responsive neurons (70%), but other neurons that were correlated with strategy-change, strategy value and reward-rate were not. However, hippocampal sharp wave-ripples modulated significantly higher proportions of rule-change, strategy-change and reward-rate responsive cells during post-session sleep but not pre-session sleep. This suggests an underestimated mechanism for hippocampal mismatch and contextual signals to facilitate ACC to detect contingency changes for cognitive flexibility, a function that is attenuated after it is damaged.
Collapse
Affiliation(s)
- M Khamassi
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
- CNRS, Institute of Intelligent Systems and Robotics, Sorbonne Université, Paris, France
| | - A Peyrache
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - K Benchenane
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - D A Hopkins
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - N Lebas
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - V Douchamps
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - J Droulez
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
- CNRS, Institute of Intelligent Systems and Robotics, Sorbonne Université, Paris, France
| | - F P Battaglia
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
- Donders Institute for Brain, Cognition, and Behavior, Radboud Universiteit Nijmegen, Nijmegen, The Netherlands
| | - S I Wiener
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
2
|
Peiris S, Tobia MJ, Smith A, Grun E, Elyan R, Eslinger PJ, Yang QX, Karunanayaka P. Neural correlates of chocolate brand preference: A functional MRI study. J Neuroimaging 2024; 34:415-423. [PMID: 38676308 DOI: 10.1111/jon.13203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/22/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND AND PURPOSE Preferences can be developed for, or against, specific brands and services. Using two functional magnetic resonance imaging (fMRI) experiments, this study investigated two dissociable aspects of reward processing, craving and liking, in chocolate lovers. The goal was to further delineate the neural basis supporting branding effects using familiar chocolate (FC) and unfamiliar chocolate (UC) brand images. METHODS In the first experiment, subjects rated their subjective craving and liking on a scale of 1-5 (weak-strong) for each FC and UC image. In the second experiment, they performed a choice task between FC and UC images. RESULTS Both the craving and liking ratings were significantly greater for FC and were differentially correlated with choice behavior. Craving ratings predicted greater preference for UC, and liking ratings predicted greater preference for FC. A contrast of neural activity for UC versus FC choice trials revealed significantly greater activation for UC choices in the bilateral inferior frontal gyrus and right caudate head. Response times for the FC images were faster than UC images; fMRI activity in the ventromedial prefrontal cortex was significantly correlated with response times during FC trials, but not UC trials. These correlations were significantly different from each other at the group level. CONCLUSIONS The choices for branded chocolate products are driven by higher subjective reward ratings and lower neural processing demands.
Collapse
Affiliation(s)
- Senal Peiris
- Department of Radiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Michael J Tobia
- Department of Radiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | | | - Emily Grun
- Hershey Company, Hershey, Pennsylvania, USA
| | - Rommy Elyan
- Department of Radiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Paul J Eslinger
- Department of Neurology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Qing X Yang
- Department of Radiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Department of Neurosurgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Prasanna Karunanayaka
- Department of Radiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
3
|
Yanzeng Z, Keyong Z, Hongmin C, Ziyu L, Pengyu L, Lijing W. The mechanisms linking perceived stress to pilots' safety attitudes: a chain mediation effect of job burnout and cognitive flexibility. Front Public Health 2024; 12:1342221. [PMID: 38894982 PMCID: PMC11183297 DOI: 10.3389/fpubh.2024.1342221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction Pilots' safety attitude is crucial for aviation safety. Current research shows a correlation between perceived stress and safety attitude, yet the mechanism underlying this association remains unclear. Against the backdrop of heightened attention to pilots' stress, this study aims to thoroughly explore the inherent connection between pilot safety attitudes and their perceived stress, offering targeted insights into preventing and addressing safety attitude issues arising from pilot stress. Methods Through path analysis of questionnaire data from 106 civil aviation pilots in China, this study systematically investigates the roles of job burnout and cognitive flexibility in the relationship between perceived stress and safety attitude. The study reveals the chain-mediated mechanism of these two factors. Results The results demonstrate a significantly negative correlation between pilots' perceived stress and safety attitude, with cognitive flexibility and job burnout fully mediating this relationship, and cognitive flexibility affecting job burnout. A detailed analysis of the three dimensions of job burnout reveals varying impacts of emotional exhaustion, depersonalization, and reduced personal accomplishment on the aforementioned path. The research model exhibits a good fit (GFI=0.902), providing new theoretical perspectives on the association between pilots' perceived stress and safety attitude. Discussion The findings offer practical implications for improving pilots' safety attitude by proposing targeted measures to alleviate the adverse impacts of perceived stress on safety attitude, thereby promoting aviation safety.
Collapse
Affiliation(s)
- Zhao Yanzeng
- Fundamental Science on Ergonomics and Environment Control Laboratory, School of Aeronautic Science and Engineering, Beihang University, Beijing, China
| | - Zhu Keyong
- Fundamental Science on Ergonomics and Environment Control Laboratory, School of Aeronautic Science and Engineering, Beihang University, Beijing, China
| | - Cai Hongmin
- Fundamental Science on Ergonomics and Environment Control Laboratory, School of Aeronautic Science and Engineering, Beihang University, Beijing, China
| | - Liu Ziyu
- Fundamental Science on Ergonomics and Environment Control Laboratory, School of Aeronautic Science and Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
| | - Luo Pengyu
- Zhuhai Xiangyi Aviation Technology Co., Ltd., Zhuhai, China
| | - Wang Lijing
- Fundamental Science on Ergonomics and Environment Control Laboratory, School of Aeronautic Science and Engineering, Beihang University, Beijing, China
| |
Collapse
|
4
|
Nougaret S, Ferrucci L, Ceccarelli F, Sacchetti S, Benozzo D, Fascianelli V, Saunders RC, Renaud L, Genovesio A. Neurons in the monkey frontopolar cortex encode learning stage and goal during a fast learning task. PLoS Biol 2024; 22:e3002500. [PMID: 38363801 PMCID: PMC10903959 DOI: 10.1371/journal.pbio.3002500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 02/29/2024] [Accepted: 01/17/2024] [Indexed: 02/18/2024] Open
Abstract
The frontopolar cortex (FPC) is, to date, one of the least understood regions of the prefrontal cortex. The current understanding of its function suggests that it plays a role in the control of exploratory behaviors by coordinating the activities of other prefrontal cortex areas involved in decision-making and exploiting actions based on their outcomes. Based on this hypothesis, FPC would drive fast-learning processes through a valuation of the different alternatives. In our study, we used a modified version of a well-known paradigm, the object-in-place (OIP) task, to test this hypothesis in electrophysiology. This paradigm is designed to maximize learning, enabling monkeys to learn in one trial, which is an ability specifically impaired after a lesion of the FPC. We showed that FPC neurons presented an extremely specific pattern of activity by representing the learning stage, exploration versus exploitation, and the goal of the action. However, our results do not support the hypothesis that neurons in the frontal pole compute an evaluation of different alternatives. Indeed, the position of the chosen target was strongly encoded at its acquisition, but the position of the unchosen target was not. Once learned, this representation was also found at the problem presentation, suggesting a monitoring activity of the synthetic goal preceding its acquisition. Our results highlight important features of FPC neurons in fast-learning processes without confirming their role in the disengagement of cognitive control from the current goals.
Collapse
Affiliation(s)
- Simon Nougaret
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Ferrucci
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Francesco Ceccarelli
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- PhD program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Stefano Sacchetti
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Danilo Benozzo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Valeria Fascianelli
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Richard C. Saunders
- Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, Maryland, United States of America
| | - Luc Renaud
- Institut de Neurosciences de la Timone, UMR7289, Centre National de la Recherche Scientifique and Aix-Marseille Université, Marseille, France
| | - Aldo Genovesio
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
5
|
Watanabe K, Kadohisa M, Kusunoki M, Buckley MJ, Duncan J. Cycles of goal silencing and reactivation underlie complex problem-solving in primate frontal and parietal cortex. Nat Commun 2023; 14:5054. [PMID: 37598206 PMCID: PMC10439911 DOI: 10.1038/s41467-023-40676-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 08/03/2023] [Indexed: 08/21/2023] Open
Abstract
While classic views proposed that working memory (WM) is mediated by sustained firing, recent evidence suggests a contribution of activity-silent states. Within WM, human neuroimaging studies suggest a switch between attentional foreground and background, with only the foregrounded item represented in active neural firing. To address this process at the cellular level, we recorded prefrontal (PFC) and posterior parietal (PPC) neurons in a complex problem-solving task, with monkeys searching for one or two target locations in a first cycle of trials, and retaining them for memory-guided revisits on subsequent cycles. When target locations were discovered, neither frontal nor parietal neurons showed sustained goal-location codes continuing into subsequent trials and cycles. Instead there were sequences of timely goal silencing and reactivation, and following reactivation, sustained states until behavioral response. With two target locations, goal representations in both regions showed evidence of transitions between foreground and background, but the PFC representation was more complete, extending beyond the current trial to include both past and future selections. In the absence of unbroken sustained codes, different neuronal states interact to support maintenance and retrieval of WM representations across successive trials.
Collapse
Affiliation(s)
- Kei Watanabe
- Department of Experimental Psychology, University of Oxford, OX1 3SR, Oxford, UK.
- Graduate School of Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan.
- Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan.
| | - Mikiko Kadohisa
- Department of Experimental Psychology, University of Oxford, OX1 3SR, Oxford, UK
- MRC Cognition and Brain Sciences Unit, University of Cambridge, CB2 7EF, Cambridge, UK
| | - Makoto Kusunoki
- Department of Experimental Psychology, University of Oxford, OX1 3SR, Oxford, UK
- MRC Cognition and Brain Sciences Unit, University of Cambridge, CB2 7EF, Cambridge, UK
| | - Mark J Buckley
- Department of Experimental Psychology, University of Oxford, OX1 3SR, Oxford, UK
| | - John Duncan
- Department of Experimental Psychology, University of Oxford, OX1 3SR, Oxford, UK
- MRC Cognition and Brain Sciences Unit, University of Cambridge, CB2 7EF, Cambridge, UK
| |
Collapse
|
6
|
Ehrlich DB, Murray JD. Geometry of neural computation unifies working memory and planning. Proc Natl Acad Sci U S A 2022; 119:e2115610119. [PMID: 36067286 PMCID: PMC9478653 DOI: 10.1073/pnas.2115610119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Real-world tasks require coordination of working memory, decision-making, and planning, yet these cognitive functions have disproportionately been studied as independent modular processes in the brain. Here, we propose that contingency representations, defined as mappings for how future behaviors depend on upcoming events, can unify working memory and planning computations. We designed a task capable of disambiguating distinct types of representations. In task-optimized recurrent neural networks, we investigated possible circuit mechanisms for contingency representations and found that these representations can explain neurophysiological observations from the prefrontal cortex during working memory tasks. Our experiments revealed that human behavior is consistent with contingency representations and not with traditional sensory models of working memory. Finally, we generated falsifiable predictions for neural data to identify contingency representations in neural data and to dissociate different models of working memory. Our findings characterize a neural representational strategy that can unify working memory, planning, and context-dependent decision-making.
Collapse
Affiliation(s)
- Daniel B. Ehrlich
- aInterdepartmental Neuroscience Program, Yale University, New Haven, CT 06510
- bDepartment of Psychiatry, Yale University School of Medicine, New Haven, CT 06510
| | - John D. Murray
- aInterdepartmental Neuroscience Program, Yale University, New Haven, CT 06510
- bDepartment of Psychiatry, Yale University School of Medicine, New Haven, CT 06510
- 1To whom correspondence may be addressed.
| |
Collapse
|
7
|
Armenta-Resendiz M, Assali A, Tsvetkov E, Cowan CW, Lavin A. Repeated methamphetamine administration produces cognitive deficits through augmentation of GABAergic synaptic transmission in the prefrontal cortex. Neuropsychopharmacology 2022; 47:1816-1825. [PMID: 35788684 PMCID: PMC9372065 DOI: 10.1038/s41386-022-01371-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 11/08/2022]
Abstract
Methamphetamine (METH) abuse is associated with the emergence of cognitive deficits and hypofrontality, a pathophysiological marker of many neuropsychiatric disorders that is produced by altered balance of local excitatory and inhibitory synaptic transmission. However, there is a dearth of information regarding the cellular and synaptic mechanisms underlying METH-induced cognitive deficits and associated hypofrontal states. Using PV-Cre transgenic rats that went through a METH sensitization regime or saline (SAL) followed by 7-10 days of home cage abstinence combined with cognitive tests, chemogenetic experiments, and whole-cell patch recordings on the prelimbic prefrontal cortex (PFC), we investigated the cellular and synaptic mechanisms underlying METH-induce hypofrontality. We report here that repeated METH administration in rats produces deficits in working memory and increases in inhibitory synaptic transmission onto pyramidal neurons in the PFC. The increased PFC inhibition is detected by an increase in spontaneous and evoked inhibitory postsynaptic synaptic currents (IPSCs), an increase in GABAergic presynaptic function, and a shift in the excitatory-inhibitory balance onto PFC deep-layer pyramidal neurons. We find that pharmacological blockade of D1 dopamine receptor function reduces the METH-induced augmentation of IPSCs, suggesting a critical role for D1 dopamine signaling in METH-induced hypofrontality. In addition, repeated METH administration increases the intrinsic excitability of parvalbumin-positive fast spiking interneurons (PV + FSIs), a key local interneuron population in PFC that contributes to the control of inhibitory tone. Using a cell type-specific chemogenetic approach, we show that increasing PV + FSIs activity in the PFC is necessary and sufficient to cause deficits in temporal order memory similar to those induced by METH. Conversely, reducing PV + FSIs activity in the PFC of METH-exposed rats rescues METH-induced temporal order memory deficits. Together, our findings reveal that repeated METH exposure increases PFC inhibitory tone through a D1 dopamine signaling-dependent potentiation of inhibitory synaptic transmission, and that reduction of PV + FSIs activity can rescue METH-induced cognitive deficits, suggesting a potential therapeutic approach to treating cognitive symptoms in patients suffering from METH use disorder.
Collapse
Affiliation(s)
| | - Ahlem Assali
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Evgeny Tsvetkov
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Christopher W Cowan
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Antonieta Lavin
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
8
|
Wang D, Chen S, Hu Y, Liu L, Wang H. Behavior Decision of Mobile Robot With a Neurophysiologically Motivated Reinforcement Learning Model. IEEE Trans Cogn Dev Syst 2022. [DOI: 10.1109/tcds.2020.3035778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Cognitive strategies shift information from single neurons to populations in prefrontal cortex. Neuron 2022; 110:709-721.e4. [PMID: 34932940 PMCID: PMC8857053 DOI: 10.1016/j.neuron.2021.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/27/2021] [Accepted: 11/19/2021] [Indexed: 11/24/2022]
Abstract
Neurons in primate lateral prefrontal cortex (LPFC) play a critical role in working memory (WM) and cognitive strategies. Consistent with adaptive coding models, responses of these neurons are not fixed but flexibly adjust on the basis of cognitive demands. However, little is known about how these adjustments affect population codes. Here, we investigated ensemble coding in LPFC while monkeys implemented different strategies in a WM task. Although single neurons were less tuned when monkeys used more stereotyped strategies, task information could still be accurately decoded from neural populations. This was due to changes in population codes that distributed information among a greater number of neurons, each contributing less to the overall population. Moreover, this shift occurred for task-relevant, but not irrelevant, information. These results demonstrate that cognitive strategies that impose structure on information held in mind rearrange population codes in LPFC, such that information becomes more distributed among neurons in an ensemble.
Collapse
|
10
|
A One-Shot Shift from Explore to Exploit in Monkey Prefrontal Cortex. J Neurosci 2022; 42:276-287. [PMID: 34782437 PMCID: PMC8802942 DOI: 10.1523/jneurosci.1338-21.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/19/2021] [Accepted: 10/07/2021] [Indexed: 12/30/2022] Open
Abstract
Much animal learning is slow, with cumulative changes in behavior driven by reward prediction errors. When the abstract structure of a problem is known, however, both animals and formal learning models can rapidly attach new items to their roles within this structure, sometimes in a single trial. Frontal cortex is likely to play a key role in this process. To examine information seeking and use in a known problem structure, we trained monkeys in an explore/exploit task, requiring the animal first to test objects for their association with reward, then, once rewarded objects were found, to reselect them on further trials for further rewards. Many cells in the frontal cortex showed an explore/exploit preference aligned with one-shot learning in the monkeys' behavior: the population switched from an explore state to an exploit state after a single trial of learning but partially maintained the explore state if an error indicated that learning had failed. Binary switch from explore to exploit was not explained by continuous changes linked to expectancy or prediction error. Explore/exploit preferences were independent for two stages of the trial: object selection and receipt of feedback. Within an established task structure, frontal activity may control the separate processes of explore and exploit, switching in one trial between the two.SIGNIFICANCE STATEMENT Much animal learning is slow, with cumulative changes in behavior driven by reward prediction errors. When the abstract structure a problem is known, however, both animals and formal learning models can rapidly attach new items to their roles within this structure. To address transitions in neural activity during one-shot learning, we trained monkeys in an explore/exploit task using familiar objects and a highly familiar task structure. When learning was rapid, many frontal neurons showed a binary, one-shot switch between explore and exploit. Within an established task structure, frontal activity may control the separate operations of exploring alternative objects to establish their current role, then exploiting this knowledge for further reward.
Collapse
|
11
|
Axelsson SFA, Horst NK, Horiguchi N, Roberts AC, Robbins TW. Flexible versus Fixed Spatial Self-Ordered Response Sequencing: Effects of Inactivation and Neurochemical Modulation of Ventrolateral Prefrontal Cortex. J Neurosci 2021; 41:7246-7258. [PMID: 34261701 PMCID: PMC8387118 DOI: 10.1523/jneurosci.0227-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/16/2021] [Accepted: 05/30/2021] [Indexed: 11/21/2022] Open
Abstract
Previously, studies using human neuroimaging and excitotoxic lesions in non-human primate have demonstrated an important role of ventrolateral prefrontal cortex (vlPFC) in higher order cognitive functions such as cognitive flexibility and the planning of behavioral sequences. In the present experiments, we tested effects on performance of temporary inactivation (using GABA receptor agonists) and dopamine (DA) D2 and 5-HT2A-receptor (R) blockade of vlPFC via local intracerebral infusions in the marmoset. We trained common marmosets to perform spatial self-ordered sequencing tasks in which one cohort of animals performed two and three response sequences on a continuously varying spatial array of response options on a touch-sensitive screen. Inactivation of vlPFC produced a marked disruption of accuracy of sequencing which also exhibited significant error perseveration. There were somewhat contrasting effects of D2 and 5-HT2A-R blockade, with the former producing error perseveration on incorrect trials, though not significantly impairing accuracy overall, and the latter significantly impairing accuracy but not error perseveration. A second cohort of marmosets were directly compared on performance of fixed versus variable spatial arrays. Inactivation of vlPFC again impaired self-ordered sequencing, but only with varying, and not fixed spatial arrays, the latter leading to the consistent use of fewer, preferred sequences. These findings add to evidence that vlPFC is implicated in goal-directed behavior that requires higher-order response heuristics that can be applied flexibly over different (variable), as compared with fixed stimulus exemplars. They also show that dopaminergic and serotonergic chemomodulation has distinctive effects on such performance.SIGNIFICANCE STATEMENT This investigation employing local intracerebral infusions to inactivate the lateral prefrontal cortex (PFC) of the New World marmoset reveals the important role of this region in self-ordered response sequencing in variable but not fixed spatial arrays. These novel findings emphasize the higher order functions of this region, contributing to cognitive flexibility and planning of goal directed behavior. The investigation also reports for the first time somewhat contrasting neuromodulatory deficits produced by infusions of dopamine (DA) D2 and 5-HT2A receptor (R) antagonists into the same region, of possible significance for understanding cognitive deficits produced by anti-psychotic drugs.
Collapse
Affiliation(s)
- S F A Axelsson
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, United Kingdom
| | - N K Horst
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, United Kingdom
| | - Naotaka Horiguchi
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, United Kingdom
| | - A C Roberts
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, United Kingdom
| | - T W Robbins
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, United Kingdom
| |
Collapse
|
12
|
Thiery T, Saive AL, Combrisson E, Dehgan A, Bastin J, Kahane P, Berthoz A, Lachaux JP, Jerbi K. Decoding the neural dynamics of free choice in humans. PLoS Biol 2020; 18:e3000864. [PMID: 33301439 PMCID: PMC7755286 DOI: 10.1371/journal.pbio.3000864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 12/22/2020] [Accepted: 10/05/2020] [Indexed: 11/19/2022] Open
Abstract
How do we choose a particular action among equally valid alternatives? Nonhuman primate findings have shown that decision-making implicates modulations in unit firing rates and local field potentials (LFPs) across frontal and parietal cortices. Yet the electrophysiological brain mechanisms that underlie free choice in humans remain ill defined. Here, we address this question using rare intracerebral electroencephalography (EEG) recordings in surgical epilepsy patients performing a delayed oculomotor decision task. We find that the temporal dynamics of high-gamma (HG, 60-140 Hz) neural activity in distinct frontal and parietal brain areas robustly discriminate free choice from instructed saccade planning at the level of single trials. Classification analysis was applied to the LFP signals to isolate decision-related activity from sensory and motor planning processes. Compared with instructed saccades, free-choice trials exhibited delayed and longer-lasting HG activity during the delay period. The temporal dynamics of the decision-specific sustained HG activity indexed the unfolding of a deliberation process, rather than memory maintenance. Taken together, these findings provide the first direct electrophysiological evidence in humans for the role of sustained high-frequency neural activation in frontoparietal cortex in mediating the intrinsically driven process of freely choosing among competing behavioral alternatives.
Collapse
Affiliation(s)
- Thomas Thiery
- Cognitive & Computational Neuroscience Lab, Psychology Department, University of Montreal, Québec, Canada
| | - Anne-Lise Saive
- Cognitive & Computational Neuroscience Lab, Psychology Department, University of Montreal, Québec, Canada
| | - Etienne Combrisson
- Cognitive & Computational Neuroscience Lab, Psychology Department, University of Montreal, Québec, Canada
- Centre de Recherche en Neurosciences de Lyon (CRNL), Lyon, France
| | - Arthur Dehgan
- Cognitive & Computational Neuroscience Lab, Psychology Department, University of Montreal, Québec, Canada
| | - Julien Bastin
- Grenoble Institut des Neurosciences, Grenoble, France
| | | | | | | | - Karim Jerbi
- Cognitive & Computational Neuroscience Lab, Psychology Department, University of Montreal, Québec, Canada
- MILA (Québec Artificial Intelligence Institute), Montréal, Québec, Canada
- Centre UNIQUE (Union Neurosciences & Intelligence Artificielle), Montréal, Québec, Canada
| |
Collapse
|
13
|
von Eugen K, Tabrik S, Güntürkün O, Ströckens F. A comparative analysis of the dopaminergic innervation of the executive caudal nidopallium in pigeon, chicken, zebra finch, and carrion crow. J Comp Neurol 2020; 528:2929-2955. [PMID: 32020608 DOI: 10.1002/cne.24878] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/16/2020] [Accepted: 01/28/2020] [Indexed: 12/17/2022]
Abstract
Despite the long, separate evolutionary history of birds and mammals, both lineages developed a rich behavioral repertoire of remarkably similar executive control generated by distinctly different brains. The seat for executive functioning in birds is the nidopallium caudolaterale (NCL) and the mammalian equivalent is known as the prefrontal cortex (PFC). Both are densely innervated by dopaminergic fibers, and are an integration center of sensory input and motor output. Whereas the variation of the PFC has been well documented in different mammalian orders, we know very little about the NCL across the avian clade. In order to investigate whether this structure adheres to species-specific variations, this study aimed to describe the trajectory of the NCL in pigeon, chicken, carrion crow and zebra finch. We employed immunohistochemistry to map dopaminergic innervation, and executed a Gallyas stain to visualize the dorsal arcopallial tract that runs between the NCL and the arcopallium. Our analysis showed that whereas the trajectory of the NCL in the chicken is highly comparable to the pigeon, the two Passeriformes show a strikingly different pattern. In both carrion crow and zebra finch, we identified four different subareas of high dopaminergic innervation that span the entire caudal forebrain. Based on their sensory input, motor output, and involvement in dopamine-related cognitive control of the delineated areas here, we propose that at least three morphologically different subareas constitute the NCL in these songbirds. Thus, our study shows that comparable to the PFC in mammals, the NCL in birds varies considerably across species.
Collapse
Affiliation(s)
- Kaya von Eugen
- Institute of Cognitive Neuroscience, Biopsychology, Ruhr University Bochum, Bochum, Germany
| | - Sepideh Tabrik
- Neurologische Klinik, Universitätsklinikum Bergmannsheil GmbH, Bochum, Germany
| | - Onur Güntürkün
- Institute of Cognitive Neuroscience, Biopsychology, Ruhr University Bochum, Bochum, Germany
| | - Felix Ströckens
- Institute of Cognitive Neuroscience, Biopsychology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
14
|
Datta D, Yang ST, Galvin VC, Solder J, Luo F, Morozov YM, Arellano J, Duque A, Rakic P, Arnsten AFT, Wang M. Noradrenergic α1-Adrenoceptor Actions in the Primate Dorsolateral Prefrontal Cortex. J Neurosci 2019; 39:2722-2734. [PMID: 30755491 PMCID: PMC6445993 DOI: 10.1523/jneurosci.2472-18.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 01/14/2023] Open
Abstract
Noradrenergic (NE) α1-adrenoceptors (α1-ARs) contribute to arousal mechanisms and play an important role in therapeutic medications such as those for the treatment of posttraumatic stress disorder (PTSD). However, little is known about how α1-AR stimulation influences neuronal firing in the dorsolateral prefrontal cortex (dlPFC), a newly evolved region that is dysfunctional in PTSD and other mental illnesses. The current study examined the effects of α1-AR manipulation on neuronal firing in dlPFC of rhesus monkeys performing a visuospatial working memory task, focusing on the "delay cells" that maintain spatially tuned information across the delay period. Iontophoresis of the α1-AR antagonist HEAT (2-{[β-(4-hydroxyphenyl)ethyl]aminomethyl}-1-tetralone) had mixed effects, reducing firing in a majority of neurons but having nonsignificant excitatory effects or no effect in remaining delay cells. These data suggest that endogenous NE has excitatory effects in some delay cells under basal conditions. In contrast, the α1-AR agonists phenylephrine and cirazoline suppressed delay cell firing and this was blocked by coadministration of HEAT. These results indicate an inverted-U dose response for α1-AR actions, with mixed excitatory actions under basal conditions and suppressed firing with high levels of α1-AR stimulation such as with stress exposure. Immunoelectron microscopy revealed α1-AR expression presynaptically in axons and axon terminals and postsynaptically in spines, dendrites, and astrocytes. It is possible that α1-AR excitatory effects arise from presynaptic excitation of glutamate release, whereas postsynaptic actions suppress firing through calcium-protein kinase C opening of potassium channels on spines. The latter may predominate under stressful conditions, leading to loss of dlPFC regulation during uncontrollable stress.SIGNIFICANCE STATEMENT Noradrenergic stimulation of α1-adrenoceptors (α1-ARs) is implicated in posttraumatic stress disorder (PTSD) and other mental disorders that involve dysfunction of the prefrontal cortex, a brain region that provides top-down control. However, the location and contribution of α1-ARs to prefrontal cortical physiology in primates has received little attention. This study found that α1-ARs are located near prefrontal synapses and that α1-AR stimulation has mixed effects under basal conditions. However, high levels of α1-AR stimulation, as occur with stress, suppress neuronal firing. These findings help to explain why we lose top-down control under conditions of uncontrollable stress when there are high levels of noradrenergic release in brain and why blocking α1-AR, such as with prazosin, may be helpful in the treatment of PTSD.
Collapse
Affiliation(s)
- Dibyadeep Datta
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520, and
| | - Sheng-Tao Yang
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520, and
| | - Veronica C Galvin
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520, and
| | - John Solder
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520, and
| | - Fei Luo
- Center for Neuropsychiatric Diseases, Institute of Life Science, Nanchang University, Nanchang 330031, China
| | - Yury M Morozov
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520, and
| | - Jon Arellano
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520, and
| | - Alvaro Duque
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520, and
| | - Pasko Rakic
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520, and
| | - Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520, and
| | - Min Wang
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520, and
| |
Collapse
|
15
|
Sun MK. Executive functioning: perspectives on neurotrophic activity and pharmacology. Behav Pharmacol 2018; 29:592-604. [PMID: 30179884 DOI: 10.1097/fbp.0000000000000427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Executive functioning is a high-level cognitive ability, regulating other abilities and behaviors to achieve desired goals. A typical executive task can be defined as the capacity to maintain one's attention on the current task, that is, responding only to the correct but not to distractive stimuli. Impairments of executive functions, or executive dysfunctions, have a growing impact on everyday life and academic achievement and are usually an early feature, and one of the core features, in brain injury and memory and behavioral disorders. Furthermore, emerging evidence indicates that memory therapeutics cannot achieve their clinical benefits in cognition if executive dysfunction is not effectively and simultaneously treated. Improvement of executive functions might be achieved through targeting some signaling pathways in the brain, including the brain-derived neurotrophic factor signaling pathways. These agents may be useful either as stand-alone interventions for patients with executive dysfunction and/or psychiatric and memory disorders or as essential adjuncts to drugs that target the underlying pathology in various brain injury and memory and behavioral disorders.
Collapse
Affiliation(s)
- Miao-Kun Sun
- Blanchette Rockefeller Neurosciences Institute, Morgantown, West Virginia, USA
| |
Collapse
|
16
|
La Camera G, Bouret S, Richmond BJ. Contributions of Lateral and Orbital Frontal Regions to Abstract Rule Acquisition and Reversal in Monkeys. Front Neurosci 2018; 12:165. [PMID: 29615854 PMCID: PMC5867347 DOI: 10.3389/fnins.2018.00165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/28/2018] [Indexed: 11/13/2022] Open
Abstract
The ability to learn and follow abstract rules relies on intact prefrontal regions including the lateral prefrontal cortex (LPFC) and the orbitofrontal cortex (OFC). Here, we investigate the specific roles of these brain regions in learning rules that depend critically on the formation of abstract concepts as opposed to simpler input-output associations. To this aim, we tested monkeys with bilateral removals of either LPFC or OFC on a rapidly learned task requiring the formation of the abstract concept of same vs. different. While monkeys with OFC removals were significantly slower than controls at both acquiring and reversing the concept-based rule, monkeys with LPFC removals were not impaired in acquiring the task, but were significantly slower at rule reversal. Neither group was impaired in the acquisition or reversal of a delayed visual cue-outcome association task without a concept-based rule. These results suggest that OFC is essential for the implementation of a concept-based rule, whereas LPFC seems essential for its modification once established.
Collapse
Affiliation(s)
- Giancarlo La Camera
- Department of Neurobiology and Behavior, State University of New York at Stony Brook, Stony Brook, NY, United States.,Program in Neuroscience, State University of New York at Stony Brook, Stony Brook, NY, United States.,Laboratory of Neuropsychology, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Sebastien Bouret
- Laboratory of Neuropsychology, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States.,Team Motivation Brain and Behavior, CNRS/ICM - Institut du Cerveau et de la Moelle Épinière, Paris, France
| | - Barry J Richmond
- Laboratory of Neuropsychology, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
17
|
Viejo G, Girard B, Procyk E, Khamassi M. Adaptive coordination of working-memory and reinforcement learning in non-human primates performing a trial-and-error problem solving task. Behav Brain Res 2017; 355:76-89. [PMID: 29061387 DOI: 10.1016/j.bbr.2017.09.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 08/08/2017] [Accepted: 09/18/2017] [Indexed: 10/18/2022]
Abstract
Accumulating evidence suggest that human behavior in trial-and-error learning tasks based on decisions between discrete actions may involve a combination of reinforcement learning (RL) and working-memory (WM). While the understanding of brain activity at stake in this type of tasks often involve the comparison with non-human primate neurophysiological results, it is not clear whether monkeys use similar combined RL and WM processes to solve these tasks. Here we analyzed the behavior of five monkeys with computational models combining RL and WM. Our model-based analysis approach enables to not only fit trial-by-trial choices but also transient slowdowns in reaction times, indicative of WM use. We found that the behavior of the five monkeys was better explained in terms of a combination of RL and WM despite inter-individual differences. The same coordination dynamics we used in a previous study in humans best explained the behavior of some monkeys while the behavior of others showed the opposite pattern, revealing a possible different dynamics of WM process. We further analyzed different variants of the tested models to open a discussion on how the long pretraining in these tasks may have favored particular coordination dynamics between RL and WM. This points towards either inter-species differences or protocol differences which could be further tested in humans.
Collapse
Affiliation(s)
- Guillaume Viejo
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institute of Intelligent Systems and Robotics (ISIR), F-75005 Paris, France; Montreal Neurological Institute and Hospital, 3801 University Street, Montreal, Quebec, Canada.
| | - Benoît Girard
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institute of Intelligent Systems and Robotics (ISIR), F-75005 Paris, France
| | - Emmanuel Procyk
- University of Lyon, Université Claude Bernard Lyon 1, INSERM, Stem Cell and Brain Research Institute, U1208 Lyon, France
| | - Mehdi Khamassi
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institute of Intelligent Systems and Robotics (ISIR), F-75005 Paris, France
| |
Collapse
|
18
|
Acquisition, retention and transfer of simulated laparoscopic tasks using fNIR and a contextual interference paradigm. Am J Surg 2017; 213:336-345. [DOI: 10.1016/j.amjsurg.2016.11.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 11/04/2016] [Accepted: 11/29/2016] [Indexed: 12/14/2022]
|
19
|
Chen C, Wang HL, Wu SH, Huang H, Zou JL, Chen J, Jiang TZ, Zhou Y, Wang GH. Abnormal Degree Centrality of Bilateral Putamen and Left Superior Frontal Gyrus in Schizophrenia with Auditory Hallucinations: A Resting-state Functional Magnetic Resonance Imaging Study. Chin Med J (Engl) 2016; 128:3178-84. [PMID: 26612293 PMCID: PMC4794878 DOI: 10.4103/0366-6999.170269] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Dysconnectivity hypothesis of schizophrenia has been increasingly emphasized. Recent researches showed that this dysconnectivity might be related to occurrence of auditory hallucination (AH). However, there is still no consistent conclusion. This study aimed to explore intrinsic dysconnectivity pattern of whole-brain functional networks at voxel level in schizophrenic with AH. METHODS Auditory hallucinated patients group (n = 42 APG), no hallucinated patients group (n = 42 NPG) and normal controls (n = 84 NCs) were analyzed by resting-state functional magnetic resonance imaging. The functional connectivity metrics index (degree centrality [DC]) across the entire brain networks was calculated and evaluated among three groups. RESULTS DC decreased in the bilateral putamen and increased in the left superior frontal gyrus in all the patients. However, in APG, the changes of DC were more obvious compared with NPG. Symptomology scores were negatively correlated with the DC of bilateral putamen in all patients. AH score of APG positively correlated with the DC in left superior frontal gyrus but negatively correlated with the DC in bilateral putamen. CONCLUSION Our findings corroborated that schizophrenia was characterized by functional dysconnectivity, and the abnormal DC in bilateral putamen and left superior frontal gyrus might be crucial in the occurrence of AH.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuan Zhou
- Key Laboratory of Behavioral Science and Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gao-Hua Wang
- Neuropsychiatry Institution; Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| |
Collapse
|
20
|
Prefrontal Markers and Cognitive Performance Are Dissociated during Progressive Dopamine Lesion. PLoS Biol 2016; 14:e1002576. [PMID: 27824858 PMCID: PMC5100991 DOI: 10.1371/journal.pbio.1002576] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 10/12/2016] [Indexed: 11/19/2022] Open
Abstract
Dopamine is thought to directly influence the neurophysiological mechanisms of both performance monitoring and cognitive control-two processes that are critically linked in the production of adapted behaviour. Changing dopamine levels are also thought to induce cognitive changes in several neurological and psychiatric conditions. But the working model of this system as a whole remains untested. Specifically, although many researchers assume that changing dopamine levels modify neurophysiological mechanisms and their markers in frontal cortex, and that this in turn leads to cognitive changes, this causal chain needs to be verified. Using longitudinal recordings of frontal neurophysiological markers over many months during progressive dopaminergic lesion in non-human primates, we provide data that fail to support a simple interaction between dopamine, frontal function, and cognition. Feedback potentials, which are performance-monitoring signals sometimes thought to drive successful control, ceased to differentiate feedback valence at the end of the lesion, just before clinical motor threshold. In contrast, cognitive control performance and beta oscillatory markers of cognitive control were unimpaired by the lesion. The differing dynamics of these measures throughout a dopamine lesion suggests they are not all driven by dopamine in the same way. These dynamics also demonstrate that a complex non-linear set of mechanisms is engaged in the brain in response to a progressive dopamine lesion. These results question the direct causal chain from dopamine to frontal physiology and on to cognition. They imply that biomarkers of cognitive functions are not directly predictive of dopamine loss.
Collapse
|
21
|
Enel P, Procyk E, Quilodran R, Dominey PF. Reservoir Computing Properties of Neural Dynamics in Prefrontal Cortex. PLoS Comput Biol 2016; 12:e1004967. [PMID: 27286251 PMCID: PMC4902312 DOI: 10.1371/journal.pcbi.1004967] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/08/2016] [Indexed: 11/25/2022] Open
Abstract
Primates display a remarkable ability to adapt to novel situations. Determining what is most pertinent in these situations is not always possible based only on the current sensory inputs, and often also depends on recent inputs and behavioral outputs that contribute to internal states. Thus, one can ask how cortical dynamics generate representations of these complex situations. It has been observed that mixed selectivity in cortical neurons contributes to represent diverse situations defined by a combination of the current stimuli, and that mixed selectivity is readily obtained in randomly connected recurrent networks. In this context, these reservoir networks reproduce the highly recurrent nature of local cortical connectivity. Recombining present and past inputs, random recurrent networks from the reservoir computing framework generate mixed selectivity which provides pre-coded representations of an essentially universal set of contexts. These representations can then be selectively amplified through learning to solve the task at hand. We thus explored their representational power and dynamical properties after training a reservoir to perform a complex cognitive task initially developed for monkeys. The reservoir model inherently displayed a dynamic form of mixed selectivity, key to the representation of the behavioral context over time. The pre-coded representation of context was amplified by training a feedback neuron to explicitly represent this context, thereby reproducing the effect of learning and allowing the model to perform more robustly. This second version of the model demonstrates how a hybrid dynamical regime combining spatio-temporal processing of reservoirs, and input driven attracting dynamics generated by the feedback neuron, can be used to solve a complex cognitive task. We compared reservoir activity to neural activity of dorsal anterior cingulate cortex of monkeys which revealed similar network dynamics. We argue that reservoir computing is a pertinent framework to model local cortical dynamics and their contribution to higher cognitive function. One of the most noteworthy properties of primate behavior is its diversity and adaptability. Human and non-human primates can learn an astonishing variety of novel behaviors that could not have been directly anticipated by evolution. How then can the nervous system be prewired to anticipate the ability to represent such an open class of behaviors? Recent developments in a branch of recurrent neural networks, referred to as reservoir computing, begins to shed light on this question. The novelty of reservoir computing is that the recurrent connections in the network are fixed, and only the connections from these neurons to the output neurons change with learning. The fixed recurrent connections provide the network with an inherent high dimensional dynamics that creates essentially all possible spatial and temporal combinations of the inputs which can then be selected, by learning, to perform the desired task. This high dimensional mixture of activity inherent to reservoirs has begun to be found in the primate cortex. Here we make direct comparisons between dynamic coding in the cortex and in reservoirs performing the same task, and contribute to the emerging evidence that cortex has significant reservoir properties.
Collapse
Affiliation(s)
- Pierre Enel
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
- Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Emmanuel Procyk
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - René Quilodran
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
- Escuela de Medicina, Departamento de Pre-clínicas, Universidad de Valparaíso, Hontaneda, Valparaíso, Chile
| | - Peter Ford Dominey
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
- * E-mail:
| |
Collapse
|
22
|
Lara AH, Wallis JD. The Role of Prefrontal Cortex in Working Memory: A Mini Review. Front Syst Neurosci 2015; 9:173. [PMID: 26733825 PMCID: PMC4683174 DOI: 10.3389/fnsys.2015.00173] [Citation(s) in RCA: 220] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/27/2015] [Indexed: 11/24/2022] Open
Abstract
A prominent account of prefrontal cortex (PFC) function is that single neurons within the PFC maintain representations of task-relevant stimuli in working memory. Evidence for this view comes from studies in which subjects hold a stimulus across a delay lasting up to several seconds. Persistent elevated activity in the PFC has been observed in animal models as well as in humans performing these tasks. This persistent activity has been interpreted as evidence for the encoding of the stimulus itself in working memory. However, recent findings have posed a challenge to this notion. A number of recent studies have examined neural data from the PFC and posterior sensory areas, both at the single neuron level in primates, and at a larger scale in humans, and have failed to find encoding of stimulus information in the PFC during tasks with a substantial working memory component. Strong stimulus related information, however, was seen in posterior sensory areas. These results suggest that delay period activity in the PFC might be better understood not as a signature of memory storage per se, but as a top down signal that influences posterior sensory areas where the actual working memory representations are maintained.
Collapse
Affiliation(s)
- Antonio H. Lara
- Department of Neuroscience, Columbia University Kolb Research AnnexNew York, NY, USA
| | - Jonathan D. Wallis
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeley, CA, USA
- Department of Psychology, University of California at BerkeleyBerkeley, CA, USA
| |
Collapse
|
23
|
Nair A, Carper RA, Abbott AE, Chen CP, Solders S, Nakutin S, Datko MC, Fishman I, Müller R. Regional specificity of aberrant thalamocortical connectivity in autism. Hum Brain Mapp 2015; 36:4497-511. [PMID: 26493162 PMCID: PMC4768761 DOI: 10.1002/hbm.22938] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/27/2015] [Accepted: 07/30/2015] [Indexed: 01/27/2023] Open
Abstract
Preliminary evidence suggests aberrant (mostly reduced) thalamocortical (TC) connectivity in autism spectrum disorder (ASD), but despite the crucial role of thalamus in sensorimotor functions and its extensive connectivity with cerebral cortex, relevant evidence remains limited. We performed a comprehensive investigation of region-specific TC connectivity in ASD. Resting-state functional MRI and diffusion tensor imaging (DTI) data were acquired for 60 children and adolescents with ASD (ages 7-17 years) and 45 age, sex, and IQ-matched typically developing (TD) participants. We examined intrinsic functional connectivity (iFC) and anatomical connectivity (probabilistic tractography) with thalamus, using 68 unilateral cerebral cortical regions of interest (ROIs). For frontal and parietal lobes, iFC was atypically reduced in the ASD group for supramodal association cortices, but was increased for cingulate gyri and motor cortex. Temporal iFC was characterized by overconnectivity for auditory cortices, but underconnectivity for amygdalae. Occipital iFC was broadly reduced in the ASD group. DTI indices (such as increased radial diffusion) for regions with group differences in iFC further indicated compromised anatomical connectivity, especially for frontal ROIs, in the ASD group. Our findings highlight the regional specificity of aberrant TC connectivity in ASD. Their overall pattern can be largely accounted for by functional overconnectivity with limbic and sensorimotor regions, but underconnectivity with supramodal association cortices. This could be related to comparatively early maturation of limbic and sensorimotor regions in the context of early overgrowth in ASD, at the expense of TC connectivity with later maturing cortical regions.
Collapse
Affiliation(s)
- Aarti Nair
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State UniversitySan DiegoCalifornia
- Joint Doctoral Program in Clinical Psychology, San Diego State University and University of CaliforniaSan DiegoCalifornia
| | - Ruth A. Carper
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State UniversitySan DiegoCalifornia
- Department of NeuroscienceUniversity of CaliforniaSan DiegoCalifornia
| | - Angela E. Abbott
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State UniversitySan DiegoCalifornia
| | - Colleen P. Chen
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State UniversitySan DiegoCalifornia
| | - Seraphina Solders
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State UniversitySan DiegoCalifornia
| | - Sarah Nakutin
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State UniversitySan DiegoCalifornia
| | - Michael C. Datko
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State UniversitySan DiegoCalifornia
- Department of Cognitive ScienceUniversity of CaliforniaSan DiegoCalifornia
| | - Inna Fishman
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State UniversitySan DiegoCalifornia
| | - Ralph‐Axel Müller
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State UniversitySan DiegoCalifornia
| |
Collapse
|
24
|
Mochizuki K, Funahashi S. Prefrontal spatial working memory network predicts animal's decision making in a free choice saccade task. J Neurophysiol 2015; 115:127-42. [PMID: 26490287 DOI: 10.1152/jn.00255.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 10/17/2015] [Indexed: 11/22/2022] Open
Abstract
While neurons in the lateral prefrontal cortex (PFC) encode spatial information during the performance of working memory tasks, they are also known to participate in subjective behavior such as spatial attention and action selection. In the present study, we analyzed the activity of primate PFC neurons during the performance of a free choice memory-guided saccade task in which the monkeys needed to choose a saccade direction by themselves. In trials when the receptive field location was subsequently chosen by the animal, PFC neurons with spatially selective visual response started to show greater activation before cue onset. This result suggests that the fluctuation of firing before cue presentation prematurely biased the representation of a certain spatial location and eventually encouraged the subsequent choice of that location. In addition, modulation of the activity by the animal's choice was observed only in neurons with high sustainability of activation and was also dependent on the spatial configuration of the visual cues. These findings were consistent with known characteristics of PFC neurons in information maintenance in spatial working memory function. These results suggest that precue fluctuation of spatial representation was shared and enhanced through the working memory network in the PFC and could finally influence the animal's free choice of saccade direction. The present study revealed that the PFC plays an important role in decision making in a free choice condition and that the dynamics of decision making are constrained by the network architecture embedded in this cortical area.
Collapse
Affiliation(s)
- Kei Mochizuki
- Kokoro Research Center, Kyoto University, Kyoto, Japan; and
| | - Shintaro Funahashi
- Kokoro Research Center, Kyoto University, Kyoto, Japan; and Laboratory of Cognitive Brain Science, Department of Cognitive and Behavioral Sciences, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| |
Collapse
|
25
|
A unilateral medial frontal cortical lesion impairs trial and error learning without visual control. Neuropsychologia 2015; 75:314-21. [DOI: 10.1016/j.neuropsychologia.2015.06.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 11/22/2022]
|
26
|
Altered spontaneous brain activity in patients with acute spinal cord injury revealed by resting-state functional MRI. PLoS One 2015; 10:e0118816. [PMID: 25768010 PMCID: PMC4359126 DOI: 10.1371/journal.pone.0118816] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 01/06/2015] [Indexed: 11/29/2022] Open
Abstract
Background Previous neuroimaging studies have provided evidence of structural and functional reorganization of brain in patients with chronic spinal cord injury (SCI). However, it remains unknown whether the spontaneous brain activity changes in acute SCI. In this study, we investigated intrinsic brain activity in acute SCI patients using a regional homogeneity (ReHo) analysis based on resting-state functional magnetic resonance imaging. Methods A total of 15 patients with acute SCI and 16 healthy controls participated in the study. The ReHo value was used to evaluate spontaneous brain activity, and voxel-wise comparisons of ReHo were performed to identify brain regions with altered spontaneous brain activity between groups. We also assessed the associations between ReHo and the clinical scores in brain regions showing changed spontaneous brain activity. Results Compared with the controls, the acute SCI patients showed decreased ReHo in the bilateral primary motor cortex/primary somatosensory cortex, bilateral supplementary motor area/dorsal lateral prefrontal cortex, right inferior frontal gyrus, bilateral dorsal anterior cingulate cortex and bilateral caudate; and increased ReHo in bilateral precuneus, the left inferior parietal lobe, the left brainstem/hippocampus, the left cingulate motor area, bilateral insula, bilateral thalamus and bilateral cerebellum. The average ReHo values of the left thalamus and right insula were negatively correlated with the international standards for the neurological classification of spinal cord injury motor scores. Conclusion Our findings indicate that acute distant neuronal damage has an immediate impact on spontaneous brain activity. In acute SCI patients, the ReHo was prominently altered in brain regions involved in motor execution and cognitive control, default mode network, and which are associated with sensorimotor compensatory reorganization. Abnormal ReHo values in the left thalamus and right insula could serve as potential biomarkers for assessment of neuronal damage and the prediction of clinical outcomes in acute SCI.
Collapse
|
27
|
Stoll FM, Wilson CRE, Faraut MCM, Vezoli J, Knoblauch K, Procyk E. The Effects of Cognitive Control and Time on Frontal Beta Oscillations. Cereb Cortex 2015; 26:1715-1732. [PMID: 25638168 DOI: 10.1093/cercor/bhv006] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Frontal beta oscillations are associated with top-down control mechanisms but also change over time during a task. It is unclear whether change over time represents another control function or a neural instantiation of vigilance decrements over time, the time-on-task effect. We investigated how frontal beta oscillations are modulated by cognitive control and time. We used frontal chronic electrocorticography in monkeys performing a trial-and-error task, comprising search and repetition phases. Specific beta oscillations in the delay period of each trial were modulated by task phase and adaptation to feedback. Beta oscillations in this same period showed a significant within-session change. These separate modulations of beta oscillations did not interact. Crucially, and in contrast to previous investigations, we examined modulations of beta around spontaneous pauses in work. After pauses, the beta power modulation was reset and the cognitive control effect was maintained. Cognitive performance was also maintained whereas behavioral signs of fatigue continued to increase. We propose that these beta oscillations reflect multiple factors contributing to the regulation of cognitive control. Due to the effect of pauses, the time-sensitive factor cannot be a neural correlate of time-on-task but may reflect attentional effort.
Collapse
Affiliation(s)
- Frederic M Stoll
- INSERM U846, Stem Cell and Brain Research Institute, Bron 69500, France.,Université de Lyon, Lyon 1, UMR S-846, Lyon 69003, France
| | - Charles R E Wilson
- INSERM U846, Stem Cell and Brain Research Institute, Bron 69500, France.,Université de Lyon, Lyon 1, UMR S-846, Lyon 69003, France
| | - Maïlys C M Faraut
- INSERM U846, Stem Cell and Brain Research Institute, Bron 69500, France.,Université de Lyon, Lyon 1, UMR S-846, Lyon 69003, France
| | - Julien Vezoli
- INSERM U846, Stem Cell and Brain Research Institute, Bron 69500, France.,Université de Lyon, Lyon 1, UMR S-846, Lyon 69003, France.,Current address: Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt D-60528, Germany
| | - Kenneth Knoblauch
- INSERM U846, Stem Cell and Brain Research Institute, Bron 69500, France.,Université de Lyon, Lyon 1, UMR S-846, Lyon 69003, France
| | - Emmanuel Procyk
- INSERM U846, Stem Cell and Brain Research Institute, Bron 69500, France.,Université de Lyon, Lyon 1, UMR S-846, Lyon 69003, France
| |
Collapse
|
28
|
Brain-in-the-Loop Learning Using fNIR and Simulated Virtual Reality Surgical Tasks: Hemodynamic and Behavioral Effects. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/978-3-319-20816-9_31] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
29
|
Siegel JJ. Modification of persistent responses in medial prefrontal cortex during learning in trace eyeblink conditioning. J Neurophysiol 2014; 112:2123-37. [PMID: 25080570 DOI: 10.1152/jn.00372.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Persistent spiking in response to a discrete stimulus is considered to reflect the active maintenance of a memory for that stimulus until a behavioral response is made. This response pattern has been reported in learning paradigms that impose a temporal gap between stimulus presentation and behavioral response, including trace eyeblink conditioning. However, it is unknown whether persistent responses are acquired as a function of learning or simply represent an already existing category of response type. This fundamental question was addressed by recording single-unit activity in the medial prefrontal cortex (mPFC) of rabbits during the initial learning phase of trace eyeblink conditioning. Persistent responses to the tone conditioned stimulus were observed in the mPFC during the very first training sessions. Further analysis revealed that most cells with persistent responses showed this pattern during the very first training trial, before animals had experienced paired training. However, persistent cells showed reliable decreases in response magnitude over the first training session, which were not observed on the second day of training or for sessions in which learning criterion was met. This modification of response magnitude was specific to persistent responses and was not observed for cells showing phasic tone-evoked responses. The data suggest that persistent responses to discrete stimuli do not require learning but that the ongoing robustness of such responses over the course of training is modified as a result of experience. Putative mechanisms for this modification are discussed, including changes in cellular or network properties, neuromodulatory tone, and/or the synaptic efficacy of tone-associated inputs.
Collapse
Affiliation(s)
- Jennifer J Siegel
- Center for Learning and Memory and Institute for Neuroscience, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
30
|
Khamassi M, Quilodran R, Enel P, Dominey PF, Procyk E. Behavioral Regulation and the Modulation of Information Coding in the Lateral Prefrontal and Cingulate Cortex. Cereb Cortex 2014; 25:3197-218. [PMID: 24904073 DOI: 10.1093/cercor/bhu114] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
To explain the high level of flexibility in primate decision-making, theoretical models often invoke reinforcement-based mechanisms, performance monitoring functions, and core neural features within frontal cortical regions. However, the underlying biological mechanisms remain unknown. In recent models, part of the regulation of behavioral control is based on meta-learning principles, for example, driving exploratory actions by varying a meta-parameter, the inverse temperature, which regulates the contrast between competing action probabilities. Here we investigate how complementary processes between lateral prefrontal cortex (LPFC) and dorsal anterior cingulate cortex (dACC) implement decision regulation during exploratory and exploitative behaviors. Model-based analyses of unit activity recorded in these 2 areas in monkeys first revealed that adaptation of the decision function is reflected in a covariation between LPFC neural activity and the control level estimated from the animal's behavior. Second, dACC more prominently encoded a reflection of outcome uncertainty useful for control regulation based on task monitoring. Model-based analyses also revealed higher information integration before feedback in LPFC, and after feedback in dACC. Overall the data support a role of dACC in integrating reinforcement-based information to regulate decision functions in LPFC. Our results thus provide biological evidence on how prefrontal cortical subregions may cooperate to regulate decision-making.
Collapse
Affiliation(s)
- Mehdi Khamassi
- Stem Cell and Brain Research Institute, INSERM U846, 69500 Bron, France Université de Lyon, Lyon 1, UMR-S 846, 69003 Lyon, France Institut des Systèmes Intelligents et de Robotique, Université Pierre et Marie Curie-Paris 6, F-75252, Paris Cedex 05, France Centre National de la Recherche Scientifique UMR 7222, F-75005, Paris Cedex 05, France
| | - René Quilodran
- Stem Cell and Brain Research Institute, INSERM U846, 69500 Bron, France Université de Lyon, Lyon 1, UMR-S 846, 69003 Lyon, France Escuela de Medicina, Departamento de Pre-clínicas, Universidad de Valparaíso, Hontaneda 2653, Valparaíso, Chile
| | - Pierre Enel
- Stem Cell and Brain Research Institute, INSERM U846, 69500 Bron, France Université de Lyon, Lyon 1, UMR-S 846, 69003 Lyon, France
| | - Peter F Dominey
- Stem Cell and Brain Research Institute, INSERM U846, 69500 Bron, France Université de Lyon, Lyon 1, UMR-S 846, 69003 Lyon, France
| | - Emmanuel Procyk
- Stem Cell and Brain Research Institute, INSERM U846, 69500 Bron, France Université de Lyon, Lyon 1, UMR-S 846, 69003 Lyon, France
| |
Collapse
|
31
|
Shen C, Ardid S, Kaping D, Westendorff S, Everling S, Womelsdorf T. Anterior Cingulate Cortex Cells Identify Process-Specific Errors of Attentional Control Prior to Transient Prefrontal-Cingulate Inhibition. Cereb Cortex 2014; 25:2213-28. [PMID: 24591526 DOI: 10.1093/cercor/bhu028] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Errors indicate the need to adjust attention for improved future performance. Detecting errors is thus a fundamental step to adjust and control attention. These functions have been associated with the dorsal anterior cingulate cortex (dACC), predicting that dACC cells should track the specific processing states giving rise to errors in order to identify which processing aspects need readjustment. Here, we tested this prediction by recording cells in the dACC and lateral prefrontal cortex (latPFC) of macaques performing an attention task that dissociated 3 processing stages. We found that, across prefrontal subareas, the dACC contained the largest cell populations encoding errors indicating (1) failures of inhibitory control of the attentional focus, (2) failures to prevent bottom-up distraction, and (3) lapses when implementing a choice. Error-locked firing in the dACC showed the earliest latencies across the PFC, emerged earlier than reward omission signals, and involved a significant proportion of putative inhibitory interneurons. Moreover, early onset error-locked response enhancement in the dACC was followed by transient prefrontal-cingulate inhibition, possibly reflecting active disengagement from task processing. These results suggest a functional specialization of the dACC to track and identify the actual processes that give rise to erroneous task outcomes, emphasizing its role to control attentional performance.
Collapse
Affiliation(s)
- Chen Shen
- Department of Biology, Centre for Vision Research, York University, Toronto, Ontario, Canada M6J 1P3
| | - Salva Ardid
- Department of Biology, Centre for Vision Research, York University, Toronto, Ontario, Canada M6J 1P3
| | - Daniel Kaping
- Department of Biology, Centre for Vision Research, York University, Toronto, Ontario, Canada M6J 1P3
| | - Stephanie Westendorff
- Department of Biology, Centre for Vision Research, York University, Toronto, Ontario, Canada M6J 1P3
| | - Stefan Everling
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada N6A 5K8
| | - Thilo Womelsdorf
- Department of Biology, Centre for Vision Research, York University, Toronto, Ontario, Canada M6J 1P3 Department of Physiology and Pharmacology, Western University, London, Ontario, Canada N6A 5K8
| |
Collapse
|
32
|
Wise T, Cleare AJ, Herane A, Young AH, Arnone D. Diagnostic and therapeutic utility of neuroimaging in depression: an overview. Neuropsychiatr Dis Treat 2014; 10:1509-22. [PMID: 25187715 PMCID: PMC4149389 DOI: 10.2147/ndt.s50156] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A growing number of studies have used neuroimaging to further our understanding of how brain structure and function are altered in major depression. More recently, these techniques have begun to show promise for the diagnosis and treatment of depression, both as aids to conventional methods and as methods in their own right. In this review, we describe recent neuroimaging findings in the field that might aid diagnosis and improve treatment accuracy. Overall, major depression is associated with numerous structural and functional differences in neural systems involved in emotion processing and mood regulation. Furthermore, several studies have shown that the structure and function of these systems is changed by pharmacological and psychological treatments of the condition and that these changes in candidate brain regions might predict clinical response. More recently, "machine learning" methods have used neuroimaging data to categorize individual patients according to their diagnostic status and predict treatment response. Despite being mostly limited to group-level comparisons at present, with the introduction of new methods and more naturalistic studies, neuroimaging has the potential to become part of the clinical armamentarium and may improve diagnostic accuracy and inform treatment choice at the patient level.
Collapse
Affiliation(s)
- Toby Wise
- King's College London, Institute of Psychiatry, Department of Psychological Medicine, Centre for Affective Disorders, London, United Kingdom
| | - Anthony J Cleare
- King's College London, Institute of Psychiatry, Department of Psychological Medicine, Centre for Affective Disorders, London, United Kingdom
| | - Andrés Herane
- King's College London, Institute of Psychiatry, Department of Psychological Medicine, Centre for Affective Disorders, London, United Kingdom ; Clínica Psiquiátrica Universitaria, Universidad de Chile, Santiago, Chile
| | - Allan H Young
- King's College London, Institute of Psychiatry, Department of Psychological Medicine, Centre for Affective Disorders, London, United Kingdom
| | - Danilo Arnone
- King's College London, Institute of Psychiatry, Department of Psychological Medicine, Centre for Affective Disorders, London, United Kingdom
| |
Collapse
|
33
|
Yun JY, Hur JW, Jung WH, Jang JH, Youn T, Kang DH, Park S, Kwon JS. Dysfunctional role of parietal lobe during self-face recognition in schizophrenia. Schizophr Res 2014; 152:81-8. [PMID: 23916187 DOI: 10.1016/j.schres.2013.07.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/29/2013] [Accepted: 07/03/2013] [Indexed: 11/15/2022]
Abstract
BACKGROUND Anomalous sense of self is central to schizophrenia yet difficult to demonstrate empirically. The present study examined the effective neural network connectivity underlying self-face recognition in patients with schizophrenia (SZ) using [15O]H2O Positron Emission Tomography (PET) and Structural Equation Modeling. METHODS Eight SZ and eight age-matched healthy controls (CO) underwent six consecutive [15O]H2O PET scans during self-face (SF) and famous face (FF) recognition blocks, each of which was repeated three times. RESULTS There were no behavioral performance differences between the SF and FF blocks in SZ. Moreover, voxel-based analyses of data from SZ revealed no significant differences in the regional cerebral blood flow (rCBF) levels between the SF and FF recognition conditions. Further effective connectivity analyses for SZ also showed a similar pattern of effective connectivity network across the SF and FF recognition. On the other hand, comparison of SF recognition effective connectivity network between SZ and CO demonstrated significantly attenuated effective connectivity strength not only between the right supramarginal gyrus and left inferior temporal gyrus, but also between the cuneus and right medial prefrontal cortex in SZ. CONCLUSION These findings support a conceptual model that posits a causal relationship between disrupted self-other discrimination and attenuated effective connectivity among the right supramarginal gyrus, cuneus, and prefronto-temporal brain areas involved in the SF recognition network of SZ.
Collapse
Affiliation(s)
- Je-Yeon Yun
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea
| | - Ji-Won Hur
- Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea; Department of Brain and Cognitive Sciences, World Class University Program, Seoul National University, College of Natural Sciences, Seoul, Republic of Korea
| | - Wi Hoon Jung
- Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea
| | - Joon Hwan Jang
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tak Youn
- Department of Psychiatry, Dongguk University Ilsan Hospital, Gyeonggi Province, Republic of Korea
| | - Do-Hyung Kang
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sohee Park
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA
| | - Jun Soo Kwon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea; Department of Brain and Cognitive Sciences, World Class University Program, Seoul National University, College of Natural Sciences, Seoul, Republic of Korea.
| |
Collapse
|
34
|
Menossi HS, Goudriaan AE, de Azevedo-Marques Périco C, Nicastri S, de Andrade AG, D'Elia G, Li CSR, Castaldelli-Maia JM. Neural bases of pharmacological treatment of nicotine dependence - insights from functional brain imaging: a systematic review. CNS Drugs 2013; 27:921-41. [PMID: 23853032 DOI: 10.1007/s40263-013-0092-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Nicotine dependence is difficult to treat, and the biological mechanisms that are involved are not entirely clear. There is an urgent need to develop better drugs and more effective treatments for clinical practice. A critical step towards accelerating progress in medication development is to understand the neurobehavioral effects of pharmacotherapies on clinical characteristics associated with nicotine dependence. OBJECTIVES This review sought to summarize the functional magnetic resonance imaging (fMRI) literature on smoking cessation with the aim to better understand the neural processes underlying the effects of nicotinic and non-nicotinic pharmacological smoking cessation treatments on specific symptoms of nicotine dependence and withdrawal. DATA SOURCES We conducted a search in Pubmed, Web of Science and PsycINFO databases with the keywords 'fMRI' or 'functional magnetic resonance imaging' and 'tobacco' or 'nicotine' or 'smok*'. The date of the most recent search was May 2012. STUDY ELIGIBILITY CRITERIA, PARTICIPANTS AND INTERVENTIONS The original studies that were included were those of smokers or nicotine-dependent individuals, published in the English language, with pharmacological treatment for nicotine dependence and use of fMRI with blood oxygen level-dependent (BOLD) imaging or continuous arterial spin labelling (CASL). No date limit was applied. STUDY APPRAISAL AND SYNTHESIS METHODS Two of the authors read the abstracts of all studies found in the search (n = 1,260). The inclusion and exclusion criteria were applied, and 1,224 articles were excluded. In a second step, the same authors read the remaining 36 studies. Nineteen of the 36 articles were excluded. The results were tabulated by the number of individuals and their mean age, the main sample characteristics, smoking status, study type and methodology, and the main fMRI findings. RESULTS Seventeen original fMRI studies involving pharmacological treatment of smokers were selected. The anterior and posterior cingulate cortex, medial and lateral orbitofrontal cortex, ventral striatum, amygdala, thalamus and insula are heavily involved in the maintenance of smoking and nicotine withdrawal. The effects of varenicline and bupropion in alleviating withdrawal symptoms and decreasing smoking correlated with modulation of the activities of these areas. Nicotine replacement therapy seems to improve cognitive symptoms related to withdrawal especially by modulating activities of the default-network regions; however, nicotine replacement does not necessarily alter the activities of neural circuits, such as the cingulate cortices, that are associated with nicotine addiction. LIMITATIONS The risk of bias in individual studies, and across studies, was not assessed, and no method of handling data and combining results of studies was carried out. Most importantly, positron emission tomography (PET) studies were not included in this review. CONCLUSIONS AND IMPLICATION OF KEY FINDINGS fMRI studies delineate brain systems that contribute to cognitive deficits and reactivity to stimuli that generate the desire to smoke. Nicotinic and non-nicotinic pharmacotherapy may reduce smoking via distinct neural mechanisms of action. These findings should contribute to the development of new medications and discovery of early markers of the therapeutic response of cigarette smokers.
Collapse
Affiliation(s)
- Henrique Soila Menossi
- Disciplinas de Psiquiatria e Psicologia Médica da Faculdade de Medicina do ABC, Av. Lauro Gomes, 2000 - Vila Sacadura Cabral, Santo André, SP, 09060-870, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Cognitive abnormalities and hippocampal alterations in monoamine oxidase A and B knockout mice. Proc Natl Acad Sci U S A 2013; 110:12816-21. [PMID: 23858446 DOI: 10.1073/pnas.1308037110] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The monoamine oxidase isoenzymes (MAOs) A and B play important roles in the homeostasis of monoaminergic neurotransmitters. The combined deficiency of MAO A and B results in significantly elevated levels of serotonin (5-hydroxytryptamine), norepinephrine, dopamine, and β-phenylethylamine; in humans and mice, these neurochemical changes are accompanied by neurodevelopmental perturbations as well as autistic-like responses. Ample evidence indicates that normal levels of monoamines in the hippocampus, amygdala, frontal cortex, and cerebellum are required for the integrity of learning and memory. Thus, in the present study, the cognitive status of MAO A/B knockout (KO) mice was examined with a wide array of behavioral tests. In comparison with male wild-type littermates, MAO A/B KO mice exhibited abnormally high and overgeneralized fear conditioning and enhanced eye-blink conditioning. These alterations were accompanied by significant increases in hippocampal long-term potentiation and alterations in the relative expression of NMDA glutamate receptor subunits. Our data suggest that chronic elevations of monoamines, because of the absence of MAO A and MAO B, cause functional alterations that are accompanied with changes in the cellular mechanisms underlying learning and memory. The characteristics exhibited by MAO A/B KO mice highlight the potential of these animals as a useful tool to provide further insight into the molecular bases of disorders associated with abnormal monoaminergic profiles.
Collapse
|
36
|
Logiaco L, Quilodran R, Gerstner W, Procyk E, Arleo A. Modulation of a decision-making process by spatiotemporal spike patterns decoding: evidence from spike-train metrics analysis and spiking neural network modeling. BMC Neurosci 2013. [PMCID: PMC3704280 DOI: 10.1186/1471-2202-14-s1-p10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
37
|
Khamassi M, Enel P, Dominey PF, Procyk E. Medial prefrontal cortex and the adaptive regulation of reinforcement learning parameters. PROGRESS IN BRAIN RESEARCH 2013; 202:441-64. [PMID: 23317844 DOI: 10.1016/b978-0-444-62604-2.00022-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Converging evidence suggest that the medial prefrontal cortex (MPFC) is involved in feedback categorization, performance monitoring, and task monitoring, and may contribute to the online regulation of reinforcement learning (RL) parameters that would affect decision-making processes in the lateral prefrontal cortex (LPFC). Previous neurophysiological experiments have shown MPFC activities encoding error likelihood, uncertainty, reward volatility, as well as neural responses categorizing different types of feedback, for instance, distinguishing between choice errors and execution errors. Rushworth and colleagues have proposed that the involvement of MPFC in tracking the volatility of the task could contribute to the regulation of one of RL parameters called the learning rate. We extend this hypothesis by proposing that MPFC could contribute to the regulation of other RL parameters such as the exploration rate and default action values in case of task shifts. Here, we analyze the sensitivity to RL parameters of behavioral performance in two monkey decision-making tasks, one with a deterministic reward schedule and the other with a stochastic one. We show that there exist optimal parameter values specific to each of these tasks, that need to be found for optimal performance and that are usually hand-tuned in computational models. In contrast, automatic online regulation of these parameters using some heuristics can help producing a good, although non-optimal, behavioral performance in each task. We finally describe our computational model of MPFC-LPFC interaction used for online regulation of the exploration rate and its application to a human-robot interaction scenario. There, unexpected uncertainties are produced by the human introducing cued task changes or by cheating. The model enables the robot to autonomously learn to reset exploration in response to such uncertain cues and events. The combined results provide concrete evidence specifying how prefrontal cortical subregions may cooperate to regulate RL parameters. It also shows how such neurophysiologically inspired mechanisms can control advanced robots in the real world. Finally, the model's learning mechanisms that were challenged in the last robotic scenario provide testable predictions on the way monkeys may learn the structure of the task during the pretraining phase of the previous laboratory experiments.
Collapse
Affiliation(s)
- Mehdi Khamassi
- INSERM U846, Stem Cell and Brain Research Institute, Bron, France.
| | | | | | | |
Collapse
|
38
|
Amiez C, Sallet J, Procyk E, Petrides M. Modulation of feedback related activity in the rostral anterior cingulate cortex during trial and error exploration. Neuroimage 2012; 63:1078-90. [PMID: 22732558 DOI: 10.1016/j.neuroimage.2012.06.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 06/06/2012] [Accepted: 06/18/2012] [Indexed: 01/23/2023] Open
Abstract
The present functional magnetic resonance imaging (fMRI) experiment aims at clarifying the role of the rostral anterior cingulate cortex (rACC) in the evaluation of feedback in a deterministic environment. We tested, in particular, the response of the rACC to the detection of different types of feedback, and to varying levels of outcome expectancy. We used a problem-solving task in which subjects had to discover, in successive trials, which one of the four presented stimuli was associated with a positive feedback, the other ones being associated with error feedback. In this task, two periods alternated: 1. an exploratory period in which error feedback indicated to adapt the following response appropriately (and continue to explore), and first positive feedback indicated to change strategy (i.e. to shift from explorative to exploitative behavior), and 2. an exploitative period in which subjects had to repeat the correct choice. The rACC is recruited in the exploratory period during the analysis of both error and first correct positive feedback. In addition, the rACC activity was modulated by positive reward prediction error values (i.e. the difference between obtained and expected feedback). Altogether, these results reveal the critical role of the rACC in the evaluation of salient feedback for learning optimal strategies.
Collapse
Affiliation(s)
- Céline Amiez
- Montreal Neurological Institute, Cognitive Neuroscience Unit, McGill University, 3801 University Street, Montreal, Quebec, Canada H3A 2B4
| | | | | | | |
Collapse
|
39
|
Funahashi S. Space representation in the prefrontal cortex. Prog Neurobiol 2012; 103:131-55. [PMID: 22521602 DOI: 10.1016/j.pneurobio.2012.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 04/04/2012] [Accepted: 04/04/2012] [Indexed: 11/30/2022]
Abstract
The representation of space and its function in the prefrontal cortex have been examined using a variety of behavioral tasks. Among them, since the delayed-response task requires the temporary maintenance of spatial information, this task has been used to examine the mechanisms of spatial representation. In addition, the concept of working memory to explain prefrontal functions has helped us to understand the nature and functions of space representation in the prefrontal cortex. The detailed analysis of delay-period activity observed in spatial working memory tasks has provided important information for understanding space representation in the prefrontal cortex. Directional delay-period activity has been shown to be a neural correlate of the mechanism for temporarily maintaining information and represent spatial information for the visual cue and the saccade. In addition, many task-related prefrontal neurons exhibit spatially selective activities. These neurons are also important components of spatial information processing. In fact, information flow from sensory-related neurons to motor-related neurons has been demonstrated, along with a change in spatial representation as the trial progresses. The dynamic functional interactions among neurons exhibiting different task-related activities and representing different aspects of information could play an essential role in information processing. In addition, information provided from other cortical or subcortical areas might also be necessary for the representation of space in the prefrontal cortex. To better understand the representation of space and its function in the prefrontal cortex, we need to understand the nature of functional interactions between the prefrontal cortex and other cortical and subcortical areas.
Collapse
Affiliation(s)
- Shintaro Funahashi
- Kokoro Research Center, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
40
|
Ossandón T, Vidal JR, Ciumas C, Jerbi K, Hamamé CM, Dalal SS, Bertrand O, Minotti L, Kahane P, Lachaux JP. Efficient "pop-out" visual search elicits sustained broadband γ activity in the dorsal attention network. J Neurosci 2012; 32:3414-21. [PMID: 22399764 PMCID: PMC6621042 DOI: 10.1523/jneurosci.6048-11.2012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 01/02/2012] [Indexed: 11/21/2022] Open
Abstract
An object that differs markedly from its surrounding-for example, a red cherry among green leaves-seems to pop out effortlessly in our visual experience. The rapid detection of salient targets, independently of the number of other items in the scene, is thought to be mediated by efficient search brain mechanisms. It is not clear, however, whether efficient search is actually an "effortless" bottom-up process or whether it also involves regions of the prefrontal cortex generally associated with top-down sustained attention. We addressed this question with intracranial EEG (iEEG) recordings designed to identify brain regions underlying a classic visual search task and correlate neural activity with target detection latencies on a trial-by-trial basis with high temporal precision recordings of these regions in epileptic patients. The spatio-temporal dynamics of single-trial spectral analysis of iEEG recordings revealed sustained energy increases in a broad gamma band (50-150 Hz) throughout the duration of the search process in the entire dorsal attention network both in efficient and inefficient search conditions. By contrast to extensive theoretical and experimental indications that efficient search relies exclusively on transient bottom-up processes in visual areas, we found that efficient search is mediated by sustained gamma activity in the dorsal lateral prefrontal cortex and the anterior cingulate cortex, alongside the superior parietal cortex and the frontal eye field. Our findings support the hypothesis that active visual search systematically involves the frontal-parietal attention network and therefore, executive attention resources, regardless of target saliency.
Collapse
Affiliation(s)
- Tomas Ossandón
- INSERM U1028-CNRS UMR5292, Brain Dynamics and Cognition Team, Lyon Neuroscience Research Center, F-69500 Lyon-Bron, France; University Claude Bernard, Lyon 1, F-69000 Lyon, France
- Departamento de Psiquiatría, Facultad de Medicina y Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, CL-8330024 Santiago, Chile
| | - Juan R. Vidal
- INSERM U1028-CNRS UMR5292, Brain Dynamics and Cognition Team, Lyon Neuroscience Research Center, F-69500 Lyon-Bron, France; University Claude Bernard, Lyon 1, F-69000 Lyon, France
| | - Carolina Ciumas
- Translational and Integrative Group in Epilepsy Research (TIGER), F-69000, Lyon, France
- Institute for Child and Adolescent with Epilepsy (IDEE), F-69000, Lyon, France, and
| | - Karim Jerbi
- INSERM U1028-CNRS UMR5292, Brain Dynamics and Cognition Team, Lyon Neuroscience Research Center, F-69500 Lyon-Bron, France; University Claude Bernard, Lyon 1, F-69000 Lyon, France
| | - Carlos M. Hamamé
- INSERM U1028-CNRS UMR5292, Brain Dynamics and Cognition Team, Lyon Neuroscience Research Center, F-69500 Lyon-Bron, France; University Claude Bernard, Lyon 1, F-69000 Lyon, France
| | - Sarang S. Dalal
- INSERM U1028-CNRS UMR5292, Brain Dynamics and Cognition Team, Lyon Neuroscience Research Center, F-69500 Lyon-Bron, France; University Claude Bernard, Lyon 1, F-69000 Lyon, France
- Zukunftskolleg and Department of Psychology, University of Konstanz, D-78457 Konstanz, Germany
| | - Olivier Bertrand
- INSERM U1028-CNRS UMR5292, Brain Dynamics and Cognition Team, Lyon Neuroscience Research Center, F-69500 Lyon-Bron, France; University Claude Bernard, Lyon 1, F-69000 Lyon, France
| | - Lorella Minotti
- CHU Grenoble and Department of Neurology, INSERM U704, F-38043 Grenoble, France
| | - Philippe Kahane
- CHU Grenoble and Department of Neurology, INSERM U704, F-38043 Grenoble, France
| | - Jean-Philippe Lachaux
- INSERM U1028-CNRS UMR5292, Brain Dynamics and Cognition Team, Lyon Neuroscience Research Center, F-69500 Lyon-Bron, France; University Claude Bernard, Lyon 1, F-69000 Lyon, France
| |
Collapse
|
41
|
Liu H, Kaneko Y, Ouyang X, Li L, Hao Y, Chen EYH, Jiang T, Zhou Y, Liu Z. Schizophrenic patients and their unaffected siblings share increased resting-state connectivity in the task-negative network but not its anticorrelated task-positive network. Schizophr Bull 2012; 38:285-94. [PMID: 20595202 PMCID: PMC3283150 DOI: 10.1093/schbul/sbq074] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Abnormal connectivity of the anticorrelated intrinsic networks, the task-negative network (TNN), and the task-positive network (TPN) is implicated in schizophrenia. Comparisons between schizophrenic patients and their unaffected siblings enable further understanding of illness susceptibility and pathophysiology. We examined the resting-state connectivity differences in the intrinsic networks between schizophrenic patients, their unaffected siblings, and healthy controls. METHODS Resting-state functional magnetic resonance images were obtained from 25 individuals in each subject group. The posterior cingulate cortex/precuneus and right dorsolateral prefrontal cortex were used as seed regions to identify the TNN and TPN through functional connectivity analysis. Interregional connectivity strengths were analyzed using overlapped intrinsic networks composed of regions common to all subject groups. RESULTS Schizophrenic patients and their unaffected siblings showed increased connectivity in the TNN between the bilateral inferior temporal gyri. By contrast, schizophrenic patients alone demonstrated increased connectivity between the posterior cingulate cortex/precuneus and left inferior temporal gyrus and between the ventral medial prefrontal cortex and right lateral parietal cortex in the TNN. Schizophrenic patients exhibited increased connectivity between the left dorsolateral prefrontal cortex and right inferior frontal gyrus in the TPN relative to their unaffected siblings, though this trend only approached statistical significance in comparison to healthy controls. CONCLUSION Resting-state hyperconnectivity of the intrinsic networks may disrupt network coordination and thereby contribute to the pathophysiology of schizophrenia. Similar, though milder, hyperconnectivity of the TNN in unaffected siblings of schizophrenic patients may contribute to the identification of schizophrenia endophenotypes and ultimately to the determination of schizophrenia risk genes.
Collapse
Affiliation(s)
- Haihong Liu
- Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China,Mental Health Centre, Xiangya Hospital, Central South University Changsha, Hunan, People's Republic of China
| | | | - Xuan Ouyang
- Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Li Li
- Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yihui Hao
- Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Eric Y. H. Chen
- Department of Psychiatry, Faculty of Medicine, Hong Kong University, Hong Kong, People's Republic of China
| | - Tianzi Jiang
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yuan Zhou
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, People's Republic of China,Centre for Social and Economic Behavior, Institute of Psychology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhening Liu
- Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China,To whom correspondence should be addressed; tel: 86-731-85292470, fax: 86-731-85554052, e-mail:
| |
Collapse
|
42
|
Neuronal activity in the primate dorsomedial prefrontal cortex contributes to strategic selection of response tactics. Proc Natl Acad Sci U S A 2012; 109:4633-8. [PMID: 22371582 DOI: 10.1073/pnas.1119971109] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The functional roles of the primate posterior medial prefrontal cortex have remained largely unknown. Here, we show that this region participates in the regulation of actions in the presence of multiple response tactics. Monkeys performed a forelimb task in which a visual cue required prompt decision of reaching to a left or a right target. The location of the cue was either ipsilateral (concordant) or contralateral (discordant) to the target. As a result of extensive training, the reaction times for the concordant and discordant trials were indistinguishable, indicating that the monkeys developed tactics to overcome the cue-response conflict. Prefrontal neurons exhibited prominent activity when the concordant and discordant trials were randomly presented, requiring rapid selection of a response tactic (reach toward or away from the cue). The following findings indicate that these neurons are involved in the selection of tactics, rather than the selection of action or monitoring of response conflict: (i) The response period activity of neurons in this region disappeared when the monkeys performed the task under the behavioral condition that required a single tactic alone, whereas the action varied across trials. (ii) The neuronal activity was found in the dorsomedial prefrontal cortex but not in the anterior cingulate cortex that has been implicated for the response conflict monitoring. These results suggest that the medial prefrontal cortex participates in the selection of a response tactic that determines an appropriate action. Furthermore, the observation of dynamic, task-dependent neuronal activity necessitates reconsideration of the conventional concept of cortical motor representation.
Collapse
|
43
|
Delayed transition from ambiguous to risky decision making in alcohol dependence during Iowa Gambling Task. Psychiatry Res 2011; 190:297-303. [PMID: 21676471 DOI: 10.1016/j.psychres.2011.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Revised: 02/05/2011] [Accepted: 05/02/2011] [Indexed: 11/22/2022]
Abstract
It has been demonstrated that alcohol-dependent patients exhibit decision-making deficits, particularly, hypersensitivity to reward and executive dysfunction. Yet, how the impaired motivational process and executive dysfunction in the patients affect decisions under ambiguity and risk with different degrees of uncertainty is little known. To investigate the neuropsychological origin of the impaired decision making under uncertainty in alcohol dependence, we administered the Iowa Gambling Task (IGT), Game of Dice Task (GDT) and Wisconsin Card Sorting Test (WCST) to 23 alcohol-dependent patients and 21 healthy subjects, and calculated the correlations between the task performances. We found that the patients showed poor performance in all three tasks compared with the healthy subjects. Moreover, correlations between performances on the GDT and the later trials of the IGT were delayed in alcohol-dependent patients when compared with healthy subjects. There is also a significant correlation between performances of earlier trials of the IGT and the WCST in the patients. These findings suggest that executive dysfunction in alcohol-dependent patients hampers appropriate estimation of probability distributions of possible alternatives, leading to a delayed transition from ambiguous to risky conditions in the Iowa Gambling Task.
Collapse
|
44
|
Coordination of high gamma activity in anterior cingulate and lateral prefrontal cortical areas during adaptation. J Neurosci 2011; 31:11110-7. [PMID: 21813672 DOI: 10.1523/jneurosci.1016-11.2011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The anterior cingulate cortex (ACC) and the lateral prefrontal cortex (LPFC) process complementary information for planning and evaluating behavior. This suggests at least that processes in these two areas are coordinated during behavioral adaptation. We analyzed local field potentials recorded in both regions in two monkeys performing a problem-solving task that alternated exploration and repetitive behaviors with the specific prediction that neural activity should reveal interareal coordination mainly during exploration. Both areas showed increased high gamma power after errors in exploration and after rewards in exploitation. We found that high gamma (60-140 Hz) power increases in ACC were followed by a later increase in LPFC only after negative feedback (errors) or first positive feedback (correct) during the exploration period. The difference in latencies between the two structures disappeared in repetition period. Simultaneous recordings revealed correlations between high gamma power in the two areas around feedback; however, correlations were observed in both exploration and repetition. In contrast, postfeedback beta (10-20 Hz) power in ACC and LPFC correlated more frequently during repetition. Together, our data suggest that the coordination between ACC and LPFC activity is expressed during adaptive as well as stable behavioral periods but with different modes depending on the behavioral period.
Collapse
|
45
|
The effects of nicotine replacement on cognitive brain activity during smoking withdrawal studied with simultaneous fMRI/EEG. Neuropsychopharmacology 2011; 36:1792-800. [PMID: 21544072 PMCID: PMC3154097 DOI: 10.1038/npp.2011.53] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Impaired attention ('difficulty concentrating') is a cognitive symptom of nicotine withdrawal that may be an important contributor to smoking relapse. However, the neurobiological basis of this effect and the potentially beneficial effects of nicotine replacement therapy both remain unclear. We used functional MRI with simultaneous electroencephalogram (EEG) recording to define brain activity correlates of cognitive impairment with short-term smoking cessation in habitual smokers and the effects of nicotine replacement. We found that irrespective of treatment (ie nicotine or placebo) EEG α power was negatively correlated with increased activation during performance of a rapid visual information processing (RVIP) task in dorsolateral prefrontal, dorsal anterior cingulate, parietal, and insular cortices, as well as, caudate, and thalamus. Relative to placebo, nicotine replacement further increased the α-correlated activation across these regions. We also found that EEG α power was negatively correlated with RVIP-induced deactivation in regions comprising the 'default mode' network (ie angular gyrus, cuneus, precuneus, posterior cingulate, and ventromedial prefrontal cortex). These α-correlated deactivations were further reduced by nicotine. These findings confirm that effects of nicotine on cognition during short-term smoking cessation occur with modulation of neuronal sources common to the generation of both the blood oxygen-level-dependent and α EEG signals. Our observations thus demonstrate that nicotine replacement in smokers has direct pharmacological effects on brain neuronal activity modulating cognitive networks.
Collapse
|
46
|
Yamada H, Inokawa H, Matsumoto N, Ueda Y, Kimura M. Neuronal basis for evaluating selected action in the primate striatum. Eur J Neurosci 2011; 34:489-506. [DOI: 10.1111/j.1460-9568.2011.07771.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Khamassi M, Lallée S, Enel P, Procyk E, Dominey PF. Robot cognitive control with a neurophysiologically inspired reinforcement learning model. Front Neurorobot 2011; 5:1. [PMID: 21808619 PMCID: PMC3136731 DOI: 10.3389/fnbot.2011.00001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 06/11/2011] [Indexed: 12/02/2022] Open
Abstract
A major challenge in modern robotics is to liberate robots from controlled industrial settings, and allow them to interact with humans and changing environments in the real-world. The current research attempts to determine if a neurophysiologically motivated model of cortical function in the primate can help to address this challenge. Primates are endowed with cognitive systems that allow them to maximize the feedback from their environment by learning the values of actions in diverse situations and by adjusting their behavioral parameters (i.e., cognitive control) to accommodate unexpected events. In such contexts uncertainty can arise from at least two distinct sources – expected uncertainty resulting from noise during sensory-motor interaction in a known context, and unexpected uncertainty resulting from the changing probabilistic structure of the environment. However, it is not clear how neurophysiological mechanisms of reinforcement learning and cognitive control integrate in the brain to produce efficient behavior. Based on primate neuroanatomy and neurophysiology, we propose a novel computational model for the interaction between lateral prefrontal and anterior cingulate cortex reconciling previous models dedicated to these two functions. We deployed the model in two robots and demonstrate that, based on adaptive regulation of a meta-parameter β that controls the exploration rate, the model can robustly deal with the two kinds of uncertainties in the real-world. In addition the model could reproduce monkey behavioral performance and neurophysiological data in two problem-solving tasks. A last experiment extends this to human–robot interaction with the iCub humanoid, and novel sources of uncertainty corresponding to “cheating” by the human. The combined results provide concrete evidence for the ability of neurophysiologically inspired cognitive systems to control advanced robots in the real-world.
Collapse
Affiliation(s)
- Mehdi Khamassi
- Stem Cell and Brain Research Institute, INSERM U846 Bron, France
| | | | | | | | | |
Collapse
|
48
|
Forebrain NR2B overexpression facilitating the prefrontal cortex long-term potentiation and enhancing working memory function in mice. PLoS One 2011; 6:e20312. [PMID: 21655294 PMCID: PMC3105019 DOI: 10.1371/journal.pone.0020312] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 04/26/2011] [Indexed: 11/19/2022] Open
Abstract
Prefrontal cortex plays an important role in working memory, attention regulation and behavioral inhibition. Its functions are associated with NMDA receptors. However, there is little information regarding the roles of NMDA receptor NR2B subunit in prefrontal cortical synaptic plasticity and prefrontal cortex-related working memory. Whether the up-regulation of NR2B subunit influences prefrontal cortical synaptic plasticity and working memory is not yet clear. In the present study, we measured prefrontal cortical synaptic plasticity and working memory function in NR2B overexpressing transgenic mice. In vitro electrophysiological data showed that overexpression of NR2B specifically in the forebrain region resulted in enhancement of prefrontal cortical long-term potentiation (LTP) but did not alter long-term depression (LTD). The enhanced LTP was completely abolished by a NR2B subunit selective antagonist, Ro25-6981, indicating that overexpression of NR2B subunit is responsible for enhanced LTP. In addition, NR2B transgenic mice exhibited better performance in a set of working memory paradigms including delay no-match-to-place T-maze, working memory version of water maze and odor span task. Our study provides evidence that NR2B subunit of NMDA receptor in prefrontal cortex is critical for prefrontal cortex LTP and prefrontal cortex-related working memory.
Collapse
|
49
|
Abstract
Recent work reported the observation of alpha frequency oscillations (8-12 Hz) in several regions of macaque visual cortex, including V2, V4, and inferotemporal cortex (IT). While alpha-related physiology in V2 and V4 appears consistent with a role in attention-related suppression, in IT, alpha reactivity appears conflicted with such a role. We addressed this issue directly by analyzing laminar profiles of local field potentials and multiunit activities from the IT of macaque monkeys during performance of an intermodal selective attention task (visual versus auditory). We found that (1) before visual stimulus onset (-200 to 0 ms), attention to visual input increased ongoing alpha power in IT relative to attention to auditory input, and (2) in contrast to the prevailing view of alpha inhibition, the increased ongoing alpha activity is accompanied by increased concurrent multiunit firing and facilitates visual stimulus processing. These results suggest that ongoing alpha oscillations in IT play a different functional role than that in the occipital cortex and may be part of the neuronal mechanism representing task-relevant information.
Collapse
|
50
|
Coombes SA, Corcos DM, Vaillancourt DE. Spatiotemporal tuning of brain activity and force performance. Neuroimage 2011; 54:2226-36. [PMID: 20937396 PMCID: PMC3008211 DOI: 10.1016/j.neuroimage.2010.10.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 09/03/2010] [Accepted: 10/03/2010] [Indexed: 11/28/2022] Open
Abstract
The spatial and temporal features of visual stimuli are either processed independently or are conflated in specific cells of visual cortex. Although spatial and temporal features of visual stimuli influence motor performance, it remains unclear how spatiotemporal information is processed beyond visual cortex in brain regions that control movement. We used functional magnetic resonance imaging to examine how brain activity and force control are influenced by visual gain at a high visual feedback frequency of 6.4 Hz and a low visual feedback frequency of 0.4 Hz. At 6.4 Hz, increasing visual gain led to improved force performance and increased activity in classic areas of the visuomotor system-V5, IPL, SPL, PMv, SMA-proper, and M1. At 0.4 Hz, increasing gain also led to improved force performance. In addition to activation in M1/PMd and IPL in the visuomotor system, increasing visual gain at 0.4 Hz also corresponded with activity in the striatal-frontal circuit including DLPFC, ACC, and widespread activity in putamen, caudate, and SMA-proper. This study demonstrates that the frequency of visual feedback drives where in the brain visual gain mediated reductions in force error are regulated.
Collapse
Affiliation(s)
- Stephen A Coombes
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | |
Collapse
|