1
|
Ma W, Sui D, Sun W, Yu P, Li Y, Guo M, Wang H, Zhang X, Yu X, Fu W, Xu H. 5,7,3',4',5'-Pentamethoxyflavone, a Flavonoid Monomer Extracted From Murraya paniculata (L.) Jack, Alleviates Anxiety Through the A 2AR/Gephyrin/GABRA2 Pathway. Phytother Res 2024. [PMID: 39261011 DOI: 10.1002/ptr.8327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/28/2024] [Accepted: 08/17/2024] [Indexed: 09/13/2024]
Abstract
The sedative and hypnotic properties of 5,7,3',4',5'-pentamethoxyflavone (PMF), a monomer extracted from the leaves of Murraya paniculata (L.) Jack, have been reported. However, the role of PMFs in the development of anxiety remains uncertain. An anxiety model was developed using chronic unpredictable mild stimulation (CUMS). Kunming mice were randomly allocated to the following groups: control, CUMS, PMF (50 mg/kg), PMF (100 mg/kg), and diazepam (3 mg/kg). The anxiolytic effects of PMFs were evaluated using elevated plus maze (EPM) test and open field test (OFT). Enzyme-linked immunosorbent assay (ELISA) kits were used to analyze the serum levels of corticosterone (CORT), 5-hydroxytryptamine (5-HT), gamma-aminobutyric acid (GABA), and cyclic adenosine monophosphate (cAMP) in the hippocampus. High-throughput-16S rRNA sequencing was performed to investigate its effect on the composition of the gut microbiota. Subsequently, western blotting was performed to assess the expression of GABAergic synaptic-associated proteins. PMF effectively mitigated CUMS-induced anxiety-like behavior. Further examination revealed that PMF treatment ameliorated dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis and increased 5-HT and GABA levels in the hippocampus. Notably, the ability of PMF to maintain the stability of GABAergic synapses by enhancing the species composition of the gut microbiota and acting on the adenosine a2a receptor (A2AR)/gephyrin/gamma-aminobutyric acid A receptor alpha 2 (GABRA2) pathway revealed a previously unrecognized mechanism for the anxiolytic effect of PMF. These findings suggest that PMF enhances the expression of A2AR, preserves GABAergic synaptic stability, and reduces anxiety by modulating the microbiota composition. Thus, it holds promise as an anxiolytic agent.
Collapse
Affiliation(s)
- Wenli Ma
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Dayun Sui
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Weilun Sun
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Ping Yu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Yuangeng Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Meiqi Guo
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Huifeng Wang
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Xiaoze Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Xiaofeng Yu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Wenwen Fu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Huali Xu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
2
|
Weiss GL, Harrison LM, Jiang Z, Nielsen AM, Feygin MS, Nguyen S, Tirrell PS, Tasker J. Glucocorticoids desensitize hypothalamic CRH neurons to norepinephrine and somatic stress activation via rapid nitrosylation-dependent regulation of α1 adrenoreceptor trafficking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605704. [PMID: 39211088 PMCID: PMC11360941 DOI: 10.1101/2024.07.29.605704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Noradrenergic afferents to hypothalamic corticotropin releasing hormone (CRH) neurons provide a major excitatory drive for somatic stress activation of the hypothalamic-pituitary-adrenal (HPA) axis. We showed that glucocorticoids rapidly desensitize CRH neurons to norepinephrine and suppress inflammation-induced HPA activation via a glucocorticoid receptor- and endocytosis-dependent mechanism. Here, we show that α1 adrenoreceptor (ARα1) trafficking is regulated by convergent glucocorticoid and nitric oxide synthase signaling mechanisms. Live-cell imaging of ARα1b-eGFP-expressing hypothalamic cells revealed rapid corticosterone-stimulated redistribution of internalized ARα1 from rapid recycling endosomes to late endosomes and lysosomes via a nitrosylation-regulated mechanism. Proximity assay demonstrated interaction of glucocorticoid receptors with ARα1b and β-arrestin, and showed corticosterone blockade of norepinephrine-stimulated ARα1b/β-arrestin interaction, which may prevent ARα1b from entering the rapid recycling endosomal pathway. These findings demonstrate a rapid glucocorticoid regulation of G protein-coupled receptor trafficking and provide a molecular mechanism for rapid glucocorticoid desensitization of noradrenergic signaling in CRH neurons.
Collapse
|
3
|
Laule C, Sayar-Atasoy N, Aklan I, Kim H, Ates T, Davis D, Atasoy D. Stress integration by an ascending adrenergic-melanocortin circuit. Neuropsychopharmacology 2024; 49:1361-1372. [PMID: 38326456 PMCID: PMC11251172 DOI: 10.1038/s41386-024-01810-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/09/2024]
Abstract
Stress is thought to be an important contributing factor for eating disorders; however, neural substrates underlying the complex relationship between stress and appetite are not fully understood. Using in vivo recordings from awake behaving mice, we show that various acute stressors activate catecholaminergic nucleus tractus solitarius (NTSTH) projections in the paraventricular hypothalamus (PVH). Remarkably, the resulting adrenergic tone inhibits MC4R-expressing neurons (PVHMC4R), which are known for their role in feeding suppression. We found that PVHMC4R silencing encodes negative valence in sated mice and is required for avoidance induced by visceral malaise. Collectively, these findings establish PVHMC4R neurons as an effector of stress-activated brainstem adrenergic input in addition to the well-established hypothalamic-pituitary-adrenal axis. Convergent modulation of stress and feeding by PVHMC4R neurons implicates NTSTH → PVHMC4R input in stress-associated appetite disorders.
Collapse
Affiliation(s)
- Connor Laule
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Nilufer Sayar-Atasoy
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Iltan Aklan
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Hyojin Kim
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Tayfun Ates
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Debbie Davis
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Deniz Atasoy
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Iowa Neuroscience Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Fraternal Order of Eagles Diabetes Research Center (FOEDRC), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
4
|
Zheng JY, Zhu J, Wang Y, Tian ZZ. Effects of acupuncture on hypothalamic-pituitary-adrenal axis: Current status and future perspectives. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:445-458. [PMID: 38955651 DOI: 10.1016/j.joim.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/08/2024] [Indexed: 07/04/2024]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis is a critical component of the neuroendocrine system, playing a central role in regulating the body's stress response and modulating various physiological processes. Dysregulation of HPA axis function disrupts the neuroendocrine equilibrium, resulting in impaired physiological functions. Acupuncture is recognized as a non-pharmacological type of therapy which has been confirmed to play an important role in modulating the HPA axis and thus favorably targets diseases with abnormal activation of the HPA axis. With numerous studies reporting the promising efficacy of acupuncture for neuroendocrine disorders, a comprehensive review in terms of the underlying molecular mechanism for acupuncture, especially in regulating the HPA axis, is currently in need. This review fills the need and summarizes recent breakthroughs, from the basic principles and the pathological changes of HPA axis dysfunction, to the molecular mechanisms by which acupuncture regulates the HPA axis. These mechanisms include the modulation of multiple neurotransmitters and their receptors, neuropeptides and their receptors, and microRNAs in the paraventricular nucleus, hippocampus, amygdala and pituitary gland, which alleviate the hyperfunctioning of the HPA axis. This review comprehensively summarizes the mechanism of acupuncture in regulating HPA axis dysfunction for the first time, providing new targets and prospects for further exploration of acupuncture. Please cite this article as: Zheng JY, Zhu J, Wang Y, Tian ZZ. Effects of acupuncture on hypothalamic-pituitary-adrenal axis: Current status and future perspectives. J Integr Med. 2024; 22(4): 446-459.
Collapse
Affiliation(s)
- Jia-Yuan Zheng
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Institute of Acupuncture Research, Academy of Integrative Medicine, Shanghai Key Laboratory for Acupuncture Mechanism and Acupoint Function, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jing Zhu
- Department of Human Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Institute of Acupuncture Research, Academy of Integrative Medicine, Shanghai Key Laboratory for Acupuncture Mechanism and Acupoint Function, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhan-Zhuang Tian
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Institute of Acupuncture Research, Academy of Integrative Medicine, Shanghai Key Laboratory for Acupuncture Mechanism and Acupoint Function, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
5
|
Zhu M, Jun S, Nie X, Chen J, Hao Y, Yu H, Zhang X, Sun L, Liu Y, Yuan X, Yuan F, Wang S. Mapping of afferent and efferent connections of phenylethanolamine N-methyltransferase-expressing neurons in the nucleus tractus solitarii. CNS Neurosci Ther 2024; 30:e14808. [PMID: 38887205 PMCID: PMC11183208 DOI: 10.1111/cns.14808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/18/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
OBJECTIVE Phenylethanolamine N-methyltransferase (PNMT)-expressing neurons in the nucleus tractus solitarii (NTS) contribute to the regulation of autonomic functions. However, the neural circuits linking these neurons to other brain regions remain unclear. This study aims to investigate the connectivity mechanisms of the PNMT-expressing neurons in the NTS (NTSPNMT neurons). METHODS The methodologies employed in this study included a modified rabies virus-based retrograde neural tracing technique, conventional viral anterograde tracing, and immunohistochemical staining procedures. RESULTS A total of 43 upstream nuclei projecting to NTSPNMT neurons were identified, spanning several key brain regions including the medulla oblongata, pons, midbrain, cerebellum, diencephalon, and telencephalon. Notably, dense projections to the NTSPNMT neurons were observed from the central amygdaloid nucleus, paraventricular nucleus of the hypothalamus, area postrema, and the gigantocellular reticular nucleus. In contrast, the ventrolateral medulla, lateral parabrachial nucleus, and lateral hypothalamic area were identified as the primary destinations for axon terminals originating from NTSPNMT neurons. Additionally, reciprocal projections were evident among 21 nuclei, primarily situated within the medulla oblongata. CONCLUSION Our research findings demonstrate that NTSPNMT neurons form extensive connections with numerous nuclei, emphasizing their essential role in the homeostatic regulation of vital autonomic functions.
Collapse
Affiliation(s)
- Mengchu Zhu
- Department of NeurobiologyHebei Medical UniversityShijiazhuangHebeiChina
- Department of Laboratory DiagnosticsHebei Medical UniversityShijiazhuangHebeiChina
| | - Shirui Jun
- Department of NeurobiologyHebei Medical UniversityShijiazhuangHebeiChina
| | - Xiaojun Nie
- Department of NeurobiologyHebei Medical UniversityShijiazhuangHebeiChina
| | - Jinting Chen
- Department of NeurobiologyHebei Medical UniversityShijiazhuangHebeiChina
| | - Yinchao Hao
- Department of NeurobiologyHebei Medical UniversityShijiazhuangHebeiChina
| | - Hongxiao Yu
- Department of NeurobiologyHebei Medical UniversityShijiazhuangHebeiChina
| | - Xiang Zhang
- Department of NeurobiologyHebei Medical UniversityShijiazhuangHebeiChina
| | - Lu Sun
- Department of NeurobiologyHebei Medical UniversityShijiazhuangHebeiChina
| | - Yuelin Liu
- Department of NeurobiologyHebei Medical UniversityShijiazhuangHebeiChina
| | - Xiangshan Yuan
- Department of Anatomy and Histoembryology, School of Basic Medical SciencesFudan UniversityShanghaiChina
- Department of NeurologyJinshan Hospital Affiliated to Fudan UniversityShanghaiChina
| | - Fang Yuan
- Department of NeurobiologyHebei Medical UniversityShijiazhuangHebeiChina
- Hebei Key Laboratory of NeurophysiologyShijiazhuangHebei ProvinceChina
| | - Sheng Wang
- Department of NeurobiologyHebei Medical UniversityShijiazhuangHebeiChina
- Hebei Key Laboratory of NeurophysiologyShijiazhuangHebei ProvinceChina
| |
Collapse
|
6
|
Yamaguchi J, Andrade MA, Truong TT, Toney GM. Glutamate Spillover Dynamically Strengthens Gabaergic Synaptic Inhibition of the Hypothalamic Paraventricular Nucleus. J Neurosci 2024; 44:e1851222023. [PMID: 38154957 PMCID: PMC10869154 DOI: 10.1523/jneurosci.1851-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023] Open
Abstract
The hypothalamic paraventricular nucleus (PVN) is strongly inhibited by γ-aminobutyric acid (GABA) from the surrounding peri-nuclear zone (PNZ). Because glutamate mediates fast excitatory transmission and is substrate for GABA synthesis, we tested its capacity to dynamically strengthen GABA inhibition. In PVN slices from male mice, bath glutamate applied during ionotropic glutamate receptor blockade increased PNZ-evoked inhibitory postsynaptic currents (eIPSCs) without affecting GABA-A receptor agonist currents or single-channel conductance, implicating a presynaptic mechanism(s). Consistent with this interpretation, bath glutamate failed to strengthen IPSCs during pharmacological saturation of GABA-A receptors. Presynaptic analyses revealed that glutamate did not affect paired-pulse ratio, peak eIPSC variability, GABA vesicle recycling speed, or readily releasable pool (RRP) size. Notably, glutamate-GABA strengthening (GGS) was unaffected by metabotropic glutamate receptor blockade and graded external Ca2+ when normalized to baseline amplitude. GGS was prevented by pan- but not glial-specific inhibition of glutamate uptake and by inhibition of glutamic acid decarboxylase (GAD), indicating reliance on glutamate uptake by neuronal excitatory amino acid transporter 3 (EAAT3) and enzymatic conversion of glutamate to GABA. EAAT3 immunoreactivity was strongly localized to presumptive PVN GABA terminals. High bath K+ also induced GGS, which was prevented by glutamate vesicle depletion, indicating that synaptic glutamate release strengthens PVN GABA inhibition. GGS suppressed PVN cell firing, indicating its functional significance. In sum, PVN GGS buffers neuronal excitation by apparent "over-filling" of vesicles with GABA synthesized from synaptically released glutamate. We posit that GGS protects against sustained PVN excitation and excitotoxicity while potentially aiding stress adaptation and habituation.
Collapse
Affiliation(s)
- Junya Yamaguchi
- Department of Cellular & Integrative Physiology, University of Texas Health San Antonio, San Antonio 78229-3900, Texas
| | - Mary Ann Andrade
- Department of Cellular & Integrative Physiology, University of Texas Health San Antonio, San Antonio 78229-3900, Texas
| | - Tamara T Truong
- Department of Cellular & Integrative Physiology, University of Texas Health San Antonio, San Antonio 78229-3900, Texas
| | - Glenn M Toney
- Department of Cellular & Integrative Physiology, University of Texas Health San Antonio, San Antonio 78229-3900, Texas
- Center for Biomedical Neuroscience, University of Texas Health San Antonio, San Antonio 78229-3900, Texas
| |
Collapse
|
7
|
dos-Santos RC, Sweeten BLW, Stelly CE, Tasker JG. The Neuroendocrine Impact of Acute Stress on Synaptic Plasticity. Endocrinology 2023; 164:bqad149. [PMID: 37788632 PMCID: PMC11046011 DOI: 10.1210/endocr/bqad149] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023]
Abstract
Stress induces changes in nervous system function on different signaling levels, from molecular signaling to synaptic transmission to neural circuits to behavior-and on different time scales, from rapid onset and transient to delayed and long-lasting. The principal effectors of stress plasticity are glucocorticoids, steroid hormones that act with a broad range of signaling competency due to the expression of multiple nuclear and membrane receptor subtypes in virtually every tissue of the organism. Glucocorticoid and mineralocorticoid receptors are localized to each of the cellular compartments of the receptor-expressing cells-the membrane, cytosol, and nucleus. In this review, we cover the neuroendocrine effects of stress, focusing mainly on the rapid actions of acute stress-induced glucocorticoids that effect changes in synaptic transmission and neuronal excitability by modulating synaptic and intrinsic neuronal properties via activation of presumed membrane glucocorticoid and mineralocorticoid receptors. We describe the synaptic plasticity that occurs in 4 stress-associated brain structures, the hypothalamus, hippocampus, amygdala, and prefrontal cortex, in response to single or short-term stress exposure. The rapid transformative impact of glucocorticoids makes this stress signal a particularly potent effector of acute neuronal plasticity.
Collapse
Affiliation(s)
- Raoni Conceição dos-Santos
- Department of Cell and Molecular Biology and Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Brook L W Sweeten
- Department of Cell and Molecular Biology and Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Claire E Stelly
- Department of Cell and Molecular Biology and Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Jeffrey G Tasker
- Department of Cell and Molecular Biology and Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
8
|
Douglass AM, Resch JM, Madara JC, Kucukdereli H, Yizhar O, Grama A, Yamagata M, Yang Z, Lowell BB. Neural basis for fasting activation of the hypothalamic-pituitary-adrenal axis. Nature 2023; 620:154-162. [PMID: 37495689 PMCID: PMC11168300 DOI: 10.1038/s41586-023-06358-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 06/21/2023] [Indexed: 07/28/2023]
Abstract
Fasting initiates a multitude of adaptations to allow survival. Activation of the hypothalamic-pituitary-adrenal (HPA) axis and subsequent release of glucocorticoid hormones is a key response that mobilizes fuel stores to meet energy demands1-5. Despite the importance of the HPA axis response, the neural mechanisms that drive its activation during energy deficit are unknown. Here, we show that fasting-activated hypothalamic agouti-related peptide (AgRP)-expressing neurons trigger and are essential for fasting-induced HPA axis activation. AgRP neurons do so through projections to the paraventricular hypothalamus (PVH), where, in a mechanism not previously described for AgRP neurons, they presynaptically inhibit the terminals of tonically active GABAergic afferents from the bed nucleus of the stria terminalis (BNST) that otherwise restrain activity of corticotrophin-releasing hormone (CRH)-expressing neurons. This disinhibition of PVHCrh neurons requires γ-aminobutyric acid (GABA)/GABA-B receptor signalling and potently activates the HPA axis. Notably, stimulation of the HPA axis by AgRP neurons is independent of their induction of hunger, showing that these canonical 'hunger neurons' drive many distinctly different adaptations to the fasted state. Together, our findings identify the neural basis for fasting-induced HPA axis activation and uncover a unique means by which AgRP neurons activate downstream neurons: through presynaptic inhibition of GABAergic afferents. Given the potency of this disinhibition of tonically active BNST afferents, other activators of the HPA axis, such as psychological stress, may also work by reducing BNST inhibitory tone onto PVHCrh neurons.
Collapse
Affiliation(s)
- Amelia M Douglass
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jon M Resch
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Joseph C Madara
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hakan Kucukdereli
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ofer Yizhar
- Departments of Brain Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Abhinav Grama
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Masahito Yamagata
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Zongfang Yang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Bradford B Lowell
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Munier J, Shen S, Rahal D, Hanna A, Marty V, O'Neill P, Fanselow M, Spigelman I. Chronic intermittent ethanol exposure disrupts stress-related tripartite communication to impact affect-related behavioral selection in male rats. Neurobiol Stress 2023; 24:100539. [PMID: 37131490 PMCID: PMC10149313 DOI: 10.1016/j.ynstr.2023.100539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/12/2023] [Accepted: 04/16/2023] [Indexed: 05/04/2023] Open
Abstract
Alcohol use disorder (AUD) is characterized by loss of intake control, increased anxiety, and susceptibility to relapse inducing stressors. Both astrocytes and neurons contribute to behavioral and hormonal consequences of chronic intermittent ethanol (CIE) exposure in animal models. Details on how CIE disrupts hypothalamic neuro-glial communication, which mediates stress responses are lacking. We conducted a behavioral battery (grooming, open field, reactivity to a single, uncued foot-shock, intermittent-access two-bottle choice ethanol drinking) followed by Ca2+ imaging in ex-vivo slices of paraventricular nucleus of the hypothalamus (PVN) from male rats exposed to CIE vapor or air-exposed controls. Ca2+ signals were evaluated in response to norepinephrine (NE) with or without selective α-adrenergic receptor (αAR) or GluN2B-containing N-methyl-D-aspartate receptor (NMDAR) antagonists, followed by dexamethasone (DEX) to mock a pharmacological stress response. Expectedly, CIE rats had altered anxiety-like, rearing, grooming, and drinking behaviors. Importantly, NE-mediated reductions in Ca2+ event frequency were blunted in both CIE neurons and astrocytes. Administration of the selective α1AR antagonist, prazosin, reversed this CIE-induced dysfunction in both cell types. Additionally, the pharmacological stress protocol reversed the altered basal Ca2+ signaling profile of CIE astrocytes. Signaling changes in astrocytes in response to NE were correlated with anxiety-like behaviors, such as the grooming:rearing ratio, suggesting tripartite synaptic function plays a role in switching between exploratory and stress-coping behavior. These data show how CIE exposure causes persistent changes to PVN neuro-glial function and provides the groundwork for how these physiological changes manifest in behavioral selection.
Collapse
Affiliation(s)
- J.J. Munier
- Laboratory of Neuropharmacology, Section of Biosystems & Function, School of Dentistry, UCLA, United States
- Corresponding author.
| | - S. Shen
- Laboratory of Neuropharmacology, Section of Biosystems & Function, School of Dentistry, UCLA, United States
| | - D. Rahal
- Edna Bennett Pierce Prevention Research Center, The Pennsylvania State University, United States
| | - A. Hanna
- Laboratory of Neuropharmacology, Section of Biosystems & Function, School of Dentistry, UCLA, United States
| | - V.N. Marty
- Laboratory of Neuropharmacology, Section of Biosystems & Function, School of Dentistry, UCLA, United States
| | - P.R. O'Neill
- Hatos Center for Neuropharmacology, Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, UCLA, United States
| | - M.S. Fanselow
- Department of Psychology, College of Life Sciences, Department of Psychiatry & Biobehavioral Science, David Geffen School of Medicine, UCLA, United States
| | - I. Spigelman
- Laboratory of Neuropharmacology, Section of Biosystems & Function, School of Dentistry, UCLA, United States
- Corresponding author. Laboratory of Neuropharmacology, Section of Biosystems & Function, School of Dentistry, UCLA, 10833 Le Conte Avenue, 63-078 CHS, Los Angeles, CA, 90095-1668, United States.
| |
Collapse
|
10
|
Rastegarmanesh A, Rostami B, Nasimi A, Hatam M. In the parvocellular part of paraventricular nucleus, glutamatergic and GABAergic neurons mediate cardiovascular responses to AngII. Synapse 2023; 77:e22259. [PMID: 36271777 DOI: 10.1002/syn.22259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 09/03/2022] [Accepted: 09/18/2022] [Indexed: 01/29/2023]
Abstract
Angiotensinergic, GABAergic, and glutamatergic neurons are present in the parvocellular region of the paraventricular nucleus (PVNp). It has been shown that microinjection of AngII into the PVNp increases arterial pressure (AP) and heart rate (HR). The presence of synapses between the angiotensinergic, GABAergic, and glutamatergic neurons has been shown in the PVNp. In this study, we investigated the possible interaction between these three systems of the PVNp for control of AP and HR. All drugs were bilaterally (100 nl/side) microinjected into the PVNp of urethane-anesthetized rats, and AP and HR were recorded continuously. Microinjection of AngII into the PVNp produced pressor and tachycardia responses. Pretreatment of PVNp with AP5 or CNQX, glutamatergic NMDA and AMPA receptors antagonists, attenuated the responses to AngII. Pretreatment of PVNp with bicuculline greatly attenuated the pressor and tachycardia responses to AngII. In conclusion, this study provides the first evidence that pressor and tachycardia responses to microinjection of AngII into the PVNp are partly mediated by both NMDA and non-NMDA receptors of glutamate. Activation of glutamatergic neurons by AngII stimulates the sympathoexcitatory neurons. We also showed that the responses to AngII were strongly mediated by GABAA receptors, probably through activation of GABAergic neurons, which in turn inhibit sympathoinhibitory neurons.
Collapse
Affiliation(s)
- Ali Rastegarmanesh
- Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahar Rostami
- Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran.,Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Nasimi
- Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoumeh Hatam
- Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Jiang Z, Chen C, Weiss GL, Fu X, Stelly CE, Sweeten BLW, Tirrell PS, Pursell I, Stevens CR, Fisher MO, Begley JC, Harrison LM, Tasker JG. Stress-induced glucocorticoid desensitizes adrenoreceptors to gate the neuroendocrine response to somatic stress in male mice. Cell Rep 2022; 41:111509. [PMID: 36261014 PMCID: PMC9635929 DOI: 10.1016/j.celrep.2022.111509] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/05/2022] [Accepted: 09/23/2022] [Indexed: 11/29/2022] Open
Abstract
Noradrenergic afferents to hypothalamic corticotropin releasing hormone (CRH) neurons provide a major excitatory drive to the hypothalamic-pituitary-adrenal (HPA) axis via α1 adrenoreceptor activation. Noradrenergic afferents are recruited preferentially by somatic, rather than psychological, stress stimuli. Stress-induced glucocorticoids feed back onto the hypothalamus to negatively regulate the HPA axis, providing a critical autoregulatory constraint that prevents glucocorticoid overexposure and neuropathology. Whether negative feedback mechanisms target stress modality-specific HPA activation is not known. Here, we describe a desensitization of the α1 adrenoreceptor activation of the HPA axis following acute stress in male mice that is mediated by rapid glucocorticoid regulation of adrenoreceptor trafficking in CRH neurons. Glucocorticoid-induced α1 receptor trafficking desensitizes the HPA axis to a somatic but not a psychological stressor. Our findings demonstrate a rapid glucocorticoid suppression of adrenergic signaling in CRH neurons that is specific to somatic stress activation, and they reveal a rapid, stress modality-selective glucocorticoid negative feedback mechanism.
Collapse
Affiliation(s)
- Zhiying Jiang
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA 70118, USA
| | - Chun Chen
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA 70118, USA
| | - Grant L Weiss
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA 70118, USA
| | - Xin Fu
- Neuroscience Program, Tulane University, New Orleans, LA 70118, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Claire E Stelly
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA 70118, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Brook L W Sweeten
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA 70118, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Parker S Tirrell
- Neuroscience Program, Tulane University, New Orleans, LA 70118, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - India Pursell
- Neuroscience Program, Tulane University, New Orleans, LA 70118, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Carly R Stevens
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA 70118, USA
| | - Marc O Fisher
- Neuroscience Program, Tulane University, New Orleans, LA 70118, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - John C Begley
- Neuroscience Program, Tulane University, New Orleans, LA 70118, USA
| | - Laura M Harrison
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA 70118, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Jeffrey G Tasker
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA 70118, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA.
| |
Collapse
|
12
|
Cayupe B, Troncoso B, Morgan C, Sáez-Briones P, Sotomayor-Zárate R, Constandil L, Hernández A, Morselli E, Barra R. The Role of the Paraventricular-Coerulear Network on the Programming of Hypertension by Prenatal Undernutrition. Int J Mol Sci 2022; 23:ijms231911965. [PMID: 36233268 PMCID: PMC9569920 DOI: 10.3390/ijms231911965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
A crucial etiological component in fetal programming is early nutrition. Indeed, early undernutrition may cause a chronic increase in blood pressure and cardiovascular diseases, including stroke and heart failure. In this regard, current evidence has sustained several pathological mechanisms involving changes in central and peripheral targets. In the present review, we summarize the neuroendocrine and neuroplastic modifications that underlie maladaptive mechanisms related to chronic hypertension programming after early undernutrition. First, we analyzed the role of glucocorticoids on the mechanism of long-term programming of hypertension. Secondly, we discussed the pathological plastic changes at the paraventricular nucleus of the hypothalamus that contribute to the development of chronic hypertension in animal models of prenatal undernutrition, dissecting the neural network that reciprocally communicates this nucleus with the locus coeruleus. Finally, we propose an integrated and updated view of the main neuroendocrine and central circuital alterations that support the occurrence of chronic increases of blood pressure in prenatally undernourished animals.
Collapse
Affiliation(s)
- Bernardita Cayupe
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago 9170020, Chile
| | - Blanca Troncoso
- Escuela de Enfermería, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago 9170020, Chile
| | - Carlos Morgan
- Laboratorio de Neurofarmacología y Comportamiento, Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago 9170020, Chile
| | - Patricio Sáez-Briones
- Laboratorio de Neurofarmacología y Comportamiento, Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago 9170020, Chile
| | - Ramón Sotomayor-Zárate
- Laboratorio de Neuroquímica y Neurofarmacología, Centro de Neurobiología y Fisiopatología Integrativa, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Luis Constandil
- Laboratorio de Neurobiología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170020, Chile
| | - Alejandro Hernández
- Laboratorio de Neurobiología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170020, Chile
| | - Eugenia Morselli
- Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago 7510157, Chile
| | - Rafael Barra
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago 9170020, Chile
- Correspondence: ; Tel.: +56-983831083
| |
Collapse
|
13
|
Gouws JM, Sherrington A, Zheng S, Kim JS, Iremonger KJ. Regulation of corticotropin-releasing hormone neuronal network activity by noradrenergic stress signals. J Physiol 2022; 600:4347-4359. [PMID: 36040213 PMCID: PMC9825848 DOI: 10.1113/jp283328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/26/2022] [Indexed: 01/11/2023] Open
Abstract
Noradrenaline is a neurotransmitter released in response to homeostatic challenge and activates the hypothalamic-pituitary-adrenal axis via stimulation of corticotropin-releasing hormone (CRH) neurons. Here we investigated the mechanism through which noradrenaline regulates activity within the CRH neuronal network. Using a combination of in vitro GCaMP6f Ca2+ imaging and electrophysiology, we show that noradrenaline induces a robust increase in excitability in a proportion of CRH neurons with many neurons displaying a bursting mode of activity. Noradrenaline-induced activation required α1 -adrenoceptors and L-type voltage-gated Ca2+ channels, but not GABA/glutamate synaptic transmission or sodium action potentials. Exposure of mice to elevated corticosterone levels was able to suppress noradrenaline-induced activation. These results provide further insight into the mechanisms by which noradrenaline regulates CRH neural network activity and hence stress responses. KEY POINTS: GCaMP6f Ca2+ imaging and on-cell patch-clamp recordings reveal that corticotropin-releasing hormone neurons are activated by noradrenaline with many neurons displaying a bursting mode of activity. Noradrenaline-induced activation requires α1 -adrenoceptors. Noradrenaline-induced Ca2+ elevations persist after blocking GABAA , AMPA, NMDA receptors and voltage-gated Na+ channels. Noradrenaline-induced Ca2+ elevations require L-type voltage-gated Ca2+ channels. Corticosterone suppresses noradrenaline-induced excitation.
Collapse
Affiliation(s)
- Julia M. Gouws
- Centre for Neuroendocrinology, Department of Physiology, School of Biomedical SciencesUniversity of OtagoDunedinOtagoNew Zealand
| | - Aidan Sherrington
- Centre for Neuroendocrinology, Department of Physiology, School of Biomedical SciencesUniversity of OtagoDunedinOtagoNew Zealand
| | - Shaojie Zheng
- Centre for Neuroendocrinology, Department of Physiology, School of Biomedical SciencesUniversity of OtagoDunedinOtagoNew Zealand
| | - Joon S. Kim
- Centre for Neuroendocrinology, Department of Physiology, School of Biomedical SciencesUniversity of OtagoDunedinOtagoNew Zealand
| | - Karl J. Iremonger
- Centre for Neuroendocrinology, Department of Physiology, School of Biomedical SciencesUniversity of OtagoDunedinOtagoNew Zealand
| |
Collapse
|
14
|
Ichiyama A, Mestern S, Benigno GB, Scott KE, Allman BL, Muller L, Inoue W. State-dependent activity dynamics of hypothalamic stress effector neurons. eLife 2022; 11:76832. [PMID: 35770968 PMCID: PMC9278954 DOI: 10.7554/elife.76832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/17/2022] [Indexed: 11/30/2022] Open
Abstract
The stress response necessitates an immediate boost in vital physiological functions from their homeostatic operation to an elevated emergency response. However, the neural mechanisms underlying this state-dependent change remain largely unknown. Using a combination of in vivo and ex vivo electrophysiology with computational modeling, we report that corticotropin releasing hormone (CRH) neurons in the paraventricular nucleus of the hypothalamus (PVN), the effector neurons of hormonal stress response, rapidly transition between distinct activity states through recurrent inhibition. Specifically, in vivo optrode recording shows that under non-stress conditions, CRHPVN neurons often fire with rhythmic brief bursts (RB), which, somewhat counterintuitively, constrains firing rate due to long (~2 s) interburst intervals. Stressful stimuli rapidly switch RB to continuous single spiking (SS), permitting a large increase in firing rate. A spiking network model shows that recurrent inhibition can control this activity-state switch, and more broadly the gain of spiking responses to excitatory inputs. In biological CRHPVN neurons ex vivo, the injection of whole-cell currents derived from our computational model recreates the in vivo-like switch between RB and SS, providing direct evidence that physiologically relevant network inputs enable state-dependent computation in single neurons. Together, we present a novel mechanism for state-dependent activity dynamics in CRHPVN neurons.
Collapse
|
15
|
Hypertension in Prenatally Undernourished Young-Adult Rats Is Maintained by Tonic Reciprocal Paraventricular-Coerulear Excitatory Interactions. Molecules 2021; 26:molecules26123568. [PMID: 34207980 PMCID: PMC8230629 DOI: 10.3390/molecules26123568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/19/2021] [Accepted: 05/31/2021] [Indexed: 11/17/2022] Open
Abstract
Prenatally malnourished rats develop hypertension in adulthood, in part through increased α1-adrenoceptor-mediated outflow from the paraventricular nucleus (PVN) to the sympathetic system. We studied whether both α1-adrenoceptor-mediated noradrenergic excitatory pathways from the locus coeruleus (LC) to the PVN and their reciprocal excitatory CRFergic connections contribute to prenatal undernutrition-induced hypertension. For that purpose, we microinjected either α1-adrenoceptor or CRH receptor agonists and/or antagonists in the PVN or the LC, respectively. We also determined the α1-adrenoceptor density in whole hypothalamus and the expression levels of α1A-adrenoceptor mRNA in the PVN. The results showed that: (i) agonists microinjection increased systolic blood pressure and heart rate in normotensive eutrophic rats, but not in prenatally malnourished subjects; (ii) antagonists microinjection reduced hypertension and tachycardia in undernourished rats, but not in eutrophic controls; (iii) in undernourished animals, antagonist administration to one nuclei allowed the agonists recover full efficacy in the complementary nucleus, inducing hypertension and tachycardia; (iv) early undernutrition did not modify the number of α1-adrenoceptor binding sites in hypothalamus, but reduced the number of cells expressing α1A-adrenoceptor mRNA in the PVN. These results support the hypothesis that systolic pressure and heart rate are increased by tonic reciprocal paraventricular-coerulear excitatory interactions in prenatally undernourished young-adult rats.
Collapse
|
16
|
Arikawe AP, Rorato RC, Gomes N, Elias LL, Anselmo-Franci J. Hormonal and neural responses to restraint stress in an animal model of perimenopause in female rats. J Neuroendocrinol 2021; 33:e12976. [PMID: 33900672 DOI: 10.1111/jne.12976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/23/2021] [Accepted: 03/28/2021] [Indexed: 01/21/2023]
Abstract
The present study investigated the hormonal and neural responses to stress in a perimenopause animal model induced by 4-vinylcyclohexene diepoxide (VCD), which induces progressive follicular depletion in rodents, allowing studies on the transition to ovarian failure. Female rats, aged 28 days old, were s.c. injected for 15 consecutive days with corn oil or VCD. At 85 ± 5 days after the onset of treatment, the jugular vein was cannulated in the afternoon of metoestrus and in next morning (dioestrus) at 10.00 am, rats were subjected to 30 minutes of restraint stress. Blood samples were withdrawn before (-5 minutes), during (2, 5, 15 and 30 minutes) and after (45, 60 and 90 minutes) stress and plasma prolactin, progesterone and corticosterone levels were measured. Animals were perfused, brains processed for c-Fos/tyrosine hydroxylase (TH) in the locus coeruleus (LC) and c-Fos/corticotrophin-releasing factor (CRF) in the paraventricular nucleus (PVN). In unstressed rats the density of β-endorphin fibres was assessed in LC and PVN. In VCD-treated rats, stress-induced prolactin peak was higher, basal and peak progesterone levels were lower, and both levels of corticosterone were similar to controls. However, the recovery period was longer for both adrenal hormones. In VCD-treated rats the number of c-Fos/TH and c-Fos/CRF-immunoreactive neurones was higher whereas the density of β-endorphin fibres was lower in LC and PVN. We surmise that the hyperactivity of the LC and PVN neurones in VCD-treated rats may be a result of the lower progesterone levels that resulted in the decrease of β-endorphin content in both nuclei, thus impairing the negative-feedback mechanism in the recovery period.
Collapse
Affiliation(s)
- Adesina Paul Arikawe
- Laboratory of Neuroendocrinology, Department of Basic and Oral Biology Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Rodrigo César Rorato
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
- Departmento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Nathali Gomes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Lucila Leico Elias
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Janete Anselmo-Franci
- Laboratory of Neuroendocrinology, Department of Basic and Oral Biology Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
Iovino M, Messana T, Tortora A, Giusti C, Lisco G, Giagulli VA, Guastamacchia E, De Pergola G, Triggiani V. Oxytocin Signaling Pathway: From Cell Biology to Clinical Implications. Endocr Metab Immune Disord Drug Targets 2021; 21:91-110. [PMID: 32433011 DOI: 10.2174/1871530320666200520093730] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/04/2020] [Accepted: 04/16/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND In addition to the well-known role played in lactation and parturition, Oxytocin (OT) and OT receptor (OTR) are involved in many other aspects such as the control of maternal and social behavior, the regulation of the growth of the neocortex, the maintenance of blood supply to the cortex, the stimulation of limbic olfactory area to mother-infant recognition bond, and the modulation of the autonomic nervous system via the vagal pathway. Moreover, OT and OTR show antiinflammatory, anti-oxidant, anti-pain, anti-diabetic, anti-dyslipidemic and anti-atherogenic effects. OBJECTIVE The aim of this narrative review is to summarize the main data coming from the literature dealing with the role of OT and OTR in physiology and pathologic conditions focusing on the most relevant aspects. METHODS Appropriate keywords and MeSH terms were identified and searched in Pubmed. Finally, references of original articles and reviews were examined. RESULTS We report the most significant and updated data on the role played by OT and OTR in physiology and different clinical contexts. CONCLUSION Emerging evidence indicates the involvement of OT system in several pathophysiological mechanisms influencing brain anatomy, cognition, language, sense of safety and trust and maternal behavior, with the possible use of exogenous administered OT in the treatment of specific neuropsychiatric conditions. Furthermore, it modulates pancreatic β-cell responsiveness and lipid metabolism leading to possible therapeutic use in diabetic and dyslipidemic patients and for limiting and even reversing atherosclerotic lesions.
Collapse
Affiliation(s)
- Michele Iovino
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Tullio Messana
- Infantile Neuropsychiatry, IRCCS - Institute of Neurological Sciences, Bologna, Italy
| | - Anna Tortora
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Consuelo Giusti
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Giuseppe Lisco
- Hospital Unit of Endocrinology, Perrino Hospital, Brindisi, Italy
| | - Vito Angelo Giagulli
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Edoardo Guastamacchia
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Giovanni De Pergola
- Clinical Nutrition Unit, Medical Oncology, Department of Internal Medicine and Clinical Oncology, University of Bari, School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy
| |
Collapse
|
18
|
Sheng JA, Bales NJ, Myers SA, Bautista AI, Roueinfar M, Hale TM, Handa RJ. The Hypothalamic-Pituitary-Adrenal Axis: Development, Programming Actions of Hormones, and Maternal-Fetal Interactions. Front Behav Neurosci 2021; 14:601939. [PMID: 33519393 PMCID: PMC7838595 DOI: 10.3389/fnbeh.2020.601939] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022] Open
Abstract
The hypothalamic-pituitary-adrenal axis is a complex system of neuroendocrine pathways and feedback loops that function to maintain physiological homeostasis. Abnormal development of the hypothalamic-pituitary-adrenal (HPA) axis can further result in long-term alterations in neuropeptide and neurotransmitter synthesis in the central nervous system, as well as glucocorticoid hormone synthesis in the periphery. Together, these changes can potentially lead to a disruption in neuroendocrine, behavioral, autonomic, and metabolic functions in adulthood. In this review, we will discuss the regulation of the HPA axis and its development. We will also examine the maternal-fetal hypothalamic-pituitary-adrenal axis and disruption of the normal fetal environment which becomes a major risk factor for many neurodevelopmental pathologies in adulthood, such as major depressive disorder, anxiety, schizophrenia, and others.
Collapse
Affiliation(s)
- Julietta A. Sheng
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Natalie J. Bales
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Sage A. Myers
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Anna I. Bautista
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Mina Roueinfar
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Taben M. Hale
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Robert J. Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, United States
| |
Collapse
|
19
|
Chen C, Jiang Z, Fu X, Yu D, Huang H, Tasker JG. Astrocytes Amplify Neuronal Dendritic Volume Transmission Stimulated by Norepinephrine. Cell Rep 2020; 29:4349-4361.e4. [PMID: 31875545 PMCID: PMC7010232 DOI: 10.1016/j.celrep.2019.11.092] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/10/2019] [Accepted: 11/22/2019] [Indexed: 11/03/2022] Open
Abstract
In addition to their support role in neurotransmitter and ion buffering, astrocytes directly regulate neurotransmission at synapses via local bidirectional signaling with neurons. Here, we reveal a form of neuronal-astrocytic signaling that transmits retrograde dendritic signals to distal upstream neurons in order to activate recurrent synaptic circuits. Norepinephrine activates α1 adrenoreceptors in hypothalamic corticotropin-releasing hormone (CRH) neurons to stimulate dendritic release, which triggers an astrocytic calcium response and release of ATP; ATP stimulates action potentials in upstream glutamate and GABA neurons to activate recurrent excitatory and inhibitory synaptic circuits to the CRH neurons. Thus, norepinephrine activates a retrograde signaling mechanism in CRH neurons that engages astrocytes in order to extend dendritic volume transmission to reach distal presynaptic glutamate and GABA neurons, thereby amplifying volume transmission mediated by dendritic release.
Collapse
Affiliation(s)
- Chun Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - ZhiYing Jiang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Xin Fu
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Diankun Yu
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Hai Huang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Jeffrey G Tasker
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA.
| |
Collapse
|
20
|
Navarro I Batista K, Schraner M, Riediger T. Brainstem prolactin-releasing peptide contributes to cancer anorexia-cachexia syndrome in rats. Neuropharmacology 2020; 180:108289. [PMID: 32890590 DOI: 10.1016/j.neuropharm.2020.108289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/05/2020] [Accepted: 08/25/2020] [Indexed: 11/26/2022]
Abstract
Up to 80% of cancer patients are affected by the cancer anorexia-cachexia syndrome (CACS), which leads to excessive body weight loss, reduced treatment success and increased lethality. The area postrema/nucleus of the solitary tract (AP/NTS) region emerged as a central nervous key structure in this multi-factorial process. Neurons in this area are targeted by cytokines and signal to downstream sites involved in energy homeostasis. NTS neurons expressing prolactin-releasing peptide (PrRP) are implicated in the control of energy intake and hypothalamus-pituitary-adrenal (HPA) axis activation, which contributes to muscle wasting. To explore if brainstem PrRP neurons contribute to CACS, we selectively knocked down PrRP expression in the NTS of hepatoma tumor-bearing rats by an AAV/shRNA gene silencing approach. PrRP knockdown reduced body weight loss and anorexia compared to tumor-bearing controls treated with a non-silencing AAV. Gastrocnemius and total hind limb muscle weight was higher in PrPR knockdown rats. Corticosterone levels were increased in the early phase after tumor induction at day 6 in both groups but returned to baseline levels at day 21 in the PrRP knockdown group. While we did not detect significant changes in gene expression of markers for muscle protein metabolism (MuRF-1, myostatin, mTOR and REDD1), mTOR and REDD1 tended to be lower after disruption PrRP signalling. In conclusion, we identified brainstem PrRP as a possible neuropeptide mediator of CACS in hepatoma tumor-bearing rats. The central and peripheral downstream mechanisms require further investigation and might involve HPA axis activation.
Collapse
Affiliation(s)
| | - Marissa Schraner
- University of Zurich, Institute of Veterinary Physiology, Zurich, Switzerland
| | - Thomas Riediger
- University of Zurich, Institute of Veterinary Physiology, Zurich, Switzerland.
| |
Collapse
|
21
|
Tian B, Fu H, Liu B, Zhu J, Zheng X, Ge C. Effects of Amifostine Pre-treatment on MIRNA, LNCRNA, and MRNA Profiles in the Hypothalamus of Mice Exposed to 60Co Gamma Radiation. HEALTH PHYSICS 2020; 119:297-305. [PMID: 32384371 DOI: 10.1097/hp.0000000000001233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
There is increasing evidence that the expression of non-coding RNA and mRNA (messenger RNA) is significantly altered following high-dose ionizing radiation (IR), and their expression may play a critical role in cellular responses to IR. However, the role of non-coding RNA and mRNA in radiation protection, especially in the nervous system, remains unknown. In this study, microarray profiles were used to determine microRNA (miRNA), long non-coding RNA (lncRNA), and mRNA expression in the hypothalamus of mice that were pretreated with amifostine and subsequently exposed to high-dose IR. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed. We found that fewer miRNAs, lncRNAs, and mRNAs were induced by amifostine pre-treatment in exposed mice, which exhibited antagonistic effects compared to IR, indicating that amifostine attenuated the IR-induced effects on RNA profiles. GO and KEGG pathway analyses showed changes in a variety of signaling pathways involved in inflammatory responses during radioprotection following amifostine pre-treatment in exposed mice. Taken together, our study revealed that amifostine treatment altered or attenuated miRNA, lncRNA, and mRNA expression in the hypothalamus of exposed mice. These data provide a resource to further elucidate the mechanisms underlying amifostine-mediated radioprotection in the hypothalamus.
Collapse
Affiliation(s)
- Baolei Tian
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | | | | | | | | | | |
Collapse
|
22
|
Hanchate NK, Lee EJ, Ellis A, Kondoh K, Kuang D, Basom R, Trapnell C, Buck LB. Connect-seq to superimpose molecular on anatomical neural circuit maps. Proc Natl Acad Sci U S A 2020; 117:4375-4384. [PMID: 32034095 PMCID: PMC7049128 DOI: 10.1073/pnas.1912176117] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The mouse brain contains about 75 million neurons interconnected in a vast array of neural circuits. The identities and functions of individual neuronal components of most circuits are undefined. Here we describe a method, termed "Connect-seq," which combines retrograde viral tracing and single-cell transcriptomics to uncover the molecular identities of upstream neurons in a specific circuit and the signaling molecules they use to communicate. Connect-seq can generate a molecular map that can be superimposed on a neuroanatomical map to permit molecular and genetic interrogation of how the neuronal components of a circuit control its function. Application of this method to hypothalamic neurons controlling physiological responses to fear and stress reveals subsets of upstream neurons that express diverse constellations of signaling molecules and can be distinguished by their anatomical locations.
Collapse
Affiliation(s)
- Naresh K Hanchate
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Eun Jeong Lee
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Andria Ellis
- Department of Genome Sciences, University of Washington, Seattle, WA 98115
| | - Kunio Kondoh
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Donghui Kuang
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Ryan Basom
- Genomics and Bioinformatics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA 98115
- The Brotman Baty Institute for Precision Medicine, Seattle, WA 98195
| | - Linda B Buck
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109;
- The Brotman Baty Institute for Precision Medicine, Seattle, WA 98195
| |
Collapse
|
23
|
Melnick I, Krishtal OA, Colmers WF. Integration of energy homeostasis and stress by parvocellular neurons in rat hypothalamic paraventricular nucleus. J Physiol 2020; 598:1073-1092. [PMID: 31952096 DOI: 10.1113/jp279387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/16/2020] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Central regulation of energy homeostasis and stress are believed to be reciprocally regulated, i.e. excessive food intake suppresses, while prolonged hunger exacerbates, stress responses in vivo. This relationship may be mediated by neuroendocrine parvocellular corticotropin-releasing hormone (CRH) neurons in the hypothalamic paraventricular nucleus that receive both stress- and feeding-related input. We find that hunger strongly and selectively potentiates, while re-feeding suppresses, a cellular analogue of a stress response induced by acute glucopenia in CRH neurons in rat hypothalamic slices. Neuronal activation in response to glucopenia was mediated synaptically, via the relative enhancement of glutamate over GABA input. These results illustrate how acute stress responses may be initiated in vivo and show that it is reciprocally integrated with energy balance via local hypothalamic mechanisms acting at the level of CRH neurons and their afferent terminals. ABSTRACT Increased food intake is a common response to help cope with stress, implying the existence of a previously postulated but imperfectly understood, inverse relationship between the regulation of feeding and stress. We have identified components of the neural circuitry that can integrate these homeostatic responses. Prior fasting (∼24 h) potentiates, and re-feeding suppresses, excitatory responses to acute glucopenia in about half of the corticotropin releasing hormone (CRH)-expressing, putatively neurosecretory, stress-related neurons in the paraventricular nucleus of the hypothalamus studied. Glucoprivation stress ex vivo resulted from a preferential relative increase in excitatory (glutamatergic) over inhibitory (GABAergic) inputs. Putative preautonomic cells were less sensitive to fasting, and showed a predominant inhibition to acute glucopenia. We conclude that hunger may sensitize hypothalamic stress responses by acting via local mechanisms, at the level of CRH neurons and their presynaptic inputs. Those mechanisms involve neither presynaptic ATP-sensitive potassium channels nor postsynaptic ATP levels.
Collapse
Affiliation(s)
- Igor Melnick
- Bogomoletz Institute of Physiology, Bogomoletz str 4, Kiev, 01024, Ukraine
| | - Oleg A Krishtal
- Bogomoletz Institute of Physiology, Bogomoletz str 4, Kiev, 01024, Ukraine
| | - William F Colmers
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada, T6G 2H7
| |
Collapse
|
24
|
Kim YB, Colwell CS, Kim YI. Long-term ionic plasticity of GABAergic signalling in the hypothalamus. J Neuroendocrinol 2019; 31:e12753. [PMID: 31166034 DOI: 10.1111/jne.12753] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/24/2019] [Accepted: 06/03/2019] [Indexed: 12/23/2022]
Abstract
The hypothalamus contains a number of nuclei that subserve a variety of functions, including generation of circadian rhythms, regulation of hormone secretion and maintenance of homeostatic levels for a variety of physiological parameters. Within the hypothalamus, γ-amino-butyric acid (GABA) is one of the major neurotransmitters responsible for cellular communication. Although GABA most commonly serves as an inhibitory neurotransmitter, a growing body of evidence indicates that it can evoke post-synaptic excitation as a result of the active regulation of intracellular chloride concentration. In this review, we consider the evidence for this ionic plasticity of GABAergic synaptic transmission in five distinct cases in hypothalamic cell populations. We argue that this plasticity serves as part of the functional response to or is at least associated with dehydration, lactation, hypertension and stress. As such, GABA excitation should be considered as part of the core homeostatic mechanisms of the hypothalamus.
Collapse
Affiliation(s)
- Young-Beom Kim
- Department of Physiology, Korea University College of Medicine, Seoul, Korea
- Neuroscience Research Institute, Korea University, Seoul, Korea
| | - Christopher S Colwell
- Department of Psychiatry and Biobehavioral Sciences, UCLA School of Medicine, Los Angeles, CA, USA
| | - Yang In Kim
- Department of Physiology, Korea University College of Medicine, Seoul, Korea
- Neuroscience Research Institute, Korea University, Seoul, Korea
| |
Collapse
|
25
|
Kim J, Lee S, Fang YY, Shin A, Park S, Hashikawa K, Bhat S, Kim D, Sohn JW, Lin D, Suh GSB. Rapid, biphasic CRF neuronal responses encode positive and negative valence. Nat Neurosci 2019; 22:576-585. [PMID: 30833699 PMCID: PMC6668342 DOI: 10.1038/s41593-019-0342-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 01/18/2019] [Indexed: 12/16/2022]
Abstract
Corticotropin-releasing factor (CRF) that is released from the paraventricular nucleus (PVN) of the hypothalamus is essential for mediating stress response by activating the hypothalamic-pituitary-adrenal (HPA) axis. CRF-releasing PVN neurons receive inputs from multiple brain regions that convey stressful events, but their neuronal dynamics on the timescale of behavior remain unknown. Here, our recordings of PVN CRF neuronal activity in freely behaving mice revealed that CRF neurons are activated immediately by a range of aversive stimuli. By contrast, CRF neuronal activity starts to drop within a second of exposure to appetitive stimuli. Optogenetic activation or inhibition of PVN CRF neurons was sufficient to induce a conditioned place aversion (CPA) or preference (CPP), respectively. Furthermore, CPA or CPP induced by natural stimuli was significantly decreased by manipulating PVN CRF neuronal activity. Together, these findings suggest that the rapid, biphasic responses of PVN CRF neurons encode the positive and negative valences of stimuli.
Collapse
Affiliation(s)
- Jineun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Seongju Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Yi-Ya Fang
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA.,Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Anna Shin
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Seahyung Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Koichi Hashikawa
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA.,Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Shreelatha Bhat
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Daesoo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jong-Woo Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Dayu Lin
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA. .,Department of Psychiatry, New York University School of Medicine, New York, NY, USA.
| | - Greg S B Suh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea. .,Neuroscience Institute, New York University School of Medicine, New York, NY, USA. .,Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA. .,Department of Cell Biology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
26
|
Malikowska-Racia N, Salat K. Recent advances in the neurobiology of posttraumatic stress disorder: A review of possible mechanisms underlying an effective pharmacotherapy. Pharmacol Res 2019; 142:30-49. [PMID: 30742899 DOI: 10.1016/j.phrs.2019.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/24/2019] [Accepted: 02/01/2019] [Indexed: 12/24/2022]
Abstract
Recent progress in the field of neurobiology supported by clinical evidence gradually reveals the mystery of human brain functioning. So far, many psychiatric disorders have been described in great detail, although there are still plenty of cases that are misunderstood. These include posttraumatic stress disorder (PTSD), which is a unique disease that combines a wide range of neurobiological changes, which involve disturbances of the hypothalamic-pituitary-adrenal gland axis, hyperactivation of the amygdala complex, and attenuation of some hippocampal and cortical functions. Such multiplicity results in differential symptomatology, including elevated anxiety, nightmares, fear retrieval episodes that may trigger delusions and hallucinations, sleep disturbances, and many others that strongly interfere with the quality of the patient's life. Because of widespread neurological changes and the disease manifestation, the pharmacotherapy of PTSD remains unclear and requires a multidimensional approach and involvement of polypharmacotherapy. Hopefully, more and more neuroscientists and clinicians will study PTSD, which will provide us with new information that would possibly accelerate establishment of well-tolerated and effective pharmacotherapy. In this review, we have focused on neurobiological changes regarding PTSD, addressing the most disturbed brain structures and neurotransmissions, as well as discussing in detail the recently taken and novel therapeutic paths.
Collapse
Affiliation(s)
- Natalia Malikowska-Racia
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland.
| | - Kinga Salat
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland
| |
Collapse
|
27
|
Alpár A, Harkany T. Novel insights into the spatial and temporal complexity of hypothalamic organization through precision methods allowing nanoscale resolution. J Intern Med 2018; 284:568-580. [PMID: 30027599 DOI: 10.1111/joim.12815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The mammalian hypothalamus contains an astounding heterogeneity of neurons to achieve its role in coordinating central responses to virtually any environmental stressor over the life-span of an individual. Therefore, while core features of intrahypothalamic neuronal modalities and wiring patterns are stable during vertebrate evolution, integration of the hypothalamus into hierarchical brain-wide networks evolved to coordinate its output with emotionality, cognition and conscious decision-making. The advent of single-cell technologies represents a recent milestone in the study of hypothalamic organization by allowing the dissection of cellular heterogeneity and establishing causality between opto- and chemogenetic activity modulation of molecularly-resolved neuronal contingents and specific behaviours. Thus, organizational rules to accumulate an unprecedented variety of hierarchical neuroendocrine command networks into a minimal brain volume are being unravelled. Here, we review recent understanding at nanoscale resolution on how neuronal heterogeneity in the mammalian hypothalamus underpins the diversification of hormonal and synaptic output and keeps those sufficiently labile for continuous adaptation to meet environmental demands. Particular emphasis is directed towards the dissection of neuronal circuitry for aggression and food intake. Mechanistic data encompass cell identities, synaptic connectivity within and outside the hypothalamus to link vegetative and conscious levels of innate behaviours, and context- and circadian rhythm-dependent rules of synaptic neurophysiology to distinguish hypothalamic foci that either tune the body's metabolic set-point or specify behaviours. Consequently, novel insights emerge to explain the evolutionary advantages of non-laminar organization for neuroendocrine circuits coincidently using fast neurotransmitters and neuropeptides. These are then accrued into novel therapeutic principles that meet therapeutic criteria for human metabolic diseases.
Collapse
Affiliation(s)
- A Alpár
- SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary.,Department of Anatomy, Histology, and Embryology, Semmelweis University, Budapest, Hungary
| | - T Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria.,Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
28
|
Chronic Intracerebroventricular Infusion of Metformin Inhibits Salt-Sensitive Hypertension via Attenuation of Oxidative Stress and Neurohormonal Excitation in Rat Paraventricular Nucleus. Neurosci Bull 2018; 35:57-66. [PMID: 30426340 DOI: 10.1007/s12264-018-0308-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 09/26/2018] [Indexed: 01/15/2023] Open
Abstract
Metformin (MET), an antidiabetic agent, also has antioxidative effects in metabolic-related hypertension. This study was designed to determine whether MET has anti-hypertensive effects in salt-sensitive hypertensive rats by inhibiting oxidative stress in the hypothalamic paraventricular nucleus (PVN). Salt-sensitive rats received a high-salt (HS) diet to induce hypertension, or a normal-salt (NS) diet as control. At the same time, they received intracerebroventricular (ICV) infusion of MET or vehicle for 6 weeks. We found that HS rats had higher oxidative stress levels and mean arterial pressure (MAP) than NS rats. ICV infusion of MET attenuated MAP and reduced plasma norepinephrine levels in HS rats. It also decreased reactive oxygen species and the expression of subunits of NAD(P)H oxidase, improved the superoxide dismutase activity, reduced components of the renin-angiotensin system, and altered neurotransmitters in the PVN. Our findings suggest that central MET administration lowers MAP in salt-sensitive hypertension via attenuating oxidative stress, inhibiting the renin-angiotensin system, and restoring the balance between excitatory and inhibitory neurotransmitters in the PVN.
Collapse
|
29
|
Sunstrum JK, Inoue W. Heterosynaptic modulation in the paraventricular nucleus of the hypothalamus. Neuropharmacology 2018; 154:87-95. [PMID: 30408488 DOI: 10.1016/j.neuropharm.2018.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/18/2018] [Accepted: 11/03/2018] [Indexed: 12/21/2022]
Abstract
The stress response-originally described by Hans Selye as "the nonspecific response of the body to any demand made upon it"-is chiefly mediated by the hypothalamic-pituitary-adrenal (HPA) axis and is activated by diverse sensory stimuli that inform threats to homeostasis. The diversity of signals regulating the HPA axis is partly achieved by the complexity of afferent inputs that converge at the apex of the HPA axis: this apex is formed by a group of neurosecretory neurons that synthesize corticotropin-releasing hormone (CRH) in the paraventricular nucleus of the hypothalamus (PVN). The afferent synaptic inputs onto these PVN-CRH neurons originate from a number of brain areas, and PVN-CRH neurons respond to a long list of neurotransmitters/neuropeptides. Considering this complexity, an important question is how these diverse afferent signals independently and/or in concert influence the excitability of PVN-CRH neurons. While many of these inputs directly act on the postsynaptic PVN-CRH neurons for the summation of signals, accumulating data indicates that they also modulate each other's transmission in the PVN. This mode of transmission, termed heterosynaptic modulation, points to mechanisms through which the activity of a specific modulatory input (conveying a specific sensory signal) can up- or down-regulate the efficacy of other afferent synapses (mediating other stress modalities) depending on receptor expression for and spatial proximity to the heterosynaptic signals. Here, we review examples of heterosynaptic modulation in the PVN and discuss its potential role in the regulation of PVN-CRH neurons' excitability and resulting HPA axis activity. This article is part of the Special Issue entitled 'Hypothalamic Control of Homeostasis'.
Collapse
Affiliation(s)
- Julia K Sunstrum
- Neuroscience Program, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Wataru Inoue
- Neuroscience Program, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada; Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
30
|
Page SJ, Zhu M, Appleyard SM. Effects of acute and chronic nicotine on catecholamine neurons of the nucleus of the solitary tract. Am J Physiol Regul Integr Comp Physiol 2018; 316:R38-R49. [PMID: 30354182 DOI: 10.1152/ajpregu.00344.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nicotine is an addictive drug that has broad effects throughout the brain. One site of action is the nucleus of the solitary tract (NTS), where nicotine initiates a stress response and modulates cardiovascular and gastric function through nicotinic acetylcholine receptors (nAChRs). Catecholamine (CA) neurons in the NTS influence stress and gastric and cardiovascular reflexes, making them potential mediators of nicotine's effects; however nicotine's effect on these neurons is unknown. Here, we determined nicotine's actions on NTS-CA neurons by use of patch-clamp techniques in brain slices from transgenic mice expressing enhanced green fluorescent protein driven by the tyrosine hydroxylase promoter (TH-EGFP). Picospritzing nicotine both induced a direct inward current and increased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in NTS-CA neurons, effects blocked by nonselective nAChR antagonists TMPH and MLA. The increase in sEPSC frequency was mimicked by nAChRα7 agonist AR-R17779 and blocked by nAChRα7 antagonist MG624. AR-R17779 also increased the firing of TH-EGFP neurons, an effect dependent on glutamate inputs, as it was blocked by the glutamate antagonist NBQX. In contrast, the nicotine-induced current was mimicked by nAChRα4β2 agonist RJR2403 and blocked by nAChRα4β2 antagonist DHβE. RJR2403 also increased the firing rate of TH-EGFP neurons independently of glutamate. Finally, both somatodendritic and sEPSC nicotine responses from NTS-CA neurons were larger in nicotine-dependent mice that had under gone spontaneous nicotine withdrawal. These results demonstrate that 1) nicotine activates NTS-CA neurons both directly, by inducing a direct current, and indirectly, by increasing glutamate inputs, and 2) NTS-CA nicotine responsiveness is altered during nicotine withdrawal.
Collapse
Affiliation(s)
- Stephen J Page
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington
| | - Mingyan Zhu
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington
| | - Suzanne M Appleyard
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington
| |
Collapse
|
31
|
Nagpal J, Herget U, Choi MK, Ryu S. Anatomy, development, and plasticity of the neurosecretory hypothalamus in zebrafish. Cell Tissue Res 2018; 375:5-22. [PMID: 30109407 DOI: 10.1007/s00441-018-2900-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/20/2018] [Indexed: 01/08/2023]
Abstract
The paraventricular nucleus (PVN) of the hypothalamus harbors diverse neurosecretory cells with critical physiological roles for the homeostasis. Decades of research in rodents have provided a large amount of information on the anatomy, development, and function of this important hypothalamic nucleus. However, since the hypothalamus lies deep within the brain in mammals and is difficult to access, many questions regarding development and plasticity of this nucleus still remain. In particular, how different environmental conditions, including stress exposure, shape the development of this important nucleus has been difficult to address in animals that develop in utero. To address these open questions, the transparent larval zebrafish with its rapid external development and excellent genetic toolbox offers exciting opportunities. In this review, we summarize recent information on the anatomy and development of the neurosecretory preoptic area (NPO), which represents a similar structure to the mammalian PVN in zebrafish. We will then review recent studies on the development of different cell types in the neurosecretory hypothalamus both in mouse and in fish. Lastly, we discuss stress-induced plasticity of the PVN mainly discussing the data obtained in rodents, but pointing out tools and approaches available in zebrafish for future studies. This review serves as a primer for the currently available information relevant for studying the development and plasticity of this important brain region using zebrafish.
Collapse
Affiliation(s)
- Jatin Nagpal
- German Resilience Center, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Ulrich Herget
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd. Mail Code 156-29, Pasadena, CA, 91125, USA
| | - Min K Choi
- German Resilience Center, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Soojin Ryu
- German Resilience Center, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany.
| |
Collapse
|
32
|
Neuronal activity regulates neurotransmitter switching in the adult brain following light-induced stress. Proc Natl Acad Sci U S A 2018; 115:5064-5071. [PMID: 29686073 PMCID: PMC5960321 DOI: 10.1073/pnas.1801598115] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The discovery that neurotransmitter identity is regulated by activity in the adult mammalian brain during a stress response raises questions about the extent and function of this plasticity. Specific synapses are associated with the release of a particular neurotransmitter or transmitters on the basis of evidence obtained under a single set of conditions. Transmitter switching endows the connectome with greater plasticity: Activity-dependent revision of signaling provides another dimension of flexibility to regulate normal behavior. Changes in transmitter identity are also positioned to contribute to diseases of the nervous system. Neurotransmitter imbalance has long been implicated in common neurological and psychiatric disorders, provoking interest in transmitter switching as a therapeutic tool for patients. Neurotransmitter switching in the adult mammalian brain occurs following photoperiod-induced stress, but the mechanism of regulation is unknown. Here, we demonstrate that elevated activity of dopaminergic neurons in the paraventricular nucleus of the hypothalamus (PaVN) in the adult rat is required for the loss of dopamine expression after long-day photoperiod exposure. The transmitter switch occurs exclusively in PaVN dopaminergic neurons that coexpress vesicular glutamate transporter 2 (VGLUT2), is accompanied by a loss of dopamine type 2 receptors (D2Rs) on corticotrophin-releasing factor (CRF) neurons, and can lead to increased release of CRF. Suppressing activity of all PaVN glutamatergic neurons decreases the number of inhibitory PaVN dopaminergic neurons, indicating homeostatic regulation of transmitter expression in the PaVN.
Collapse
|
33
|
Colmers PLW, Bains JS. Balancing tonic and phasic inhibition in hypothalamic corticotropin-releasing hormone neurons. J Physiol 2018; 596:1919-1929. [PMID: 29419884 DOI: 10.1113/jp275588] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/29/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS GABA transporter (GAT) blockade recruits extrasynaptic GABAA receptors (GABAA Rs) and amplifies constitutive presynaptic GABAB R activity. Extrasynaptic GABAA Rs contribute to a tonic current. Corticosteroids increase the tonic current mediated by extrasynaptic GABAA Rs. ABSTRACT Corticotropin-releasing hormone (CRH) neurons in the paraventricular nucleus of the hypothalamus (PVN) are integratory hubs that regulate the endocrine response to stress. GABA inputs provide a basal inhibitory tone that constrains this system and circulating glucocorticoids (CORT) are important feedback controllers of CRH output. Surprisingly little is known about the direct effects of CORT on GABA synapses in PVN. Here we used whole-cell patch clamp recordings from CRH neurons in mouse hypothalamic brain slices to examine the effects of CORT on synaptic and extrasynaptic GABA signalling. We show that GABA transporters (GATs) limit constitutive activation of presynaptic GABAB receptors and ensure high release probability at GABA synapses. GATs in combination with GABAB receptors also curtail extrasynaptic GABAA R signalling. CORT has no effect on synaptic GABA signalling, but increases extrasynaptic GABA tone through upregulation of postsynaptic GABAA receptors. These data show that efficient GABA clearance and autoinhibition control the balance between synaptic (phasic) and extrasynaptic (tonic) inhibition in PVN CRH neurons. This balance is shifted towards increased extrasynaptic inhibition by CORT.
Collapse
Affiliation(s)
- Phillip L W Colmers
- Hotchkiss Brain Institute and the Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Jaideep S Bains
- Hotchkiss Brain Institute and the Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
34
|
Johnson CS, Bains JS, Watts AG. Neurotransmitter diversity in pre-synaptic terminals located in the parvicellular neuroendocrine paraventricular nucleus of the rat and mouse hypothalamus. J Comp Neurol 2018; 526:1287-1306. [PMID: 29424419 DOI: 10.1002/cne.24407] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 02/02/2023]
Abstract
Virtually all rodent neuroendocrine corticotropin-releasing-hormone (CRH) neurons are in the dorsal medial parvicellular (mpd) part of the paraventricular nucleus of the hypothalamus (PVH). They form the final common pathway for adrenocortical stress responses. Their activity is controlled by sets of GABA-, glutamate-, and catecholamine-containing inputs arranged in an interactive pre-motor network. Defining the nature and arrangement of these inputs can help clarify how stressor type and intensity information is conveyed to neuroendocrine neurons. Here we use immunohistochemistry with high-resolution 3-dimensional image analyses to examine the arrangement of single- and co-occurring GABA, glutamate, and catecholamine markers in synaptophysin-defined pre-synaptic terminals in the PVHmpd of unstressed rats and Crh-IRES-Cre;Ai14 transgenic mice: respectively, vesicular glutamate transporter 2 (VGluT2), vesicular GABA transporter (VGAT), dopamine β-hydroxylase (DBH), and phenylethanolamine n-methyltransferase (PNMT). Just over half of all PVHmpd pre-synaptic terminals contain VGAT, with slightly less containing VGluT2. The vast majority of terminal appositions with mouse CRH neurons occur non-somatically. However, there are significantly more somatic VGAT than VGluT2 appositions. In the rat PVHmpd, about five times as many pre-synaptic terminals contain PNMT than DBH only. However, because epinephrine release has never been detected in the PVH, PNMT terminals may functionally be noradrenergic not adrenergic. PNMT and VGluT2 co-occur in some pre-synaptic terminals indicating the potential for co-transmission of glutamate and norepinephrine. Collectively, these results provide a structural basis for how GABA/glutamate/catecholamine interactions enable adrenocortical responses to fast-onset interosensory stimuli, and more broadly, how combinations of PVH neurotransmitters and neuromodulators interact dynamically to control adrenocortical activity.
Collapse
Affiliation(s)
- Caroline S Johnson
- The Department of Biological Sciences, USC Dornsife College of Letters, Arts, and Sciences, and Neuroscience, Graduate Program, University of Southern California, Los Angeles, California
| | - Jaideep S Bains
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Alberta, Canada
| | - Alan G Watts
- The Department of Biological Sciences, USC Dornsife College of Letters, Arts, and Sciences, and Neuroscience, Graduate Program, University of Southern California, Los Angeles, California
| |
Collapse
|
35
|
Anteroventral bed nuclei of the stria terminalis neurocircuitry: Towards an integration of HPA axis modulation with coping behaviors - Curt Richter Award Paper 2017. Psychoneuroendocrinology 2018; 89:239-249. [PMID: 29395488 PMCID: PMC5878723 DOI: 10.1016/j.psyneuen.2017.12.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/19/2017] [Accepted: 12/11/2017] [Indexed: 12/15/2022]
Abstract
A network of interconnected cell groups in the limbic forebrain regulates hypothalamic-pituitary-adrenal (HPA) axis activation and behavioral responses to emotionally stressful experiences, and chronic disruption of these systems chronically is implicated in the pathogenesis of psychiatric illnesses. A significant challenge has been to unravel the circuitry and mechanisms providing for regulation of HPA activity, as these limbic forebrain regions do not provide any direct innervation of HPA effector cell groups in the paraventricular hypothalamus (PVH). Moreover, information regarding how endocrine and behavioral responses are integrated has remained obscure. Here we summarize work from our laboratory showing that anteroventral (av) bed nuclei of the stria terminalis (BST) acts as a point of convergence between the limbic forebrain and PVH, receiving and coordinating upstream influences, and restraining HPA axis output in response to inescapable stressors. Recent studies highlight a more expansive modulatory role for avBST as one that coordinates HPA-inhibitory influences while concurrently suppressing passive behavioral responses via divergent pathways. avBST is uniquely positioned to convey endocrine and behavioral alterations resulting from chronic stress exposure, such as HPA axis hyperactivity and increased passive coping strategies, that may result from synaptic reorganization in upstream limbic cortical regions. We discuss how these studies give new insights into understanding the systems-level organization of stress response circuitry, the neurobiology of coping styles, and BST circuit dysfunction in stress-related psychiatric disorders.
Collapse
|
36
|
Herman JP. Regulation of Hypothalamo-Pituitary-Adrenocortical Responses to Stressors by the Nucleus of the Solitary Tract/Dorsal Vagal Complex. Cell Mol Neurobiol 2017; 38:25-35. [PMID: 28895001 DOI: 10.1007/s10571-017-0543-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/24/2017] [Indexed: 01/04/2023]
Abstract
Hindbrain neurons in the nucleus of the solitary tract (NTS) are critical for regulation of hypothalamo-pituitary-adrenocortical (HPA) responses to stress. It is well known that noradrenergic (as well as adrenergic) neurons in the NTS send direct projections to hypophysiotropic corticotropin-releasing hormone (CRH) neurons and control activation of HPA axis responses to acute systemic (but not psychogenic) stressors. Norepinephrine (NE) signaling via alpha1 receptors is primarily excitatory, working either directly on CRH neurons or through presynaptic activation of glutamate release. However, there is also evidence for NE inhibition of CRH neurons (possibly via beta receptors), an effect that may occur at higher levels of stimulation, suggesting that NE effects on the HPA axis may be context-dependent. Lesions of ascending NE inputs to the paraventricular nucleus attenuate stress-induced ACTH but not corticosterone release after chronic stress, indicating reduction in central HPA drive and increased adrenal sensitivity. Non-catecholaminergic NTS glucagon-like peptide 1/glutamate neurons play a broader role in stress regulation, being important in HPA activation to both systemic and psychogenic stressors as well as HPA axis sensitization under conditions of chronic stress. Overall, the data highlight the importance of the NTS as a key regulatory node for coordination of acute and chronic stress.
Collapse
Affiliation(s)
- James P Herman
- Stress Neurobiology Laboratory, Department of Psychiatry and Behavioral Neuroscience, UC Neurobiology Research Center, University of Cincinnati, 2170 East Galbraith Road, Cincinnati, OH, 45237-0506, USA.
| |
Collapse
|
37
|
Roberts BL, Zhu M, Zhao H, Dillon C, Appleyard SM. High glucose increases action potential firing of catecholamine neurons in the nucleus of the solitary tract by increasing spontaneous glutamate inputs. Am J Physiol Regul Integr Comp Physiol 2017; 313:R229-R239. [PMID: 28615161 DOI: 10.1152/ajpregu.00413.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 06/12/2017] [Accepted: 06/12/2017] [Indexed: 02/07/2023]
Abstract
Glucose is a crucial substrate essential for cell survival and function. Changes in glucose levels impact neuronal activity and glucose deprivation increases feeding. Several brain regions have been shown to respond to glucoprivation, including the nucleus of the solitary tract (NTS) in the brain stem. The NTS is the primary site in the brain that receives visceral afferent information from the gastrointestinal tract. The catecholaminergic (CA) subpopulation within the NTS modulates many homeostatic functions including cardiovascular reflexes, respiration, food intake, arousal, and stress. However, it is not known if they respond to changes in glucose. Here we determined whether NTS-CA neurons respond to changes in glucose concentration and the mechanism involved. We found that decreasing glucose concentrations from 5 mM to 2 mM to 1 mM, significantly decreased action potential firing in a cell-attached preparation, whereas increasing it back to 5 mM increased the firing rate. This effect was dependent on glutamate release from afferent terminals and required presynaptic 5-HT3Rs. Decreasing the glucose concentration also decreased both basal and 5-HT3R agonist-induced increase in the frequency of spontaneous glutamate inputs onto NTS-CA neurons. Low glucose also blunted 5-HT-induced inward currents in nodose ganglia neurons, which are the cell bodies of vagal afferents. The effect of low glucose in both nodose ganglia cells and in NTS slices was mimicked by the glucokinase inhibitor glucosamine. This study suggests that NTS-CA neurons are glucosensing through a presynaptic mechanism that is dependent on vagal glutamate release, 5-HT3R activity, and glucokinase.
Collapse
Affiliation(s)
- Brandon L Roberts
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Mingyan Zhu
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Huan Zhao
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Crystal Dillon
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Suzanne M Appleyard
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| |
Collapse
|
38
|
Banerjee P, Joy KP, Chaube R. Structural and functional diversity of nonapeptide hormones from an evolutionary perspective: A review. Gen Comp Endocrinol 2017; 241:4-23. [PMID: 27133544 DOI: 10.1016/j.ygcen.2016.04.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 04/09/2016] [Accepted: 04/25/2016] [Indexed: 01/08/2023]
Abstract
The article presents an overview of the comparative distribution, structure and functions of the nonapeptide hormones in chordates and non chordates. The review begins with a historical preview of the advent of the concept of neurosecretion and birth of neuroendocrine science, pioneered by the works of E. Scharrer and W. Bargmann. The sections which follow discuss different vertebrate nonapeptides, their distribution, comparison, precursor gene structures and processing, highlighting the major differences in these aspects amidst the conserved features across vertebrates. The vast literature on the anatomical characteristics of the nonapeptide secreting nuclei in the brain and their projections was briefly reviewed in a comparative framework. Recent knowledge on the nonapeptide hormone receptors and their intracellular signaling pathways is discussed and few grey areas which require deeper studies are identified. The sections on the functions and regulation of nonapeptides summarize the huge and ever increasing literature that is available in these areas. The nonapeptides emerge as key homeostatic molecules with complex regulation and several synergistic partners. Lastly, an update of the nonapeptides in non chordates with respect to distribution, site of synthesis, functions and receptors, dealt separately for each phylum, is presented. The non chordate nonapeptides share many similarities with their counterparts in vertebrates, pointing the system to have an ancient origin and to be an important substrate for changes during adaptive evolution. The article concludes projecting the nonapeptides as one of the very first common molecules of the primitive nervous and endocrine systems, which have been retained to maintain homeostatic functions in metazoans; some of which are conserved across the animal kingdom and some are specialized in a group/lineage-specific manner.
Collapse
Affiliation(s)
- P Banerjee
- Department of Zoology, Centre of Advanced Study, Banaras Hindu University, Varanasi 221005, India
| | - K P Joy
- Department of Biotechnology, Cochin University of Science and Technology, Kochi 682022, India.
| | - R Chaube
- Department of Zoology, Centre of Advanced Study, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
39
|
Interoceptive modulation of neuroendocrine, emotional, and hypophagic responses to stress. Physiol Behav 2017; 176:195-206. [PMID: 28095318 DOI: 10.1016/j.physbeh.2017.01.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 11/21/2022]
Abstract
Periods of caloric deficit substantially attenuate many centrally mediated responses to acute stress, including neural drive to the hypothalamic-pituitary-adrenal (HPA) axis, anxiety-like behavior, and stress-induced suppression of food intake (i.e., stress hypophagia). It is posited that this stress response plasticity supports food foraging and promotes intake during periods of negative energy balance, even in the face of other internal or external threats, thereby increasing the likelihood that energy stores are repleted. The mechanisms by which caloric deficit alters central stress responses, however, remain unclear. The caudal brainstem contains two distinct populations of stress-recruited neurons [i.e., noradrenergic neurons of the A2 cell group that co-express prolactin-releasing peptide (PrRP+ A2 neurons), and glucagon-like peptide 1 (GLP-1) neurons] that also are responsive to interoceptive feedback about feeding and metabolic status. A2/PrRP and GLP-1 neurons have been implicated anatomically and functionally in the central control of the HPA axis, anxiety-like behavior, and stress hypophagia. The current review summarizes a growing body of evidence that caloric deficits attenuate physiological and behavioral responses to acute stress as a consequence of reduced recruitment of PrRP+ A2 and hindbrain GLP-1 neurons, accompanied by reduced signaling to their brainstem, hypothalamic, and limbic forebrain targets.
Collapse
|
40
|
Kuperman Y, Weiss M, Dine J, Staikin K, Golani O, Ramot A, Nahum T, Kühne C, Shemesh Y, Wurst W, Harmelin A, Deussing JM, Eder M, Chen A. CRFR1 in AgRP Neurons Modulates Sympathetic Nervous System Activity to Adapt to Cold Stress and Fasting. Cell Metab 2016; 23:1185-1199. [PMID: 27211900 PMCID: PMC4911344 DOI: 10.1016/j.cmet.2016.04.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/12/2016] [Accepted: 04/22/2016] [Indexed: 01/06/2023]
Abstract
Signaling by the corticotropin-releasing factor receptor type 1 (CRFR1) plays an important role in mediating the autonomic response to stressful challenges. Multiple hypothalamic nuclei regulate sympathetic outflow. Although CRFR1 is highly expressed in the arcuate nucleus (Arc) of the hypothalamus, the identity of these neurons and the role of CRFR1 here are presently unknown. Our studies show that nearly half of Arc-CRFR1 neurons coexpress agouti-related peptide (AgRP), half of which originate from POMC precursors. Arc-CRFR1 neurons are innervated by CRF neurons in the hypothalamic paraventricular nucleus, and CRF application decreases AgRP(+)CRFR1(+) neurons' excitability. Despite similar anatomy in both sexes, only female mice selectively lacking CRFR1 in AgRP neurons showed a maladaptive thermogenic response to cold and reduced hepatic glucose production during fasting. Thus, CRFR1, in a subset of AgRP neurons, plays a regulatory role that enables appropriate sympathetic nervous system activation and consequently protects the organism from hypothermia and hypoglycemia.
Collapse
Affiliation(s)
- Yael Kuperman
- Department of Veterinary Resources, Weizmann Institute of Science, 76100 Rehovot, Israel.
| | - Meira Weiss
- Department of Neurobiology, The Ruhman Family Laboratory for Research on the Neurobiology of Stress, Weizmann Institute of Science, 76100 Rehovot, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Julien Dine
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Katy Staikin
- Department of Neurobiology, The Ruhman Family Laboratory for Research on the Neurobiology of Stress, Weizmann Institute of Science, 76100 Rehovot, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Ofra Golani
- Biological Services Unit, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Assaf Ramot
- Department of Neurobiology, The Ruhman Family Laboratory for Research on the Neurobiology of Stress, Weizmann Institute of Science, 76100 Rehovot, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Tali Nahum
- Department of Neurobiology, The Ruhman Family Laboratory for Research on the Neurobiology of Stress, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Claudia Kühne
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Yair Shemesh
- Department of Neurobiology, The Ruhman Family Laboratory for Research on the Neurobiology of Stress, Weizmann Institute of Science, 76100 Rehovot, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Wolfgang Wurst
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, 85764 Neuherberg, Germany
| | - Alon Harmelin
- Department of Veterinary Resources, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Jan M Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Matthias Eder
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Alon Chen
- Department of Neurobiology, The Ruhman Family Laboratory for Research on the Neurobiology of Stress, Weizmann Institute of Science, 76100 Rehovot, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany.
| |
Collapse
|
41
|
Cabral A, Portiansky E, Sánchez-Jaramillo E, Zigman JM, Perello M. Ghrelin activates hypophysiotropic corticotropin-releasing factor neurons independently of the arcuate nucleus. Psychoneuroendocrinology 2016; 67:27-39. [PMID: 26874559 PMCID: PMC4808343 DOI: 10.1016/j.psyneuen.2016.01.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/28/2016] [Accepted: 01/29/2016] [Indexed: 10/22/2022]
Abstract
Previous work has established that the hormone ghrelin engages the hypothalamic-pituitary-adrenal neuroendocrine axis via activation of corticotropin-releasing factor (CRF) neurons of the hypothalamic paraventricular nucleus (PVN). The neuronal circuitry that mediates this effect of ghrelin is currently unknown. Here, we show that ghrelin-induced activation of PVN CRF neurons involved inhibition of γ-aminobutyric acid (GABA) inputs, likely via ghrelin binding sites that were localized at GABAergic terminals within the PVN. While ghrelin activated PVN CRF neurons in the presence of neuropeptide Y (NPY) receptor antagonists or in arcuate nucleus (ARC)-ablated mice, it failed to do it so in mice with ghrelin receptor expression limited to ARC agouti gene related protein (AgRP)/NPY neurons. These data support the notion that ghrelin activates PVN CRF neurons via inhibition of local GABAergic tone, in an ARC-independent manner. Furthermore, these data suggest that the neuronal circuits mediating ghrelin's orexigenic action vs. its role as a stress signal are anatomically dissociated.
Collapse
Affiliation(s)
| | | | | | | | - Mario Perello
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE-Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], La Plata, Buenos Aires, Argentina.
| |
Collapse
|
42
|
Augustine RA, Bouwer GT, Seymour AJ, Grattan DR, Brown CH. Reproductive Regulation of Gene Expression in the Hypothalamic Supraoptic and Paraventricular Nuclei. J Neuroendocrinol 2016; 28. [PMID: 26670189 DOI: 10.1111/jne.12350] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 11/27/2022]
Abstract
Oxytocin secretion is required for successful reproduction. Oxytocin is synthesised by magnocellular neurones of the hypothalamic supraoptic and paraventricular nuclei and the physiological demand for oxytocin synthesis and secretion is increased for birth and lactation. Therefore, we used a polymerase chain reaction (PCR) array screen to determine whether genes that might be important for synthesis and/or secretion of oxytocin are up- or down-regulated in the supraoptic and paraventricular nuclei of late-pregnant and lactating rats, compared to virgin rats. We then validated the genes that were most highly regulated using real time-quantitative PCR. Among the most highly regulated genes were those that encode for suppressors of cytokine signalling, which are intracellular inhibitors of prolactin signalling. Prolactin receptor activation changes gene expression via phosphorylation of signal transducer and activator of transcription 5 (STAT5). Using double-label immunohistochemistry, we found that phosphorylated STAT5 was expressed in almost all oxytocin neurones of late-pregnant and lactating rats but was almost absent from oxytocin neurones of virgin rats. We conclude that increased prolactin activation of oxytocin neurones might contribute to the changes in gene expression by oxytocin neurones required for normal birth and lactation.
Collapse
Affiliation(s)
- R A Augustine
- Centre for Neuroendocrinology and Department of Physiology, University of Otago, Dunedin, New Zealand
| | - G T Bouwer
- Centre for Neuroendocrinology and Department of Physiology, University of Otago, Dunedin, New Zealand
| | - A J Seymour
- Centre for Neuroendocrinology and Department of Physiology, University of Otago, Dunedin, New Zealand
| | - D R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - C H Brown
- Centre for Neuroendocrinology and Department of Physiology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
43
|
Bains JS, Wamsteeker Cusulin JI, Inoue W. Stress-related synaptic plasticity in the hypothalamus. Nat Rev Neurosci 2015; 16:377-88. [PMID: 26087679 DOI: 10.1038/nrn3881] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Stress necessitates an immediate engagement of multiple neural and endocrine systems. However, exposure to a single stressor causes adaptive changes that modify responses to subsequent stressors. Recent studies examining synapses onto neuroendocrine cells in the paraventricular nucleus of the hypothalamus demonstrate that stressful experiences leave indelible marks that alter the ability of these synapses to undergo plasticity. These adaptations include a unique form of metaplasticity at glutamatergic synapses, bidirectional changes in endocannabinoid signalling and bidirectional changes in strength at GABAergic synapses that rely on distinct temporal windows following stress. This rich repertoire of plasticity is likely to represent an important building block for dynamic, experience-dependent modulation of neuroendocrine stress adaptation.
Collapse
Affiliation(s)
- Jaideep S Bains
- Hotchkiss Brain Institute and the Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Jaclyn I Wamsteeker Cusulin
- Hotchkiss Brain Institute and the Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Wataru Inoue
- Hotchkiss Brain Institute and the Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
44
|
Vujovic N, Gooley JJ, Jhou TC, Saper CB. Projections from the subparaventricular zone define four channels of output from the circadian timing system. J Comp Neurol 2015; 523:2714-37. [PMID: 26010698 DOI: 10.1002/cne.23812] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 01/22/2023]
Abstract
The subparaventricular zone of the hypothalamus (SPZ) is the main efferent target of neural projections from the suprachiasmatic nucleus (SCN) and an important relay for the circadian timing system. Although the SPZ is fairly homogeneous cytoarchitecturally and neurochemically, it has been divided into distinct functional and connectional subdivisions. The dorsal subdivision of the SPZ (dSPZ) plays an important role in relaying signals from the SCN controlling body temperature rhythms, while the ventral subdivision (vSPZ) is critical for rhythms of sleep and locomotor activity (Lu et al. [] J Neurosci 21:4864-4874). On the other hand, the medial part of the SPZ receives input mainly from the dorsomedial SCN, whereas the lateral SPZ receives input from the ventrolateral SCN and the retinohypothalamic tract (Leak and Moore [] J Comp Neurol 433:312-334). We therefore investigated whether there are corresponding differences in efferent outputs from these four quadrants of the SPZ (dorsolateral, ventrolateral, dorsomedial, and ventromedial) by a combination of anterograde and retrograde tracing. We found that, while all four subdivisions of the SPZ share a similar backbone of major projection pathways to the septal region, thalamus, hypothalamus, and brainstem, each segment of the SPZ has a specific set of targets where its projections dominate. Furthermore, we observed intra-SPZ projections of varying densities between the four subdivisions. Taken together, this pattern of organization suggests that the circadian timing system may have several parallel neural outflow pathways that provide a road map for understanding how they subserve different functions.
Collapse
Affiliation(s)
- Nina Vujovic
- Department of Neurology, Program in Neuroscience, and Division of Sleep Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, 02215
| | - Joshua J Gooley
- Department of Neurology, Program in Neuroscience, and Division of Sleep Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, 02215
| | - Thomas C Jhou
- Department of Neurology, Program in Neuroscience, and Division of Sleep Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, 02215
| | - Clifford B Saper
- Department of Neurology, Program in Neuroscience, and Division of Sleep Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, 02215
| |
Collapse
|
45
|
Sladek CD, Michelini LC, Stachenfeld NS, Stern JE, Urban JH. Endocrine‐Autonomic Linkages. Compr Physiol 2015; 5:1281-323. [DOI: 10.1002/cphy.c140028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
46
|
Zai CC, Zai GC, Tiwari AK, Manchia M, de Luca V, Shaikh SA, Strauss J, Kennedy JL. Association study of GABRG2 polymorphisms with suicidal behaviour in schizophrenia patients with alcohol use disorder. Neuropsychobiology 2015; 69:154-8. [PMID: 24776921 DOI: 10.1159/000358839] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 01/20/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND Schizophrenia is a severe neuropsychiatric disorder where the role of γ-aminobutyric acid (GABA), an inhibitory neurotransmitter, has been implicated in its aetiopathophysiology. Several genes coding for GABAA subunits, including the GABRG2 gene that encodes the γ2 subunit, are clustered at 5q31-q35, a chromosomal region that is associated with schizophrenia in genome scan studies. We recently reported GABRG2 to be associated with schizophrenia in our case-control and family samples. METHODS We tested eight single-nucleotide polymorphisms spanning the GABRG2 gene for an association with suicidal behaviour in our schizophrenia sample of European ancestry (n = 197), taking into account history of alcohol abuse or dependence. RESULTS We found the haplotypes of the rs183294 and rs209356 markers to be significantly associated with history of suicide attempt (p < 0.01) as well as suicide specifier scores (p < 0.05). The association appeared to be originating in patients with a history of alcohol dependence or abuse. CONCLUSIONS Taken together, the results of the present study suggest that GABRG2 may be involved in suicidal behaviour in schizophrenia patients with alcohol dependence or abuse, but replications are required. These results may help in the discovery of novel treatments for alcoholism and/or prevention of suicide.
Collapse
Affiliation(s)
- Clement C Zai
- Neurogenetics Section, Neuroscience Research Department, Centre for Addiction and Mental Health, Toronto, Ont., Canada
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Cramer T, Kisliouk T, Yeshurun S, Meiri N. The balance between stress resilience and vulnerability is regulated by corticotropin-releasing hormone during the critical postnatal period for sensory development. Dev Neurobiol 2014; 75:842-53. [PMID: 25447645 DOI: 10.1002/dneu.22252] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/24/2014] [Accepted: 11/26/2014] [Indexed: 11/06/2022]
Abstract
Determining whether a stressful event will lead to stress-resilience or vulnerability depends probably on an adjustable stress response set point, which is most likely effective during postnatal sensory development and involves the regulation of corticotrophin-releasing hormone (CRH) expression. During the critical period of thermal-control establishment in 3-day-old chicks, heat stress was found to render resilient or sensitized response, depending on the ambient temperature. These two different responses were correlated with the amount of activation of the hypothalamic-pituitary-adrenal (HPA) axis. The expression of CRH mRNA in the hypothalamic paraventricular nucleus was augmented during heat challenge a week after heat conditioning in chicks which were trained to be vulnerable to heat, while it declined in chicks that were trained to be resilient. To study the role of CRH in HPA-axis plasticity, CRH or Crh-antisense were intracranially injected into the third ventricle. CRH caused an elevation of both body temperature and plasma corticosterone level, while Crh-antisense caused an opposite response. Moreover, these effects had long term implications by reversing a week later, heat resilience into vulnerability and vice versa. Chicks that had been injected with CRH followed by exposure to mild heat stress, normally inducing resilience, demonstrated, a week later, an elevation in body temperature, and Crh mRNA level similar to heat vulnerability, while Crh-antisense injected chicks, which were exposed to harsh temperature, responded in heat resilience. These results demonstrate a potential role for CRH in determining the stress resilience/vulnerability balance.
Collapse
Affiliation(s)
- Tomer Cramer
- Department of Poultry and Aquaculture, Institute of Animal Science, ARO, The Volcani Center, Bet Dagan, 50250, Israel.,The Robert H. Smith Faculty of Agriculture, Food and Environment, Department of Animal Science, the Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Tatiana Kisliouk
- Department of Poultry and Aquaculture, Institute of Animal Science, ARO, The Volcani Center, Bet Dagan, 50250, Israel
| | - Shlomo Yeshurun
- Department of Poultry and Aquaculture, Institute of Animal Science, ARO, The Volcani Center, Bet Dagan, 50250, Israel.,The Robert H. Smith Faculty of Agriculture, Food and Environment, Department of Animal Science, the Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Noam Meiri
- Department of Poultry and Aquaculture, Institute of Animal Science, ARO, The Volcani Center, Bet Dagan, 50250, Israel
| |
Collapse
|
48
|
Senst L, Bains J. Neuromodulators, stress and plasticity: a role for endocannabinoid signalling. ACTA ACUST UNITED AC 2014; 217:102-8. [PMID: 24353209 DOI: 10.1242/jeb.089730] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Any unanticipated threat to survival triggers an immediate sequence of events in the brain that culminate in a coordinated neural, endocrine and behavioural response. There is increasing evidence that stress itself modifies neural circuits. In other words, neural stress circuits learn from stress. This self-teaching is surprising as one might expect these essential circuits to be hard-wired. Our recent findings, however, indicate that repeated homotypic stress in rats causes functional changes in neural circuitry in the hypothalamus. In particular, we focus on signalling via endocannabinoids and describe plasticity in this system that impacts fast retrograde signalling at synapses on to the stress command neurons in the brain. Interestingly, this plasticity appears to be limited to early adolescence, hinting at unique modes of control of neural circuits by stress during different developmental stages.
Collapse
Affiliation(s)
- Laura Senst
- Hotchkiss Brain Institute and Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Canada, T2N 4N1
| | | |
Collapse
|
49
|
Interaction between AT1 receptor and NF-κB in hypothalamic paraventricular nucleus contributes to oxidative stress and sympathoexcitation by modulating neurotransmitters in heart failure. Cardiovasc Toxicol 2014; 13:381-90. [PMID: 23877628 DOI: 10.1007/s12012-013-9219-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Angiotensin II type 1 receptor (AT1-R) and nuclear factor-kappaB (NF-κB) in the paraventricular nucleus (PVN) play important roles in heart failure (HF); however, the central mechanisms by which AT1-R and NF-κB contribute to sympathoexcitation in HF are yet unclear. In this study, we determined whether interaction between AT1-R and NF-κB in the PVN modulates neurotransmitters and contributes to NAD(P)H oxidase-dependent oxidative stress and sympathoexcitation in HF. Rats were implanted with bilateral PVN cannulae and subjected to coronary artery ligation or sham surgery (SHAM). Subsequently, animals were treated for 4 weeks through bilateral PVN infusion with either vehicle or losartan (LOS, 10 μg/h), an AT1-R antagonist; or pyrrolidine dithiocarbamate (PDTC, 5 μg/h), a NF-κB inhibitor via osmotic minipump. Myocardial infarction (MI) rats had higher levels of glutamate (Glu), norepinephrine (NE) and NF-κB p65 activity, lower levels of gamma-aminobutyric acid (GABA), and more positive neurons for phosphorylated IKKβ and gp91(phox) (a subunit of NAD(P)H oxidase) in the PVN when compared to SHAM rats. MI rats also had higher levels of renal sympathetic nerve activity (RSNA) and plasma proinflammatory cytokines (PICs), NE and epinephrine. PVN infusions of LOS or PDTC attenuated the decreases in GABA and the increases in gp91(phox), NF-κB activity, Glu and NE, in the PVN of HF rats. PVN infusions of LOS or PDTC also attenuated the increases in RSNA and plasma PICs, NE and epinephrine in MI rats. These findings suggest that interaction between AT1 receptor and NF-κB in the PVN contributes to oxidative stress and sympathoexcitation by modulating neurotransmitters in heart failure.
Collapse
|
50
|
Lu YL, Richardson HN. Alcohol, stress hormones, and the prefrontal cortex: a proposed pathway to the dark side of addiction. Neuroscience 2014; 277:139-51. [PMID: 24998895 DOI: 10.1016/j.neuroscience.2014.06.053] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/23/2014] [Accepted: 06/24/2014] [Indexed: 11/17/2022]
Abstract
Chronic exposure to alcohol produces changes in the prefrontal cortex that are thought to contribute to the development and maintenance of alcoholism. A large body of literature suggests that stress hormones play a critical role in this process. Here we review the bi-directional relationship between alcohol and stress hormones, and discuss how alcohol acutely stimulates the release of glucocorticoids and induces enduring modifications to neuroendocrine stress circuits during the transition from non-dependent drinking to alcohol dependence. We propose a pathway by which alcohol and stress hormones elicit neuroadaptive changes in prefrontal circuitry that could contribute functionally to a dampened neuroendocrine state and the increased propensity to relapse-a spiraling trajectory that could eventually lead to dependence.
Collapse
Affiliation(s)
- Y-L Lu
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA 01003, United States
| | - H N Richardson
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|