1
|
Mollinari C, Cardinale A, Lupacchini L, Martire A, Chiodi V, Martinelli A, Rinaldi AM, Fini M, Pazzaglia S, Domenici MR, Garaci E, Merlo D. The DNA repair protein DNA-PKcs modulates synaptic plasticity via PSD-95 phosphorylation and stability. EMBO Rep 2024; 25:3707-3737. [PMID: 39085642 PMCID: PMC11315936 DOI: 10.1038/s44319-024-00198-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
The key DNA repair enzyme DNA-PKcs has several and important cellular functions. Loss of DNA-PKcs activity in mice has revealed essential roles in immune and nervous systems. In humans, DNA-PKcs is a critical factor for brain development and function since mutation of the prkdc gene causes severe neurological deficits such as microcephaly and seizures, predicting yet unknown roles of DNA-PKcs in neurons. Here we show that DNA-PKcs modulates synaptic plasticity. We demonstrate that DNA-PKcs localizes at synapses and phosphorylates PSD-95 at newly identified residues controlling PSD-95 protein stability. DNA-PKcs -/- mice are characterized by impaired Long-Term Potentiation (LTP), changes in neuronal morphology, and reduced levels of postsynaptic proteins. A PSD-95 mutant that is constitutively phosphorylated rescues LTP impairment when over-expressed in DNA-PKcs -/- mice. Our study identifies an emergent physiological function of DNA-PKcs in regulating neuronal plasticity, beyond genome stability.
Collapse
Affiliation(s)
- Cristiana Mollinari
- Istituto Superiore di Sanita', Department of Neuroscience, 00161, Rome, Italy
- Institute of Translational Pharmacology, National Research Council, 00133, Rome, Italy
| | | | | | - Alberto Martire
- Istituto Superiore di Sanita', National Centre for Drug Research and Evaluation, 00161, Rome, Italy
| | - Valentina Chiodi
- Istituto Superiore di Sanita', National Centre for Drug Research and Evaluation, 00161, Rome, Italy
| | - Andrea Martinelli
- Istituto Superiore di Sanita', Experimental Animal Welfare Sector, 00161, Rome, Italy
| | - Anna Maria Rinaldi
- Department of Systems Medicine, "Tor Vergata" University of Rome, 00133, Rome, Italy
| | | | - Simonetta Pazzaglia
- ENEA SSPT-TECS-TEB, Casaccia Research Center, Division of Health Protection Technology (TECS), Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123, Rome, Italy
| | - Maria Rosaria Domenici
- Istituto Superiore di Sanita', National Centre for Drug Research and Evaluation, 00161, Rome, Italy
| | - Enrico Garaci
- IRCCS San Raffaele Roma, 00163, Rome, Italy
- MEBIC Consortium, 00166, Rome, Italy
| | - Daniela Merlo
- Istituto Superiore di Sanita', Department of Neuroscience, 00161, Rome, Italy.
| |
Collapse
|
2
|
Nowacka A, Getz AM, Bessa-Neto D, Choquet D. Activity-dependent diffusion trapping of AMPA receptors as a key step for expression of early LTP. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230220. [PMID: 38853553 PMCID: PMC11343219 DOI: 10.1098/rstb.2023.0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 06/11/2024] Open
Abstract
This review focuses on the activity-dependent diffusion trapping of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) as a crucial mechanism for the expression of early long-term potentiation (LTP), a process central to learning and memory. Despite decades of research, the precise mechanisms by which LTP induction leads to an increase in AMPAR responses at synapses have been elusive. We review the different hypotheses that have been put forward to explain the increased AMPAR responsiveness during LTP. We discuss the dynamic nature of AMPAR complexes, including their constant turnover and activity-dependent modifications that affect their synaptic accumulation. We highlight a hypothesis suggesting that AMPARs are diffusively trapped at synapses through activity-dependent interactions with protein-based binding slots in the post-synaptic density (PSD), offering a potential explanation for the increased synaptic strength during LTP. Furthermore, we outline the challenges still to be addressed before we fully understand the functional roles and molecular mechanisms of AMPAR dynamic nanoscale organization in LTP. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Agata Nowacka
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, BordeauxF-33000, France
| | - Angela M. Getz
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, BordeauxF-33000, France
- University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4, BordeauxF-33000, France
| | - Diogo Bessa-Neto
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, BordeauxF-33000, France
| | - Daniel Choquet
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, BordeauxF-33000, France
- University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4, BordeauxF-33000, France
| |
Collapse
|
3
|
Droogers WJ, MacGillavry HD. Plasticity of postsynaptic nanostructure. Mol Cell Neurosci 2023; 124:103819. [PMID: 36720293 DOI: 10.1016/j.mcn.2023.103819] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
The postsynaptic density (PSD) of excitatory synapses is built from a wide variety of scaffolding proteins, receptors, and signaling molecules that collectively orchestrate synaptic transmission. Seminal work over the past decades has led to the identification and functional characterization of many PSD components. In contrast, we know far less about how these constituents are assembled within synapses, and how this organization contributes to synapse function. Notably, recent evidence from high-resolution microscopy studies and in silico models, highlights the importance of the precise subsynaptic structure of the PSD for controlling the strength of synaptic transmission. Even further, activity-driven changes in the distribution of glutamate receptors are acknowledged to contribute to long-term changes in synaptic efficacy. Thus, defining the mechanisms that drive structural changes within the PSD are important for a molecular understanding of synaptic transmission and plasticity. Here, we review the current literature on how the PSD is organized to mediate basal synaptic transmission and how synaptic activity alters the nanoscale organization of synapses to sustain changes in synaptic strength.
Collapse
Affiliation(s)
- W J Droogers
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, The Netherlands
| | - H D MacGillavry
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, The Netherlands.
| |
Collapse
|
4
|
Takahashi M, Nakabayashi T, Mita N, Jin X, Aikawa Y, Sasamoto K, Miyoshi G, Miyata M, Inoue T, Ohshima T. Involvement of Cdk5 activating subunit p35 in synaptic plasticity in excitatory and inhibitory neurons. Mol Brain 2022; 15:37. [PMID: 35484559 PMCID: PMC9052517 DOI: 10.1186/s13041-022-00922-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/14/2022] [Indexed: 11/23/2022] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) /p35 is involved in many developmental processes of the central nervous system. Cdk5/p35 is also implicated in synaptic plasticity, learning and memory. Several lines of conditional Cdk5 knockout mice (KO) have been generated and have shown different outcomes for learning and memory. Here, we present our analysis of p35 conditional KO mice (p35cKO) in hippocampal pyramidal neurons or forebrain GABAergic neurons using electrophysiological and behavioral methods. In the fear conditioning task, CamKII-p35cKO mice showed impaired memory retention. Furthermore, NMDAR-dependent long-term depression (LTD) induction by low-frequency stimuli in hippocampal slices from CamkII-p35cKO mice was impaired compared to that in control mice. In contrast, Dlx-p35cKO mice showed no abnormalities in behavioral tasks and electrophysiological analysis in their hippocampal slices. These results indicated that Cdk5/p35 in excitatory neurons is important for the hippocampal synaptic plasticity and associative memory retention.
Collapse
Affiliation(s)
- Miyuki Takahashi
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo, 162-0056, Japan
| | - Takeru Nakabayashi
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo, 162-0056, Japan
| | - Naoki Mita
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo, 162-0056, Japan
| | - Xiaohua Jin
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo, 162-0056, Japan
| | - Yuta Aikawa
- Laboratory for Neurophysiology, Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo, 162-0056, Japan
| | - Kodai Sasamoto
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo, 162-0056, Japan
| | - Goichi Miyoshi
- Department of Neurophysiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo, 162-8666, Japan.,Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, 3-39-22 Showa-cho, Maebashi, Gunma, 371-8511, Japan
| | - Mariko Miyata
- Department of Neurophysiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo, 162-8666, Japan
| | - Takafumi Inoue
- Laboratory for Neurophysiology, Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo, 162-0056, Japan
| | - Toshio Ohshima
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo, 162-0056, Japan.
| |
Collapse
|
5
|
Yamawaki Y, Wada Y, Matsui S, Ohtsuki G. Microglia-triggered hypoexcitability plasticity of pyramidal neurons in the rat medial prefrontal cortex. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100028. [DOI: 10.1016/j.crneur.2022.100028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 01/14/2022] [Accepted: 01/30/2022] [Indexed: 12/16/2022] Open
|
6
|
Vistrup-Parry M, Chen X, Johansen TL, Bach S, Buch-Larsen SC, Bartling CRO, Ma C, Clemmensen LS, Nielsen ML, Zhang M, Strømgaard K. Site-specific phosphorylation of PSD-95 dynamically regulates the postsynaptic density as observed by phase separation. iScience 2021; 24:103268. [PMID: 34761188 PMCID: PMC8567388 DOI: 10.1016/j.isci.2021.103268] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/11/2021] [Accepted: 10/12/2021] [Indexed: 01/06/2023] Open
Abstract
Postsynaptic density protein 95 is a key scaffolding protein in the postsynaptic density of excitatory glutamatergic neurons, organizing signaling complexes primarily via its three PSD-95/Discs-large/Zona occludens domains. PSD-95 is regulated by phosphorylation, but technical challenges have limited studies of the molecular details. Here, we genetically introduced site-specific phosphorylations in single, tandem, and full-length PSD-95 and generated a total of 11 phosphorylated protein variants. We examined how these phosphorylations affected binding to known interaction partners and the impact on phase separation of PSD-95 complexes and identified two new phosphorylation sites with opposing effects. Phosphorylation of Ser78 inhibited phase separation with the glutamate receptor subunit GluN2B and the auxiliary protein stargazin, whereas phosphorylation of Ser116 induced phase separation with stargazin only. Thus, by genetically introducing phosphoserine site-specifically and exploring the impact on phase separation, we have provided new insights into the regulation of PSD-95 by phosphorylation and the dynamics of the PSD.
Collapse
Affiliation(s)
- Maria Vistrup-Parry
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - Xudong Chen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Thea L Johansen
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - Sofie Bach
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - Sara C Buch-Larsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Christian R O Bartling
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - Chenxue Ma
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Louise S Clemmensen
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - Michael L Nielsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,Shenzhen Bay Laboratory, Gaoke Innovation Center, Guangqiao Road, Guangming District, Shenzhen, China
| | - Kristian Strømgaard
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| |
Collapse
|
7
|
Karoglu-Eravsar ET, Tuz-Sasik MU, Adams MM. Short-term dietary restriction maintains synaptic plasticity whereas short-term overfeeding alters cellular dynamics in the aged brain: evidence from the zebrafish model organism. Neurobiol Aging 2021; 106:169-182. [PMID: 34284260 DOI: 10.1016/j.neurobiolaging.2021.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 05/06/2021] [Accepted: 06/12/2021] [Indexed: 12/12/2022]
Abstract
Increased caloric intake (OF) impairs quality of life causing comorbidities with other diseases and cognitive deficits, whereas dietary restriction (DR) increases healthspan by preventing age-related deteriorations. To understand the effects of these opposing dietary regimens on the cellular and synaptic dynamics during brain aging, the zebrafish model, which shows gradual aging like mammals, was utilized. Global changes in cellular and synaptic markers with respect to age and a 12 week dietary regimen of OF and DR demonstrated that aging reduces the levels of the glutamate receptor subunits, GLUR2/3, inhibitory synaptic clustering protein, GEP, synaptic vesicle protein, SYP, and early-differentiated neuronal marker, HuC. DR significantly elevates levels of glutamate receptor subunits, GLUR2/3, and NMDA clustering protein, PSD95, levels, while OF subtly increases the level of the neuronal protein, DCAMKL1. These data suggest that decreased caloric intake within the context of aging has more robust effects on synapses than cellular proteins, whereas OF alters cellular dynamics. Thus, patterns like these should be taken into account for possible translation to human subjects.
Collapse
Affiliation(s)
- Elif Tugce Karoglu-Eravsar
- Interdisciplinary Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey; Department of Molecular Biology and Genetics, Zebrafish Facility, Bilkent University, Ankara, Turkey; Department of Psychology, Selcuk University, Konya, Turkey
| | - Melek Umay Tuz-Sasik
- Interdisciplinary Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey; Department of Molecular Biology and Genetics, Zebrafish Facility, Bilkent University, Ankara, Turkey
| | - Michelle M Adams
- Interdisciplinary Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey; Department of Molecular Biology and Genetics, Zebrafish Facility, Bilkent University, Ankara, Turkey; Department of Psychology, Bilkent University, Ankara, Turkey.
| |
Collapse
|
8
|
Maddumage JC, Stewart BZ, Humbert PO, Kvansakul M. Crystallographic Studies of PDZ Domain-Peptide Interactions of the Scribble Polarity Module. Methods Mol Biol 2021; 2256:125-135. [PMID: 34014519 DOI: 10.1007/978-1-0716-1166-1_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The determination of high-resolution crystal structures of cell polarity regulatory proteins bound to their functional interactors has proven to be invaluable for deciphering the underlying molecular mechanisms. Here we describe methods to identify suitable complexes of cell polarity protein domains bound to interacting ligands with subsequent preparation of such complexes for X-ray crystallographic analysis.
Collapse
Affiliation(s)
- Janesha C Maddumage
- Department of Biochemistry and Genetics, La Trobe University, Bundoora, VIC, Australia.,La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Bryce Z Stewart
- Department of Biochemistry and Genetics, La Trobe University, Bundoora, VIC, Australia.,La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Patrick O Humbert
- Department of Biochemistry and Genetics, La Trobe University, Bundoora, VIC, Australia. .,La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia.
| | - Marc Kvansakul
- Department of Biochemistry and Genetics, La Trobe University, Bundoora, VIC, Australia. .,La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia.
| |
Collapse
|
9
|
Karoglu-Eravsar ET, Tuz-Sasik MU, Adams MM. Environmental enrichment applied with sensory components prevents age-related decline in synaptic dynamics: Evidence from the zebrafish model organism. Exp Gerontol 2021; 149:111346. [PMID: 33838219 DOI: 10.1016/j.exger.2021.111346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 10/21/2022]
Abstract
Progression of cognitive decline with or without neurodegeneration varies among elderly subjects. The main aim of the current study was to illuminate the molecular mechanisms that promote and retain successful aging in the context of factors such as environment and gender, both of which alter the resilience of the aging brain. Environmental enrichment (EE) is one intervention that may lead to the maintenance of cognitive processing at older ages in both humans and animal subjects. EE is easily applied to different model organisms, including zebrafish, which show similar age-related molecular and behavioral changes as humans. Global changes in cellular and synaptic markers with respect to age, gender and 4-weeks of EE applied with sensory stimulation were investigated using the zebrafish model organism. Results indicated that EE increases brain weight in an age-dependent manner without affecting general body parameters like body mass index (BMI). Age-related declines in the presynaptic protein synaptophysin, AMPA-type glutamate receptor subunits and a post-mitotic neuronal marker were observed and short-term EE prevents these changes in aged animals, as well as elevates levels of the inhibitory scaffolding protein, gephyrin. Gender-driven alterations were observed in the levels of the glutamate receptor subunits. Oxidative stress markers were significantly increased in the old animals, while exposure to EE did not alter this pattern. These data suggest that EE with sensory stimulation exerts its effects mainly on age-related changes in synaptic dynamics, which likely increase brain resilience through specific cellular mechanisms.
Collapse
Affiliation(s)
- Elif Tugce Karoglu-Eravsar
- Interdisciplinary Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey; Department of Molecular Biology and Genetics, Zebrafish Facility, Bilkent University, Ankara, Turkey; Department of Psychology, Selcuk University, Konya, Turkey
| | - Melek Umay Tuz-Sasik
- Interdisciplinary Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey; Department of Molecular Biology and Genetics, Zebrafish Facility, Bilkent University, Ankara, Turkey
| | - Michelle M Adams
- Interdisciplinary Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey; Department of Molecular Biology and Genetics, Zebrafish Facility, Bilkent University, Ankara, Turkey; Department of Psychology, Bilkent University, Ankara, Turkey.
| |
Collapse
|
10
|
Okuda K, Højgaard K, Privitera L, Bayraktar G, Takeuchi T. Initial memory consolidation and the synaptic tagging and capture hypothesis. Eur J Neurosci 2020; 54:6826-6849. [PMID: 32649022 DOI: 10.1111/ejn.14902] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/17/2020] [Accepted: 06/29/2020] [Indexed: 01/05/2023]
Abstract
Everyday memories are retained automatically in the hippocampus and then decay very rapidly. Memory retention can be boosted when novel experiences occur shortly before or shortly after the time of memory encoding via a memory stabilization process called "initial memory consolidation." The dopamine release and new protein synthesis in the hippocampus during a novel experience are crucial for this novelty-induced memory boost. The mechanisms underlying initial memory consolidation are not well-understood, but the synaptic tagging and capture (STC) hypothesis provides a conceptual basis of synaptic plasticity events occurring during initial memory consolidation. In this review, we provide an overview of the STC hypothesis and its relevance to dopaminergic signalling, in order to explore the cellular and molecular mechanisms underlying initial memory consolidation in the hippocampus. We summarize electrophysiological STC processes based on the evidence from two-pathway experiments and a behavioural tagging hypothesis, which translates the STC hypothesis into a related behavioural hypothesis. We also discuss the function of two types of molecules, "synaptic tags" and "plasticity-related proteins," which have a crucial role in the STC process and initial memory consolidation. We describe candidate molecules for the roles of synaptic tag and plasticity-related proteins and interpret their candidacy based on evidence from two-pathway experiments ex vivo, behavioural tagging experiments in vivo and recent cutting-edge optical imaging experiments. Lastly, we discuss the direction of future studies to advance our understanding of molecular mechanisms underlying the STC process, which are critical for initial memory consolidation in the hippocampus.
Collapse
Affiliation(s)
- Kosuke Okuda
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark
| | - Kristoffer Højgaard
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark.,Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark
| | - Lucia Privitera
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - Gülberk Bayraktar
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark.,Institut für Klinische Neurobiologie, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Tomonori Takeuchi
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
11
|
Amacher JF, Brooks L, Hampton TH, Madden DR. Specificity in PDZ-peptide interaction networks: Computational analysis and review. JOURNAL OF STRUCTURAL BIOLOGY-X 2020; 4:100022. [PMID: 32289118 PMCID: PMC7138185 DOI: 10.1016/j.yjsbx.2020.100022] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/26/2020] [Accepted: 02/29/2020] [Indexed: 01/03/2023]
Abstract
Globular PDZ domains typically serve as protein-protein interaction modules that regulate a wide variety of cellular functions via recognition of short linear motifs (SLiMs). Often, PDZ mediated-interactions are essential components of macromolecular complexes, and disruption affects the entire scaffold. Due to their roles as linchpins in trafficking and signaling pathways, PDZ domains are attractive targets: both for controlling viral pathogens, which bind PDZ domains and hijack cellular machinery, as well as for developing therapies to combat human disease. However, successful therapeutic interventions that avoid off-target effects are a challenge, because each PDZ domain interacts with a number of cellular targets, and specific binding preferences can be difficult to decipher. Over twenty-five years of research has produced a wealth of data on the stereochemical preferences of individual PDZ proteins and their binding partners. Currently the field lacks a central repository for this information. Here, we provide this important resource and provide a manually curated, comprehensive list of the 271 human PDZ domains. We use individual domain, as well as recent genomic and proteomic, data in order to gain a holistic view of PDZ domains and interaction networks, arguing this knowledge is critical to optimize targeting selectivity and to benefit human health.
Collapse
Affiliation(s)
- Jeanine F Amacher
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.,Department of Chemistry, Western Washington University, Bellingham, WA 98225, USA
| | - Lionel Brooks
- Department of Biology, Western Washington University, Bellingham, WA 98225, USA
| | - Thomas H Hampton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Dean R Madden
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
12
|
Nowacka A, Borczyk M, Salamian A, Wójtowicz T, Włodarczyk J, Radwanska K. PSD-95 Serine 73 phosphorylation is not required for induction of NMDA-LTD. Sci Rep 2020; 10:2054. [PMID: 32029829 PMCID: PMC7005143 DOI: 10.1038/s41598-020-58989-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/16/2020] [Indexed: 01/11/2023] Open
Abstract
PSD-95 is a major scaffolding protein of the post-synaptic density (PSD) of a glutamatergic synapse. PSD-95, via interactions with stargazin, anchors AMPA receptors at the synapse and regulates AMPAR currents. The expression of PSD-95 is regulated during synaptic plasticity. It is, however, unknown whether this regulation is required for induction of functional plasticity of glutamatergic synapses. Here, we show that NMDA-induced long-term depression of synaptic transmission (NMDA-LTD) is accompanied by downregulation of PSD-95 protein levels. Using pharmacologic and molecular manipulations, we further demonstrate that the NMDA-induced downregulation of PSD-95 depends on the activation of CaMKII and CaMKII-driven phosphorylation of PSD-95 serine 73. Surprisingly, neither CaMKII activity nor CaMKII-dependent phosphorylation of PSD-95 serine 73 are required for the expression of NMDA-LTD. These results support the hypothesis that synaptic plasticity of AMPARs may occur without dynamic regulation of PSD-95 protein levels.
Collapse
Affiliation(s)
- Agata Nowacka
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Małgorzata Borczyk
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Ahmad Salamian
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Wójtowicz
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Włodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Kasia Radwanska
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
13
|
Martin ER, Barbieri A, Ford RC, Robinson RC. In vivo crystals reveal critical features of the interaction between cystic fibrosis transmembrane conductance regulator (CFTR) and the PDZ2 domain of Na +/H + exchange cofactor NHERF1. J Biol Chem 2020; 295:4464-4476. [PMID: 32014995 DOI: 10.1074/jbc.ra119.012015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/17/2020] [Indexed: 12/23/2022] Open
Abstract
Crystallization of recombinant proteins has been fundamental to our understanding of protein function, dysfunction, and molecular recognition. However, this information has often been gleaned under extremely nonphysiological protein, salt, and H+ concentrations. Here, we describe the development of a robust Inka1-Box (iBox)-PAK4cat system that spontaneously crystallizes in several mammalian cell types. The semi-quantitative assay described here allows the measurement of in vivo protein-protein interactions using a novel GFP-linked reporter system that produces fluorescent readouts from protein crystals. We combined this assay with in vitro X-ray crystallography and molecular dynamics studies to characterize the molecular determinants of the interaction between the PDZ2 domain of Na+/H+ exchange regulatory cofactor NHE-RF1 (NHERF1) and cystic fibrosis transmembrane conductance regulator (CFTR), a protein complex pertinent to the genetic disease cystic fibrosis. These experiments revealed the crystal structure of the extended PDZ domain of NHERF1 and indicated, contrary to what has been previously reported, that residue selection at positions -1 and -3 of the PDZ-binding motif influences the affinity and specificity of the NHERF1 PDZ2-CFTR interaction. Our results suggest that this system could be utilized to screen additional protein-protein interactions, provided they can be accommodated within the spacious iBox-PAK4cat lattice.
Collapse
Affiliation(s)
- Eleanor R Martin
- School of Biological Sciences, Faculty of Biology Medicine and Health, Michael Smith Building, The University of Manchester, Manchester, M13 9PL, United Kingdom.,Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis 138673, Singapore
| | - Alessandro Barbieri
- School of Biological Sciences, Faculty of Biology Medicine and Health, Michael Smith Building, The University of Manchester, Manchester, M13 9PL, United Kingdom.,Bioinformatics Institute (BII), A*STAR (Agency for Science, Technology and Research), Biopolis 138671, Singapore
| | - Robert C Ford
- School of Biological Sciences, Faculty of Biology Medicine and Health, Michael Smith Building, The University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Robert C Robinson
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis 138673, Singapore .,School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.,Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
14
|
Li MX, Li Q, Sun XJ, Luo C, Li Y, Wang YN, Chen J, Gong CZ, Li YJ, Shi LP, Zheng YF, Li RC, Huang XL, Xiong QJ, Chen H. Increased Homer1-mGluR5 mediates chronic stress-induced depressive-like behaviors and glutamatergic dysregulation via activation of PERK-eIF2α. Prog Neuropsychopharmacol Biol Psychiatry 2019; 95:109682. [PMID: 31265863 DOI: 10.1016/j.pnpbp.2019.109682] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 10/26/2022]
Abstract
Glutamatergic dysregulation has served as one common pathophysiology of major depressive disorder (MDD) and a promising target for treatment intervention. Previous studies implicate neurotransmission via metabotropic glutamate receptors (mGluRs) and Homer1 in stress-induced anhedonia, but the mechanisms have not been well elucidated. In the present study, we used two different animal models of depression, chronic social defeat stress (CSDS) and chronic restraint stress (CRS), to investigate the expression of Homer1 isoforms and functional interaction with mGluRs. We found that chronic stress selectively upregulated the expression of Homer1b/c in the hippocampus, whereas the level of Homer1a was unchanged. Additionally, there was a significant negative correlation between the levels of Homer1-mGluR5 signaling and depressive-like behaviors. Both application of paired-pulse low-frequency stimulation (PP-LFS) and the selective group 1 mGluRs agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) significantly enhanced mGluR-dependent long-term depression (LTD) at CA3-CA1 pyramidal cell synapses in slices from susceptible mice, whereas there was no change in NMDAR-dependent LTD induced by LFS. Furthermore, these effects were associated with the internalization of surface AMPARs in hippocampal pyramidal neurons, including reduced the expression of AMPARs and amplitude of AMPARs-mediated mEPSC. Finally, we found that chronic stress activated the KR-like ER kinase-eukaryotic initiation factor 2α (PERK-eIF2α) signaling pathway, subsequently phosphorylated cAMP response element binding protein (CREB) at the S129 and reduced the BDNF level, eventually leading to the impairment of synaptic transmission and depressive-like behaviors. Therefore, our study suggests that PERK-eIF2α acts as a critical target downstream of Homer1-mGluR5 complex to mediate chronic stress-induced depressive-like behaviors, and highlights them as a potential target for the treatment of mood disorder.
Collapse
Affiliation(s)
- Ming-Xing Li
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Tongji-Wisconsin Stem Cell Application Technology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qian Li
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xue-Jiao Sun
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Can Luo
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yong Li
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Ya-Nan Wang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Chen
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chen-Zi Gong
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ya-Jie Li
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li-Ping Shi
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi-Feng Zheng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Rong-Chun Li
- Department of Pain Management, Wuhan Pu-Ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiao-Lin Huang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qiu-Ju Xiong
- Department of Pain Management, Wuhan Pu-Ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Hong Chen
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Tongji-Wisconsin Stem Cell Application Technology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
15
|
Caria S, Stewart BZ, Jin R, Smith BJ, Humbert PO, Kvansakul M. Structural analysis of phosphorylation‐associated interactions of human MCC with Scribble PDZ domains. FEBS J 2019; 286:4910-4925. [DOI: 10.1111/febs.15002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/30/2019] [Accepted: 07/16/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Sofia Caria
- Department of Biochemistry & Genetics La Trobe Institute for Molecular Science La Trobe University Melbourne Victoria Australia
- SAXS/WAXS Australian Synchrotron Clayton Victoria Australia
| | - Bryce Z. Stewart
- Department of Biochemistry & Genetics La Trobe Institute for Molecular Science La Trobe University Melbourne Victoria Australia
| | - Ruitao Jin
- Department of Chemistry and Physics La Trobe Institute for Molecular Sciences La Trobe University Melbourne Victoria Australia
| | - Brian J. Smith
- Department of Chemistry and Physics La Trobe Institute for Molecular Sciences La Trobe University Melbourne Victoria Australia
| | - Patrick O. Humbert
- Department of Biochemistry & Genetics La Trobe Institute for Molecular Science La Trobe University Melbourne Victoria Australia
- Research Centre for Molecular Cancer Prevention La Trobe University Melbourne Victoria Australia
- Department of Biochemistry & Molecular Biology University of Melbourne Melbourne Victoria Australia
- Department of Clinical Pathology University of Melbourne Melbourne Victoria Australia
| | - Marc Kvansakul
- Department of Biochemistry & Genetics La Trobe Institute for Molecular Science La Trobe University Melbourne Victoria Australia
- Research Centre for Molecular Cancer Prevention La Trobe University Melbourne Victoria Australia
| |
Collapse
|
16
|
Bissen D, Foss F, Acker-Palmer A. AMPA receptors and their minions: auxiliary proteins in AMPA receptor trafficking. Cell Mol Life Sci 2019; 76:2133-2169. [PMID: 30937469 PMCID: PMC6502786 DOI: 10.1007/s00018-019-03068-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/12/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022]
Abstract
To correctly transfer information, neuronal networks need to continuously adjust their synaptic strength to extrinsic stimuli. This ability, termed synaptic plasticity, is at the heart of their function and is, thus, tightly regulated. In glutamatergic neurons, synaptic strength is controlled by the number and function of AMPA receptors at the postsynapse, which mediate most of the fast excitatory transmission in the central nervous system. Their trafficking to, at, and from the synapse, is, therefore, a key mechanism underlying synaptic plasticity. Intensive research over the last 20 years has revealed the increasing importance of interacting proteins, which accompany AMPA receptors throughout their lifetime and help to refine the temporal and spatial modulation of their trafficking and function. In this review, we discuss the current knowledge about the roles of key partners in regulating AMPA receptor trafficking and focus especially on the movement between the intracellular, extrasynaptic, and synaptic pools. We examine their involvement not only in basal synaptic function, but also in Hebbian and homeostatic plasticity. Included in our review are well-established AMPA receptor interactants such as GRIP1 and PICK1, the classical auxiliary subunits TARP and CNIH, and the newest additions to AMPA receptor native complexes.
Collapse
Affiliation(s)
- Diane Bissen
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
- Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438, Frankfurt am Main, Germany
| | - Franziska Foss
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Amparo Acker-Palmer
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany.
- Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438, Frankfurt am Main, Germany.
- Cardio-Pulmonary Institute (CPI), Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
17
|
Abstract
PSD-95 is a scaffolding protein that regulates the synaptic localization of many receptors, channels, and signaling proteins. The NLGN gene family encodes single-pass transmembrane postsynaptic cell adhesion molecules that are important for synapse assembly and function. At excitatory synapses, NLGN1 mediates transsynaptic binding with neurexin, a presynaptic cell adhesion molecule, and also binds to PSD-95, although the relevance of the PSD-95 interaction is not clear. We now show that disruption of the NLGN1 and PSD-95 interaction decreases surface expression of NLGN1 in cultured neurons. Furthermore, PKA phosphorylates NLGN1 on S839, near the PDZ ligand, and dynamically regulates PSD-95 binding. A phosphomimetic mutation of NLGN1 S839 significantly reduced PSD-95 binding. Impaired NLGN1/PSD-95 binding diminished synaptic NLGN1 expression and NLGN1-mediated synaptic enhancement. Our results establish a phosphorylation-dependent molecular mechanism that regulates NLGN1 and PSD-95 binding and provides insights into excitatory synaptic development and function.
Collapse
|
18
|
Jacobi E, von Engelhardt J. AMPA receptor complex constituents: Control of receptor assembly, membrane trafficking and subcellular localization. Mol Cell Neurosci 2018; 91:67-75. [DOI: 10.1016/j.mcn.2018.05.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 05/15/2018] [Accepted: 05/24/2018] [Indexed: 11/29/2022] Open
|
19
|
Sundell GN, Arnold R, Ali M, Naksukpaiboon P, Orts J, Güntert P, Chi CN, Ivarsson Y. Proteome-wide analysis of phospho-regulated PDZ domain interactions. Mol Syst Biol 2018; 14:e8129. [PMID: 30126976 PMCID: PMC6100724 DOI: 10.15252/msb.20178129] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022] Open
Abstract
A key function of reversible protein phosphorylation is to regulate protein-protein interactions, many of which involve short linear motifs (3-12 amino acids). Motif-based interactions are difficult to capture because of their often low-to-moderate affinities. Here, we describe phosphomimetic proteomic peptide-phage display, a powerful method for simultaneously finding motif-based interaction and pinpointing phosphorylation switches. We computationally designed an oligonucleotide library encoding human C-terminal peptides containing known or predicted Ser/Thr phosphosites and phosphomimetic variants thereof. We incorporated these oligonucleotides into a phage library and screened the PDZ (PSD-95/Dlg/ZO-1) domains of Scribble and DLG1 for interactions potentially enabled or disabled by ligand phosphorylation. We identified known and novel binders and characterized selected interactions through microscale thermophoresis, isothermal titration calorimetry, and NMR We uncover site-specific phospho-regulation of PDZ domain interactions, provide a structural framework for how PDZ domains accomplish phosphopeptide binding, and discuss ligand phosphorylation as a switching mechanism of PDZ domain interactions. The approach is readily scalable and can be used to explore the potential phospho-regulation of motif-based interactions on a large scale.
Collapse
Affiliation(s)
- Gustav N Sundell
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Roland Arnold
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Muhammad Ali
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Piangfan Naksukpaiboon
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Julien Orts
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
| | - Peter Güntert
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
- Institute of Biophysical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Celestine N Chi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ylva Ivarsson
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| |
Collapse
|
20
|
Neuronal calcium channel α1 subunit interacts with AMPA receptor, increasing its cell surface localisation. Biochem Biophys Res Commun 2018; 498:402-408. [DOI: 10.1016/j.bbrc.2018.02.107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 02/11/2018] [Indexed: 02/07/2023]
|
21
|
Gupta R. Self-crowding of AMPA receptors in the excitatory postsynaptic density can effectuate anomalous receptor sub-diffusion. PLoS Comput Biol 2018; 14:e1005984. [PMID: 29444074 PMCID: PMC5812565 DOI: 10.1371/journal.pcbi.1005984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/15/2018] [Indexed: 12/03/2022] Open
Abstract
AMPA receptors (AMPARs) and their associations with auxiliary transmembrane proteins are bulky structures with large steric-exclusion volumes. Hence, self-crowding of AMPARs, depending on the local density, may affect their lateral diffusion in the postsynaptic membrane as well as in the highly crowded postsynaptic density (PSD) at excitatory synapses. Earlier theoretical studies considered only the roles of transmembrane obstacles and the AMPAR-binding submembranous scaffold proteins in shaping receptor diffusion within PSD. Using lattice model of diffusion, the present study investigates the additional impacts of self-crowding on the anomalousity and effective diffusion coefficient (Deff) of AMPAR diffusion. A recursive algorithm for avoiding false self-blocking during diffusion simulation is also proposed. The findings suggest that high density of AMPARs in the obstacle-free membrane itself engenders strongly anomalous diffusion and severe decline in Deff. Adding transmembrane obstacles to the membrane accentuates the anomalousity arising from self-crowding due to the reduced free diffusion space. Contrarily, enhanced AMPAR-scaffold binding, either through increase in binding strength or scaffold density or both, ameliorates the anomalousity resulting from self-crowding. However, binding has differential impacts on Deff depending on the receptor density. Increase in binding causes consistent decrease in Deff for low and moderate receptor density. For high density, binding increases Deff as long as it reduces anomalousity associated with intense self-crowding. Given a sufficiently strong binding condition when diffusion acquires normal behavior, further increase in binding causes decrease in Deff. Supporting earlier experimental observations are mentioned and implications of present findings to the experimental observations on AMPAR diffusion are also drawn. The transmembrane AMPA receptors (AMPARs) prominently exhibit lateral diffusion in the postsynaptic membrane at excitatory synapses. Steric obstructions to AMPAR diffusion due to the crowd of other relatively static transmembrane proteins and binding of AMPARs to the submembranous scaffold proteins in the specialized region of postsynaptic density (PSD) are well known to retard receptor diffusion, which causes receptor trapping and accumulation within PSD. However, AMPARs are significantly bulky structures and may also obstruct their own diffusion paths in the presence of their high density. It is shown here that intense self-crowding of AMPARs may lead to highly obstructed and confined receptor diffusion even in the obstacle-free medium, and the presence of other obstacles further aggravates this effect. AMPAR-scaffold binding reduces confined diffusion arising from self-crowding and strong binding engenders normal diffusion even at high receptor density. However, it overall causes reduction in the effective diffusion coefficient of the receptor diffusion.
Collapse
Affiliation(s)
- Rahul Gupta
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail:
| |
Collapse
|
22
|
Kunde SA, Rademacher N, Zieger H, Shoichet SA. Protein kinase C regulates AMPA receptor auxiliary protein Shisa9/CKAMP44 through interactions with neuronal scaffold PICK1. FEBS Open Bio 2017; 7:1234-1245. [PMID: 28904854 PMCID: PMC5586339 DOI: 10.1002/2211-5463.12261] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/19/2017] [Accepted: 06/08/2017] [Indexed: 12/22/2022] Open
Abstract
Synaptic α‐amino‐3‐hydroxyl‐5‐methyl‐4‐isoxazole‐propionate (AMPA) receptors are essential mediators of neurotransmission in the central nervous system. Shisa9/cysteine‐knot AMPAR modulating protein 44 (CKAMP44) is a transmembrane protein recently found to be present in AMPA receptor‐associated protein complexes. Here, we show that the cytosolic tail of Shisa9/CKAMP44 interacts with multiple scaffold proteins that are important for regulating synaptic plasticity in central neurons. We focussed on the interaction with the scaffold protein PICK1, which facilitates the formation of a tripartite complex with the protein kinase C (PKC) and thereby regulates phosphorylation of Shisa9/CKAMP44 C‐terminal residues. This work has implications for our understanding of how PICK1 modulates AMPAR‐mediated transmission and plasticity and also highlights a novel function of PKC.
Collapse
Affiliation(s)
- Stella-Amrei Kunde
- Neuroscience Research Center/Institute of Biochemistry Charité - Universitätsmedizin Berlin Germany
| | - Nils Rademacher
- Neuroscience Research Center/Institute of Biochemistry Charité - Universitätsmedizin Berlin Germany
| | - Hanna Zieger
- Neuroscience Research Center/Institute of Biochemistry Charité - Universitätsmedizin Berlin Germany
| | - Sarah A Shoichet
- Neuroscience Research Center/Institute of Biochemistry Charité - Universitätsmedizin Berlin Germany
| |
Collapse
|
23
|
Kato T, Kubo A, Nagayama T, Kume S, Tanaka C, Nakayama Y, Iida K, Iida H. Genetic analysis of the regulation of the voltage-gated calcium channel homolog Cch1 by the γ subunit homolog Ecm7 and cortical ER protein Scs2 in yeast. PLoS One 2017; 12:e0181436. [PMID: 28742147 PMCID: PMC5524387 DOI: 10.1371/journal.pone.0181436] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/30/2017] [Indexed: 11/23/2022] Open
Abstract
The yeast Cch1/Mid1 Ca2+ channel is equivalent to animal voltage-gated Ca2+ channels and activated in cells incubated in low Ca2+ medium. We herein investigated the third subunit, Ecm7, under the same cell culture conditions. The deletion of ECM7 slightly lowered Ca2+ influx activity in the CNB1+ background, in which calcineurin potentially dephosphorylates Cch1, but markedly lowered this activity in the cnb1Δ background. The deletion of the C-terminal cytoplasmic region of Ecm7 also reduced Ca2+ influx activity. We identified a novel Cch1-interacting protein, Scs2, which is known as a cortical endoplasmic reticulum membrane protein. The deletion of SCS2 did not affect Ca2+ influx activity when calcineurin was inhibited by FK506, but enhanced this activity by 35% when the enzyme was not inhibited. However, this enhancement was canceled by the deletion of ECM7. These results suggest that Cch1/Mid1 is regulated differentially by Ecm7 and Scs2 in a manner that is dependent on the phosphorylation status of Cch1.
Collapse
Affiliation(s)
- Takafumi Kato
- Department of Biology, Tokyo Gakugei University, Nukui kita-machi, Koganei, Tokyo, Japan
| | - Aya Kubo
- Department of Biology, Tokyo Gakugei University, Nukui kita-machi, Koganei, Tokyo, Japan
| | - Tatsuya Nagayama
- Department of Biology, Tokyo Gakugei University, Nukui kita-machi, Koganei, Tokyo, Japan
| | - Shinichiro Kume
- Department of Biology, Tokyo Gakugei University, Nukui kita-machi, Koganei, Tokyo, Japan
| | - Chikara Tanaka
- Department of Biology, Tokyo Gakugei University, Nukui kita-machi, Koganei, Tokyo, Japan
| | - Yoshitaka Nakayama
- Department of Biology, Tokyo Gakugei University, Nukui kita-machi, Koganei, Tokyo, Japan
| | - Kazuko Iida
- Laboratory of Biomembrane, Tokyo Metropolitan Institute of Medical Science Kamikitazawa, Setagaya, Tokyo, Japan
| | - Hidetoshi Iida
- Department of Biology, Tokyo Gakugei University, Nukui kita-machi, Koganei, Tokyo, Japan
| |
Collapse
|
24
|
Lomash RM, Sheng N, Li Y, Nicoll RA, Roche KW. Phosphorylation of the kainate receptor (KAR) auxiliary subunit Neto2 at serine 409 regulates synaptic targeting of the KAR subunit GluK1. J Biol Chem 2017; 292:15369-15377. [PMID: 28717010 DOI: 10.1074/jbc.m117.787903] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/09/2017] [Indexed: 11/06/2022] Open
Abstract
Synaptic strength at excitatory synapses is determined by the presence of glutamate receptors (i.e. AMPA, NMDA, and kainate receptors) at the synapse. Synaptic strength is modulated by multiple factors including assembly of different receptor subunits, interaction with auxiliary subunits, and post-translational modifications of either the receptors or their auxiliary subunits. Using mass spectrometry, we found that the intracellular region of neuropilin and tolloid-like proteins (Neto) 1 and Neto2, the auxiliary subunits of kainate receptor (KARs), are phosphorylated by multiple kinases in vitro Specifically, Neto2 was phosphorylated at serine 409 (Ser-409) by Ca2+/calmodulin-dependent protein kinase II (CaMKII) and protein kinase A (PKA) both in vitro and in heterologous cells. Interestingly, we observed a substantial increase in Neto2 Ser-409 phosphorylation in the presence of CaMKII, and this phosphorylation was reduced in the presence of the KAR subunit GluK1 or GluK2. We also found endogenous phosphorylation of Neto2 at Ser-409 in the brain. Moreover, Neto2 Ser-409 phosphorylation inhibited synaptic targeting of GluK1 because, unlike WT Neto2 and the phosphodeficient mutant Neto2 S409A, the Neto2 S409D phosphomimetic mutant impeded GluK1 trafficking to synapses. These results support a molecular mechanism by which Neto2 phosphorylation at Ser-409 helps restrict GluK1 targeting to the synapse.
Collapse
Affiliation(s)
| | - Nengyin Sheng
- Departments of Cellular and Molecular Pharmacology and
| | - Yan Li
- Protein/Peptide Sequencing Facility, NINDS, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Roger A Nicoll
- Departments of Cellular and Molecular Pharmacology and.,Physiology, University of California, San Francisco, California 94143
| | | |
Collapse
|
25
|
Wu D, Bacaj T, Morishita W, Goswami D, Arendt KL, Xu W, Chen L, Malenka RC, Südhof TC. Postsynaptic synaptotagmins mediate AMPA receptor exocytosis during LTP. Nature 2017; 544:316-321. [PMID: 28355182 PMCID: PMC5734942 DOI: 10.1038/nature21720] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 02/22/2017] [Indexed: 12/19/2022]
Abstract
Strengthening of synaptic connections by NMDA-receptor-dependent long-term potentiation (LTP) shapes neural circuits and mediates learning and memory. During NMDA-receptor-dependent LTP induction, Ca2+-influx stimulates recruitment of synaptic AMPA-receptors, thereby strengthening synapses. How Ca2+ induces AMPA-receptor recruitment, however, remains unclear. Here we show that, in pyramidal neurons of the hippocampal CA1-region, blocking postsynaptic expression of both synaptotagmin-1 and synaptotagmin-7, but not of synaptotagmin-1 or synaptotagmin-7 alone, abolished LTP. LTP was rescued by wild-type but not by Ca2+-binding-deficient mutant synaptotagmin-7. Blocking postsynaptic synaptotagmin-1/7 expression did not impair basal synaptic transmission, synaptic or extrasynaptic AMPA-receptor levels, or other AMPA-receptor trafficking events. Moreover, expression of dominant-negative mutant synaptotagmin-1 that inhibited Ca2+-dependent presynaptic vesicle exocytosis also blocked Ca2+-dependent postsynaptic AMPA-receptor exocytosis, thereby abolishing LTP. Our results suggest that postsynaptic synaptotagmin-1 and synaptotagmin-7 act as redundant Ca2+-sensors for Ca2+-dependent exocytosis of AMPA-receptors during LTP, thus delineating a simple mechanism for the recruitment of AMPA-receptors that mediates LTP.
Collapse
Affiliation(s)
- Dick Wu
- Department of Molecular &Cellular Physiology and Howard Hughes Medical Institute, Stanford University Medical School, Stanford, California 94305, USA.,Nancy Pritzker Laboratory, Stanford University Medical School, Stanford, California 94305, USA.,Department of Psychiatry &Behavioral Sciences, Stanford University Medical School, Stanford, California 94305, USA
| | - Taulant Bacaj
- Department of Molecular &Cellular Physiology and Howard Hughes Medical Institute, Stanford University Medical School, Stanford, California 94305, USA
| | - Wade Morishita
- Nancy Pritzker Laboratory, Stanford University Medical School, Stanford, California 94305, USA.,Department of Psychiatry &Behavioral Sciences, Stanford University Medical School, Stanford, California 94305, USA
| | - Debanjan Goswami
- Nancy Pritzker Laboratory, Stanford University Medical School, Stanford, California 94305, USA.,Department of Psychiatry &Behavioral Sciences, Stanford University Medical School, Stanford, California 94305, USA
| | - Kristin L Arendt
- Department of Neurosurgery, Stanford University Medical School, Stanford, California 94305, USA
| | - Wei Xu
- Department of Molecular &Cellular Physiology and Howard Hughes Medical Institute, Stanford University Medical School, Stanford, California 94305, USA
| | - Lu Chen
- Department of Neurosurgery, Stanford University Medical School, Stanford, California 94305, USA
| | - Robert C Malenka
- Nancy Pritzker Laboratory, Stanford University Medical School, Stanford, California 94305, USA.,Department of Psychiatry &Behavioral Sciences, Stanford University Medical School, Stanford, California 94305, USA
| | - Thomas C Südhof
- Department of Molecular &Cellular Physiology and Howard Hughes Medical Institute, Stanford University Medical School, Stanford, California 94305, USA
| |
Collapse
|
26
|
Wang PJ, Lin ST, Liu SH, Kuo KT, Hsu CH, Knepper MA, Yu MJ. Vasopressin-induced serine 269 phosphorylation reduces Sipa1l1 (signal-induced proliferation-associated 1 like 1)-mediated aquaporin-2 endocytosis. J Biol Chem 2017; 292:7984-7993. [PMID: 28336531 DOI: 10.1074/jbc.m117.779611] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/14/2017] [Indexed: 11/06/2022] Open
Abstract
The abundance of integral membrane proteins in the plasma membrane is determined by a dynamic balance between exocytosis and endocytosis, which can often be regulated by physiological stimuli. Here, we describe a mechanism that accounts for the ability of the peptide hormone vasopressin to regulate water excretion via a phosphorylation-dependent modulation of the PDZ domain-ligand interaction involving the water channel protein aquaporin-2. We discovered that the PDZ domain-containing protein Sipa1l1 (signal-induced proliferation-associated 1 like 1) binds to the cytoplasmic PDZ-ligand motif of aquaporin-2 and accelerates its endocytosis in the absence of vasopressin. Vasopressin-induced aquaporin-2 phosphorylation within the type I PDZ-ligand motif disrupted the interaction, in association with reduced aquaporin-2 endocytosis and prolonged plasma membrane aquaporin-2 retention. This phosphorylation-dependent alteration in the PDZ domain-ligand interaction was explained by 3D structural models, which showed a hormone-regulated mechanism that controls osmotic water transport and systemic water balance in mammals.
Collapse
Affiliation(s)
- Po-Jen Wang
- From the Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei 10051, Taiwan
| | - Shu-Ting Lin
- From the Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei 10051, Taiwan
| | - Shao-Hsuan Liu
- From the Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei 10051, Taiwan
| | - Kuang-Ting Kuo
- From the Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei 10051, Taiwan
| | - Chun-Hua Hsu
- the Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan, and
| | - Mark A Knepper
- the Systems Biology Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-1603
| | - Ming-Jiun Yu
- From the Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei 10051, Taiwan,
| |
Collapse
|
27
|
Presynaptic DLG regulates synaptic function through the localization of voltage-activated Ca(2+) Channels. Sci Rep 2016; 6:32132. [PMID: 27573697 PMCID: PMC5004195 DOI: 10.1038/srep32132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 08/03/2016] [Indexed: 12/15/2022] Open
Abstract
The DLG-MAGUK subfamily of proteins plays a role on the recycling and clustering of glutamate receptors (GLUR) at the postsynaptic density. discs-large1 (dlg) is the only DLG-MAGUK gene in Drosophila and originates two main products, DLGA and DLGS97 which differ by the presence of an L27 domain. Combining electrophysiology, immunostaining and genetic manipulation at the pre and postsynaptic compartments we study the DLG contribution to the basal synaptic-function at the Drosophila larval neuromuscular junction. Our results reveal a specific function of DLGS97 in the regulation of the size of GLUR fields and their subunit composition. Strikingly the absence of any of DLG proteins at the presynaptic terminal disrupts the clustering and localization of the calcium channel DmCa1A subunit (Cacophony), decreases the action potential-evoked release probability and alters short-term plasticity. Our results show for the first time a crucial role of DLG proteins in the presynaptic function in vivo.
Collapse
|
28
|
Zhu J, Shang Y, Zhang M. Mechanistic basis of MAGUK-organized complexes in synaptic development and signalling. Nat Rev Neurosci 2016; 17:209-23. [DOI: 10.1038/nrn.2016.18] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Bender J, Engeholm M, Ederer MS, Breu J, Møller TC, Michalakis S, Rasko T, Wanker EE, Biel M, Martinez KL, Wurst W, Deussing JM. Corticotropin-Releasing Hormone Receptor Type 1 (CRHR1) Clustering with MAGUKs Is Mediated via Its C-Terminal PDZ Binding Motif. PLoS One 2015; 10:e0136768. [PMID: 26352593 PMCID: PMC4564177 DOI: 10.1371/journal.pone.0136768] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/07/2015] [Indexed: 01/24/2023] Open
Abstract
The corticotropin-releasing hormone receptor type 1 (CRHR1) plays an important role in orchestrating neuroendocrine, behavioral, and autonomic responses to stress. To identify molecules capable of directly modulating CRHR1 signaling, we performed a yeast-two-hybrid screen using the C-terminal intracellular tail of the receptor as bait. We identified several members of the membrane-associated guanylate kinase (MAGUK) family: postsynaptic density protein 95 (PSD95), synapse-associated protein 97 (SAP97), SAP102 and membrane associated guanylate kinase, WW and PDZ domain containing 2 (MAGI2). CRHR1 is co-expressed with the identified MAGUKs and with the additionally investigated PSD93 in neurons of the adult mouse brain and in primary hippocampal neurons, supporting the probability of a physiological interaction in vivo. The C-terminal PDZ (PSD-95, discs large, zona occludens 1) binding motif of CRHR1 is essential for its physical interaction with MAGUKs, as revealed by the CRHR1-STAVA mutant, which harbors a functionally impaired PDZ binding motif. The imitation of a phosphorylation at Thr413 within the PDZ binding motif also disrupted the interaction with MAGUKs. In contrast, distinct PDZ domains within the identified MAGUKs are involved in the interactions. Expression of CRHR1 in primary neurons demonstrated its localization throughout the neuronal plasma membrane, including the excitatory post synapse, where the receptor co-localized with PSD95 and SAP97. The co-expression of CRHR1 and respective interacting MAGUKs in HEK293 cells resulted in a clustered subcellular co-localization which required an intact PDZ binding motif. In conclusion, our study characterized the PDZ binding motif-mediated interaction of CRHR1 with multiple MAGUKs, which directly affects receptor function.
Collapse
Affiliation(s)
- Julia Bender
- Max Planck Institute of Psychiatry, Department of Stress Neurobiology and Neurogenetics, Molecular Neurogenetics, Munich, Germany
| | | | - Marion S. Ederer
- Max Planck Institute of Psychiatry, Department of Stress Neurobiology and Neurogenetics, Molecular Neurogenetics, Munich, Germany
| | | | - Thor C. Møller
- University of Copenhagen, Department of Chemistry & Nano-Science Center, Copenhagen, Denmark
| | - Stylianos Michalakis
- Center for Integrated Protein Science Munich (CIPSM) and Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tamas Rasko
- Max Delbrueck Center for Molecular Medicine, Berlin-Buch, Germany
| | - Erich E. Wanker
- Max Delbrueck Center for Molecular Medicine, Berlin-Buch, Germany
| | - Martin Biel
- Center for Integrated Protein Science Munich (CIPSM) and Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Karen L. Martinez
- University of Copenhagen, Department of Chemistry & Nano-Science Center, Copenhagen, Denmark
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Neurodegenerative Diseases within the Helmholtz Association, Munich, Germany
- Technische Universität München-Weihenstephan, Lehrstuhl für Entwicklungsgenetik c/o Helmholtz Zentrum München, Neuherberg, Germany
| | - Jan M. Deussing
- Max Planck Institute of Psychiatry, Department of Stress Neurobiology and Neurogenetics, Molecular Neurogenetics, Munich, Germany
- * E-mail:
| |
Collapse
|
30
|
Schroeter A, Wen S, Mölders A, Erlenhardt N, Stein V, Klöcker N. Depletion of the AMPAR reserve pool impairs synaptic plasticity in a model of hepatic encephalopathy. Mol Cell Neurosci 2015; 68:331-9. [DOI: 10.1016/j.mcn.2015.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/22/2015] [Accepted: 09/06/2015] [Indexed: 02/07/2023] Open
|
31
|
Pandey SP, Rai R, Gaur P, Prasad S. Development- and age-related alterations in the expression of AMPA receptor subunit GluR2 and its trafficking proteins in the hippocampus of male mouse brain. Biogerontology 2015; 16:317-28. [DOI: 10.1007/s10522-014-9548-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 12/16/2014] [Indexed: 10/24/2022]
|
32
|
Popescu GK. Accessories assist AMPA receptors to close pockets. J Gen Physiol 2014; 145:17-21. [PMID: 25512600 PMCID: PMC4278189 DOI: 10.1085/jgp.201411320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Gabriela K Popescu
- Department of Biochemistry, University at Buffalo, The State University of New York, Buffalo, NY 14214
| |
Collapse
|
33
|
Du H, Guo L, Wu X, Sosunov AA, McKhann GM, Chen JX, Yan SS. Cyclophilin D deficiency rescues Aβ-impaired PKA/CREB signaling and alleviates synaptic degeneration. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1842:2517-27. [PMID: 23507145 PMCID: PMC3868643 DOI: 10.1016/j.bbadis.2013.03.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/14/2013] [Accepted: 03/08/2013] [Indexed: 12/14/2022]
Abstract
The coexistence of neuronal mitochondrial pathology and synaptic dysfunction is an early pathological feature of Alzheimer's disease (AD). Cyclophilin D (CypD), an integral part of mitochondrial permeability transition pore (mPTP), is involved in amyloid beta (Aβ)-instigated mitochondrial dysfunction. Blockade of CypD prevents Aβ-induced mitochondrial malfunction and the consequent cognitive impairments. Here, we showed the elimination of reactive oxygen species (ROS) by antioxidants probucol or superoxide dismutase (SOD)/catalase blocks Aβ-mediated inactivation of protein kinase A (PKA)/cAMP regulatory-element-binding (CREB) signal transduction pathway and loss of synapse, suggesting the detrimental effects of oxidative stress on neuronal PKA/CREB activity. Notably, neurons lacking CypD significantly attenuate Aβ-induced ROS. Consequently, CypD-deficient neurons are resistant to Aβ-disrupted PKA/CREB signaling by increased PKA activity, phosphorylation of PKA catalytic subunit (PKA C), and CREB. In parallel, lack of CypD protects neurons from Aβ-induced loss of synapses and synaptic dysfunction. Furthermore, compared to the mAPP mice, CypD-deficient mAPP mice reveal less inactivation of PKA-CREB activity and increased synaptic density, attenuate abnormalities in dendritic spine maturation, and improve spontaneous synaptic activity. These findings provide new insights into a mechanism in the crosstalk between the CypD-dependent mitochondrial oxidative stress and signaling cascade, leading to synaptic injury, functioning through the PKA/CREB signal transduction pathway.
Collapse
Affiliation(s)
- Heng Du
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Lan Guo
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Xiaoping Wu
- Department of Neurosurgery, Physicians & Surgeons College of Columbia University, New York, NY 10032, USA
| | - Alexander A Sosunov
- Department of Neurosurgery, Physicians & Surgeons College of Columbia University, New York, NY 10032, USA
| | - Guy M McKhann
- Department of Neurosurgery, Physicians & Surgeons College of Columbia University, New York, NY 10032, USA
| | - John Xi Chen
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY 1003, USA
| | - Shirley ShiDu Yan
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA.
| |
Collapse
|
34
|
Haering SC, Tapken D, Pahl S, Hollmann M. Auxiliary subunits: shepherding AMPA receptors to the plasma membrane. MEMBRANES 2014; 4:469-90. [PMID: 25110960 PMCID: PMC4194045 DOI: 10.3390/membranes4030469] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/17/2014] [Accepted: 07/25/2014] [Indexed: 11/24/2022]
Abstract
Ionotropic glutamate receptors (iGluRs) are tetrameric ligand-gated cation channels that mediate excitatory signal transmission in the central nervous system (CNS) of vertebrates. The members of the iGluR subfamily of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (AMPARs) mediate most of the fast excitatory signal transmission, and their abundance in the postsynaptic membrane is a major determinant of the strength of excitatory synapses. Therefore, regulation of AMPAR trafficking to the postsynaptic membrane is an important constituent of mechanisms involved in learning and memory formation, such as long-term potentiation (LTP) and long-term depression (LTD). Auxiliary subunits play a critical role in the facilitation and regulation of AMPAR trafficking and function. The currently identified auxiliary subunits of AMPARs are transmembrane AMPA receptor regulatory proteins (TARPs), suppressor of lurcher (SOL), cornichon homologues (CNIHs), synapse differentiation-induced gene I (SynDIG I), cysteine-knot AMPAR modulating proteins 44 (CKAMP44), and germ cell-specific gene 1-like (GSG1L) protein. In this review we summarize our current knowledge of the modulatory influence exerted by these important but still underappreciated proteins.
Collapse
Affiliation(s)
- Simon C Haering
- Department of Biochemistry I-Receptor Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44780 Bochum, Germany.
| | - Daniel Tapken
- Department of Biochemistry I-Receptor Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44780 Bochum, Germany.
| | - Steffen Pahl
- Department of Biochemistry I-Receptor Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44780 Bochum, Germany.
| | - Michael Hollmann
- Department of Biochemistry I-Receptor Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44780 Bochum, Germany.
| |
Collapse
|
35
|
Itakura M, Watanabe I, Sugaya T, Takahashi M. Direct association of the unique C-terminal tail of transmembrane AMPA receptor regulatory protein γ-8 with calcineurin. FEBS J 2014; 281:1366-1378. [PMID: 24418105 DOI: 10.1111/febs.12708] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/15/2013] [Accepted: 12/31/2013] [Indexed: 12/26/2022]
Abstract
Transmembrane α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor regulatory proteins (TARPs) are auxiliary subunits that regulate AMPA receptor trafficking to the plasma membrane and localization to postsynaptic sites. The classical TARP family consists of four members: stargazin/γ-2, γ-3, γ-4 and γ-8. The TARP γ-8 isoform, which is highly expressed in the hippocampus, has a unique, long C-terminal domain with five distinct regions: two glycine-rich regions, a serine/arginine-rich region, a proline/alanine (P/A) rich region, and a PSD-95/Dlg/ZO-1 (PDZ) binding motif. We performed mass spectrometry and immunoprecipitation assays to identify specific binding partners for the γ-8 C-terminal tail and found that γ-8, but not stargazin/γ-2, co-immunoprecipitated with calcineurin/PP2B, a Ca(2+) /calmodulin-dependent Ser/Thr phosphatase. Co-immunoprecipitation and immunoblot analyses of lysates from COS-7 cells co-transfected with calcineurin and either wild type or chimeric γ-8 revealed that a section of the C-terminal tail (residues 356-421) can bind calcineurin. Futhermore, γ-8 lacking the P/A-rich region (residues 383-399) did not bind to calcineurin. In addition, the GST-γ-8 C-terminal tail (residues 353-414) fusion protein containing the P/A-rich region bound to purified calcineurin in a Ca(2+) /calmodulin-dependent manner, whereas GST-γ-8 with a deletion of the P/A-rich region did not. Peptide competition assays demonstrated that γ-8 may interact with the hydrophobic pocket defined by β-sheet 14 and/or adjacent regions of the catalytic A subunit of calcineurin. These results indicate that the γ-8 P/A-rich region is essential for binding calcineurin, suggesting that the γ-8/calcineurin complex may regulate AMPA receptor phosphorylation and trafficking.
Collapse
Affiliation(s)
- Makoto Itakura
- Department of Biochemistry, Kitasato University School of Medicine, Kanagawa, Japan
| | | | | | | |
Collapse
|
36
|
Huang YA, Kao JW, Tseng DTH, Chen WS, Chiang MH, Hwang E. Microtubule-associated type II protein kinase A is important for neurite elongation. PLoS One 2013; 8:e73890. [PMID: 23967353 PMCID: PMC3742546 DOI: 10.1371/journal.pone.0073890] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/23/2013] [Indexed: 11/20/2022] Open
Abstract
Neuritogenesis is a process through which neurons generate their widespread axon and dendrites. The microtubule cytoskeleton plays crucial roles throughout neuritogenesis. Our previous study indicated that the amount of type II protein kinase A (PKA) on microtubules significantly increased upon neuronal differentiation and neuritogenesis. While the overall pool of PKA has been shown to participate in various neuronal processes, the function of microtubule-associated PKA during neuritogenesis remains largely unknown. First, we showed that PKA localized to microtubule-based region in different neurons. Since PKA is essential for various cellular functions, globally inhibiting PKA activity will causes a wide variety of phenotypes in neurons. To examine the function of microtubule-associated PKA without changing the total PKA level, we utilized the neuron-specific PKA anchoring protein MAP2. Overexpressing the dominant negative MAP2 construct that binds to type II PKA but cannot bind to the microtubule cytoskeleton in dissociated hippocampal neurons removed PKA from microtubules and resulted in compromised neurite elongation. In addition, we demonstrated that the association of PKA with microtubules can also enhance cell protrusion using the non-neuronal P19 cells. Overexpressing a MAP2 deletion construct which does not target PKA to the microtubule cytoskeleton caused non-neuronal cells to generate shorter cell protrusions than control cells overexpressing wild-type MAP2 that anchors PKA to microtubules. Finally, we demonstrated that the ability of microtubule-associated PKA to promote protrusion elongation was independent of MAP2 phosphorylation. This suggests other proteins in close proximity to the microtubule cytoskeleton are involved in this process.
Collapse
Affiliation(s)
- Yung-An Huang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Jun-Wei Kao
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Dion Tzu-Huan Tseng
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Wen-Shin Chen
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Center for Bioinformatics Research, National Chiao Tung University, Hsinchu, Taiwan
| | - Ming-Han Chiang
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Eric Hwang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan
- Center for Bioinformatics Research, National Chiao Tung University, Hsinchu, Taiwan
- * E-mail:
| |
Collapse
|
37
|
Abstract
p27Kip1 is a key cell-cycle regulator whose level is primarily regulated by the ubiquitin–proteasome degradation pathway. Its β1 subunit is one of seven β subunits that form the β-ring of the 20S proteasome, which is responsible for degradation of ubiquitinated proteins. We report here that the β1 subunit is up-regulated in oesophageal cancer tissues and some ovarian cancer cell lines. It promotes cell growth and migration, as well as colony formation. β1 binds and degrades p27Kip1directly. Interestingly, the lack of phosphorylation at Ser158 of the β1 subunit promotes degradation of p27Kip1. We therefore propose that the β1 subunit plays a novel role in tumorigenesis by degrading p27Kip1.
Collapse
|
38
|
Palmitoylation-dependent CDKL5-PSD-95 interaction regulates synaptic targeting of CDKL5 and dendritic spine development. Proc Natl Acad Sci U S A 2013; 110:9118-23. [PMID: 23671101 DOI: 10.1073/pnas.1300003110] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The X-linked gene cyclin-dependent kinase-like 5 (CDKL5) is mutated in severe neurodevelopmental disorders, including some forms of atypical Rett syndrome, but the function and regulation of CDKL5 protein in neurons remain to be elucidated. Here, we show that CDKL5 binds to the scaffolding protein postsynaptic density (PSD)-95, and that this binding promotes the targeting of CDKL5 to excitatory synapses. Interestingly, this binding is not constitutive, but governed by palmitate cycling on PSD-95. Furthermore, pathogenic mutations that truncate the C-terminal tail of CDKL5 diminish its binding to PSD-95 and synaptic accumulation. Importantly, down-regulation of CDKL5 by RNA interference (RNAi) or interference with the CDKL5-PSD-95 interaction inhibits dendritic spine formation and growth. These results demonstrate a critical role of the palmitoylation-dependent CDKL5-PSD-95 interaction in localizing CDKL5 to synapses for normal spine development and suggest that disruption of this interaction by pathogenic mutations may be implicated in the pathogenesis of CDKL5-related disorders.
Collapse
|
39
|
Nicoll RA, Roche KW. Long-term potentiation: peeling the onion. Neuropharmacology 2013; 74:18-22. [PMID: 23439383 DOI: 10.1016/j.neuropharm.2013.02.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 02/12/2013] [Indexed: 12/19/2022]
Abstract
Since the discovery of long-term potentiation (LTP), thousands of papers have been published on this phenomenon. With this massive amount of information, it is often difficult, especially for someone not directly involved in the field, not to be overwhelmed. The goal of this review is to peel away as many layers as possible, and probe the core properties of LTP. We would argue that the many dozens of proteins that have been implicated in the phenomenon are not essential, but rather modulate, often in indirect ways, the threshold and/or magnitude of LTP. What is required is NMDA receptor activation followed by CaMKII activation. The consequence of CaMKII activation is the rapid recruitment of AMPA receptors to the synapse. This recruitment is independent of AMPA receptor subunit type, but absolutely requires an adequate pool of surface receptors. An important unresolved issue is how exactly CaMKII activation leads to modifications in the PSD to allow rapid enrichment. This article is part of the Special Issue entitled 'Glutamate Receptor-Dependent Synaptic Plasticity'.
Collapse
Affiliation(s)
- Roger A Nicoll
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143-2140, USA.
| | | |
Collapse
|
40
|
Crespi A, Ferrari I, Lonati P, Disanza A, Fornasari D, Scita G, Padovano V, Pietrini G. LIN7 regulates the filopodium- and neurite-promoting activity of IRSp53. J Cell Sci 2012; 125:4543-54. [PMID: 22767515 DOI: 10.1242/jcs.106484] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The insulin receptor substrate protein of 53 kDa (IRSp53) is crucially involved in the formation of filopodia and neurites through mechanisms that have only partially been clarified. We have investigated the role of the small scaffold protein LIN7, which interacts with IRSp53. We found that formation of actin-filled protrusions in neuronal NSC34 cells and neurites in neuroblastoma N2A cells depends on motifs mediating the LIN7:IRSp53 association, as both the coexpression of LIN7 with IRSp53 or the expression of the L27-IRSp53 chimera (a fusion protein between IRSp53 and the LIN7L27 domain for plasma membrane protein complexes association) prevented actin-deficient protrusions induced by overexpressed IRSp53, and enhanced the formation of actin-filled protrusions. The regulatory role of LIN7 in IRSp53-mediated extension of filopodia in neuronal N2A cells was demonstrated by live-cell imaging experiments. Moreover, LIN7 silencing prevented the extension of filopodia and neurites, induced by ectopic expression of IRSp53 or serum starvation, respectively, in undifferentiated and differentiated N2A cells. The expression of full-length IRSp53 or the LIN7ΔPDZ mutant lacking the domain for association with IRSp53 was unable to restore neuritogenesis in LIN7-silenced cells. Conversely, defective neuritogenesis could be rescued by the expression of RNAi-resistant full-length LIN7 or chimeric L27-IRSp53. Finally, LIN7 silencing prevented the recruitment of IRSp53 in Triton X-100-insoluble complexes, otherwise occurring in differentiated cells. Collectively these data indicate that LIN7 is a novel regulator of IRSp53, and that the association of these proteins is required to promote the formation of actin-dependent filopodia and neurites.
Collapse
Affiliation(s)
- Arianna Crespi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan 20129, Italy
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Tan AM, Waxman SG. Spinal cord injury, dendritic spine remodeling, and spinal memory mechanisms. Exp Neurol 2011; 235:142-51. [PMID: 21925174 DOI: 10.1016/j.expneurol.2011.08.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 08/17/2011] [Accepted: 08/25/2011] [Indexed: 01/27/2023]
Abstract
Spinal cord injury (SCI) often results in the development of neuropathic pain, which can persist for months and years after injury. Although many aberrant changes to sensory processing contribute to the development of chronic pain, emerging evidence demonstrates that mechanisms similar to those underlying classical learning and memory can contribute to central sensitization, a phenomenon of amplified responsiveness to stimuli in nociceptive dorsal horn neurons. Notably, dendritic spines have emerged as major players in learning and memory, providing a structural substrate for how the nervous system modifies connections to form and store information. Until now, most information regarding dendritic spines has been obtained from studies in the brain. Recent experimental data in the spinal cord, however, demonstrate that Rac1-regulated dendritic spine remodeling occurs on second-order wide dynamic range neurons and accompanies neuropathic pain after SCI. Thus, SCI-induced synaptic potentiation engages a putative spinal memory mechanism. A compelling, novel possibility for pain research is that a synaptic model of long-term memory storage could explain the persistent nature of neuropathic pain. Such a conceptual bridge between pain and memory could guide the development of more effective strategies for treatment of chronic pain after injury to the nervous system.
Collapse
Affiliation(s)
- Andrew M Tan
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | |
Collapse
|
42
|
Jackson AC, Nicoll RA. The expanding social network of ionotropic glutamate receptors: TARPs and other transmembrane auxiliary subunits. Neuron 2011; 70:178-99. [PMID: 21521608 DOI: 10.1016/j.neuron.2011.04.007] [Citation(s) in RCA: 331] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2011] [Indexed: 12/25/2022]
Abstract
Ionotropic glutamate receptors (iGluRs) underlie rapid, excitatory synaptic signaling throughout the CNS. After years of intense research, our picture of iGluRs has evolved from them being companionless in the postsynaptic membrane to them being the hub of dynamic supramolecular signaling complexes, interacting with an ever-expanding litany of other proteins that regulate their trafficking, scaffolding, stability, signaling, and turnover. In particular, the discovery that transmembrane AMPA receptor regulatory proteins (TARPs) are AMPA receptor auxiliary subunits that are critical determinants of their trafficking, gating, and pharmacology has changed the way we think about iGluR function. Recently, a number of novel transmembrane proteins have been uncovered that may also serve as iGluR auxiliary proteins. Here we review pivotal developments in our understanding of the role of TARPs in AMPA receptor trafficking and gating, and provide an overview of how newly discovered transmembrane proteins expand our view of iGluR function in the CNS.
Collapse
Affiliation(s)
- Alexander C Jackson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA.
| | | |
Collapse
|
43
|
Nagasaka K, Nakagawa S, Yano T, Taketani Y, Banks L. The mechanisms behind human papillomavirus-associated cancer: the role of PDZ recognition in malignant progression. Future Virol 2011. [DOI: 10.2217/fvl.11.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Kazunori Nagasaka
- International Centre for Genetic Engineering & Biotechnology, Area Science Park, Padriciano-99, I-34012 Trieste, Italy
- Department of Obstetrics & Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shunsuke Nakagawa
- Department of Obstetrics & Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsu Yano
- Department of Obstetrics & Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuji Taketani
- Department of Obstetrics & Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
44
|
Roberts MF, Taylor DW, Unger VM. Two modes of interaction between the membrane-embedded TARP stargazin's C-terminal domain and the bilayer visualized by electron crystallography. J Struct Biol 2011; 174:542-51. [PMID: 21426941 DOI: 10.1016/j.jsb.2011.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 03/14/2011] [Accepted: 03/15/2011] [Indexed: 11/17/2022]
Abstract
Glutamate-mediated neurotransmission through ligand-gated, ionotropic glutamate receptors is the main form of excitatory neurotransmission in the vertebrate central nervous system where it plays central roles in learning, memory and a variety of disorders. Acting as auxiliary subunits, transmembrane α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) regulatory proteins (TARPs) are essential regulators for glutamate-mediated neurotransmission in the central nervous system. Here, we report the first electron crystallographic reconstructions of full-length mouse stargazin (γ-2) at ∼20Å resolution in a membrane bilayer environment. Formation of ordered arrays required anionic lipids and was modulated by cholesterol and monovalent cations. Projection structures revealed that the C-termini of stargazin monomers closely interacted with the bilayer surface in an extended conformation that placed the C-terminal PDZ-binding motif ∼100Å away from the transmembrane domain and in close proximity to a membrane re-entrant region. The C-termini interaction with the bilayer was modulated by the ionic strength of the solution and overall protein secondary structure increased when membrane-bound. Our data suggest that stargazin interactions with and within the membrane play significant roles in TARP structure and directly visualize TARP functional mechanisms essential for AMPAR trafficking and clustering.
Collapse
Affiliation(s)
- Matthew F Roberts
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|
45
|
Popovic M, Bella J, Zlatev V, Hodnik V, Anderluh G, Barlow PN, Pintar A, Pongor S. The interaction of Jagged-1 cytoplasmic tail with afadin PDZ domain is local, folding-independent, and tuned by phosphorylation. J Mol Recognit 2011; 24:245-53. [DOI: 10.1002/jmr.1042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
46
|
Abstract
Regulating the number and function of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors located at the postsynaptic density is a key mechanism underlying synaptic strength and plasticity. Thus, an active area of investigation is the discovery of accessory proteins that regulate AMPA receptor trafficking and biophysical properties. One decade ago, pioneering studies identified the transmembrane protein stargazin as a critical regulator of synaptic targeting of AMPA receptors in cerebellar granule neurons. Stargazin-related family members called TARPs (transmembrane AMPA receptor regulatory proteins) are now recognized as essential auxiliary subunits for AMPA receptors that control both receptor trafficking and channel gating properties in a wide variety of neuronal cell types. Recent studies have identified a diverse array of additional accessory transmembrane proteins with distinct and overlapping functions compared with TARPs. Coupled with the wide variety of established cytoplasmic AMPA receptor accessory proteins, it is clear that AMPA receptor regulation encompasses a previously unrecognized diversity of molecular mechanisms.
Collapse
Affiliation(s)
- Elva Díaz
- Department of Pharmacology, UC Davis School of Medicine, Davis, CA 95616, USA.
| |
Collapse
|
47
|
Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 2010; 62:405-96. [PMID: 20716669 PMCID: PMC2964903 DOI: 10.1124/pr.109.002451] [Citation(s) in RCA: 2654] [Impact Index Per Article: 176.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mammalian ionotropic glutamate receptor family encodes 18 gene products that coassemble to form ligand-gated ion channels containing an agonist recognition site, a transmembrane ion permeation pathway, and gating elements that couple agonist-induced conformational changes to the opening or closing of the permeation pore. Glutamate receptors mediate fast excitatory synaptic transmission in the central nervous system and are localized on neuronal and non-neuronal cells. These receptors regulate a broad spectrum of processes in the brain, spinal cord, retina, and peripheral nervous system. Glutamate receptors are postulated to play important roles in numerous neurological diseases and have attracted intense scrutiny. The description of glutamate receptor structure, including its transmembrane elements, reveals a complex assembly of multiple semiautonomous extracellular domains linked to a pore-forming element with striking resemblance to an inverted potassium channel. In this review we discuss International Union of Basic and Clinical Pharmacology glutamate receptor nomenclature, structure, assembly, accessory subunits, interacting proteins, gene expression and translation, post-translational modifications, agonist and antagonist pharmacology, allosteric modulation, mechanisms of gating and permeation, roles in normal physiological function, as well as the potential therapeutic use of pharmacological agents acting at glutamate receptors.
Collapse
Affiliation(s)
- Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322-3090, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lee HJ, Zheng JJ. PDZ domains and their binding partners: structure, specificity, and modification. Cell Commun Signal 2010; 8:8. [PMID: 20509869 PMCID: PMC2891790 DOI: 10.1186/1478-811x-8-8] [Citation(s) in RCA: 397] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2009] [Accepted: 05/28/2010] [Indexed: 02/07/2023] Open
Abstract
PDZ domains are abundant protein interaction modules that often recognize short amino acid motifs at the C-termini of target proteins. They regulate multiple biological processes such as transport, ion channel signaling, and other signal transduction systems. This review discusses the structural characterization of PDZ domains and the use of recently emerging technologies such as proteomic arrays and peptide libraries to study the binding properties of PDZ-mediated interactions. Regulatory mechanisms responsible for PDZ-mediated interactions, such as phosphorylation in the PDZ ligands or PDZ domains, are also discussed. A better understanding of PDZ protein-protein interaction networks and regulatory mechanisms will improve our knowledge of many cellular and biological processes.
Collapse
Affiliation(s)
- Ho-Jin Lee
- Department of Structural Biology, St, Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | | |
Collapse
|
49
|
Tomita S. Regulation of ionotropic glutamate receptors by their auxiliary subunits. Physiology (Bethesda) 2010; 25:41-9. [PMID: 20134027 DOI: 10.1152/physiol.00033.2009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glutamate receptors are major excitatory receptors in the brain. Recent findings have established auxiliary subunits of glutamate receptors as critical modulators of synaptic transmission, synaptic plasticity, and neurological disorder. The elucidation of the molecular rules governing glutamate receptors and subunits will improve our understanding of synapses and of neural-circuit regulation in the brain.
Collapse
Affiliation(s)
- Susumu Tomita
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
50
|
Misra C, Restituito S, Ferreira J, Rameau GA, Fu J, Ziff EB. Regulation of synaptic structure and function by palmitoylated AMPA receptor binding protein. Mol Cell Neurosci 2010; 43:341-52. [PMID: 20083202 DOI: 10.1016/j.mcn.2010.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 12/22/2009] [Accepted: 01/07/2010] [Indexed: 01/03/2023] Open
Abstract
AMPA receptor binding protein (ABP) is a multi-PDZ domain scaffold that binds and stabilizes AMPA receptor (AMPAR) GluR2/3 subunits at synapses. A palmitoylated N-terminal splice variant (pABP-L) concentrates in spine heads, whereas a non-palmitoylated form (ABP-L) is intracellular. We show that postsynaptic Sindbis viral expression of pABP-L increased AMPAR mediated mEPSC amplitude and frequency and elevated surface levels of GluR1 and GluR2, suggesting an increase in AMPA receptors at individual synapses. Spines were enlarged and more numerous and nerve terminals contacting these cells displayed enlarged synaptophysin puncta. A non-palmitoylated pABP-L mutant (C11A) did not change spine density or size. Exogenous pABP-L and endogenous GRIP, a related scaffold, colocalized with NPRAP (delta-catenin), to which ABP and GRIP bind, and with cadherins, which bind NPRAP. Thus postsynaptic pABP-L induces pre and postsynaptic changes that are dependent on palmitoylation and likely achieved through ABP association with a multi-molecular cell surface signaling complex.
Collapse
Affiliation(s)
- Charu Misra
- Department of Biochemistry, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|